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Abstract: The performance of human gait recognition (HGR) is affected by the partial obstruction of
the human body caused by the limited field of view in video surveillance. The traditional method
required the bounding box to recognize human gait in the video sequences accurately; however, it is
a challenging and time-consuming approach. Due to important applications, such as biometrics and
video surveillance, HGR has improved performance over the last half-decade. Based on the literature,
the challenging covariant factors that degrade gait recognition performance include walking while
wearing a coat or carrying a bag. This paper proposed a new two-stream deep learning framework
for human gait recognition. The first step proposed a contrast enhancement technique based on the
local and global filters information fusion. The high-boost operation is finally applied to highlight the
human region in a video frame. Data augmentation is performed in the second step to increase the
dimension of the preprocessed dataset (CASIA-B). In the third step, two pre-trained deep learning
models—MobilenetV2 and ShuffleNet—are fine-tuned and trained on the augmented dataset using
deep transfer learning. Features are extracted from the global average pooling layer instead of
the fully connected layer. In the fourth step, extracted features of both streams are fused using
a serial-based approach and further refined in the fifth step by using an improved equilibrium
state optimization-controlled Newton–Raphson (ESOcNR) selection method. The selected features
are finally classified using machine learning algorithms for the final classification accuracy. The
experimental process was conducted on 8 angles of the CASIA-B dataset and obtained an accuracy
of 97.3, 98.6, 97.7, 96.5, 92.9, 93.7, 94.7, and 91.2%, respectively. Comparisons were conducted with
state-of-the-art (SOTA) techniques, and showed improved accuracy and reduced computational time.

Keywords: gait recognition; contrast enhancement; deep learning; feature selection; fusion;
machine learning

1. Introduction

Human verification or identification plays a significant role in information security,
public security systems, point-of-sales machines, automatic teller machines, etc. [1]. Human
beings can be identified by examining their different external and internal body parts, such
as blood samples, skin, hair, ear shape, bite by forensic odontology, face recognition,
and walking style by gait analysis [2]. Fingerprints and face recognition are well-known
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biometric systems, but both have some limitations; fingerprint verifications need contact
with fingers, and face recognition needs a controlled environment and proper distance.

On the other hand, human gait analysis [3] is an application for recognizing people at
a certain distance; basically, gait refers to the individual walking style of human beings [4].
Mainly, there are two approaches to gait recognition: model-based and model-free. The
model-based approach tracks parts of the human body, such as arms, legs, hands, feet,
and neck, and this approach obtains a set of static and dynamic parameters [5]. The basic
idea behind this approach is to model the human skeleton’s bones and joints. Furthermore,
the model-free process tracks an object’s geometry and shapes, which is helpful in object
recognition systems [6].

Gait recognition is widely used in many applications, such as medical sciences [7],
personal recognition, sports sciences, and cyber security. The human gait has 24 elements
that can be used to identify a person. It is proven in different studies and experiments
that every person has a unique muscular-skeletal structure that shows that it is possible to
recognize a person with the help of gait information [8]. Gait recognition has more mag-
nificent characteristics than other biometrics identifiers [9]. Firstly, the human gait can be
captured far away without the subject’s cooperation [10], while all other biometrics cannot
be obtained without the person connecting physical and mental involvement with data-
acquiring sensors [11,12]. Secondly, gait recognition can be performed on low-resolution
images or videos, while other biometrics, such as facial recognition, cannot be performed
well on low-resolution images or videos [13]. Thirdly, HGR can be performed with minimal
equipment, such as a camera, accelerometer, floor sensor, and radar [14].

Most gait recognition systems are based on four main components [15]. The first is
capturing gait data from video sequences and real-time scenarios using different tools and
techniques [16]. The second one is to apply segmentation to identify the human body shape
and remove noise and blueness from the background by using different segmentation
techniques based on the different characteristics of an image and region of interest. The
third one is contour detection, which will be needed when a gap occurs between joins or
some missing part of a human body after the segmentation. Contour detection is useful
for the analysis of shape and object detection. The last one is feature extraction based on
human properties, such as shape, geometry, etc. These features are finally classified using
machine learning classifiers [17].

Applications in image processing require improving each image or frame before
proceeding to the next level, such as feature extraction. The enhancement methodology
relies on high-frequency pixels and low-frequency components [18]. High-frequency
pixel components depict the scene and objects in the image, whereas low-frequency pixel
components indicate minute features, including certain lines and minuscule points. To
enhance the image, great attention is always required to increase the high-frequency
components while retaining the low-frequency components [19]. Recently, deep learning
has shown significant success in object classification, gait recognition, action recognition,
amongst others. In deep learning, features are extracted from the raw images. A deep
learning architecture consists of several hidden layers: convolutional, pooling, and fully
connected. Training the deep learning model on the enhanced dataset may yield better
features that later improve accuracy [20].

1.1. Existing Techniques

Several deep learning-based techniques for human gait classification have been in-
troduced in the literature. Muhammad et al. [21] implemented an improved ant colony
optimization (IACO) and deep learning framework for human gait recognition. The IACO
algorithm has been used to select the best-classified features using machine learning classi-
fiers. After several experimentations, the IACO method is more accurate while diminishing
the computational cost compared to the other state-of-the-art techniques. Imran et al. [22]
presented a deep learning (DL) and kurtosis-controlled entropy (KcE) based framework for
HGR using video sequences. They tried to resolve challenges, such as human angle shift,
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clothing, and walking style. The authors extracted features using ResNet101 deep model
and then selected the best features using the KcE approach. The experimental process
was conducted on the CASIA-B dataset and obtained an accuracy of 95.26% and 96.60%,
respectively. Khan et al. [23] introduced a single-stream HGR framework based on optimal
deep learning fused features. In their work, the authors performed data augmentation
at the first step and then used two pre-trained models, such as Inseption-ResNet-V2 and
NASNet mobile. Features of both deep learnings were fused and further optimized using
the whale optimization algorithm. Machine learning classifiers were applied and obtained
the best accuracy of 89%.

Huang et al. [24] demonstrated a gait recognition method based on multisource sensing
information. The 3D human features data was extracted using the human body’s structure
and multisource stream information during a human walk. Athlete walk includes different
characteristics, and based on these characteristics, a person is identified. The CASIA A
dataset was used for the experimental process and obtained an accuracy of 88.33%. Hasan
et al. [25] presented a modified residual block and a novel shallow convolutional layer
for HGR. Wearable sensors were embedded in objects that can be worn on the subject
body, such as wristwatches, necklaces, and smartphones, and were used for gait analysis.
Template matching and conventional matching were not appropriate and did not provide
improved performance for low-device wearable devices. They also introduced a modified
residual block and shallow convolutional neural network that obtained an accuracy of 85%
on the IMU-based dataset. Junaid et al. [26] presented a human gait analysis approach for
osteoarthritis using DL and kernel extreme learning machine. The authors faced numerous
difficulties in this approach, such as abnormal walking, patients’ clothes, and angle changes.
Conventional techniques are only concerned with feature selection and do not address such
issues; therefore, the authors employed a novel robust method to address that disparity. For
experimental purposes, two pre-trained models (VGG16-Net and AlexNet) were used and
obtained improved accuracy. Yonghong et al. [27] addressed the free-view gait recognition
problem. They faced the problems of traditional methods that capture gait sequences under
uncontrolled scenes, unknown view angles, and dynamically changing viewing angles
during the walk. They presented a unique walking trajectory fitting (WTF) approach for
these challenges. Also, they introduced a joint gait manifold (JGM) technique for gait
similarity evaluation.

1.2. Major Challenges

In summary, all the above methods still faced several issues, such as selecting impor-
tant features and extracting irrelevant features. Moreover, the above methods did not select
the entire CASIA-B dataset for the experimental process. Features extraction from the origi-
nal video frames may extract some redundant and irrelevant features due to complicating
factors, such as outdoor environment, lighting conditions, complex background, noise,
and low-resolution frames. These factors impact recognition accuracy. In addition, several
studies extracted features from a region of interest (ROI), which is a time-consuming step
that, sometimes, leads to a chance of incorrect ROI detection. The incorrect ROI detection
consumes the developed system’s overall time and extracts irrelevant features that later
reduce the classification accuracy. Therefore, this work presents a new framework using
the best fusion-assisted deep learning features.

1.3. Major Contributions

The major contributions of this work are as follows:

• A contrast enhancement technique based on local and global filter information fusion
is proposed. The high-boost operation is finally applied to highlight the human region
in a video frame.

• The data augmentation was performed, and two fine-tuned deep learning models
(MobilenetV2 and ShuffleNet) were trained using deep transfer learning. Features
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were extracted from the flattened global average pooling layers instead of the fully
connected layer.

• Features of both streams were fused in a serial-based fashion that can minimize the
loss of information and then select the best features using a new approach called
ESO-controlled Newton–Raphson.

• The detailed ablation study-based results have been computed and discussed, showing
the improvement in the accuracy of this work.

1.4. Manuscript Organization

The rest of the manuscript is organized in the following order. The proposed method-
ology is presented in Section 2, which includes the contrast enhancement technique, deep
learning features, proposed feature fusion, and best feature selection. Section 3 presents the
experimental results of the proposed methodology. Section 4 concludes the manuscript.

2. Proposed Methodology

The proposed human gait recognition framework is presented in Figure 1. This
figure illustrates that the proposed HGR framework consists of several phases: contrast
enhancement of original frames, data augmentation, training of the deep learning models,
extraction of features, a fusion of both stream features, selection of the most optimal features,
and finally, classification. A brief description of each step in the form of mathematics and
numerical values is discussed below.
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2.1. Novelty 1: Hybrid Fusion Enhancement Technique

Preprocessing is an important step in computer vision that can be used to refine the
original images into better information. In this work, a new fusion-based technique is
proposed for contrast enhancement and improvement of frame quality. For this purpose,
HSV color transformation is initially applied, which encodes 24-bit colors by hue, saturation,
and value. This selection aims to organize the colors in a more practically applicable manner.
Consider we have a CASIA-B dataset denoted as

Sensors 2023, 23, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 1. Proposed framework of HGR using two-stream fusion-assisted deep learning and 
optimal features selection. 

2.1. Novelty 1: Hybrid Fusion Enhancement Technique 
Preprocessing is an important step in computer vision that can be used to refine the 

original images into better information. In this work, a new fusion-based technique is 
proposed for contrast enhancement and improvement of frame quality. For this purpose, 
HSV color transformation is initially applied, which encodes 24-bit colors by hue, satu-
ration, and value. This selection aims to organize the colors in a more practically appli-
cable manner. Consider we have a CASIA-B dataset denoted as ẞ and ẞ ℇ ℛ. ẞ (𝑖, 𝑗) 
denotes the HSV color-transformed image, and 𝑅, 𝐺, and 𝐵 denote the red, green, and 
blue channels of values between 0–255. The mathematical formulation is defined as fol-
lows: ℟ =  𝑅/255 (1)

Ꞡ =  𝐺/255 (2)₿ =  𝐵/255 (3)𝑅𝑎𝑛𝑔𝑀𝑎𝑥 =  𝑚𝑎𝑥 (℟,Ꞡ, ₿)₿ =  𝐵/255 (4)℟𝑅𝑎𝑛𝑔𝑀𝑖𝑛 =  𝑚𝑖𝑛 (℟,Ꞡ, ₿) (5)

Ꝿ =  𝑅𝑎𝑛𝑔𝑀𝐴𝑋 −  𝑅𝑎𝑛𝑔𝑀𝑖𝑛 (6)

and

Sensors 2023, 23, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 1. Proposed framework of HGR using two-stream fusion-assisted deep learning and 
optimal features selection. 

2.1. Novelty 1: Hybrid Fusion Enhancement Technique 
Preprocessing is an important step in computer vision that can be used to refine the 

original images into better information. In this work, a new fusion-based technique is 
proposed for contrast enhancement and improvement of frame quality. For this purpose, 
HSV color transformation is initially applied, which encodes 24-bit colors by hue, satu-
ration, and value. This selection aims to organize the colors in a more practically appli-
cable manner. Consider we have a CASIA-B dataset denoted as ẞ and ẞ ℇ ℛ. ẞ (𝑖, 𝑗) 
denotes the HSV color-transformed image, and 𝑅, 𝐺, and 𝐵 denote the red, green, and 
blue channels of values between 0–255. The mathematical formulation is defined as fol-
lows: ℟ =  𝑅/255 (1)

Ꞡ =  𝐺/255 (2)₿ =  𝐵/255 (3)𝑅𝑎𝑛𝑔𝑀𝑎𝑥 =  𝑚𝑎𝑥 (℟,Ꞡ, ₿)₿ =  𝐵/255 (4)℟𝑅𝑎𝑛𝑔𝑀𝑖𝑛 =  𝑚𝑖𝑛 (℟,Ꞡ, ₿) (5)

Ꝿ =  𝑅𝑎𝑛𝑔𝑀𝐴𝑋 −  𝑅𝑎𝑛𝑔𝑀𝑖𝑛 (6)

Sensors 2023, 23, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 1. Proposed framework of HGR using two-stream fusion-assisted deep learning and 
optimal features selection. 

2.1. Novelty 1: Hybrid Fusion Enhancement Technique 
Preprocessing is an important step in computer vision that can be used to refine the 

original images into better information. In this work, a new fusion-based technique is 
proposed for contrast enhancement and improvement of frame quality. For this purpose, 
HSV color transformation is initially applied, which encodes 24-bit colors by hue, satu-
ration, and value. This selection aims to organize the colors in a more practically appli-
cable manner. Consider we have a CASIA-B dataset denoted as ẞ and ẞ ℇ ℛ. ẞ (𝑖, 𝑗) 
denotes the HSV color-transformed image, and 𝑅, 𝐺, and 𝐵 denote the red, green, and 
blue channels of values between 0–255. The mathematical formulation is defined as fol-
lows: ℟ =  𝑅/255 (1)

Ꞡ =  𝐺/255 (2)₿ =  𝐵/255 (3)𝑅𝑎𝑛𝑔𝑀𝑎𝑥 =  𝑚𝑎𝑥 (℟,Ꞡ, ₿)₿ =  𝐵/255 (4)℟𝑅𝑎𝑛𝑔𝑀𝑖𝑛 =  𝑚𝑖𝑛 (℟,Ꞡ, ₿) (5)

Ꝿ =  𝑅𝑎𝑛𝑔𝑀𝐴𝑋 −  𝑅𝑎𝑛𝑔𝑀𝑖𝑛 (6)

Sensors 2023, 23, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 1. Proposed framework of HGR using two-stream fusion-assisted deep learning and 
optimal features selection. 

2.1. Novelty 1: Hybrid Fusion Enhancement Technique 
Preprocessing is an important step in computer vision that can be used to refine the 

original images into better information. In this work, a new fusion-based technique is 
proposed for contrast enhancement and improvement of frame quality. For this purpose, 
HSV color transformation is initially applied, which encodes 24-bit colors by hue, satu-
ration, and value. This selection aims to organize the colors in a more practically appli-
cable manner. Consider we have a CASIA-B dataset denoted as ẞ and ẞ ℇ ℛ. ẞ (𝑖, 𝑗) 
denotes the HSV color-transformed image, and 𝑅, 𝐺, and 𝐵 denote the red, green, and 
blue channels of values between 0–255. The mathematical formulation is defined as fol-
lows: ℟ =  𝑅/255 (1)

Ꞡ =  𝐺/255 (2)₿ =  𝐵/255 (3)𝑅𝑎𝑛𝑔𝑀𝑎𝑥 =  𝑚𝑎𝑥 (℟,Ꞡ, ₿)₿ =  𝐵/255 (4)℟𝑅𝑎𝑛𝑔𝑀𝑖𝑛 =  𝑚𝑖𝑛 (℟,Ꞡ, ₿) (5)

Ꝿ =  𝑅𝑎𝑛𝑔𝑀𝐴𝑋 −  𝑅𝑎𝑛𝑔𝑀𝑖𝑛 (6)

.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 1. Proposed framework of HGR using two-stream fusion-assisted deep learning and 
optimal features selection. 

2.1. Novelty 1: Hybrid Fusion Enhancement Technique 
Preprocessing is an important step in computer vision that can be used to refine the 

original images into better information. In this work, a new fusion-based technique is 
proposed for contrast enhancement and improvement of frame quality. For this purpose, 
HSV color transformation is initially applied, which encodes 24-bit colors by hue, satu-
ration, and value. This selection aims to organize the colors in a more practically appli-
cable manner. Consider we have a CASIA-B dataset denoted as ẞ and ẞ ℇ ℛ. ẞ (𝑖, 𝑗) 
denotes the HSV color-transformed image, and 𝑅, 𝐺, and 𝐵 denote the red, green, and 
blue channels of values between 0–255. The mathematical formulation is defined as fol-
lows: ℟ =  𝑅/255 (1)

Ꞡ =  𝐺/255 (2)₿ =  𝐵/255 (3)𝑅𝑎𝑛𝑔𝑀𝑎𝑥 =  𝑚𝑎𝑥 (℟,Ꞡ, ₿)₿ =  𝐵/255 (4)℟𝑅𝑎𝑛𝑔𝑀𝑖𝑛 =  𝑚𝑖𝑛 (℟,Ꞡ, ₿) (5)

Ꝿ =  𝑅𝑎𝑛𝑔𝑀𝐴𝑋 −  𝑅𝑎𝑛𝑔𝑀𝑖𝑛 (6)

(i, j) denotes the HSV
color-transformed image, and R, G, and B denote the red, green, and blue channels of
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After that, the averaging filter is applied to the transformed image due to its linear 
filter type. This filter minimized the ambient noise, refined edges, and rectified uneven 
lighting. This approach involves filtering the frame by correlation with a suitable filter 
kernel. The value of the resultant pixel is determined as the weighted combination of its 
neighbor pixels. On the input signal, it functions as an averaging filter; it processes an 
input vector of values and determines an average for every value inside the vector. Con-
sider we have an input image Ɪ (𝑢, 𝑣), filtered image Ꞇ (𝑢, 𝑣), and ґ (𝑎, 𝑏) is the weight 
of the average filter that convolves the input image and produced the smooth filtered 
image: the mathematically averaging filter can be illustrated as: 
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∑ ∑ Ύ ( , ).Ɪ ( , ) ∑ ∑ Ύ ( , ).  (10)

The high-boost filter is later applied on the resultant image Ꞇ (𝑢, 𝑣) for the sharp-
ening of edges in a video frame. This operation is employed to strengthen the image of 
high-frequency components, further improving the relative relevance of features con-
veyed by high-frequency components. The high-boost filtering image is computed as 
follows: 𝑃 (𝑢, 𝑣) = (𝑊 − 1) ∗ Ꞇ (𝑢, 𝑣) + Ꞇ (𝑢, 𝑣) ∗ ℎ (𝑎, 𝑏) (11)𝑃 (𝑢, 𝑣) = [𝑃 (𝑢, 𝑣) + ẞ (𝑖, 𝑗)] − 𝐼(𝑢, 𝑣)] (12)

where 𝑊  is an increasing factor for adjusting the weights, 𝑃 (𝑢, v)  denotes the 
high-pass filtered image, and 𝑃 (𝑢, 𝑣) is the final fused enhanced image. The visual il-
lustration is shown in Figure 2. Based on these contrast enhancement outputs, we aug-
mented the entire dataset and results outputs are described in Table 1. 
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proposed for contrast enhancement and improvement of frame quality. For this purpose, 
HSV color transformation is initially applied, which encodes 24-bit colors by hue, satu-
ration, and value. This selection aims to organize the colors in a more practically appli-
cable manner. Consider we have a CASIA-B dataset denoted as ẞ and ẞ ℇ ℛ. ẞ (𝑖, 𝑗) 
denotes the HSV color-transformed image, and 𝑅, 𝐺, and 𝐵 denote the red, green, and 
blue channels of values between 0–255. The mathematical formulation is defined as fol-
lows: ℟ =  𝑅/255 (1)

Ꞡ =  𝐺/255 (2)₿ =  𝐵/255 (3)𝑅𝑎𝑛𝑔𝑀𝑎𝑥 =  𝑚𝑎𝑥 (℟,Ꞡ, ₿)₿ =  𝐵/255 (4)℟𝑅𝑎𝑛𝑔𝑀𝑖𝑛 =  𝑚𝑖𝑛 (℟,Ꞡ, ₿) (5)

Ꝿ =  𝑅𝑎𝑛𝑔𝑀𝐴𝑋 −  𝑅𝑎𝑛𝑔𝑀𝑖𝑛 (6)
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Here Ꝿ denotes the change in maximum and minimum range, ℟ denotes the ex-
tracted red channel, Ꞡ denotes the extracted green channel, and ₿ denotes the extract-
ed blue channel, respectively. Based on the above information, the hue, saturation, and 
value channels are computed as follows: 

H = ⎩⎪⎨
⎪⎧60° × (Ꞡ  ₿)

Ꝿ
 𝑚𝑜𝑑 6, 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 = ℟60° × (₿  ℟)

Ꝿ
 +  2, 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 = Ꞡ60° × (℟  Ꞡ)

Ꝿ
 +  4, 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 = ₿ ⎭⎪⎬

⎪⎫
 (7)

𝑆 = 
0, 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 = 0
Ꝿ , 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 ≠ 0  (8)

𝑉 =  𝑅𝑎𝑛𝑔𝑀𝑎𝑥  (9)

After that, the averaging filter is applied to the transformed image due to its linear 
filter type. This filter minimized the ambient noise, refined edges, and rectified uneven 
lighting. This approach involves filtering the frame by correlation with a suitable filter 
kernel. The value of the resultant pixel is determined as the weighted combination of its 
neighbor pixels. On the input signal, it functions as an averaging filter; it processes an 
input vector of values and determines an average for every value inside the vector. Con-
sider we have an input image Ɪ (𝑢, 𝑣), filtered image Ꞇ (𝑢, 𝑣), and ґ (𝑎, 𝑏) is the weight 
of the average filter that convolves the input image and produced the smooth filtered 
image: the mathematically averaging filter can be illustrated as: 

Ꞇ (𝑢, 𝑣) = 
∑ ∑ Ύ ( , ).Ɪ ( , ) ∑ ∑ Ύ ( , ).  (10)

The high-boost filter is later applied on the resultant image Ꞇ (𝑢, 𝑣) for the sharp-
ening of edges in a video frame. This operation is employed to strengthen the image of 
high-frequency components, further improving the relative relevance of features con-
veyed by high-frequency components. The high-boost filtering image is computed as 
follows: 𝑃 (𝑢, 𝑣) = (𝑊 − 1) ∗ Ꞇ (𝑢, 𝑣) + Ꞇ (𝑢, 𝑣) ∗ ℎ (𝑎, 𝑏) (11)𝑃 (𝑢, 𝑣) = [𝑃 (𝑢, 𝑣) + ẞ (𝑖, 𝑗)] − 𝐼(𝑢, 𝑣)] (12)

where 𝑊  is an increasing factor for adjusting the weights, 𝑃 (𝑢, v)  denotes the 
high-pass filtered image, and 𝑃 (𝑢, 𝑣) is the final fused enhanced image. The visual il-
lustration is shown in Figure 2. Based on these contrast enhancement outputs, we aug-
mented the entire dataset and results outputs are described in Table 1. 

mod 6, RangMax =
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S =
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After that, the averaging filter is applied to the transformed image due to its linear
filter type. This filter minimized the ambient noise, refined edges, and rectified uneven
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(u, v), and ґ (a, b) is the weight of the
average filter that convolves the input image and produced the smooth filtered image: the
mathematically averaging filter can be illustrated as:
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where 𝑊  is an increasing factor for adjusting the weights, 𝑃 (𝑢, v)  denotes the 
high-pass filtered image, and 𝑃 (𝑢, 𝑣) is the final fused enhanced image. The visual il-
lustration is shown in Figure 2. Based on these contrast enhancement outputs, we aug-
mented the entire dataset and results outputs are described in Table 1. 

(u, v) for the sharpening
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frequency components, further improving the relative relevance of features conveyed by
high-frequency components. The high-boost filtering image is computed as follows:

Phb(u, v) = (W − 1) ∗

Sensors 2023, 23, x FOR PEER REVIEW 6 of 26 
 

 

Here Ꝿ denotes the change in maximum and minimum range, ℟ denotes the ex-
tracted red channel, Ꞡ denotes the extracted green channel, and ₿ denotes the extract-
ed blue channel, respectively. Based on the above information, the hue, saturation, and 
value channels are computed as follows: 

H = ⎩⎪⎨
⎪⎧60° × (Ꞡ  ₿)

Ꝿ
 𝑚𝑜𝑑 6, 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 = ℟60° × (₿  ℟)

Ꝿ
 +  2, 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 = Ꞡ60° × (℟  Ꞡ)

Ꝿ
 +  4, 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 = ₿ ⎭⎪⎬

⎪⎫
 (7)

𝑆 = 
0, 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 = 0
Ꝿ , 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 ≠ 0  (8)

𝑉 =  𝑅𝑎𝑛𝑔𝑀𝑎𝑥  (9)

After that, the averaging filter is applied to the transformed image due to its linear 
filter type. This filter minimized the ambient noise, refined edges, and rectified uneven 
lighting. This approach involves filtering the frame by correlation with a suitable filter 
kernel. The value of the resultant pixel is determined as the weighted combination of its 
neighbor pixels. On the input signal, it functions as an averaging filter; it processes an 
input vector of values and determines an average for every value inside the vector. Con-
sider we have an input image Ɪ (𝑢, 𝑣), filtered image Ꞇ (𝑢, 𝑣), and ґ (𝑎, 𝑏) is the weight 
of the average filter that convolves the input image and produced the smooth filtered 
image: the mathematically averaging filter can be illustrated as: 

Ꞇ (𝑢, 𝑣) = 
∑ ∑ Ύ ( , ).Ɪ ( , ) ∑ ∑ Ύ ( , ).  (10)

The high-boost filter is later applied on the resultant image Ꞇ (𝑢, 𝑣) for the sharp-
ening of edges in a video frame. This operation is employed to strengthen the image of 
high-frequency components, further improving the relative relevance of features con-
veyed by high-frequency components. The high-boost filtering image is computed as 
follows: 𝑃 (𝑢, 𝑣) = (𝑊 − 1) ∗ Ꞇ (𝑢, 𝑣) + Ꞇ (𝑢, 𝑣) ∗ ℎ (𝑎, 𝑏) (11)𝑃 (𝑢, 𝑣) = [𝑃 (𝑢, 𝑣) + ẞ (𝑖, 𝑗)] − 𝐼(𝑢, 𝑣)] (12)

where 𝑊  is an increasing factor for adjusting the weights, 𝑃 (𝑢, v)  denotes the 
high-pass filtered image, and 𝑃 (𝑢, 𝑣) is the final fused enhanced image. The visual il-
lustration is shown in Figure 2. Based on these contrast enhancement outputs, we aug-
mented the entire dataset and results outputs are described in Table 1. 

(u, v) +

Sensors 2023, 23, x FOR PEER REVIEW 6 of 26 
 

 

Here Ꝿ denotes the change in maximum and minimum range, ℟ denotes the ex-
tracted red channel, Ꞡ denotes the extracted green channel, and ₿ denotes the extract-
ed blue channel, respectively. Based on the above information, the hue, saturation, and 
value channels are computed as follows: 

H = ⎩⎪⎨
⎪⎧60° × (Ꞡ  ₿)

Ꝿ
 𝑚𝑜𝑑 6, 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 = ℟60° × (₿  ℟)

Ꝿ
 +  2, 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 = Ꞡ60° × (℟  Ꞡ)

Ꝿ
 +  4, 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 = ₿ ⎭⎪⎬

⎪⎫
 (7)

𝑆 = 
0, 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 = 0
Ꝿ , 𝑅𝑎𝑛𝑔𝑀𝑎𝑥 ≠ 0  (8)

𝑉 =  𝑅𝑎𝑛𝑔𝑀𝑎𝑥  (9)

After that, the averaging filter is applied to the transformed image due to its linear 
filter type. This filter minimized the ambient noise, refined edges, and rectified uneven 
lighting. This approach involves filtering the frame by correlation with a suitable filter 
kernel. The value of the resultant pixel is determined as the weighted combination of its 
neighbor pixels. On the input signal, it functions as an averaging filter; it processes an 
input vector of values and determines an average for every value inside the vector. Con-
sider we have an input image Ɪ (𝑢, 𝑣), filtered image Ꞇ (𝑢, 𝑣), and ґ (𝑎, 𝑏) is the weight 
of the average filter that convolves the input image and produced the smooth filtered 
image: the mathematically averaging filter can be illustrated as: 

Ꞇ (𝑢, 𝑣) = 
∑ ∑ Ύ ( , ).Ɪ ( , ) ∑ ∑ Ύ ( , ).  (10)

The high-boost filter is later applied on the resultant image Ꞇ (𝑢, 𝑣) for the sharp-
ening of edges in a video frame. This operation is employed to strengthen the image of 
high-frequency components, further improving the relative relevance of features con-
veyed by high-frequency components. The high-boost filtering image is computed as 
follows: 𝑃 (𝑢, 𝑣) = (𝑊 − 1) ∗ Ꞇ (𝑢, 𝑣) + Ꞇ (𝑢, 𝑣) ∗ ℎ (𝑎, 𝑏) (11)𝑃 (𝑢, 𝑣) = [𝑃 (𝑢, 𝑣) + ẞ (𝑖, 𝑗)] − 𝐼(𝑢, 𝑣)] (12)

where 𝑊  is an increasing factor for adjusting the weights, 𝑃 (𝑢, v)  denotes the 
high-pass filtered image, and 𝑃 (𝑢, 𝑣) is the final fused enhanced image. The visual il-
lustration is shown in Figure 2. Based on these contrast enhancement outputs, we aug-
mented the entire dataset and results outputs are described in Table 1. 

(u, v) ∗ hhp f (a, b) (11)

P̃hb(u, v) = [Phb(u, v) +

Sensors 2023, 23, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 1. Proposed framework of HGR using two-stream fusion-assisted deep learning and 
optimal features selection. 

2.1. Novelty 1: Hybrid Fusion Enhancement Technique 
Preprocessing is an important step in computer vision that can be used to refine the 

original images into better information. In this work, a new fusion-based technique is 
proposed for contrast enhancement and improvement of frame quality. For this purpose, 
HSV color transformation is initially applied, which encodes 24-bit colors by hue, satu-
ration, and value. This selection aims to organize the colors in a more practically appli-
cable manner. Consider we have a CASIA-B dataset denoted as ẞ and ẞ ℇ ℛ. ẞ (𝑖, 𝑗) 
denotes the HSV color-transformed image, and 𝑅, 𝐺, and 𝐵 denote the red, green, and 
blue channels of values between 0–255. The mathematical formulation is defined as fol-
lows: ℟ =  𝑅/255 (1)

Ꞡ =  𝐺/255 (2)₿ =  𝐵/255 (3)𝑅𝑎𝑛𝑔𝑀𝑎𝑥 =  𝑚𝑎𝑥 (℟,Ꞡ, ₿)₿ =  𝐵/255 (4)℟𝑅𝑎𝑛𝑔𝑀𝑖𝑛 =  𝑚𝑖𝑛 (℟,Ꞡ, ₿) (5)

Ꝿ =  𝑅𝑎𝑛𝑔𝑀𝐴𝑋 −  𝑅𝑎𝑛𝑔𝑀𝑖𝑛 (6)

(i, j)]−I(u, v)] (12)

where W is an increasing factor for adjusting the weights, Php f (u, v) denotes the high-pass
filtered image, and P̃hb(u, v) is the final fused enhanced image. The visual illustration is
shown in Figure 2. Based on these contrast enhancement outputs, we augmented the entire
dataset and results outputs are described in Table 1.
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Figure 2. Proposed fusion of filters for contrast enhancement of moving subject.

2.2. Pre-Trained Deep Models

Mobilenetv2: Mobilenetv2 was introduced by Google in 2018, and is the variation of
the Mobilenet model. It is a convolutional neural network that contains 53 deep layers. This
model is based on the inverted residual structure with connections between the bottleneck
levels. Therefore, we used this model as a backbone network. A visual illustration of this
network is shown in Figure 3 In this figure, it is noted that there are two blocks. One is a
residual block with a stride of 1. Another one is a block with a stride of 2 for downsizing.
There are three layers for both types of blocks. This time, the first layer is 1 × 1 convolution
with ReLU6. The second layer is the depth-wise convolution. The third layer is another
1 × 1 convolution but without any non-linearity. It is claimed that if Relu is used again, the
deep networks only have the power of a linear classifier on the non-zero volume part of
the output domain. It is a very effective feature extractor mostly used for object detection
and segmentation. Mobilenetv2 was pre-trained using the ImageNet dataset of about
1000 object classes.
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Table 1. Description of the extracted dataset (CASIA-B) on all selected angles.

CASIA-B Dataset
Before

Augmentation
No. of Images

After Augmentation
No. of Images

0

Bag 2347 9388

Coat 2436 9744

Normal 2191 8764

18

Bag 2457 9828

Coat 2428 9712

Normal 2550 10,200

36

Bag 2459 9836

Coat 2530 10,120

Normal 2285 9140

54

Bag 2578 10,312

Coat 2661 10,644

Normal 2433 9732

72

Bag 2531 10,124

Coat 2582 10,328

Normal 2471 9884

90

Bag 2512 10,048

Coat 2717 10,868

Normal 2320 9280

108

Bag 2363 9452

Coat 2753 11,012

Normal 2647 10,588

126

Bag 2472 9888

Coat 2301 9204

Normal 2418 9672

144

Bag 2436 9744

Coat 2452 9808

Normal 2438 9752

162

Bag 2466 9864

Coat 2528 10,112

Normal 2422 9688

180

Bag 2423 9692

Coat 2674 10,696

Normal 2625 10,500
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ShuffleNet: The ShuffleNet is a lightweight convolutional neural network (CNN)
model introduced by Magvii Inc in 2017. It is a 50-layer deep lightweight CNN model
with 1.4 million parameters and accepts an RGB input image of a size of 224× 224. They
proposed a CNN model suitable and specially designed for mobile devices, which is highly
efficient in computation and power consumption. This model is evaluated in ImageNet
2016 classification dataset. It introduces the three variants of the shuffle unit, composed
of group convolution and channel shuffles. Group convolution uses multiple kernels per
layer and generates multiple channel outputs per layer. It can learn more intermediate
features and increase the channels for the next layer.

Moreover, channel shuffle is an operation to help information flow across feature
channels in a CNN. It was used as a part of the ShuffleNet architecture. The input and
output channels can be fully related if a group convolution is allowed to obtain input data
from different groups. It can be designed with very limited computing power. Two new
operations are used in this architecture (pointwise group convolution and channel shuffle)
that reduce the computation cost while maintaining accuracy. The visual description of this
architecture is shown in Figure 4.
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2.3. Deep Transfer Learning based Features Extraction

The deep transfer learning process is employed in this work for the training of both
pre-trained models on the enhanced CASIA-B dataset. For the deep transfer learning
process, we firstly fine-tuned both models so that the last three consecutive layers were
removed, and new layers were added and connected to the previous global average pooling
layer. Next, the models were trained through deep transfer learning.

Domain. A domain can be represented as:

D = {V, ρ (V)} (13)

which contains two parts: the feature space, V, and the probability distribution, ρ(V).
V = {v | vi
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which includes two factors: the label space, L, and a mapping function,

Sensors 2023, 23, x FOR PEER REVIEW 9 of 26 
 

 

proposed a CNN model suitable and specially designed for mobile devices, which is 
highly efficient in computation and power consumption. This model is evaluated in 
ImageNet 2016 classification dataset. It introduces the three variants of the shuffle unit, 
composed of group convolution and channel shuffles. Group convolution uses multiple 
kernels per layer and generates multiple channel outputs per layer. It can learn more in-
termediate features and increase the channels for the next layer. 

Moreover, channel shuffle is an operation to help information flow across feature 
channels in a CNN. It was used as a part of the ShuffleNet architecture. The input and 
output channels can be fully related if a group convolution is allowed to obtain input 
data from different groups. It can be designed with very limited computing power. Two 
new operations are used in this architecture (pointwise group convolution and channel 
shuffle) that reduce the computation cost while maintaining accuracy. The visual de-
scription of this architecture is shown in Figure 4. 

 
Figure 4. Original architecture of ShuffleNet deep model. 

2.3. Deep Transfer Learning based Features Extraction 
The deep transfer learning process is employed in this work for the training of both 

pre-trained models on the enhanced CASIA-B dataset. For the deep transfer learning 
process, we firstly fine-tuned both models so that the last three consecutive layers were 
removed, and new layers were added and connected to the previous global average 
pooling layer. Next, the models were trained through deep transfer learning. 

Domain. A domain can be represented as: 𝐷 =  𝑉, 𝜌 (𝑉)   (13)

which contains two parts: the feature space, 𝑉, and the probability distribution, 𝜌(𝑉). 𝑉 =  𝑣 | 𝑣𝑖 ℇ 𝑉, 𝑖 =  1, … … . . , 𝑁  and 𝑁 is a dataset with 𝑁 instances. However, source 
and target domains are the subcategory of transfer learning with the same feature vector 
but different probability distributions. 

Task. The task can be represented as: ℑ =  ℒ, ʄ(. )  (14)(.), where
L = {L | Li

Sensors 2023, 23, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 1. Proposed framework of HGR using two-stream fusion-assisted deep learning and 
optimal features selection. 

2.1. Novelty 1: Hybrid Fusion Enhancement Technique 
Preprocessing is an important step in computer vision that can be used to refine the 

original images into better information. In this work, a new fusion-based technique is 
proposed for contrast enhancement and improvement of frame quality. For this purpose, 
HSV color transformation is initially applied, which encodes 24-bit colors by hue, satu-
ration, and value. This selection aims to organize the colors in a more practically appli-
cable manner. Consider we have a CASIA-B dataset denoted as ẞ and ẞ ℇ ℛ. ẞ (𝑖, 𝑗) 
denotes the HSV color-transformed image, and 𝑅, 𝐺, and 𝐵 denote the red, green, and 
blue channels of values between 0–255. The mathematical formulation is defined as fol-
lows: ℟ =  𝑅/255 (1)

Ꞡ =  𝐺/255 (2)₿ =  𝐵/255 (3)𝑅𝑎𝑛𝑔𝑀𝑎𝑥 =  𝑚𝑎𝑥 (℟,Ꞡ, ₿)₿ =  𝐵/255 (4)℟𝑅𝑎𝑛𝑔𝑀𝑖𝑛 =  𝑚𝑖𝑛 (℟,Ꞡ, ₿) (5)

Ꝿ =  𝑅𝑎𝑛𝑔𝑀𝐴𝑋 −  𝑅𝑎𝑛𝑔𝑀𝑖𝑛 (6)

L, I = 1, . . . . . . . . . .M}, and M is a label set for the relevant instance in
D. The mapping function,

Sensors 2023, 23, x FOR PEER REVIEW 9 of 26 
 

 

proposed a CNN model suitable and specially designed for mobile devices, which is 
highly efficient in computation and power consumption. This model is evaluated in 
ImageNet 2016 classification dataset. It introduces the three variants of the shuffle unit, 
composed of group convolution and channel shuffles. Group convolution uses multiple 
kernels per layer and generates multiple channel outputs per layer. It can learn more in-
termediate features and increase the channels for the next layer. 

Moreover, channel shuffle is an operation to help information flow across feature 
channels in a CNN. It was used as a part of the ShuffleNet architecture. The input and 
output channels can be fully related if a group convolution is allowed to obtain input 
data from different groups. It can be designed with very limited computing power. Two 
new operations are used in this architecture (pointwise group convolution and channel 
shuffle) that reduce the computation cost while maintaining accuracy. The visual de-
scription of this architecture is shown in Figure 4. 

 
Figure 4. Original architecture of ShuffleNet deep model. 

2.3. Deep Transfer Learning based Features Extraction 
The deep transfer learning process is employed in this work for the training of both 

pre-trained models on the enhanced CASIA-B dataset. For the deep transfer learning 
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pooling layer. Next, the models were trained through deep transfer learning. 
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and target domains are the subcategory of transfer learning with the same feature vector 
but different probability distributions. 
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pre-trained models on the enhanced CASIA-B dataset. For the deep transfer learning 
process, we firstly fine-tuned both models so that the last three consecutive layers were 
removed, and new layers were added and connected to the previous global average 
pooling layer. Next, the models were trained through deep transfer learning. 

Domain. A domain can be represented as: 𝐷 =  𝑉, 𝜌 (𝑉)   (13)

which contains two parts: the feature space, 𝑉, and the probability distribution, 𝜌(𝑉). 𝑉 =  𝑣 | 𝑣𝑖 ℇ 𝑉, 𝑖 =  1, … … . . , 𝑁  and 𝑁 is a dataset with 𝑁 instances. However, source 
and target domains are the subcategory of transfer learning with the same feature vector 
but different probability distributions. 

Task. The task can be represented as: ℑ =  ℒ, ʄ(. )  (14)(V) = ρ (V
∣∣∣L) , is a non-linear and

indirect function that may fill the gap between input instances as well as the projected
judgment that is acquired from the suggested datasets. Similarly, distinct objectives are
specified because of the label spaces among these tasks. The visual process of deep transfer
learning is shown in Figure 5. This figure illustrates that none of the layers are frozen, and
the entire network is trained on the selected enhanced CASIA-B dataset. After training,
features are extracted from the selected layers, such as global average pooling. In the first
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trained model, named MobilenetV2, the global average pooling layer is employed and
performed the activation. From this layer, we obtained 1280 features for each image. Hence,
the results vector is denoted by N × 1280. In the second trained model, named ShuffleNet,
we extracted features from the global average pooling layer and obtained 544 features;
hence, the resultant vector is obtained on dimensional N × 544. This is shown in Table 2.
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Table 2. Description of deep features for the selected deep models.

Model Layer Input Output Feature Vector

Fine-tuned
MobilenetV2 154 224 × 224 × 3 1280 N × 1280

Fine-tuned
ShuffleNet 172 224 × 224 × 3 544 N × 544

2.4. Novelty 2: Minimal Serial Features Fusion

The two feature vectors FV1 and FV2 contain N × 1280 and N × 544 features for
MobilenetV2 and ShuffleNet models, respectively. FV3 is a fused feature vector using
a serial approach that returns a feature vector of dimension N × 1824 by employing the
following mathematical formulation:

FV3=
(

FV1
FV2

)
(N×1280+N×544)

(15)

The resultant fused feature vector consists of some redundant information; therefore,
we implemented a minimization function that removes the redundant features after each
iteration. The objective function of this function is to minimize the error rate and reduce
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the computational time that is required after the reduction of the redundant features.
Mathematically, this function is defined as follows:

F = argmin
FV3

(Er)

Also, the working of this process is described in the below Algorithm 1, and the final
fused vector is denoted by F̃V.

Algorithm 1: Proposed Feature Fusion.

Input: Feature Vectors ← FV1 and FV2
Step 1: Serially Fused using below Equation

FV3 =

(
FV1
FV2

)
(N×1280+N×544)

Step 2: for I = 1 to sizeof(FV3)
Step 3: Initialize the static parameter
Er = 0
Iterations = 100
Step 4: Minimization Function

F = argmin
FV3

(Er)

if(F > Er)
Repeat above steps
Stop when Er near to Zero or Equal to Zero
Output: Final Fused Feature Vector ← F̃V

2.5. Novelty 3: Proposed ESOcNR Feature Selection

Feature selection has been an important step in machine learning over the last two
years. Many techniques have been introduced, but they faced a few issues, such as reducing
important features and selecting extra features. These factors can reduce the accuracy and
increase the computational time. This work proposed a new equilibrium state optimization
technique controlled using the Newton–Raphson method (ESOcNR) for the best feature
selection. The proposed technique is initially based on the original ESO algorithm [28],
which uses a mass balance equation to define the concentration of a nonreactive ingredient
in a control volume. The mass balance equation describes the mechanics of mass entering,
leaving, and creating mass in a control volume. The universal mass-balance equation is
represented by a first-order ordinary differential equation, described as follows:

W
dE
dt

= RE f r − RD + H (16)

where W represents the inside of the control volume, D denotes the concentration, the rate
of mass change in the control volume is denoted by W dE

dt , and R denotes the volumetric
efficiency of a control volume. The variable E f r implies the concentration at an equilibrium
state with no production within the control volume, and H denotes the mass generation
rate within the control volume. A stable equilibrium condition is achieved once W dE

dt hits
zero. Reordering of the above equation helps in solving dE

dt as a function of R
W , where R

W

reflects the inverse of the residency period, referred as λ or the turnover rate
(

λ = R
W

)
.

The W is computed as follows:

W =
dE

λE f r − λE + H
W

(17)

W =
∫ E

E0

dE
λE f r − λE + H

W
(18)
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E = E f r + (E0 − E f r)G +
H
λW

(1− G) (19)

In the above equation, the H is determined as follows:

H = exp[−λ(t− t0)] (20)

where t0 and E0 are the initial start time and concentration and are calculated by an integral
interval, respectively. Equation (19) can be utilized to determine the attention in the control
volume with a specified turnover rate, among several other things. It can also be employed
to compute the average turnover rate by implementing a simple linear regression with a
predetermined generation rate.

The first term is equilibrium concentration, which is one of the ideal solutions chosen
randomly from a pool known as the equilibrium pool. The direct search approach is the
second term concerned primarily with a concentration difference between a particle and the
equilibrium state. The said term acts as an explorer, urging particles to explore the entire
region. The third term is associated with the generation rate that either primarily contributes
as an exploiter or remedy refiner, but can also function as an explorer occasionally. Each
term is defined below and how it influences the search pattern.

Evaluation and Initialization of Functions: The optimization process is initiated by
ESO, as are several other meta-heuristic algorithms with the initial population. The dimen-
sions of the search space with uniform random initialization and initial concentrations are
determined by the number of particles as follows:

Einitial
i = Emin + randi(Emax − Emin)i = 1, 2, 3 . . . . . . n (21)

The ith particle’s initial concentration vector is indicated by Einitial
i , while the maximal

and minimal values for the dimensions are given by Emax and Emin, respectively. The
variable n is the population’s number, and randi is a haphazard vector that falls inside the
range of 0–1. To evaluate the equilibrium candidates for the fitness function, particles are
appraised and then classified.

Candidates and the Equilibrium Pool Efr: The algorithm’s ultimate convergence state
is the global optimal equilibrium state. There is no knowledge about the equilibrium state
at the outset of the optimization procedure; thus, only equilibrium candidates are picked to
create a search pattern for the particles. The finest four particles are discovered throughout
the optimization process, as well as one additional particle whose concentration matches
the arithmetic mean of the four previously mentioned particles. These four options aid
EO in improving its exploring abilities, whereas the average helps with exploitation. The
number of candidates is arbitrary and determined by the nature of the optimization issue.

In contrast, selecting fewer than four candidates degrades the method performance
in multimodal and composition functions, although improving outcomes in uni-modal
functions. Furthermore, having more than four candidates may have a detrimental effect.
Thus five particles are referred to as equilibrium candidates and are utilized to form the
equilibrium pool vector:

→
E eq_pool = {

→
E eq(1),

→
E eq(2),

→
E eq(3),

→
E eq(4),

→
E eq(ave)} (22)

Each particle’s concentration is changed at random in each cycle by picking randomly
from a pool of candidates with the same probability. For instance, in the first iteration,

the first particle upgrades concentrations based on
→
E eq(1); in the second iteration, con-

centrations may be updated based on
→
E eq(ave). Each particle will be updated until the

optimization process is complete, with about the same percentage of updates going to each
candidate solution.

Exponential Term (H): The next term which further contributes to the primary concen-
tration update rule is the exponential term (H). A thorough explanation of such a concept
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might help EO strike a fair equilibrium between exploration and exploitation. Because the
turnover rate in a real control volume fluctuates over time, λ is a random vector that tends
to range from 0–1.

→
H = e−

→
λ(t−t0) (23)

The time is represented by t and formulated as follows:

t = (1− Itr
Max_Itr

)
(b2

Itr
Max_Itr )

(24)

where Itr and Max_Itr represent the current and max number of iterations, respectively, and
b2 is a constant used to adjust exploitation capabilities. To ensure convergence, the search
velocity is reduced to increasing the algorithm’s exploration and exploitation capabilities.

→
t 0 =

1
→
λ

ln
(
−b1sign(

→
s − 0.5)

[
1− e−

→
λt
])

+ t (25)

where, b1 is a constant number that regulates exploration. The higher b1 value, the better
the exploring capacity, and hence the lower the exploitation efficiency. Similarly, increasing
b2 improves exploitation while decreasing exploring capabilities. The third component
sign (

→
s − 0.5) influences the course of exploration and exploitation. The variable

→
s is a

random vector with a value ranging from 0 to 1. These constants are calculated empirically
by evaluating a set of test functions. These parameters, however, can be modified as needed
for specific circumstances.

→
H = b1sign(

→
s − 0.5)

[
e−
→
λt − 1

]
(26)

Generation Rate (G): The generating rate is one of the most important words in
providing the proper answer by improving the exploitation phase. The model below
displays generation rates as a first-order exponential decay process:

→
G =

→
G0e−

→
l (t−t0) (27)

where
→
H0 represents the beginning value and

→
l represents the decay constant. To have a

more controlled and systematic search pattern and to limit the number of random variables,

we assume
→
l =

→
λ and use the previously computed exponential term. As a result, the final

set of generation rate equations are as follows:

→
G =

→
G0
→
H (28)

→
H = e−

→
λ(t−t0) (29)

→
G0 =

→
GCP(

→
Deq −

→
λ
→
D) (30)

→
GCP =

{
0.5s1 s2 ≥ GP

0 s2 ≥ GP
(31)

The generation rate control parameter (GCP) is a generic term for the potential con-
tribution towards the updating process. However, one component (called the generation
probability (GP)) determines the likelihood of this contribution by defining how many
particles utilize the generic term to update their states. By using GP = 0.5, a reasonable
balance between exploration and exploitation may be reached. Finally, the EO update
regulation is defined as follows:
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→
E =

→
E eq + (

→
E −

→
E eq)×

→
H +

→
G
→
λW

(1−
→
H) (32)

The first term reflects an equilibrium concentration, whereas the second and third
terms describe variations in concentration. The second term is in charge of searching the
entire area for the best position. The third term contributes to exploitation by making
the solution more exact when it reaches a spot. Depending on factors, such as particle
concentrations, equilibrium candidates, and the turnover rate (λ), the second and third
components may have the same or opposite sign. The same sign promotes diversity, which
helps with domain searches, while the opposite sign minimizes variation, which helps with
local searches. Finally, the memory-saving algorithms help each particle maintain track
of its locations in space, which influences its fitness value. Each particle’s fitness value
in the current iteration is assessed to the one from the previous iteration and is rewritten
if it attains a better choice. This process improves exploitation capacity but increases the
likelihood of being caught in local minima if the approach does not benefit from global
exploration capability.

Newton–Raphson based Final Selection: The features of each iteration of ESO are
passed to the Newton-Raphson-based function [29] that computes the resultant value. The
resultant value states when the number of iterations will be stopped. The main purpose of
this function is to find the quick value for the threshold selection. This value reduces the
computational time and improves the performance. Mathematically, this process is defined
as follows:

f1 = f0 −
h( f0)

h′( f0)
(33)

fn+1 = fn −
h( fn)

h′( fn)
(34)

where, fn+1 ∈
→
E and is a selected feature vector after each iteration. This vector is updated

after each iteration, and once the value of fn+1 becomes constant, it will stop and return
the best feature vector. The final selected feature is finally classified using machine learning
classifiers.

3. Results and Analysis

Dataset and Performance Measures: The proposed HGR framework has been eval-
uated using the CASIA-B dataset. A detailed description of a dataset has been given in
Section 3. Several classifiers have been used for classification accuracies, such as fine tree,
medium tree, linear SVM, quadratic SVM, weighted KNN, coarse KNN, bagged trees,
subspace discriminate, Bi-layered neural network, and Tri-layered neural network. The
performance of each classifier is computed using recall rate, precision rate, accuracy, and
time (seconds).

Experimental Setup: We divided the entire dataset 50:50 for training and testing. The
10-fold cross-validation was chosen for the testing process. Moreover, several hyperparam-
eters have been utilized in training deep learning models, such as a learning rate of 0.0001,
epochs are 100, momentum value of 0.7, mini-batch size of 32, and the chosen optimizer
was the stochastic gradient descent. The entire framework was simulated on MATLAB
2022a using a personal computer Corei7 having 16 GB of RAM and 8 GB graphics card.

3.1. Results Analysis

Table 3 presents the results of angle 0 of the CASIA-B dataset using the proposed
framework. The results of the fusion and optimization methods are presented in this
table. Several classifiers have been employed for the classification results. First, the
fusion method obtained the highest accuracy of 97.3% on Quadratic SVM, whereas the
recall rate is 97.33% and the precision rate was 97.37%. Computational time was also
noted, and it was observed that the fusion process consumes 572.19 s for this classifier.
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However, the minimum noted time for the fusion process was 69.438 s on the medium
tree classifier, whereas the maximum reported time was 4420.7 s on the tri-layered neural
network classifier. Second, the optimization results have been presented and obtained
the maximum accuracy of 97.2% on Quadratic SVM. The recall rate of this classifier was
97.23%, and the precision rate was 97.3%. The computation time of this step was also
noted, and Quadratic SVM executes in 45.259 s. However, the minimum noted time for
the optimization process is 38.502 s on the medium tree classifier, whereas the maximum
reported time was 2049.1 s on the tri-layered neural network classifier. This shows that the
accuracy of the optimization process was almost consistent, but the execution time was
significantly reduced, which thus shows the strength of the proposed framework.

Table 3. Classification results of HGR using proposed framework on angle 0 of the CASIA-B dataset.

Classifiers
Features

Recall (%) Precision (%) Accuracy (%) Time (s)
Fusion Optimization

Fine Tree
4 94.8 94.83 94.8 154.08

4 94.63 94.63 94.6 61.748

Medium Tree
4 95.17 95.2 95.1 69.438

4 93 93.2 93.0 38.502

Linear SVM
4 97.3 97.3 97.2 466.93

4 97.17 97.2 97.1 192.66

Quadratic
SVM

4 97.33 97.37 97.3 572.19

4 97.23 97.3 97.2 45.259

Coarse KNN
4 96.17 96.23 96.1 1290.8

4 96.37 96.4 96.3 585.42

Weighted
KNN

4 96.27 96.27 96.2 1347.6

4 96.1 96.1 96.0 656.35

Bagged Trees
4 95.6 95.6 95.5 3765.9

4 95.33 95.3 95.2 1422.3

Subspace
Discriminant

4 96.97 97 96.9 2999.2

4 96.6 96.67 96.6 575.46

Bilayered
Neural

Network

4 96.07 96.07 96.0 4155.3

4 95.8 95.83 95.8 2032.2

Trilayered
Neural

Network

4 96.3 96.27 96.2 4420.7

4 95.7 95.6 95.6 2049.1

Table 4 presents the results of the fusion and optimization methods on angle 18 of
the CASIA-B dataset using the proposed framework. First, the fusion method obtained
the highest accuracy of 98.6% on Quadratic SVM, whereas the recall rate was 98.57% and
the precision rate was 98.57%. Computational time is also noted, and it was observed
that the fusion process consumes 859.46 s for this classifier. However, the minimum
noted time for the fusion process was 174.72 s on the fine tree classifier, whereas the
maximum reported time was 2049.8 s on the subspace discriminant classifier. Second, the
optimization obtained a maximum accuracy of 98.0% on Quadratic SVM. The recall rate of
this classifier was 97.93%, and the precision rate was 98%. The computation time of this
step was also noted, and Quadratic SVM executes in 42.512 s. However, the minimum
noted time for the optimization process was 34.35 s on the medium tree classifier, whereas
the maximum reported time is 1573.6 s on the bagged trees classifier. This shows that the
accuracy of the optimization process was almost consistent, but the execution time was
significantly reduced.
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Table 4. Classification results of HGR using the proposed framework on angle 18 of the CASIA-B dataset.

Classifiers
Features

Recall (%) Precision (%) Accuracy (%) Time (s)
Fusion Optimization

Fine tree
4 92.97 93 92.9 174.72

4 92.03 92.07 92.0 48.364

Medium tree
4 91.17 91.37 91.2 505.02

4 89.37 89.57 89.4 34.35

Linear SVM
4 98.4 98.37 98.4 498.59

4 97.77 97.77 97.7 204.978

Quadratic
SVM

4 98.57 98.57 98.6 859.46

4 97.93 98 98.0 42.512

Coarse KNN
4 94.93 95.23 95.0 873.62

4 95.4 95.5 95.4 691.91

Weighted
KNN

4 96.93 97.07 96.9 695.55

4 96.87 97 96.9 668.99

Bagged trees
4 96 96.03 96.0 2899.7

4 95.27 95.27 95.3 1573.6

Subspace
discriminant

4 97.57 97.52 97.5 2049.8

4 96.5 96.57 96.5 621.48

Bilayered
neural

network

4 98.23 98.20 98.2 726.05

4 97.07 97.07 97.1 839.48

Trilayered
neural

network

4 98.27 98.27 98.3 600.06

4 97.17 97.2 97.2 1216.1

Table 5 presents the results of angle 36 of the CASIA-B dataset using the proposed
framework. First, the fusion method obtained the highest accuracy of 97.7% on Quadratic
SVM, whereas the recall rate was 97.67% and the precision rate was 97.63%. Computational
time was also noted, and observed that the fusion process consumes 1014.7 s for this
classifier. However, the minimum noted time for the fusion process was 95.118 s on the
medium tree classifier, whereas the maximum reported time was 5675.8 s on the bagged
trees classifier. Second, the optimization obtained the maximum accuracy of 97.2% on
Quadratic SVM. The recall rate of this classifier was 97.23%, and the precision rate was
97.23%. The computation time of this step was also noted, and Quadratic SVM executes
in 53.864 s. However, the minimum noted time for the optimization process was 23.989 s
on the medium tree classifier, whereas the maximum reported time was 1827.5 s on the
bagged trees classifier. Results in this table show the consistency, but time was significantly
reduced, which is a main strength of this step.

Table 6 discusses the results of angle 54 of the CASIA-B dataset using the proposed
framework. First, the fusion method obtained the highest accuracy of 96.5% on Quadratic
SVM, whereas the recall rate was 96.53% and the precision rate was 96.53%. The mini-
mum noted computational time for the fusion process was 45.349 s on the medium tree
classifier, whereas the maximum reported time was 4780.4 s on the bagged trees classifier.
Second, the optimization obtained the maximum accuracy of 96.2% on Quadratic SVM.
The recall rate of this classifier was 96.27%, and the precision rate was 96.27%. After this
process, the computational time was significantly reduced, but not much change occurred
in the accuracy.
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Table 5. Classification results of HGR using proposed framework on angle 36 of CASIA-B dataset.

Classifiers
Features

Recall (%) Precision (%) Accuracy (%) Time (s)
Fusion Optimization

Fine tree
4 90.17 90.23 90.2 175.99

4 89.57 89.57 89.6 30.051

Medium tree
4 87.4 87.33 87.4 95.118

4 86.8 86.83 86.8 23.989

Linear SVM
4 97.43 97.37 97.4 850.09

4 96.83 96.8 96.8 259.84

Quadratic
SVM

4 97.67 97.63 97.7 1014.7

4 97.23 97.23 97.2 53.864

Coarse KNN
4 94.3 94.23 94.3 2152.5

4 93.8 93.73 93.8 699.39

Weighted
KNN

4 95.67 95.57 95.6 2562.8

4 95.13 95.07 95.1 671.14

Bagged trees
4 95.17 95.13 95.1 5675.8

4 93.7 93.7 93.7 1827.5

Subspace
discriminant

4 96.6 96.57 96.6 3608.6

4 95.07 95.03 95.1 805.07

Bilayered
neural

network

4 97.17 97.17 97.2 2644.7

4 96.07 96.07 96.1 1054

Trilayered
neural

network

4 97.1 97.1 97.1 3075.3

4 95.67 95.7 95.7 1131.5

Table 6. Classification results of HGR using the proposed framework on angle 54 of CASIA-B dataset.

Classifiers
Features

Recall (%) Precision (%) Accuracy (%) Time (s)
Fusion Optimization

Fine tree
4 90 90 90.0 126.75

4 89.53 89.6 89.5 108.46

Medium tree
4 87 87 86.9 45.349

4 86.2 86.03 86.0 32.89

Linear SVM
4 96.17 96.13 96.1 835.99

4 95.77 95.8 95.7 290.16

Quadratic
SVM

4 96.53 96.53 96.5 1020

4 96.27 96.27 96.2 320.93

Coarse KNN
4 93.23 93.47 93.2 1881.1

4 93.37 93.57 93.4 652.75

Weighted
KNN

4 95.13 95.13 95.1 1889.2

4 95 95.03 95.0 913.86

Bagged trees
4 94.3 94.37 94.3 4780.4

4 93.63 93.67 93.6 1510.8

Subspace
discriminant

4 95.67 95.67 95.7 3385

4 94.67 94.7 94.7 863.8

Bilayered
neural

network

4 96.13 96.13 96.2 2521

4 95.33 95.33 95.3 923.33

Trilayered
neural

network

4 96 96 96.0 2438.8

4 95.03 95 95.0 1013.3

Table 7 presents the results of angle 72 of the CASIA-B dataset using the proposed
framework. First, the fusion method obtained the highest accuracy of 92.8% on coarse
KNN, whereas the recall rate was 82.87% and the precision rate was 82.97%. Computational
time was also noted; the minimum noted time was 232.76 s on the medium tree classifier,
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whereas the maximum reported time was 3645.4 s on the tri-layered neural network classi-
fier. Second, the optimization obtained the maximum accuracy of 92.9% on coarse KNN.
The recall rate of this classifier was 83%, and the precision rate was 82.9%. The minimum
computation time of this step was 72.293 s on the medium tree classifier, whereas the maxi-
mum reported time was 2918 s on the tri-layered neural network classifier. Overall, this step
reduced the computational time and remained consistent with the classification accuracy.

Table 7. Classification results of HGR using the proposed framework on angle 72 of the CASIA-B dataset.

Classifiers
Features

Recall (%) Precision (%) Accuracy (%) Time (s)
Fusion Optimization

Fine tree
4 8.87 80.97 90.8 300.21

4 80.47 80.53 80.4 107.03

Medium tree
4 75.7 75.7 75.6 232.76

4 76.3 78.57 76.1 72.293

Linear SVM
4 86.93 87.17 86.9 1263.8

4 86 86.17 85.9 666.27

Quadratic
SVM

4 87.6 87.57 87.5 1588.8

4 86.93 86.87 86.8 204.15

Coarse KNN
4 82.87 82.97 92.8 1324.9

4 83 82.9 92.9 791.35

Weighted
KNN

4 85.8 85.77 85.7 1369.1

4 85.17 85.17 85.1 925.01

Bagged trees
4 85.03 85.07 85.0 2694.2

4 84.87 84.87 84.7 2772.8

Subspace
discriminant

4 86.67 86.97 86.6 2415.2

4 85.37 85.53 85.3 1544.1

Bilayered
neural

network

4 85.57 85.57 85.0 3259.8

4 84.1 84.1 84.0 2850.5

Trilayered
neural

network

4 85.5 85.57 85.4 3645.4

4 84.43 84.47 84.4 2918

Table 8 shows the results of angle 90 of the CASIA-B dataset using the proposed
framework. Results are presented for both the fusion and optimization steps. First, the
fusion method obtained the highest accuracy of 93.7% on Quadratic SVM, whereas the recall
rate was 93.73% and the precision rate was 94.03%. The minimum noted computational
time on the medium tree classifier was 281.13 s, whereas the maximum reported time was
4960.7 s on the bagged trees classifier. Second, the optimization obtained the maximum
accuracy of 93.1% on Quadratic SVM. The recall rate of this classifier was 93.17%, and the
precision rate was 93.53%. The minimum recorded time for the optimization process was
78.005 s on the medium tree classifier, whereas the maximum reported time was 1280.4 s
on the weighted KNN classifier. These facts show that the accuracy was not changed too
much, but a significant reduction was noted in computational time, which is the strength
of the proposed optimization algorithm.

Table 9 presents the results of angle 108 of CASIA-B dataset using the proposed
framework. In this table, the fusion process obtained the highest accuracy of 94.7% on
Quadratic SVM, whereas the recall rate was 94.57% and the precision rate was 94.63%.
Second, the optimization process obtained the maximum accuracy of 94.2% on Quadratic
SVM. Computational time was noted for both experiments and the minimum noted time
for the fusion process was 83.087 s on the medium tree classifier. In contrast, the minimum
noted time for the optimization process was 39.314 s on the medium tree classifier. This
shows the significant improvement in the optimization process’s computational time, which
is the strength of this step.
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Table 8. Classification results of HGR using the proposed framework on angle 90 of the CASIA-B dataset.

Classifiers
Features

Recall (%) Precision (%) Accuracy (%) Time (s)
Fusion Optimization

Fine tree
4 88 88.43 88.0 1773.7

4 87.8 88.43 87.8 104.61

Medium tree
4 85.37 86.5 85.4 281.13

4 83.5 84.57 83.3 78.005

Linear SVM
4 92.73 93.33 92.7 1871.9

4 92.4 92.9 92.4 735.43

Quadratic
SVM

4 93.73 94.03 93.7 1865.3

4 93.17 93.53 93.1 737.25

Coarse KNN
4 89.57 90.33 89.4 2268.8

4 89.33 90.13 89.2 553.79

Weighted
KNN

4 92.4 92.57 92.4 2467.2

4 92.07 92.13 91.9 1280.4

Bagged trees
4 91.67 91.79 91.7 4960.7

4 91.5 91.73 91.5 1041.7

Subspace
discriminant

4 92.47 93.33 92.5 4581.6

4 90.93 92.07 91.0 557.85

Bilayered
neural

network

4 92.67 92.67 92.6 3507.9

4 91.5 91.53 91.4 808.15

Trilayered
neural

network

4 92.9 92.93 92.8 4274.3

4 91.47 91.47 91.4 1225

Table 9. Classification results of HGR using the proposed framework on angle 108 of CASIA-B dataset.

Classifiers
Features

Recall (%) Precision (%) Accuracy (%) Time (s)
Fusion Optimization

Fine tree
4 89.1 89.1 89.2 195.8

4 88.03 88.1 88.2 60.125

Medium tree
4 83.8 84.5 84.3 83.087

4 82.5 85 83.2 39.314

Linear SVM
4 94.3 94.33 94.4 1126.1

4 93.6 94.13 93.7 276.45

Quadratic
SVM

4 94.57 94.63 94.7 1382

4 94.1 94.13 94.2 268.99

Coarse KNN
4 89.93 89.9 90.0 1970

4 90 89.97 90.1 418.15

Weighted
KNN

4 92.57 95.6 92.7 2148.8

4 92.23 92.27 92.3 1020.5

Bagged trees
4 93.3 93.33 93.4 4736.1

4 92.8 92.8 92.9 1467.7

Subspace
discriminant

4 93.87 93.97 94.0 3994.2

4 92.8 92.97 93.0 426.27

Bilayered
neural

network

4 93.87 93.9 93.9 3528.1

4 92.6 92.6 92.7 1079

Trilayered
neural

network

4 93.63 93.67 93.7 3639.6

4 92.53 92.57 92.6 1315.2

Similarly, Table 10 presents the results of angle 126 of the CASIA-B dataset using
proposed framework. First, the fusion method obtained the highest accuracy of 91.2%
on Quadratic SVM, whereas the recall rate was 91.13% and precision rate was 91.17%.
Computational time was also computed, and the minimum noted time for the fusion
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process was 346.5 s on the medium tree classifier. Second, the optimization results have
been presented and obtained the maximum accuracy of 90.4% on Quadratic SVM. The
minimum computational time of this step was 25.116 s on the fine tree classifier. Hence, it
is clearly observed that the proposed framework improved the accuracy and reduced the
computational time.

Table 10. Classification results of HGR using proposed framework on angle 126 of CASIA-B dataset.

Classifiers
Features

Recall (%) Precision (%) Accuracy (%) Time (s)
Fusion Optimization

Fine tree
4 84.87 85 84.8 468.07

4 83.9 83.93 83.9 25.116

Medium tree
4 83.03 85.07 82.8 346.5

4 81.9 84.03 81.7 65.492

Linear SVM
4 90.87 90.9 90.9 1243.8

4 89.73 89.7 89.7 254.83

Quadratic
SVM

4 91.13 91.17 91.2 1450.2

4 90.33 90.37 90.4 338.84

Coarse KNN
4 87.27 87.63 87.3 1743.2

4 87.83 88 87.9 359.53

Weighted
KNN

4 89.3 89.37 89.3 1733

4 88.37 88.43 88.4 399.24

Bagged trees
4 89 89.07 89.1 3541.7

4 88.5 88.5 88.6 1202.6

Subspace
discriminant

4 90.4 90.47 90.4 2676.8

4 88.9 89.17 88.9 705.52

Bilayered
neural

network

4 90.23 90.23 90.3 2448.2

4 88.4 88.4 88.4 1268.9

Trilayered
neural

network

4 90.23 90.2 90.3 3238.2

4 88.5 88.5 88.6 1229.1

Table 11 presents the results of angle 144 of CASIA-B dataset using the proposed
framework. In this table, the fusion method obtained the highest accuracy of 92.4% on
Quadratic SVM, whereas the recall rate is 92.34% and the precision rate is 92.6%. The
minimum computational time for this experiment is 126.29 s on the fine tree classifier.
Second, the optimization results have been presented and obtained the maximum accuracy
of 91.9% on Quadratic SVM. The recall rate of this classifier is 91.9%, and the precision
rate is 92.17%. Compared to the fusion process, the computation time of this step has been
significantly reduced to 96.952 s on the fine-tree classifier.

Table 12 presented the results of angle 162 of the CASIA-B dataset and obtained the
maximum accuracy for the fusion method was 96.5% on Quadratic SVM. In contrast, the
recall rate was 96.47%, and the precision rate was 96.57%. Computational time was also
noted, and it was observed that the minimum reported time was 32.703 s on the medium
tree classifier. Second, the optimization obtained the maximum accuracy of 96.3% on
Quadratic SVM. The recall rate of this classifier was 96.23%, and the precision rate was
96.4%. The computation time of this step was 68.363 s on the fine-tree classifier, which is
significantly lower that the fusion process.



Sensors 2023, 23, 2754 21 of 26

Table 11. Classification results of HGR using the proposed framework on angle 144 of the CASIA-B dataset.

Classifiers
Features

Recall (%) Precision (%) Accuracy (%) Time (s)
Fusion Optimization

Fine tree
4 87.43 87.47 87.4 126.29

4 86.5 86.6 86.5 96.952

Medium tree
4 84.33 85.1 84.3 987.03

4 84.1 84.83 84.1 173.73

Linear SVM
4 92.1 92.43 92.1 2679.4

4 91.27 91.73 91.3 296.31

Quadratic
SVM

4 92.37 92.6 92.4 3202.6

4 91.9 92.17 91.9 327.22

Coarse KNN
4 87.93 88.9 87.9 3544.2

4 88.47 89.37 88.5 485.17

Weighted
KNN

4 90.47 90.6 90.5 3531.9

4 90.43 90.53 90.4 505.14

Bagged trees
4 90.77 90.8 90.8 7531.4

4 90.43 90.37 90.3 1321.3

Subspace
discriminant

4 91.4 91.63 91.4 1477.2

4 90.43 90.8 90.4 676.45

Bilayered
neural

network

4 91.2 91.2 91.2 10934

4 90.17 90.2 90.2 1393.7

Trilayered
neural

network

4 91.27 9127 91.3 1674.1

4 89.73 89.7 89.7 1460.7

Table 12. Classification results of HGR using proposed framework on angle 162 of CASIA-B dataset.

Classifiers
Features

Recall (%) Precision (%) Accuracy (%) Time (s)
Fusion Optimization

Fine tree
4 92.27 92.3 92.3 52.63

4 92.33 92.53 92.4 68.363

Medium tree
4 90.1 90.4 90.1 32.703

4 89.27 89.93 89.4 143.29

Linear SVM
4 96.23 96.4 96.2 342.89

4 96 96.13 96.0 55.835

Quadratic
SVM

4 96.47 96.57 96.5 432.39

4 96.23 96.4 96.3 240.25

Coarse KNN
4 93.8 94.37 93.8 882.19

4 93.9 94.4 93.9 353.4

Weighted
KNN

4 95.5 95.57 95.5 807.78

4 95.43 95.53 95.4 384.97

Bagged trees
4 95.47 95.5 95.5 126.7

4 94.8 94.8 94.8 1053.6

Subspace
discriminant

4 96 96.07 96.0 1254.6

4 95.2 95.37 95.2 553.05

Bilayered
neural

network

4 96.03 96.03 96.03 389.06

4 95.37 95.37 95.4 798.62

Trilayered
neural

network

4 96.1 96.1 96.1 281.9

4 95.37 95.33 95.4 848.98

Table 13 presents the results of angle 180 of CASIA-B dataset using the proposed
framework. First, the fusion method obtained the highest accuracy of 99.9% on Quadratic
SVM, whereas the recall rate was 99.83% and the precision rate was 99.87%. Computational
time was also noted, and observed that the fusion process consumes 240.29 s for this
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classifier. However, the minimum noted time for the fusion process was 88.322 s on the
medium tree classifier, whereas the maximum reported time was 2476.1 s on the bagged
trees classifier. Second, the optimization obtained the maximum accuracy of 99.8% on
Quadratic SVM. The recall rate of this classifier was 99.8%, and the precision rate was
99.77%. The computation time of this step was also noted, and Quadratic SVM executes in
113.25 s. However, the minimum noted time for the optimization process was 28.024 s on
the bi-layered neural network classifier, whereas the maximum reported time was 168.63 s
on the weighted KNN classifier. This shows that the accuracy of the optimization process
was almost consistent, but the execution time was significantly reduced.

Table 13. Classification results of HGR using the proposed framework on angle 180 of CASIA-B dataset.

Classifiers
Features

Recall (%) Precision (%) Accuracy (%) Time (s)
Fusion Optimization

Fine tree
4 97.5 97.57 97.5 140.6

4 97.2 97.17 97.2 106.4

Medium tree
4 96.7 96.7 96.7 88.322

4 95.57 95.57 95.6 46.451

Linear SVM
4 99.87 99.87 99.9 243.19

4 99.73 99.73 99.8 20.143

Quadratic
SVM

4 99.83 99.87 99.9 240.29

4 99.8 99.77 99.8 113.25

Coarse KNN
4 99.33 99.37 99.4 1815.3

4 99.07 99.03 99.1 164.76

Weighted
KNN

4 99.73 99.73 99.7 1883.6

4 99.6 99.57 99.6 168.63

Bagged trees
4 99.07 99.1 99.1 2476.1

4 98.87 98.87 98.9 338.02

Subspace
discriminant

4 99.63 99.63 99.6 1925.6

4 99.47 99.47 99.5 112.38

Bilayered
neural

network

4 99.77 99.77 99.8 237.92

4 99.7 99.7 99.7 28.024

Trilayered
neural

network

4 99.8 99.83 99.8 289.07

4 99.67 99.7 99.7 34.53

3.2. Comparative Analysis

A detailed comparison of the proposed framework has been included in this section
based on the intermediate steps’ performance and individual ESO-based feature selection.
Figure 6 shows the analysis of the intermediate steps of the proposed framework. This
figure illustrates that the accuracy of the ShuffleNet and MobilenetV2 deep model features
is insufficient, and both models performed better for a few angles. However, the fusion
process improves the accuracy, but an increase occurred in the computational time, as
presented in Tables 3–13. Therefore, a new technique named ESOcNR is proposed. Using
this technique, a significant reduction occurred in the number of features, but a minor
drop occurred in accuracy (Tables 3–13). Figure 7 illustrates the comparison between
ESO-based feature selection and ESOcNR-based feature selection. In this figure, it is noted
that the accuracy was improved after employing the proposed selection method. For
example, for angle 0, a 3% change occurred; however, for the other angles, an almost 3–4%
change is reported after employing the proposed ESOcNR. Table 14 shows the results of
the proposed feature selection technique for CASIA-B dataset on all 11 angles. In this
table, it is noted that the QSVM classifier shows the most improved accuracy for the most
angles. Table 15 presents the comparison of the proposed framework with state-of-the-art
techniques. In this table, the comparison is conducted with each angle of the CASIA-B
dataset. The proposed framework performed better on angles 0, 18, 36, 54, 144, 162, and
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180. However, the performance on other angles (72, 90, 108, and 126) is not improved,
which will be considered in the future. Hence, overall, the proposed framework shows
improved accuracy.
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Table 14. Overall proposed feature selection based obtained accuracy for CASIA-B dataset on all 11 angles.

Classifiers 0 18 36 54 72 90 108 126 144 162 180

Fine tree 94.6 92.0 89.6 89.5 80.4 87.8 88.2 83.9 86.5 92.4 97.2

Medium
tree 93.0 89.4 86.8 86.0 76.1 83.3 83.2 81.7 84.1 89.4 95.6

Linear
SVM 97.1 97.7 96.8 95.7 85.9 92.4 93.7 89.7 91.3 96.0 99.8

Quadratic
SVM 97.2 98.0 97.2 96.2 86.8 93.1 94.2 90.4 91.9 96.3 99.8

Coarse
KNN 96.3 95.4 93.8 93.4 92.9 89.2 90.1 87.9 88.5 93.9 99.1

Weighted
KNN 96.0 96.9 95.1 95.0 85.1 91.9 92.3 88.4 90.4 95.4 99.6
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Table 14. Cont.

Classifiers 0 18 36 54 72 90 108 126 144 162 180

Bagged
trees 95.2 95.3 93.7 93.6 84.7 91.5 92.9 88.6 90.3 94.8 98.9

Subspace
discrimi-

nant
96.6 96.5 95.1 94.7 85.3 91.0 93.0 88.9 90.4 95.2 99.5

Bilayered
NN 95.8 97.1 96.1 95.3 84.0 91.4 92.7 88.4 90.2 95.4 99.7

Trilayered
NN 95.6 97.2 95.7 95.0 84.4 91.4 92.6 88.6 89.7 95.4 99.7

Table 15. Comparison of the proposed framework accuracy with state-of-the-art techniques.

Method
Angles

0 18 36 54 72 90 108 126 144 162 180

[30] 2022 95.2 93.9 - - - - - - - - 98.2

[31] 2022 97.0 97.9 - - 97.2 - - - - - 96.0

[32] 2022 92.1 96.1 - 95.7 - 93 - - - 94.87 91.33

[33] 2022 - - - - 98.3 - - - - 94.90 98.6

[34] 2020 - 94.3 93.8 94.7 - - - - - - -

[35] 2019 98.8 95.6 96.3 91.9 94.0 95.2 94.6 95.4 90.4 93.00 95.1

PROPOSED 97.2 98.0 97.2 96.2 92.8 93.1 94.2 90.4 91.9 96.3 99.8

4. Conclusions

A new framework is proposed in this work based on fusion-assisted deep learning
features and the ESOcNR feature selection technique. The proposed framework consists
of a few important subsequent steps, including contrast enhancement of video frames,
deep learning features extraction from the selected models, proposed minimal serial fusion
approach, and ESOcNR-based feature selection. Results are computed on the enhanced
CASIA-B dataset using all 11 angles and show improvements in accuracy on 7 of these
11 angles. Based on the results and comparative analysis, we conclude the following points:

• The training of deep learning models on the enhanced dataset has extracted the more
useful features that later improved the accuracy.

• The proposed fusion approach improved the accuracy but increased the computation time.
• The original ESO-based feature selection approach selected some redundant features

that reduced the classification accuracy.
• Selection of best features using the proposed ESOcNR maintains the classification

accuracy and reduces the computational time of the fusion process.

In the future, the weights of deep learning models can be optimized using some
meta-heuristic features selection techniques. Moreover, in the future, the angles 72, 90, 108,
and 126 should be analyzed to attempt to improve their accuracy.
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