
Received 12 January 2023, accepted 26 January 2023, date of publication 30 January 2023, date of current version 2 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3240589

Interactive Character Path-Following Using
Long-Horizon Motion Matching With
Revised Future Queries
JEONGMIN LEE 1,2, TAESOO KWON 2, AND YOONSANG LEE 2
1Samsung Research, Seoul 06620, South Korea
2Department of Computer Science, Hanyang University, Seoul 04763, South Korea

Corresponding authors: Yoonsang Lee (yoonsanglee@hanyang.ac.kr) and Taesoo Kwon (taesoo@hanyang.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) Grant through the Korea Government Ministry of Science
and ICT (MSIT) under Grant NRF-2019R1C1C1006778 and Grant NRF-2020R1A2C1012847.

ABSTRACT We propose a method for interactively generating a character motion that follows a
user-specified path based on motion matching. Unlike basic motion matching that finds the best frame
considering only the current state and current control input, our long-horizon motion matching algorithm
is performed recursively over multiple levels and finds the matching path that minimizes the total distance,
to find the best frame for a longer future interval. The matching query is carefully revised from the raw query
directly extracted from the user path to address the following aspects: inherent differences between an actual
moving path of a human and a user-drawn path, and possible user errors such as a path drawn with excessive
speed or with abrupt changes in direction. Also, two interactive control modes for path-following characters
are proposed. The combination of our long-horizon motion matching and carefully revised queries enables
smooth and reliable interactive path tracking for a variety of paths. We show the effectiveness of our method
using various experiments such as path-following with different shaped paths, game-like interactive control
demos, and ablation studies.

INDEX TERMS Character animation, interactive path-following, motion matching.

I. INTRODUCTION
Drawing a path for a target to follow is one of the interfaces
that a user can use to control a character or object in an
interactive application such as a game. A method commonly
used to control a game character is an instantaneous control
method in which the moving direction and speed are inputted
with a gamepad or mouse and keyboard at every moment.
Contrary to this, in this path-following method, the user can
input the movement of a target for a certain duration in the
future at once through a pointing device or a touch screen.
Using this, as seen in the famous classic iPad games Harbor
Master [1] and Flight Control [2], simultaneous interactive
control of multiple objects in complex scenarios such as

The associate editor coordinating the review of this manuscript and

approving it for publication was Shihong Ding .

controlling multiple moving objects to pass through the same
area with a small time difference is also possible.

Although approaches based on neural networks trained
with motion capture data are receiving a lot of attention
for generating the full-body motion of an instantaneously
controlled character [3], [4], a much simpler approach called
motion matching [5] is currently popular in gaming industry
due to its simplicity and relatively high motion quality. This
method periodically searches the best next motion frame con-
sidering only the current character state and current control
input. Since motion matching is essentially a method to find
the best option available at the present moment, it is ideal
for an instantaneously controlled character that receives the
movement direction and speed at every instant.

However, in the case of the path-following problem, there
are many difficulties in directly applying the standard motion
matching technique as it is. First, the character needs to

9942

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 11, 2023

https://orcid.org/0000-0002-7774-1427
https://orcid.org/0000-0002-9253-2156
https://orcid.org/0000-0002-0579-5987
https://orcid.org/0000-0003-2297-7050

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

switch motions naturally while continuously following the
path specified by the user. However, motion matching uses
a greedy search to select the current best option, which is
highly unlikely to be the best option in the long run, when
the future section of the user-drawn path is also considered.1

Second, depending on the user’s immersion in the interactive
application and how quickly a task needs to be completed,
paths may be drawn by the user with excessive speed or
abrupt changes in direction. A raw motion matching query
directly extracted from such a user-drawn pathwould produce
a motion in which the character does not follow the path
properly.

In this work, we propose a method for interactive charac-
ter path-following based on motion matching. Specifically,
we propose a long-horizon motion matching (LHMM) algo-
rithm to find the best next frame considering the current
character state as well as the predicted state in the longer
future. We also propose a method to revise the future query to
create a stable motion even when an extreme path is entered.

The user-specified path is drawn on the ground plane using
a pointing device such as a mouse or stylus pen. Our method
generates motion of the character moving along this path
input with various locomotion styles, such as walking, jog-
ging, or running, depending on the movement speed embed-
ded in the path.

Unlike basic motion matching that finds the best frame
considering only the current state and current control input,
our LHMM algorithm is performed recursively over multiple
levels and finds the matching path that minimizes the total
distance, to find the best frame for a longer future interval.
Specifically, for each candidate frame found in the previous
matching step, the next k candidate frames are recursively
searched until l steps are reached for each search path. Among
a total of k l matching paths searched, the matching path with
the smallest cumulative cost is temporally followed by select-
ing the first frame of the path as the next transition frame. As a
result, it is possible to find a semi-optimal solution for the
future time interval corresponding to l matching steps, which
enables smooth and stable path-following.

The matching query is carefully revised from the raw
query directly extracted from the user path to address the
following problems. First, the raw time-stamped path can
generate motion with unnatural velocity changes near the
corners because those changes in hand-drawn paths tend to
be more abrupt than the movement of a person walking on a
similar path.We propose to preprocess input paths to mitigate
these artifacts. Second, the speed of drawing a path by hand
on the rendered ground is usually much faster than the speed
of human movement. Even when properly scaled down, there
can always be portions of a path drawn at a speed that exceeds

1For example, let’s assume that there are two candidate frames A and B,
where A is the start frame of a regular and steady step, and B is the start frame
of a quick and short step. Even if it is frame A that better satisfies the current
requirements of the user-drawn path, frame B may be the optimal solution
in the long-term when the direction of the user-drawn path changes rapidly
within a certain period in the future.

the maximum possible speed of a person’s movement. We
carefully adjust the timings and the extent of future positions
in the query to avoid excessive progression of path following,
resulting in poor quality subsequent matches. Finally, if there
is a sharp corner on the user-drawn path, the character is
often unable to follow the path well around the corner. We
propose to modify the future positions of the query so that
the character approaches the corner vertex more closely.

For this ‘‘interactive character path-following’’ task,
we propose two control modes: Local Control mode, which
allows egocentric control over the character given its current
state, and Global Control mode, which is useful for con-
trolling a global position of the character. We also provide
three different ways to specify the character’s facing direction
on the input path: typical tangential direction, user-specified
direction with a joystick, and DirectionNet which infers the
natural facing direction of the character on the input path.

There have been some character animation studies showing
path-following demos [6], [7], [8], [9], [10], [11]. However,
to the best of our knowledge, none of the studies have focused
on the path following task itself and demonstrated different
types of path-following examples, including excessive path
input. Focusing on path-following, our method enables a
diverse set of interactive character path-following demos with
extreme paths where the speed changes abruptly or a path
contains sharp corners.

Our contributions can be summarized as follows:
• A long-horizon motion matching scheme that finds
the best frame for a longer interval rather than at the
moment.

• The future query revision process and preprocessing of
a user-drawn path for reliable character path-following
for various paths including extreme cases.

• More diverse character path-following results than
previous studies, including multi-character control,
game-like interactive control, and path-following with
different motion styles.

• Two new control schemes for interactive character path-
following: local control and global control.

II. RELATED WORKS
One of the popular approaches to synthesize natural human
movements is to utilize motion capture data. Because a
motion capture system records the movement of a human
subject as it is, the captured motion is inherently very nat-
ural and realistic. Therefore, researchers have proposed syn-
thesizing realistic character animation using motion capture
data in various ways including constructing a graph structure
from a large collection of motion capture data and searching
and blending motions through the graph [12], [13], training
regression models with motion capture datasets [7], [14],
[15], and using motion capture data to guide the movement
of a physically simulated character [16], [17].

This section reviews motion synthesis studies that use
motion capture data, from motion graphs to state-of-the-art
deep neural network-based approaches, as well as studies

VOLUME 11, 2023 9943

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

utilizing several user input types for motion synthesis, specif-
ically path-following.

A. MOTION GRAPHS AND ITS VARIANTS
Motion graphs calculate all possible transitions between the
motion frames in a large motion database to build a graph
structure so that every graph traversal path can produce a
plausible motion stream [12], [13], [18]. Because the process
of near-optimal search in a large-scale graph can take a long
time, many algorithms such as A* algorithm [19], dynamic
programming [20], [21], state-space search [22], [23], or min-
max search [24] have been experimented with to accelerate
the search. Pre-computational methods are also helpful when
user-inputs are relatively low-dimensional [25], [26], [27].

Motion matching [5] is another variant of the motion
graph. Unlike most other motion graph algorithms which per-
form multi-depth searches to optimize long-term objectives,
motion matching uses a greedy search to make transition
anywhere at any time with only immediate rewards in mind.
Under this simplification, the entire database can be searched
efficiently for a fast response, unlike motion graphs that only
use heavily pruned transitions and thus can lead to a delayed
transition. Due to its fast transition and simple implementa-
tion, motion matching is one of the popular methods for a
game development.

However, a greedy search can obviously make subopti-
mal decisions, and such a possibility should be mitigated
using a lot of intuition and heuristics. As such, a feature
vector plays an important role in motion matching, which is
a task-specific representation of a motion frame. It is often
dependent on motion datasets, and is manually designed for
best performance. For example, a locomotion dataset works
well with a low-dimensional feature space having only the
feet and root information of the character. Different features
can be used for other motion styles such as soccer games [28],
parkour maneuvers [29], close interactions between charac-
ters [30], or even quadruped locomotions [4]. In this paper,
we propose a long-horizon motion matching scheme to over-
come the drawback of greedy search in standard motion
matching. We use a low-dimensional feature space similar
to that for locomotion datasets but extract motion matching
queries from a user-drawn path to provide more flexibility
and controllability.

B. LEARNING-BASED APPROACHES
Discrete samples in a database can be difficult to use for a
continuous and precise control. Many researchers find that
it can be useful to model behaviors in a continuous manifold
space. Linear methods such as Principal Component Analysis
(PCA) [31], [32] compose full-body controller controlled by
low-dimensional signals. Kernel based methods [33], [34]
have synthesizemotions in various non-linear contexts. Gaus-
sian process is a notable non-parametric model that syn-
thesize motions from low-dimensional latent variables that
accounts for uncertainty in the model [14], [33].

Recently, deep learning-basedmethods are popular in data-
driven animation. Neural networks can learn the manifold
of a large motion database to directly generate a sequen-
tial motion or to represent the database in an efficient way.
An auto-regressivemodel takes the current posture as an input
to generate the next posture [8], [11], [35], [36]. However,
auto-regressive models tend to show ‘dying-out’ effect [35],
where the output motion gets blurry in the long sequence of
motion. Phase network [7] or gating network [3], [15] alle-
viated this by mixing multiple network outputs using time-
varying weights. Starke and his colleagues further extended
a gating network to interact with diverse environments or
another character [37]. Ling and colleagues used deep rein-
forcement learning with a latent space learned using a varia-
tional auto-encoder [9]. Deep reinforcement learning is also
widely used with physically simulated characters [17], [38],
[39], [40]. Unlike these deep learning-based methods, our
method does not directly create a posture through a neural
network. Instead, we propose to use DirectionNet, an RNN-
based network, to infer the facing direction of the character,
for natural transition of facing direction.

Deep learning is also often joined with graph-based
approaches. Since motion graph or motion matching can find
diverse paths from a specific motion database, the output
motions can be used as a dataset to train generative mod-
els [4], [36], [41], [42], [43]. Holden and his colleagues com-
bined a motion matching algorithm and a learned database
without explicitly storing motions and feature databases [4].

C. USER INPUT TYPES AND PATH-FOLLOWING
Various types of user input have been used for synthesizing
character locomotion. One frequently used input type is to
give an instantaneous control signal to the target character
at every moment, such as a speed and direction input from a
gamepad or joystick [3], [7], [15], or a full-body posture input
from a RGB or depth camera [44], [45]. Another commonly
used input type is to specify where the target character must
reach in the future. This tasks has recently been accom-
plished using deep reinforcement learning in animation
studies [9], [43].

We want to focus on the third type of input, path following,
which has the characteristics of both of the previous two
methods, like the former, which can specify the movement at
every moment, while at the same time, control all the move-
ments up to a certain point in the future, like the latter. The
instantaneous velocity control provides some leeway in terms
of goal achievement, in that the character can freely drift from
its original position and achieve the target direction with a
slight delay, but it allows the user to control the character only
momentarily. Specifying the path for the character can be
somewhat difficult to get the character in the right position at
the right time, but it can provide the user with wider control-
lability. Although some studies show path-following demos,
the input path often is not time-parameterized, and thus the
character can freely change its moving speed. A few recent

9944 VOLUME 11, 2023

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

studies [6], [7], [8], [9], [10], [11] include similar tasks to ours
but how they composed the motion via trajectory is somewhat
vague. As long as we understand, the result videos show near
constant-speed trajectories, and the character usually faces
front. These constraints can limit the use of database on spe-
cific clips. Chen and his colleagues demonstrate a character
dancing through a trajectory [42]. The character performs
impressive motions by searching motion graphs, although
the speed of the character is not important in this example.
The learned motion matching [4] also includes a trajectory
tracking demo, but how they composed a query is unclear. In
this paper, the temporal sample points in the trajectory are
used for calculating instant speeds, and a method to allow
the character to face other directions are propose, away from
the tangential direction of the given path. By doing so, our
method better exploits the dataset while the user gets more
controllability over the character.

III. OVERVIEW
The path drawn by the user is first encoded as 2D positions
sampled at regular time intervals in the preprocessing step,
and then goes through a process of reducing artifacts due to
the characteristics of the input device (Section V). In runtime,
LHMM is executed every N frame to search for the best
next motion frame, and then the motion is transitioned to
that frame (Section IV). The raw future query extracted from
the input path is revised before being used as a query in
LHMM (Section VI). Using this method, the user can interac-
tively control the character by drawing paths in two different
ways (Section VII). In the rest of the paper, the LHMM
algorithm is first described in Section IV, that can be used
for general purposes other than the path-following task, and
then path-following specific input path preprocessing, future
query revision, and interactive control modes are described
respectively in Sections V, VI, and VII.

IV. LONG-HORIZON MOTION MATCHING
This section first briefly describes the basic motion matching,
and then describes the proposed long-horizon motion match-
ing (LHMM) algorithm.
Basic Motion Matching (BMM). This technique first

extracts a simple feature for every frame in the motion
database and stores it in the feature database. At runtime,
at everyN frames, it searches the feature database for the next
pose frame with the closest feature to a search query, which
is performed in a greedy manner only considering the current
moment. The query consists of the current character state and
control input, usually collected from an input device such as
a gamepad or keyboard [5]. Please refer to Appendix A for
the details on the basic motion matching.
Long-Horizon Motion Matching (LHMM). Similar to

BMM, LHMM uses motion database and feature database,
and executes a matching step every N frames to find the
next pose frame that will be immediately followed. However,
unlike BMM, LHMM searches for the best next frame con-
sidering not only the present moment but also the expected

Algorithm 1 Long-Horizon Motion Matching
Input: pose: character pose at the time of querying ctx: con-

textual information such as user input or environment k:
number of candidates (nearest neighbors) at each level l:
level of LHMM fdb: feature database containing features
for all motion frames mdb: motion database containing
poses in all motion frames

Output: matched_frame: best frame that minimize the sum
of distances on all levels total_distance: sum of the dis-
tances at that time

1: function LHMM(pose, ctx, k, l, fdb,mdb)
2: q← compute_query(pose, ctx)

3: if l = 1 then
4: ▷ f : nearest frame, d : distance between q and
fdb[f]

5: (f , d)← kNN_search(q, 1, fdb)
6: return (f , d)
7: else
8: min_d ←∞
9: {(fi, di)}ki=1← kNN_search(q, k, fdb)

10: for each (f , d) ∈ {(fi, di)}ki=1 do
11: ▷ get aligned next end posemdb[f+N] (trans-

formed by pose.root−mdb[f].root ,N :motionmatching
interval)

12: n_endpose← align(f , pose,mdb)
13: n_ctx ← update_context(ctx, . . .)

14: d ← d+LHMM(n_endpose, n_ctx, k , l − 1,
fdb, mdb)[1]

15: if d < min_d then
16: min_d ← d
17: matched_frame← f
18: end if
19: end for
20: return (matched_frame,min_d)
21: end if
22: end function

character state and control input for a certain future time
period. Instead of simply including control input for a longer
future horizon in a motion matching feature and query, mul-
tiple candidate frames selectable at multiple future moments
are searched in a recursive way by stacking future character
states and control inputs.

Algorithm 1 describes the LHMM process. The function
LHMM() finds the next frame such that all the require-
ments including the current character pose and future control
inputs are best satisfied in the future section where motion
matchings of depth l are performed recursively. A query q is
generated from each state and contextual information of the
moment when the LHMM() function is called, and k candi-
date frames closest to q are selected with k-nearest neighbor

VOLUME 11, 2023 9945

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

FIGURE 1. Construction of the time-stamped user-drawn path. (a) Raw
locations and corresponding times (in seconds) recorded by our
application. (b) Path points resampled at 150Hz (red circles). Gray boxes
indicate the raw locations.

(kNN) search. The next steps then start from those candidate
frames. This way, the same LHMM() function is called again
for the next step where the motion is progressed for the
motion matching interval N . This search is semi-optimal
because only k-nearest candidate frames are searched for
each step rather than using an exhaustive exploration of all
frames. total_distance returned by a specific LHMM() func-
tion call in the l = i-th step is the shortest distance among the
distances obtained by adding the shortest cumulated distance
returned by the LHMM call of l = (i− 1)-th step to each
distance between the query q and a next frame candidate fi
used in the call. Since the l = 1-th step is the last step in
the recursive call, search time can be saved by finding only
the closest frame. As a result, the frame with the smallest
total distance among all k l search paths is selected as the
next frame. We’d like to note that LHMM reduces to BMM
if l = 1.
Note that in this paper, the LHMM algorithm is applied

only to the path-following experiments, but this algorithm can
be used not only for path-following, but also for any motion
matching problem where the control input can be computed
at future moments by implementing compute_query() and
update_context() for the problem. Please refer to Appendix B
for the implementation of these two functions for our path-
following tasks.

V. PREPROCESSING USER-DRAWN PATH
When the user draws a path, the position and time of every
input moment are recorded so that the moving speed of the
character can be controlled by time-varying queries. This
raw time-stamped path is transformed into a series of regu-
larly sampled way-points for query construction and visual
feedback on speed. Additional preprocessing is necessary
to compensate for the differences in the characteristics of
a user-drawn path and an actual trajectory of a moving
character.

A. CONSTRUCTING TIME-STAMPED USER-DRAWN PATH
Even if the user draws a continuous path on the rendered
ground using a pointing device, the computer records the
cursor position at discrete timings. One practical problem

here is that, in most UI frameworks, the cursor movements are
not recorded at regular time intervals (i.e., the mouse move
events are not sent at regular time intervals). We record the
time at which the cursor event is reported together with the
3D position on the ground obtained from the cursor position.
When the trajectory input is completed, the positions named
path points are resampled at a fixed frame rate (=150Hz)
on the entire path using linear interpolations between two
adjacent input points. The user can also visually check the
input speed from the path points displayed on the ground
(Figure 1).

Since the character is drawn relatively small in the render-
ing window, if the user draws a path at the speed at which
the character actually moves within the window, the user
has to draw the path too slowly, causing inconvenience and
discomfort. Therefore, it is useful to allow the user to specify
the speed of the character using a constant scaling factor.
The degree of scaling can be set differently depending on the
screen size, the tendency of each individual user, and the type
of motion to be generated. In our experiments we used 0.2
as an example of a scale factor (i.e., using the path points
sampled at 150Hz as if they are sampled at 30Hz). Changing
the scaling factor only changes the adequate drawing speed
the user feels, and all subsequent path preprocessing and
query construction processes work the same.

For convenience, in the remainder of this manuscript,
we will use frames instead of seconds as the unit of time (i.e.,
the first path point at 0 seconds on the input path corresponds
to frame 0, the second path point at 1/30 seconds corresponds
to frame 1, the third path point at 2/30 seconds corresponds to
frame 2, and so on). The user-drawn path is expressed as
a function p(i) of the frame i, meaning that the path point
corresponding to frame a is denoted by p(a).

Even on some sections of this five times slower path,
however, the speed on the path may still exceed the maximum
speed an actual person can move. Handling of such a case is
described in Section VI-A and VI-B.

B. SMOOTHING USER-DRAWN PATH
There is a style difference between a user-drawn path and an
actual moving path of a person, in terms of speed change.
For example, an input device such as a mouse is generally
light in weight and there is friction between the mouse and
the mouse pad, so the speed change is abrupt near sharp
corners. On the other hand, humans are much heavier, and
the whole body is underactuated accelerating only by the
contact forces between the feet and the ground. So the speed
change around the corner is much more gentle (Figure 2).
Therefore, if motion matching is performed using a query
extracted simply from the raw time-stamped user drawn path,
a jerky motion with sudden speed changes may be generated.

In order to make the user-drawn path more smooth as in
the actual human movement, a Gaussian filter (sigma = 3,
filter width = 19) is applied to the path points obtained in
Section V-A (Figure 2). When applying the Gaussian filter
close to the boundary of the path, the first two and the last

9946 VOLUME 11, 2023

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

FIGURE 2. Smoothing the user-drawn path. In this figure and all the
following figures, the red dots on the path represents the path points.
(a) A raw time-stamped user drawn path. (b) The root path of the
character moving along a similar path for comparison. (c) The extended
user-drawn path before applying a Gaussian filter. (d) The final smoothed
user-drawn path. Notice the difference from (a) in the speed change near
the corner.

two path points are extrapolated, in order to use the velocities
at both ends and also to prevent the length of the user-drawn
path from being shortened due to filtering. We compare the
results with and without smoothing in Section VIII-F.

VI. FUTURE QUERY REVISION FOR PATH-FOLLOWING
Features for Path-Following.Motion matching features can
be designed in different ways depending on the type ofmotion
the database contains, and this process is often relies on
human intuition [5], [28], [29], [30]. For our interactive path-
following task, the feature design for locomotion proposed
in [5] is used, which encodes a full-body posture in each
frame into a 27-dimensional feature vector containing the
position and velocity of the feet, the velocity of the root,
and the position and direction of the root at three different
future frames. Our motion database consists of motion clips
resampled at 30Hz, and i + 10, i + 20, and i + 30 are used
as the three future frames at frame i when constructing the
feature database. Please refer to Appendix C for the details
of matching features. Although most of our experiments use
this form of features, this is not an essential part of our future
query revision process. As long as a feature includes multiple
future positions and directions, it can be used in this process.

In our system, the future part of the query (related to the
three future frames) is extracted from the user-drawn path and
revised by our revision process. The remaining current part of
the query comes from the current character state.

Raw Future Query. At runtime, at the current frame i
(assuming that the animation starts at frame 0), one naive way
to extract the future part of a query from the user-drawn path
is to directly use the path points at i+10, i+20, and i+30 for
calculating the three future positions and facing directions.

However, this raw future query leads to a low-quality motion
that does not follow the path well due to various reasons.

In this section, we propose methods to tackle this issue.
Sections VI-A, VI-B, and VI-C describe how to revise the
future positions of the query. Section VI-D describes how to
compute the future forward-facing directions.

A. COMPUTING DESIRED POSITION OF CURRENT
CHARACTER
To extract the future part of a query from an input path, first,
it is necessary to find the desired position pd , which is the path
point corresponding to the current position of the character,
and its frame id (i.e. pd = p(id)). This way, the future query
can be obtained from the path points that follow pd . Ideally,
when the character follows a given path very well and thus
is directly above it, the character’s current position will same
as pd .

The raw future query uses the path point p(i) corresponding
to the current frame i as pd , assuming that the character
follows the path well. In this manner, however, the character
cannot follow the path point quickly enough, especially when
the user specified a path which is too fast. In such a case, all
the path points can be exhausted too early (see Section VIII-F
for the results of this experiment).

To prevent premature exhaustion of path points and to
effectively use all the path points, we solve the following
optimization problem to find pd (= p(id)) that best matches
the character’s current position:

id = argmin
i
∥pc − p(i)∥ s.t. iprevd − α ≤ i ≤ iprevd + β.

(1)

Here, pc is the current position of the character root projected
to the ground plane, and iprevd is the frame number correspond-
ing to the desired position obtained in the previous frame. The
search range is restricted through two constants α (= 0) and
β (= 10), assuming that the desired position can be chosen
from the points in the very near future without returning to
a previous point in the past. Because the search range is
narrow and the calculation is simple, a brute force method
calculates and compares all values. For reference, if α = iprevd ,
β = ilast − iprevd are used here, this method chooses the path
point closest to the character’s position as pd (ilast is the frame
of the last path point in the input path). A comparison with
this scheme can be seen in Section VIII-F.

B. SPEED LIMIT FOR FUTURE POSITIONS
Given the character’s current position pc and the correspond-
ing desired position pd on the input path and its frame id ,
a query needs to be generated so that the character follows
the future path after frame id . The raw future query has the
three future path points p1f = p(i1f), p

2
f = p(i2f), p

3
f = p(i3f)

such that i1f = id+10, i2f = id+20, and i3f = id+30. However,
in this way, if the user draws a path too fast, the gap between
the three future path points becomes too wide, resulting in a
query that is not similar to any of the future queries stored

VOLUME 11, 2023 9947

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

FIGURE 3. Applying a speed limit to future positions. (a) Example of a
case where the initial value of the last future path point p3

f = p(id + 30)
exists after the path point p(ivmax) reachable with the maximum moving
speed (i.e. id + 30 > ivmax). (b) Adjusted future path points p1

f , p2
f , p3

f to
account for the maximum travel speed.

in the feature database, which in turn leads to a low quality
motion.

To solve this problem, we set the maximum movement
speed vmax of the character, and restricts the possible loca-
tions of the future path points p1f , p

2
f , and p3f accordingly.

Specifically, let p(ivmax) be the path point which is reached
when the character moves at speed vmax for 30 frames. Then,
if the last future path point p3f in the query is further away
from pd than p(ivmax) along the input path, p3f is changed
to p(ivmax). Also, p1f and p2f are resampled at uniform time
intervals, that is, p1f ← p(id + (ivmax − id)/3) and p1f ←
p(id +2(ivmax− id)/3). Otherwise, p1f , p

2
f , and p

3
f are all kept

as their original values at intervals of ten frames (Figure 3).
vmax can be determined by referring to themovement speed

distribution of the motion database, and this way, even when
a specific user draws a path at an excessively high speed, the
future path query is always within the range observed in the
feature database, and the quality of the resulting motion is
maintained.

C. MODIFYING FUTURE POSITION FOR SHARP CORNERS
When there is a sharp corner in the user-drawn path, the raw
future query is often unable to generate motion so that the
character follows the path well around sharp corner. This
occurs when the query does not contain the path point near
the sharp corner due to the temporal gap between samples
in the query (Figure 4). In other words, this is because the
future positions of the query are sampled at an interval greater
than one frame. However, if p1f , p

2
f , p

3
f are sampled at one

frame interval, the entire feature database must be updated to
use the same frame interval instead of the default intervals
of ten frames, and the quality of the resulting motion will
not be good because matching is performed considering only
the very near future. Therefore, it is necessary to generate a
query by modifying the future positions to advance further
toward the corner vertex rather than to reduce the temporal
gap. Another problem that arises with sharp corners is that
the character often gets stuck near the corner without moving
forward any further. This is because a query is generated to
change the movement direction before the character reaches

FIGURE 4. An example of future positions in a motion matching query
when the input path (red curve) has a sharp corner. (a) a situation where
a query is generated such that the character moves downwards following
the red arrow at the point p1

f in the future. (b) a situation in which a query
is generated such that the character moves downwards following the red
arrow from the current position of the character. In both cases (a) and (b),
the character will likely not follow the path well around the corner.

the corner vertex, so the frame id calculated by Equation 1
can no longer advance forward along the input path.

We propose a simple heuristic method to tackle these prob-
lems. We first determine whether a sharp corner exists within
the interval containing the desired position pd and the three
future path points p1f , p

2
f , p

3
f which are computed as described

in Section VI-B. If so, a new query is created to make the
character moves further in the corner direction; the position
of the future path point after the sharp corner is adjusted
so that it is on the line connecting the previous future path
point and the path point just before the corner. Please refer to
Appendix D for the details of future position modification for
sharp corners.

D. COMPUTING FUTURE FACING DIRECTIONS
In order to compose a motion matching query, not only the
positions but also the facing directions of the character need to
be specified at the three future frames. Unlike future positions
computed from the input path, future facing directions can
be generated in various ways. We propose three methods to
calculate facing directions.

E. TANGENTIAL DIRECTION
In this method, the facing direction at frame i is determined
using the tangential direction vector v̂(i) of the input path
defined as follows:

v̂(i) =
p(i+ 1)− p(i)
∥p(i+ 1)− p(i)∥

. (2)

Using this simple approach, the character always faces for-
ward while moving.

F. JOYSTICK DIRECTION
In this method, we set the facing directions of three future
frames using the user’s real-time joystick input. When the
joystick stays in place or in the 12 o’clock position, the
directions calculated using the Tangential Direction method
are used. If the stick is pushed in the direction away from
12 o’clock by θ , the Tangential Directions plus θ are used as
the facing directions.

9948 VOLUME 11, 2023

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

FIGURE 5. The structure of DirectionNet.

FIGURE 6. Conceptual depiction of our interactive control modes.

G. DirectionNet
As the third method, we propose an RNN-based network,
DirectionNet, that takes the user-drawn path and then infers
the natural facing direction of the character at each moment
of the path as it would have appeared in our motion database.
The DirectionNet consists of a 1-layer gated recurrent unit
(GRU) [46] network with 30 hidden units followed by a
linear layer to produce a series of facing directions from
a series of path points during a time window around pd
(Figure 5). At each time step, it receives the position of each
path point and previous facing direction and predicts facing
direction at the path point. It is inspired by the pace network
of QuaterNet [8], but their network takes the trajectory curves
and its average speed as an input and outputs the trajectory’s
amplitude, foot frequencies, and facing directions. OurDirec-
tionNet has a simpler network structure and input / output
formats; it takes the trajectory and past facing directions and
outputs the facing directions only.

To prepare the dataset for the DirectionNet, each motion
in our motion database is sliced into 4-second segments
(120 frames at 30 fps) for both the trajectories for horizontal
root position and its facing direction. At runtime, our Direc-
tionNet predicts 2-second future facing directions by taking
4-second past and future path points in the user-drawn path.
Then three direction vectors at p1f , p

2
f , and p3f are picked

from the output future facing directions to construct the future
facing directions di in the query.

VII. INTERACTIVE CONTROL
In an interactive application, whenever the user has finished
drawing a path, the user-drawn path is preprocessed first
(Section V). LHMM is performed (Section IV) when the
path preprocessing is complete and everyN frames thereafter,
while generating a query internally (Section VI). Please refer
to Appendix B to see how the path-following query genera-
tion process is combined with the LHMM algorithm.

For this interactive character path-following task, we pro-
pose two control modes described below (see Figure 6 for the
conceptual depiction of these two modes).

In Local Control mode, the user can draw a path on any
visible part of the ground plane. As soon as the path drawing
is finished, the path is translated so that its starting point
matches the current character position pc. And immediately,
LHMM is performed at the beginning of the translated path,
smoothly followed by the next LHMM executed at every
N frames. This mode is advantageous for specifying the
movement of the character starting from its current location.

In Global Controlmode, input paths remain at the original
positions on the ground as drawn by the user. After the user
finishes drawing a path, a line segment connecting the current
position of the character and the starting point of the raw input
path is concatenated with the input path, and this extended
path is smoothed as described in Section V-B. Then, LHMM
is regularly performed starting from the beginning of the
extended path. The speed of the extended part is set to the
average speed during the first second of the user-drawn path.
As a result, the character first moves to the start position of
the path drawn by the user, and then follows it. This mode is
useful when controlling the character to pass through specific
locations in the global space. Section VIII-E shows various
scenarios using these two control modes.

VIII. RESULTS
In this section, we present various experiments that demon-
strate the effectiveness of our methods. Please see the accom-
panying video for animation results.

Based on motion matching, our system can conveniently
generate path-following animations using different types of
motions for the same input path by simply changing the
motion and feature databases. To demonstrate these charac-
teristics, we construct a motion and feature database from
four motion datasets listed below. Each dataset contains
motion clips resampled at 30Hz because motion generation
is also performed at 30Hz in our system.

Locomotion
This dataset consists of general locomotion exclud-
ing jumps and t-poses from the motion capture
dataset used in [7], and is about 39 minutes long.

Salsa Dance
This dataset consists of the motions of subjects #60
and #61 labeled ‘salsa’ in the CMU motion capture
database [47]. It’s about 9 minutes long.

Indian Dance
This dataset consists of the motions of subject #94
labeled ‘indian dance’ in the CMUmocap database,
and is about 7 minutes long.

Basketball
This dataset consists of the motions of subjects #6
and #102 labeled ‘basketball’ in the CMU mocap
database, and is about 3 minutes long.

Locomotion is used in most experiments for observing
the changes in speed given a path or comparing the result
motions according to various settings. In the experiments of

VOLUME 11, 2023 9949

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

Section VIII-D and VIII-E, other datasets are also used for
generating various motions for various paths.

Training the DirectionNet (Section VI-D) takes about
10 hours for 1000 epochs on a Nvidia GeForce RTX
2070 GPU. The network is updated with L1Loss and Adam
optimizer. Since a recurrent network always requires a-step-
before input, initial position is replicated as padding when
there is no past trajectory log at the beginning.

A. COMPARISON BETWEEN LHMM AND BMM
We compared the results of path following with LHMM and
BMM for the same set of paths, Path A and Path B (Figure 7).
The difference is more noticeable in the accompanying video.

LHMM was tested with two settings: LHMM(k = 3, l =
3) and LHMM(k = 10, l = 3). BMM was also tested with
two settings: BMM(k = 1, l = 1) which is the default setting
in which the future part of the query consists of three future
frames, and BMMwith longer queries in which the future part
consists of nine future frames.

In the comparison between LHMM(k = 3, l = 3) and
BMM(k = 1, l = 1), the latter produces motion with
degraded quality, such as unstable path-following motion that
moves left and right on the user-drawn path, or a non-smooth
change of direction on a smooth curve. On the other hand,
since LHMM(k = 3, l = 3) finds the next frame that can
produce the optimal result in a more distant future section,
it can be seen that themotion generated by LHMM(k = 3, l =
3) draws a smooth root path and stably follows the user-drawn
path.

Both LHMM(k = 3, l = 3) and BMM with longer queries
may be considered as ways to consider a longer future, but
the latter produced low-quality motion that did not properly
follow the path. This is presumably because there are not
many frames in the feature database that are close to the
position and direction of the nine future frames specified from
the path, so the cloeset frame from the query is still quite
different from the query.

There is a trade-off between the quality of resulting motion
and execution speed. It can be thought that larger values
of k and l will produce better results, which requires more
number of kNN_search() calls. However, the execution speed
is strongly correlated with the number of kNN_search() calls
as shown in Table 1.

We adjusted the parameters k and l through experiments
so that a good balance is achieved in this trade-off. Most
experiments were performed using k = 3 and l = 3 unless
stated otherwise. In this experiment, it can be seen that
LHMM(k = 3, l = 3) and LHMM(k = 10, l = 3) produce no
significant difference overall. This means that even if only the
top three candidates are searched in each LHMMstep, motion
with a quality close to the result of searching for much more
candidates can be obtained.

B. CHANGES TO A SPEED LIMIT
In our method, natural motions are generated for arbitrarily
speed limits, as long as it does not exceed the speed range

TABLE 1. Statitics for LHMM and BMM (for Path A in Figure 7). The ‘Avg.
time’ and ‘# of kNN_search’ represent the time and the total number of
kNN_search() calls for a single top-level LHMM call, respectively.

in the motion dataset (i.e., the speed range that a person can
actually move).

The histogram in Figure 13 shows the distribution of move-
ment speed in the Locomotion dataset used in our experiment.
As mentioned in Section VI-B, the user can set vmax to
limit future path positions referring to this speed distribution.
Figure 9 shows the resulting motions generated using various
vmax values for the same input path.

If vmax is set to 1.0m/s, natural motion transitions are
generated by matching a large number of motion frames
walking at a speed of about 1.0m/s, but there is a limi-
tation that only a slow walking motion can be generated
(Figure 9 (a)). We found that setting vmax to a larger value
(= 3.0m/s) creates a character moving at various speeds
and provides overall better user control and the diversity of
the resulting motions. There was a concern that the motion
quality could be deteriorated because the number of motion
frames corresponding to this value in our motion database is
small. However, in practice, it is observed that, even when the
distance between future positions of the feature is slightly less
than that of the query calculated using 3.0m/s, other features
elements are often close enough to the corresponding query
elements and can generate a natural transition throughmotion
matching (Figure 9 (c)).
However, when we choose vmax much higher than the max-

imum movement speed observed in the dataset, the character
is not able to follow the input path (Figure 9 (d)). This is
expected because there are no motion frames in the database
containing a future path position that far away. Instead, the
character simply try to go straight by following frames with
distant future path points (p1f ,p

2
f ,p

3
f).

C. FACING DIRECTION CONTROL
Here, an experiment is conducted to calculate the future
facing direction of a query in three ways: using Tangential
Direction, Joystick Direction, and DirectionNet described
in Section VI-D. Using these methods, it is possible to
create motions in different styles on the same input path
(Figure 10). The DirectionNet method can generate not only
the gait that moves forward, but also other gaits such as
side steps and back steps depending on the given path. The
result of Joystick Direction can be seen in the accompanying
video.

For reference, in the experiments of Section VIII-B
andVIII-F, only Tangential Directionmethod is used because
these experiments are for observing the differences in the
resultingmotions according to various settings, and the facing
direction can be easily predicted from the given path.

9950 VOLUME 11, 2023

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

FIGURE 7. Comparison between LHMM and BMM. Red: the user-drawn path. Blue: the root path of the character.

FIGURE 8. The histogram of character movement speed in Locomotion
dataset. The horizontal axis is the speed in m/s, and the vertical axis is
the number of motion frames.

D. USING VARIOUS MOTION DATASETS
In this experiment, motions following various input paths are
generated using four different motion datasets: Locomotion,
Salsa Dance, Indian Dance, and Basketball. As shown in
Figure 11, each dataset creates an animation with a different
style of motion.

E. INTERACTIVE CONTROL DEMOS
To show the capability of our system in terms of interactive
control, we design the following scenarios (Figure 12).

Free Move
When the user freely draws an input path on the
ground, the character responds immediately and
a path-following motion is created. It operates in
Local Control mode.

Cross the Finish Line
The user controls the character to pass the finish
line, avoiding obstacles approaching to the right
with different speeds. It operates in Local Control
mode.

FIGURE 9. The result motions with various vmax values for the same
input paths. The circular input path was created programmatically to have
a linearly increasing speed from 0 m/s to 9 m/s for one and a half laps.
The character poses are shown for only one lap of the path for visibility .

Reach the Target Location
The user controls the character to reach the target
location, avoiding static obstacles. It operates in
Global Control mode.

Multi-Character
The user controls multiple characters concurrently
to reach the target location while avoiding obsta-
cles. The user can change the currently selected
character by pressing a key on the keyboard and
draw a path for that character. It operates in Global
Control mode. Since this demo needs to perform
LHMM for multiple characters at the same time,
a setting of k = 1, l = 1 was used to reduce
computation time and enable interactive rate.

F. ABLATION STUDY FOR FUTURE QUERY REVISION
In this experiment, an ablation experiment is performed
for each component of the proposed method: input path

VOLUME 11, 2023 9951

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

FIGURE 10. The result motions generated by Tangential Direction and
DirectionNet schemes for the same input paths. (a), (c) Tangential
Direction. (b), (d) DirectionNet.

FIGURE 11. The path-following motions generated using different motion
datasets.

FIGURE 12. Our interactive control demos.

smoothing (Section V-B), desired position computation
(Section VI-A), speed limit (Section VI-B), and modification
for sharp corners (Section VI-C). Additionally, a comparison
experiment is also conducted with the raw future query in
which none of the above components is applied (in this
method, the path point corresponding to the current frame is
used as the desired position pd). In the experiment, the facing

TABLE 2. The average distance between the input path and the character
root trajectory. ‘(fail)’ means that the character fails to move to the last
part of the path (pd does not progress to the last path point even after a
sufficient amount of time).

FIGURE 13. Chart for the average distance between the input path and
the character root trajectory. Note that the failed tests in Table 2 are not
plotted as bars.

direction is calculated using the Tangential Directionmethod,
and the Locomotion dataset is used.

When the input path is not smoothed, the movement speed
tends to change unevenly in the resulting motion. In par-
ticular, the speed changes abruptly at the corner where the
direction changes, so the resulting motion is less natural
compared to the case where path-smoothing is applied (the
second row of Figure 14). This difference is more noticeable
in the accompanying video.

If the desired position pd is set to the path point corre-
sponding to the current frame and the user draws a path
rapidly, pd advances too quickly over time, so the character
does not follow the path well and sometimes stops in the
middle of the input path due to exhaustion of path points (the
third row of Figure 14).

If pd is specified as the path point on the input path closest
to the current character’s position, the character often does
not follow the path properly or even get stuck in a loop if
there is a self-intersection in the input path (the fourth row of
Figure 14).
If the future position query is calculated without using the

speed limit vmax , the character does not follow the curve of
path properly when the user draws the path fast (the fifth row
of Figure 14).

9952 VOLUME 11, 2023

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

FIGURE 14. Ablation experiments on the proposed components .

If the modification for sharp corners is not applied, the
character is often stuck near the corner (the sixth row of
Figure 14)). Even when the character gets out of the corner,
the character often does not follow the path well around the
corner in the resulting motion.

Also, in order to quantitatively compare the path-following
accuracy of each resulting motion, we calculate the average
distances between the resulting path of the character and
the user’s input path for the four input paths in Figure 14.
The distance between the character path and the input path
is calculated by measuring the distance from the character
position pc for each frame to the nearest path point on the
input path and averaging them. The measured distances are
summarized in Table 2, and it can be seen that the error is
generally the smallest when all of the proposed components
are used.

IX. CONCLUSION AND DISCUSSION
We propose an interactive path-following motion generation
system based on motion matching. The user can intuitively
control the character including its movement speed, in the two
interactive control modes Local Control and Global Control,
just by drawing a path on the ground. This is achieved by
our long-horizon motion matching algorithm with carefully
revised motion matching queries. We also propose three dif-
ferent ways to calculate future facing directions in the query.
Our method can be applied to control multiple characters
interactively. Additionally, by simply changing the motion
dataset used for motion matching, the character follows a
user-drawn path with different motion styles.

One of the strengths of our method is that it can reliably
generate motion for various path following situations. Path-
following may seem like a simple problem, but its application

VOLUME 11, 2023 9953

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

to real-world interactive applications such as games requires
a character to follow the extreme path containing sudden
changes in speed or direction drawn by an immersed user in
the game. Because our method robustly generates character
motion even in such extreme path following situations, it is
a reliable method applicable to these real-world interactive
applications. Another strength is that our method can be exe-
cuted efficiently at runtime because it is based on an efficient
kNN search. Even though the LHMM does a recursive kNN
search, it can run in real-time using enough k and l to produce
motion of sufficiently good quality on a typical desktop.

One of the drawbacks of our method stems from the
nature of motion matching. Based on motion matching, only
motions that exist in the motion database can be reproduced,
and this characteristic can be a limiting factor in creating
natural motions for various and exceptional input paths. For
example, even with input path smoothing (Section V-B) and
modifications for sharp corners (Section VI-C), an unnatu-
rally abrupt turning motion can be generated when an overly
sharp corner is specified by the user because there is no corre-
sponding motion in the motion database. Another drawback
in the current form of our method is that is is only applicable
to a character on the plane ground.

One of the reasons motion matching is widely used in
the game industry despite advances in deep learning-based
motion synthesis is that it can generate relatively high-quality
motion in a simple way, using simple features extracted
through intuition. This has been demonstrated in [4] and [38],
which use the same matching features we used in our experi-
ments. As demonstrated in [43], using learned features would
bring other advantages in motion generation, but the current
choice of the feature works effectively for our interactive path
following tasks without additional computational burden.

In this work, changing the motion style is supported only
limitedly by changing the motion dataset that constitutes
the motion database. Enabling users to interactively change
motion styles could be an interesting future research direc-
tion. Improving our method to be applicable to uneven terrain
will be an important future work that can make our method
more practically useful. It would be interesting to combine
the ideas of physics-based approaches or deep learning-based
approaches to further improve the generalization capability
of our method, without relying solely on reproducing the
motions from a motion database.

APPENDIX A
DETAILS OF BASIC MOTION MATCHING (BMM) AND
LONG-HORIZON MOTION MATCHING (LHMM)
Both BMM and LHMM requires a motion database con-
taining poses in all motion frames and a feature database
containing features for all motion frames.

A feature can be designed in various ways and often relies
on human intuition. One example of the feature design is
the feature used in our path-following experiments, described
in Appendix C. Since each dimension of a feature may sig-
nificantly vary in magnitude, the feature database for BMM

is often normalized using the mean and standard deviation
of each dimension. This normalization is also applied to the
feature database for LHMM.

The basic idea of BMM is to search for the next frame with
feature xj closest to the query x̂. When given the query x̂, the
goal is to search for the best frame j∗ where the Euclidean
distance between the x̂ and xj are the smallest throughout the
feature database:

j∗ = argmax
j
∥x̂− xj∥2. (3)

Because naive feature-to-feature comparisons are too slow for
the requirement of an interactive application, a KD-Tree is
commonly used to store precomputed features to accelerate
this k-nearest neighbor (kNN) search process (with k = 1).

LHMM also uses a kNN search process, typically with
k > 1. A KD-Tree is also used for kNN search in our LHMM
implementation.

In both BMM and LHMM, the matching is performed at
every N frames. If the best frame is found, the character
motion jumps to that frame and then plays consecutive frames
in the motion database until the next matching time. Motion
editing techniques such as blending or inverse kinematics are
often used at each matching time for smooth transition. In
our LHMM implementation, the matching is performed every
1/6 seconds (N = 5 for our 30Hz motion datasets) with sim-
ple motion stitching for smooth transition. We additionally
apply an analytic two-joint inverse kinematics to avoid foot
sliding artifacts.

APPENDIX B
IMPLEMENTATION OF COMPUTE_QUERY() AND
UPDATE_CONTEXT() FOR PATH-FOLLOWING
Algorithm 2 and 3 describe compute_query() and update_
context() for our future query revision process (Section VI),
which are used in our LHMM algorithm (Algorithm 1).

APPENDIX C
DETAILS OF MATCHING FEATURES
We use the feature design for locomotion proposed in [5]
which encodes a full-body posture in each frame into

Algorithm 2 compute_query() for Path-Following
1: function compute_query_pathfollowing(pose, ctx)
2: ▷ ctx.pps: the path points on the user-drawn path, represent-

ing p(·).
3: id ← compute_desired_position(pose, ctx.iprevd , ctx.pps)
4: {pif }

3
i=1 ← compute_future_positions_with_speed_limit(id ,

ctx.pps)
5: {pif }

3
i=1, {i

i
f }

3
i=1, id ← modify_sharp_corner({pif }

3
i=1, id ,

ctx.pps)
6: {dif }

3
i=1 ← compute_future_directions({iif }

3
i=1, ctx.pps,

ctx.dir_input)
7: ctx.id ← id
8: return create_query(pose, {pif }

3
i=1, {d

i
f }

3
i=1)

9: end function

9954 VOLUME 11, 2023

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

Algorithm 3 update_context() for Path-Following
1: function update_context_pathfollowing(ctx)
2: next_ctx ← ctx
3: next_ctx.iprevd ← ctx.id
4: return next_ctx
5: end function

a 27-dimensional feature vector:

xi = {pLi , v
L
i ,p

R
i , v

R
i , v

root
i , ti,di} ∈ R27. (4)

Here, pLi , p
R
i , v

L
i , and v

R
i represent the positions and velocities

of the left and the right foot at frame i, respectively. vrooti is the
velocity of the root (the pelvis). The remaining features repre-
sent the future path at three different future frames, consisting
of the two-dimensional root positions ti ∈ R6 projected onto
the ground and the character facing directions di ∈ R6.
All the positions and vectors are represented with respect to
the character frame, with the origin as the location where
the root’s position is projected onto the ground, one axis in the
front of the root and the other in the global vertical direction.

APPENDIX D
DETAILS OF FUTURE POSITION MODIFICATION FOR
SHARP CORNERS
Please see Figure 15 for this process. Here, pd will be referred
to as p0f for convenience.

For increasing j ∈ {0, 1, 2}, we calculate the angle between
two tangent vectors v̂jf = v̂(ijf) and v̂j+1f = v̂(ij+1f) obtained
from the input path, and if this angle exceeds 80 degrees, it is
assumed that a sharp corner exists between pjf and p

j+1
f in the

path (the function v̂(i) is defined in Equation 2). In this case,
to avoid a situationwhere the character is caught in the corner,
if id calculated by Equation 1 is the same as iprevd , we add an
experimentally chosen value c, that is, id = iprevd +c (c = 2 in
our experiments) to advance pd and recalculate ijf .

If a sharp corner exists between pjf and pj+1f , j will be
referred to as J . Let icorner be the moment when the angle
between tangents v̂(i + 1) and v̂(i), ∀iJf < i < iJ+1f ,
is maximized. Then p(icorner) becomes the path point just
before the sharp corner. Now, the new (J + 1)-th future path
point pJ+1f ′ is calculated as pJf + k(p(icorner) − pJf) which is
on the line connecting pJf and p(icorner). The line parameter k
is calculated as (iJ+1f − iJf)/(icorner − i

J
f) so that the distance

between pJ+1f ′ and p
J
f is the distance traveled from pJf in time

iJ+1f −i
J
f . After correcting the location of the (J + 1)-th future

path point in this way, each remaining future path points
pjf after the sharp corner is translated by the same amount:

pjf ← pjf + (pJ+1f ′ − pJ+1f),∀J + 1 < j ≤ 3.
The future path point is modified in the manner described

above while the character starts approaching the sharp cor-
ner section, and until the character goes completely past it.
During this process, J is changed in the order of J = 2, 1, 0.
When J = 0, i.e. there is a sharp corner between pd and p1f ,

FIGURE 15. Modification of the future positions for sharp corners. (a) A
case where a sharp corner exists on the input path. (b) The path point
p(icorner) just before the sharp corner and the future path points p1

f and
p2

f of the query before and after the sharp corner are determined.
(c) Calculate the new position p2

f ′ of the future path point after the sharp
corner, p2

f . (d) Calculate the new positions of the future path points
following p2

f . (e) Final future path points of the adjusted query .

the character may continue tomove in the same direction even
after passing the sharp corner, depending on when the query
is created. To improve the responsiveness of the character to
the input path, we create a new query as soon as the character
passes the vertex of the sharp corner, that is, when id becomes
icorner + 1, and matching is performed to create a motion that
faithfully follows the input path after passing the corner.

REFERENCES
[1] Imangi Studios, LLC. Harbor Master. Gameplay Video.

Accessed: Dec. 15, 2022. [Online]. Available: https://youtu.be/
41Svfdqo4ek?t=152

[2] Firemint. Flight Control. Gameplay Video. Accessed: Dec. 15, 2022.
[Online]. Available: https://youtu.be/fZ8kzpWQ0IQ?t=235

[3] H. Zhang, S. Starke, T. Komura, and J. Saito, ‘‘Mode-adaptive neural
networks for quadruped motion control,’’ ACM Trans. Graph., vol. 37,
no. 4, pp. 1–11, Aug. 2018.

[4] D. Holden, O. Kanoun, M. Perepichka, and T. Popa, ‘‘Learned motion
matching,’’ ACM Trans. Graph., vol. 39, no. 4, p. 53, Aug. 2020.

[5] S. Clavet, ‘‘Motion matching and the road to next-gen animation,’’ in Proc.
Game Developers Conf. (GDC), 2016.

[6] D. Holden, J. Saito, and T. Komura, ‘‘A deep learning framework for
charactermotion synthesis and editing,’’ACMTrans. Graph., vol. 35, no. 4,
pp. 1–11, Jul. 2016.

[7] D. Holden, T. Komura, and J. Saito, ‘‘Phase-functioned neural networks
for character control,’’ ACM Trans. Graph., vol. 36, no. 4, pp. 1–13,
Aug. 2017.

[8] D. Pavllo, D. Grangier, and M. Auli, ‘‘QuaterNet: A quaternion-based
recurrent model for human motion,’’ in Proc. Brit. Mach. Vis. Conf.
(BMVC), 2018, pp. 1–14.

VOLUME 11, 2023 9955

J. Lee et al.: Interactive Character Path-Following Using Long-Horizon Motion Matching With Revised Future Queries

[9] H. Y. Ling, F. Zinno, G. Cheng, and M. Van De Panne, ‘‘Character
controllers using motion VAEs,’’ ACM Trans. Graph., vol. 39, no. 4, p. 40,
Aug. 2020.

[10] S. Starke, Y. Zhao, T. Komura, and K. Zaman, ‘‘Local motion phases for
learningmulti-contact character movements,’’ACMTrans. Graph., vol. 39,
no. 4, p. 54, Aug. 2020.

[11] G. E. Henter, S. Alexanderson, and J. Beskow, ‘‘MoGlow: Probabilistic
and controllable motion synthesis using normalising flows,’’ ACM Trans.
Graph., vol. 39, no. 6, pp. 1–14, Dec. 2020.

[12] L. Kovar, M. Gleicher, and F. Pighin, ‘‘Motion graphs,’’ ACM Trans.
Graph., vol. 21, no. 3, pp. 1–10, 2002.

[13] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard,
‘‘Interactive control of avatars animated with human motion data,’’ ACM
Trans. Graph., vol. 21, no. 3, pp. 491–500, Jul. 2002.

[14] J. M. Wang, D. J. Fleet, and A. Hertzmann, ‘‘Gaussian process dynamical
models for human motion,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 30, no. 2, pp. 283–298, Feb. 2008.

[15] S. Starke, H. Zhang, T. Komura, and J. Saito, ‘‘Neural state machine for
character-scene interactions,’’ ACMTrans. Graph., vol. 38, no. 6, pp. 1–14,
Dec. 2019.

[16] Y. Lee, S. Kim, and J. Lee, ‘‘Data-driven biped control,’’ ACM Trans.
Graph., vol. 29, no. 4, pp. 1–8, Jul. 2010.

[17] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, ‘‘DeepMimic:
Example-guided deep reinforcement learning of physics-based character
skills,’’ ACM Trans. Graph., vol. 37, no. 4, pp. 1–14, Aug. 2018.

[18] O. Arikan and D. A. Forsyth, ‘‘Interactive motion generation from exam-
ples,’’ ACM Trans. Graph., vol. 21, no. 3, pp. 483–490, Jul. 2002.

[19] A. Safonova and J. K. Hodgins, ‘‘Construction and optimal search of
interpolated motion graphs,’’ ACM Trans. Graph., vol. 26, no. 3, p. 106,
Jul. 2007.

[20] O. Arikan, D. A. Forsyth, and J. F. O’Brien, ‘‘Motion synthesis from
annotations,’’ ACM Trans. Graph., vol. 22, no. 3, pp. 402–408, Jul. 2003.

[21] C. Ren, L. Zhao, and A. Safonova, ‘‘Human motion synthesis with
optimization-based graphs,’’ Comput. Graph. Forum, vol. 29, no. 2,
pp. 545–554, May 2010.

[22] R. Heck and M. Gleicher, ‘‘Parametric motion graphs,’’ in Proc. Symp.
Interact. 3D Graph. Games, Apr. 2007, pp. 129–136.

[23] J. Min and J. Chai, ‘‘Motion graphs++: A compact generative model for
semantic motion analysis and synthesis,’’ ACM Trans. Graph., vol. 31,
no. 6, pp. 1–12, Nov. 2012.

[24] H. P. H. Shum, T. Komura, and S. Yamazaki, ‘‘Simulating multiple charac-
ter interactions with collaborative and adversarial goals,’’ IEEE Trans. Vis.
Comput. Graphics, vol. 18, no. 5, pp. 741–752, May 2012.

[25] J. Lee and K. H. Lee, ‘‘Precomputing avatar behavior from human motion
data,’’ in Proc. ACM SIGGRAPH/Eurograph. Symp. Comput. Animation
(SCA), 2004, pp. 79–87.

[26] A. Treuille, Y. Lee, and Z. Popović, ‘‘Near-optimal character anima-
tion with continuous control,’’ ACM Trans. Graph., vol. 26, no. 3, p. 7,
Jul. 2007.

[27] W.-Y. Lo and M. Zwicker, ‘‘Real-time planning for parameterized human
motion,’’ in Proc. ACM SIGGRAPH/Eurographics Symp. Comput. Anima-
tion (SCA), 2008, pp. 29–38.

[28] M. Buttner, ‘‘Machine learning for motion synthesis and character control
in games,’’ in Proc. Interact. 3D Graph. Games (i3D), 2019.

[29] F. Zinno, ‘‘ML tutorial day: From motion matching to motion synthesis,
and all the hurdles in between,’’ in Proc. Game Developers Conf. (GDC),
2019.

[30] G. Harrower, ‘‘Real player motion tech in ’EA Sports UFC 3,’’’ in Proc.
Game Developers Conf. (GDC), 2018.

[31] J. Chai and J. K. Hodgins, ‘‘Performance animation from low-dimensional
control signals,’’ ACM Trans. Graph., vol. 24, no. 3, pp. 686–696,
Jul. 2005.

[32] J. Tautges, A. Zinke, B. Krüger, J. Baumann, A. Weber, T. Helten,
M. Müller, H.-P. Seidel, and B. Eberhardt, ‘‘Motion reconstruction using
sparse accelerometer data,’’ ACM Trans. Graph., vol. 30, no. 3, pp. 1–12,
May 2011.

[33] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović, ‘‘Style-based
inverse kinematics,’’ ACM Trans. Graph., vol. 23, no. 3, pp. 522–531,
Aug. 2004.

[34] S. Levine, J. M.Wang, A. Haraux, Z. Popović, and V. Koltun, ‘‘Continuous
character control with low-dimensional embeddings,’’ACMTrans. Graph.,
vol. 31, no. 4, pp. 1–10, Aug. 2012.

[35] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik, ‘‘Recurrent network
models for human dynamics,’’ in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 4346–4354.

[36] K. Lee, S. Lee, and J. Lee, ‘‘Interactive character animation by learning
multi-objective control,’’ ACM Trans. Graph., vol. 37, no. 6, pp. 1–10,
Dec. 2018.

[37] S. Starke, Y. Zhao, F. Zinno, and T. Komura, ‘‘Neural animation layering
for synthesizing martial arts movements,’’ ACM Trans. Graph., vol. 40,
no. 4, pp. 1–16, Aug. 2021.

[38] K. Bergamin, S. Clavet, D. Holden, and J. R. Forbes, ‘‘DReCon: Data-
driven responsive control of physics-based characters,’’ ACM Trans.
Graph., vol. 38, no. 6, pp. 1–11, Dec. 2019.

[39] G.-C. Kang and Y. Lee, ‘‘Finite state machine-based motion-free learning
of biped walking,’’ IEEE Access, vol. 9, pp. 20662–20672, 2021.

[40] H. Park, R. Yu, Y. Lee, K. Lee, and J. Lee, ‘‘Understanding the stability of
deep control policies for biped locomotion,’’ Vis. Comput., vol. 39, no. 1,
pp. 473–487, Jan. 2023.

[41] K. Lee, S. Min, S. Lee, and J. Lee, ‘‘Learning time-critical responses for
interactive character control,’’ACMTrans. Graph., vol. 40, no. 4, pp. 1–11,
Aug. 2021.

[42] K. Chen, Z. Tan, J. Lei, S.-H. Zhang, Y.-C. Guo, W. Zhang, and S.-M. Hu,
‘‘ChoreoMaster: Choreography-oriented music-driven dance synthesis,’’
ACM Trans. Graph., vol. 40, no. 4, pp. 1–13, Aug. 2021.

[43] K. Cho, C. Kim, J. Park, J. Park, and J. Noh, ‘‘Motion recommendation
for online character control,’’ ACM Trans. Graph., vol. 40, no. 6, pp. 1–16,
Dec. 2021.

[44] Y. Seol, C. O’Sullivan, and J. Lee, ‘‘Creature features: Online
motion puppetry for non-human characters,’’ in Proc. 12th ACM SIG-
GRAPH/Eurograph. Symp. Comput. Animation, Jul. 2013, pp. 213–221.

[45] Y. Lee and T. Kwon, ‘‘Performance-based biped control using a consumer
depth camera,’’ Comput. Graph. Forum, vol. 36, no. 2, pp. 387–395,
May 2017.

[46] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using RNN
encoder–decoder for statistical machine translation,’’ inProc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP), 2014, pp. 1–15.

[47] Carnegie Mellon University Motion Capture Database.
Accessed: Dec. 15, 2022. [Online]. Available: http://mocap.cs.cmu.edu/

JEONGMIN LEE received the B.S. degree in
computer science and the M.S. degree in com-
puter software from Hanyang University. She is a
Software Engineer with Samsung Electronics. Her
research interests include character animation and
deep reinforcement learning.

TAESOO KWON received the Ph.D. degree from
the Department of Computer Science, Korea Insti-
tute of Science and Technology, in 2007. He is
currently with the Department of Computer Soft-
ware Engineering, Hanyang University, Seoul. His
research interests include physics-based character
animation and machine learning.

YOONSANG LEE received the Ph.D. degree in
computer science and engineering from Seoul
National University. He is an Associate Profes-
sor with the Department of Computer Science,
Hanyang University. His research interests include
controlling movements of natural or artificial crea-
tures from virtual environment to real world.

9956 VOLUME 11, 2023

