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Abstract
In this paper, we apply some special functions to introduce a new class of control
functions that help us define the concept of multi-stability. Further, we investigate the
multi-stability of homomorphisms in C∗-algebras and Lie C∗-algebras, multi-stability
of derivations in C∗-algebras, and Lie C∗-algebras for the following random operator
equation via fixed point methods:

μf
(
ð,
x + y

2

)
+μf

(
ð,
x – y
2

)
= f (ð,μx).

In particular, for μ = 1, the above equation turns out to be Jensen’s random operator
equation.

MSC: Primary 54H20; 46L05; secondary 39B62

Keywords: Multi control functions; Mittag–Leffler function;H-Fox function;
Hypergeometric function; Wright function; C∗-algebras

1 Introduction and preliminaries
The stability problem of functional equations originated from a question of Ulam, posed
in 1940, concerning the stability of group homomorphisms. In the next year, Hyers gave a
partial affirmative answer to the question of Ulam in the context of Banach spaces in the
case of additive mappings; that was the first significant breakthrough and a step toward
more solutions in this area. Since then, many papers have been published in connection
with various generalizations of Ulam’s problem and Hyers’s theorem. In 1978, Rassias suc-
ceeded in extending Hyers’s theorem for mappings between Banach spaces by considering
an unbounded Cauchy difference subject to a continuity condition upon the mapping. He
was the first to prove the stability of linear mapping. This result of Rassias attracted sev-
eral mathematicians worldwide who began to be stimulated to investigate the stability
problems of functional equations. In the present paper, we apply some special functions
to introduce a new class of control functions which help us define the concept of multi-
stability.
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Let �1 and �2 be Banach algebras and (∂ ,�) be a probability measure space. Assume
(�1,B�1 ) and (�2,B�2 ) are Borel measurable spaces. Clearly, a map f : ∂ × �1 → �2 is
well defined if {ð : f (ð, S) ∈ C} ∈ � for all S in �1 and C ∈B�2 . We are going to investigate
a vector valued generalized metric spaces. Let λ = (λ1, . . . ,λm) and γ = (γ1, . . . ,γm), m ∈N.
Then we define

λ ≤ γ ⇐⇒ λi ≤ γi, i = 1, . . . , m;

and

λ → 0 ⇐⇒ λi → 0, i = 1, . . . , m.

Definition 1.1 ([1]) Suppose G is a nonempty set, and d : G2 → [0, +∞]m (with m ∈ N)
is a given mapping. We say that d is a generalized metric on G if the following conditions
satisfy:

(1) for every (� ,�) ∈ G × G , we have

d(� ,�) = (0, . . . , 0)︸ ︷︷ ︸
m

⇐⇒ � = �;

(2) for every (� ,�) ∈ G × G ,

d(�,�) = d(� ,�) ⇐⇒ � = �;

(3) for every � ,�,ϒ ∈ G ,

d(� ,ϒ) + d(ϒ ,�) 	 d(�,�).

Theorem 1.2 ([1]) Let (G, d) be a complete generalized metric space, and let 	 : G → G be
strictly contractive, i.e.,

d(	� ,	�) ≤ (L1, . . . , Lm)d(� ,�), ∀� ,� ∈ G

for some Lipschitz constants Li < 1, for i = 1, . . . , m ∈N. Then
(1) the mapping 	 has a unique fixed point �∗ = 	�∗;
(2) the fixed point �∗ is globally attractive, i.e.,

lim
n→∞	n� = �∗,

for any starting point � ∈ G ;
(3) the following three inequalities hold:

d
(
	n� ,�∗) ≤ (

Ln
1, . . . , Ln

m
)

d
(
� ,�∗),

d
(
	n� ,�∗) ≤

(
1

1 – L1
, . . . ,

1
1 – Lm

)
d
(
	n� ,	n+1�

)
,

d
(
� ,�∗) ≤

(
1

1 – L1
, . . . ,

1
1 – Lm

)
d(� ,	�),

for all nonnegative integers n and all � ∈ G and m ∈N.
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Now, we generalize Theorem 1.2.

Theorem 1.3 ([1]) Suppose d : G2 → [0, +∞]m, m ∈N, and (G, d) is a complete generalized
metric space. Suppose 	 : G → G is a strictly contractive mapping with Lipschitz constant
Z < 1. Then for any given element � ∈ G , either

d
(
	n� ,	n+1�

)
= (+∞, . . . , +∞)︸ ︷︷ ︸

m

,

for any n ∈ N∪ {0} or there exists an n0 ∈ N such that
(1) d(	n� ,	n+1�) � (+∞, . . . , +∞)︸ ︷︷ ︸

m

, ∀n ≥ n0;

(2) The fixed point �∗ of 	 is a convergent point of sequence {	n�};
(3) �∗ is the unique fixed point of 	 in the set Q = {� ∈ G|d(	n0� ,�) � (+∞, . . . , +∞)︸ ︷︷ ︸

m

};

(4) d(�,�∗) � 1
1–Z d(�,	�) for all � ∈Q.

For more applications of Theorem 1.3 in stability analysis see references [2–4]. We now
consider the infinite contour Z having one of the following forms:

� Z = Z–∞ is a left loop starting at –∞ and ending at –∞, enclosing all the poles of
	(Y ).

� Z = Z+∞ is a left loop starting at +∞ and ending at +∞, enclosing all the poles of
	(dj – Y ), for j = 1, . . . , s, situated in a horizontal strip starting at the point +∞ + iP1

and terminating at the point +∞ + iP2 with –∞ < P1 < P2 < +∞, and dj ∈C.
� Z = Zi�∞ is a contour starting at the point �– i∞ and terminating at the point �+ i∞,

where � ∈ R.
We now introduce some special functions as follows. For more details please see [5–9].

The standard Lie algebraic techniques are important methods for studying special func-
tions. There are some operators defined on Lie algebras for the purpose of deriving prop-
erties of some special functions [10–12].
� Exponential function:
We first define the complex exponential function as

0H0[X] := exp(X) =
∞∑

k=0

Xk

	(k + 1)
, X ∈C.

� Mittag–Leffler function (generalized exponential function):
The function

0H1[e1; X] := Ee1 (X) =
∞∑

k=0

Xk

	(1 + e1k)
, e1 ∈C,�(e1) > 0, X ∈C

is said to be the Mittag–Leffler function of one-parameter.
� Hypergeometric function (the Gauss Hypergeometric series):
The series given as

2H1[d1, d2; e1; X] =
∞∑

w=0

(d1)w(d2)w

(e1)w

Xw

w!
=

	(e1)
	(d1)	(d2)

∞∑
w=0

	(d1 + w)	(d2 + w)
	(e1 + w)

Xw

w!
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is called the Hypergeometric function, where d1, d2, e1 ∈ C, �(d1),�(d2),�(e1) > 0. Fur-
thermore, the Hypergeometric function can be represented in terms of the Mellin–Barnes
integral of the form

2H1[d1, d2; e1; X] =
	(e1)

	(d1)	(d2)
1

2π i

∫

Z

	(Y )	(d1 – Y )	(d2 – Y )
	(e1 – Y )

(–X)–Y dY ,

where e1 �= 0, –1, –2, –3, . . . .
� Wright function (Bessel–Maitland function):
The series representation

1H1[d1; e1; X] := Wd1,e1 (X) =
∞∑

n=0

Xn

n!	(d1n + e1)

is called Wright function, where d1 > –1, e1, X ∈C.
� Fox–Wright function (the generalized Wright function):
Consider positive vectors D = (D1, . . . , Ds), E = (E1, . . . , Er), complex vectors d = (d1, . . . , ds),
and e = (e1, . . . , er). The Fox–Wright function or the generalized Wright function is defined
by the series

sHr
[
X

∣∣(d1,D1),...,(ds,Ds)
(e1,E1),...,(er ,Er)

]
= sHr

[
X

∣∣(d,D)
(e,E)

]
=

∞∑
n=0

	(Dn + d)
	(En + e)

Xn

n!
, (1.1)

where

	(Dn + d) =
s∏

j=1

	(Dn + d), (1.2)

and 	(En + e) follows similarly.
The series (1.1) has a nonzero radius of convergence if

N :=
r∑

j=1

Ej –
s∑

j=1

Dj ≥ –1. (1.3)

Moreover, if N > –1 then the series converges for all finite values of X (hence it is an entire
function), and if N = –1, its radius of convergence equals

M :=
s∏

k=1

D–Dk
k

r∏
j=1

EEj
j . (1.4)

The Convergence on the boundary |X| = M, however, depends on the value of

W :=
r∑

j=1

ej –
s∑

k=1

dk +
s – r – 1

2
, (1.5)

by noting that series (1.1) converges absolutely for |X| = M if �(W ) > 0.
The function sHr is an extension of the generalized hypergeometric function (which we

will present later). In addition, 1H1 and 0H1 are the Wright (the Bessel–Maitland) function
and Mittag–Leffler function with D1 = d1 = 1, respectively.
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� Fox’s H–function (generalized Fox–Wright function):
We now present Fox’s H–function as

v
sH

w
r
[
X

∣∣(dj ,Dj)1,s
(ej ,Ej)1,r

]
:=

1
2π i

∫

Z

O(Y )XY dY , (1.6)

where i2 = –1, X ∈ C\{0}, XY = exp(Y [log|X| + iarg(X)]), log|X| denotes the natural loga-
rithm of |X|, and arg(X) is not necessarily the principal value. For convenience,

O(Y ) :=
∏v

j=1 	(ej – EjY )
∏w

j=1 	(1 – dj + DjY )∏r
j=v+1 	(1 – ej + EjY )

∏s
j=w+1 	(dj – DjY )

,

where an empty product is interpreted as 1, and the integers v, w, s, r satisfy the inequalities
0 ≤ w ≤ s and 1 ≤ v ≤ r. Assume the coefficients

Dj > 0 (j = 1, . . . , s) and Ej > 0 (j = 1, . . . , r),

and the complex parameters

dj (j = 1, . . . , s) and ej (j = 1, . . . , r)

are constrained such that no poles of integrand in (1.6) coincide, and Z is a suitable contour
of the Mellin–Barnes type (in the complex Y -plane), which separates the poles of one
product from the others. Further, if we assume

� :=
w∑

j=1

Dj –
s∑

j=w+1

Dj +
v∑

j=1

Ej –
r∑

j=Q+1

Ej > 0,

then the integral in (1.6) converges absolutely and defines theH-function, which is analytic
in the sector:

∣∣arg(X)
∣∣ <

1
2
�π

and with the point X = 0 being tacitly excluded. Actually, the H-function makes sense and
also defines an analytic function of X when either

E :=
s∑

j=1

Dj –
r∑

j=1

Ej < 0 and 0 < |X| < ∞,

or

E = 0 and 0 < |X| < R :=
s∏

j=1

D–Dj
j

r∏
j=1

EEj
j .

� Meijer G-function:
The Meijer G-function is a special case of the H-function, that is,

v
sG

w
r
[
X

∣∣d1,...,ds
e1,...,er

] ≡ v
sH

w
r
[
X

∣∣(d1,1),...,(ds ,1)
(e1,1),...,(er ,1)

]
(1.7)
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=
1

2π i

∫

Z

O′(Y )X–Y dY ,

where

O′(Y ) :=
∏v

j=1 	(ej + Y )
∏w

i=1 	(1 – di – Y )∏s
i=w+1 	(dj + Y )

∏r
j=v+1 	(1 – dj – Y )

, (1.8)

X–Y = exp(–Y [log|X| + i arg(X)]), X �= 0 and i2 = –1, and also log |X| represents the natural
logarithm of |X|, and arg(X) is not necessarily the principle value as mentioned before.

Notice that an empty product in (1.8) is defined to be one, and the poles

ej℘ = –(ej + ℘), j = 1, . . . , v,℘ ∈N0, (1.9)

of the gamma functions 	(ej + Y ) and the poles

di℘′ = 1 – di + ℘ ′, j = 1, . . . , w,℘ ′ ∈N0, (1.10)

of the gamma functions 	(1 – di – Y ) do not coincide, that is,

ej + ℘ �= di – ℘ ′ – 1, i = 1, . . . , w, j = 1, . . . , v,℘,℘ ′ ∈N0. (1.11)

Further, Z is one of the contours defined above, which separates all poles ej℘ in (1.9) on
the left from all poles di℘ in (1.10) on the right of Z.
� G-function (generalized Hypergeometric function):
The generalized hypergeometric function is defined by the following generalized hyper-
geometric series

sHr[d1, . . . , ds; e1, . . . , es; X] =
∞∑

k=0

∏s
i=1(di)k∏r
j=1(ej)k

Xk

k!
, (1.12)

where X ∈C, s, r ∈ N0, and di, ej ∈C, for i = 1, . . . , s and j = 1, . . . , r. For z ∈C, we denote

(z)0 = 1, z �= 0,

(z)k = z(z + 1) . . . (z + k – 1), k ∈N.

If dj �= –℘ , j = 1, . . . , r and ℘ ∈ N0, then the generalized hypergeometric series (1.12) can
be represented in terms of the Mellin–Barnes integral of the form

sHr[d1, . . . , ds; e1, . . . , er ; X]

=
∏r

j=1 	(ej)∏s
i=1 	(di)

1
2π i

∫

Z

	(Y )
∏s

i=1 	(di – Y )∏r
j=1 	(ej – Y )

(–X)–Y dY , X �= 0,

where ej �= 0, –1, –2, . . . j = 1, . . . r, ej �= 0, –1, –2, . . . j = 1, . . . s, and with the special contour Z.
Such a formula converts representation (1.12) as the Meijer G-function given by:

sHr[d1, . . . , ds; e1, . . . , er ; X] =
∏r

j=1 	(ej)∏s
i=1 	(di)

1
sG

E
r+1

[
–X

∣∣1–d1,...,1–ds
0,1–e1,...,1–er

]
.
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� Generalized Hyperbolic function:
The generalizations of the Hyperbolic Functions are defined by

H[X] := J
k

A,R(X) =
∞∑

k=0

kk

(Ak + R)!
XAk+R, (1.13)

for R = 0, . . . , A – 1, where k ∈ C. Also, we have

J
k

A,0(0) = 1, (1.14)

J
k(X) = kJ(X), (1.15)

where

J
(k)(0) = 0, if k �= R, 0 ≤ k ≤ n – 1, (1.16)

J
(k)(0) = 1, if k = R. (1.17)

We would like to point out that the special case J
1
A,0(X) is the Mittag–Leffler function.

Now let

diag[ζ1, . . . , ζn]n×n =

⎡
⎢⎢⎢⎢⎢⎣

ζ1 0 . . . 0

0 ζ2
. . .

...
...

. . . . . . 0
0 . . . 0 ζn

⎤
⎥⎥⎥⎥⎥⎦

n×n

.

Note that ζ := diag[ζ1, . . . , ζn] � ξ := diag[ξ1, . . . , ξn] if ζi ≤ ξi for all 1 ≤ i ≤ n.
Consider the following matrix valued control function given by

W[X] = diag
[

0H0[X], 0H1[e1; X], 1H1[d1; e1; X], 2H1[d1, d2; e1; X],

sHr[d1, . . . , ds; e1, . . . , er ; X], sHr
[
X

∣∣(d1,D1),...,(ds,Ds)
(e1,E1),...,(er ,Er)

]
, v

sH
w
r
[
X

∣∣(d1,1),...,(ds ,1)
(e1,1),...,(er ,1)

]
,

v
sH

w
r
[
X

∣∣(dj ,Dj)1,s
(ej ,Ej)1,r

]
,H[X]

]
9×9.

Let a mapping � from vector space U to normed linear space V have Hyers–Ulam–
Rassias stability. If we replace the control function of Hyers–Ulam–Rassias stability with
W[X], we say � has multi-stability property.

Clearly, if we have

diag
[
ϕ1(x, y), . . . ,ϕ9(x, y)

]
9×9 := θW

(‖x‖r
A + ‖y‖r

A
)

then the following are satisfied:
� for any r < 1, and θ > 0, there exist constants Li < 1 s.t.

ϕi(x, 0) ≤ 2Liϕi

(
x
2

, 0
)

, i = 1, . . . , 9;
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� for any r > 1, and θ > 0, there exist constants Li < 1 s.t.

ϕi(x, 0) ≤ 1
2

Liϕi(2x, 0), i = 1, . . . , 9.

2 Multi-stability of homomorphisms in C∗-algebras
Throughout this entire section, let A be a C∗-algebra with norm ‖ · ‖A and that B be a
C∗-algebra with norm ‖ · ‖B.

For a given mapping f : ∂ × A → B, we define

Dμf (ð, x, y) := μf
(
ð,

x + y
2

)
+ μf

(
ð,

x – y
2

)
– f (ð,μx),

for μ ∈ T1 := {ν ∈C : |ν| = 1} and x, y ∈ A and ð ∈ ∂ .
Notice that a C-linear mapping H : ∂ × A → B is a homomorphism in C∗-algebras if H

satisfies H(ð, xy) = H(ð, x)H(ð, y) and H(ð, x∗) = H(ð, x)∗ for x, y ∈ A and ð ∈ ∂ .
We investigate the generalized Hyers–Ulam stability of homomorphisms in C∗-algebras

for the functional equation Dμf (ð, x, y) = 0.

Theorem 2.1 Assume f : ∂ × A → B is a mapping for which there exist functions ϕi : A2 →
[0,∞), for i = 1, . . . , n ∈ N, s.t.

diag
[∥∥Dμf (ð, x, y)

∥∥
B, . . . ,

∥∥Dμf (ð, x, y)
∥∥

B

]
n×n (2.1)

� diag
[
ϕ1(x, y), . . . ,ϕn(x, y)

]
n×n,

diag
[∥∥f (ð, xy) – f (ð, x)f (ð, y)

∥∥
B, . . . ,

∥∥f (ð, xy) – f (ð, x)f (ð, y)
∥∥

B

]
n×n (2.2)

� diag
[
ϕ1(x, y), . . . ,ϕn(x, y)

]
n×n,

and

diag
[∥∥f

(
ð, x∗) – f (ð, x)∗

∥∥
B, . . . ,

∥∥f
(
ð, x∗) – f (ð, x)∗

∥∥
B

]
n×n (2.3)

� diag
[
ϕ1(x, x), . . . ,ϕn(x, x)

]
n×n,

for μ ∈ T1 and x, y ∈ A and ð ∈ ∂ . If there exist constants Li < 1 s.t. ϕi(x, 0) ≤ 2Liϕi( x
2 , 0) for

x ∈ A and i = 1, . . . , n, then there exists a unique C∗-algebra homomorphism H : ∂ × A → B
s.t.

diag
[∥∥f (ð, x) – H(ð, x)

∥∥
B, . . . ,

∥∥f (ð, x) – H(ð, x)
∥∥

B

]
n×n (2.4)

� diag

[
L1

1 – L1
ϕ1(x, 0), . . . ,

Ln

1 – Ln
ϕn(x, 0)

]

n×n
,

for x ∈ A and ð ∈ ∂ .

Proof Assume the set

X := {g : ∂ × A → B},
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and define the generalized metric d on X:

d(g, h) := inf
{

(C1, . . . , Cn) ∈R+ :

diag
[∥∥g(ð, x) – h(ð, x)

∥∥
B, . . . ,

∥∥g(ð, x) – h(ð, x)
∥∥

B

]
n×n

� [C1, . . . , Cn]T
n×1 diag

[
ϕ1(x, 0), . . . ,ϕn(x, 0)

]
n×n,∀x ∈ A,ð ∈ ∂

}
.

Then (X, d) is complete.
Let the linear mapping J : X → X s.t.

Jg(ð, x) :=
1
2

g(ð, 2x),

for x ∈ A and ð ∈ ∂ .
According to Theorem 3.1 of [13] and [1],

d(Jg, Jh) ≤ (L1, . . . , Ln)d(g, h),

for g, h ∈ X.
Setting μ = 1 and y = 0 in (2.1), we have

diag

[∥∥∥∥2f
(
ð,

x
2

)
– f (ð, x)

∥∥∥∥
B

, . . . ,
∥∥∥∥2f

(
ð,

x
2

)
– f (ð, x)

∥∥∥∥
B

]

n×n
(2.5)

� diag
[
ϕ1(x, 0), . . . ,ϕn(x, 0)

]
n×n,

for x ∈ A and ð ∈ ∂ . So,

diag

[∥∥∥∥f (ð, x) –
1
2

f (ð, 2x)
∥∥∥∥

B
, . . . ,

∥∥∥∥f (ð, x) –
1
2

f (ð, 2x)
∥∥∥∥

B

]

n×n

� diag

[
1
2
ϕ1(2x, 0), . . . ,

1
2
ϕn(2x, 0)

]

n×n

� diag
[
L1ϕ1(x, 0), . . . , Lnϕn(x, 0)

]
n×n,

for x ∈ A and ð ∈ ∂ . Hence d(f , Jf ) ≤ (L1, . . . , Ln).
According to Theorem 1.3, there exists a mapping H : ∂ × A → B s.t.
(1) H is a fixed point of J , i.e.,

H(ð, 2x) = 2H(ð, x), (2.6)

for x ∈ A and ð ∈ ∂ . The mapping H is a unique fixed point of J in the set

Y =
{

g ∈ X : d(f , g) <
n︷ ︸︸ ︷

(∞, . . . ,∞)
}

.
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This concludes that H is a unique mapping satisfying (2.6) s.t. there exists (C1, . . . , Cn) ∈
(0,∞)n satisfying

diag
[∥∥H(ð, x) – f (ð, x)

∥∥
B, . . . ,

∥∥H(ð, x) – f (ð, x)
∥∥

B

]
n×n

� diag
[
C1ϕ1(x, 0), . . . , Cnϕn(x, 0)

]
n×n

for x ∈ A and ð ∈ ∂ .

(2) d(Jkf , H) →
n︷ ︸︸ ︷

(0, . . . , 0) as k → ∞. This concludes the equality

lim
k→∞

f (ð, 2kx)
2k = H(ð, x), (2.7)

for x ∈ A and ð ∈ ∂ .
(3) d(f , H) ≤ ( 1

1–L1
, . . . , 1

1–Ln
)d(f , Jf ), which implies the inequality

d(f , H) ≤
(

L1

1 – L1
, . . . ,

Ln

1 – Ln

)
.

This claims that the inequality (2.4) holds.
According to (2.1) and (2.7),

diag

[∥∥∥∥H
(
ð,

x + y
2

)
+ H

(
ð,

x – y
2

)
– H(ð, x)

∥∥∥∥
B

, . . . ,

∥∥∥∥H
(
ð,

x + y
2

)
+ H

(
ð,

x – y
2

)
– H(ð, x)

∥∥∥∥
B

]

n×n

= diag

[
lim

k→∞
1
2k

∥∥f
(
ð, 2k–1(x + y)

)
+ f

(
ð, 2k–1(x – y)

)
– f

(
ð, 2kx

)∥∥
B, . . . ,

lim
k→∞

1
2k

∥∥f
(
ð, 2k–1(x + y)

)
+ f

(
ð, 2k–1(x – y)

)
– f

(
ð, 2kx

)∥∥
B

]

n×n

� diag

[
lim

k→∞
1
2k ϕ1

(
2kx, 2ky

)
, . . . , lim

k→∞
1
2k ϕn

(
2kx, 2ky

)]

n×n

= diag[0, . . . , 0]n×n,

for x, y ∈ A and ð ∈ ∂ . So,

H
(
ð,

x + y
2

)
+ H

(
ð,

x – y
2

)
= H(ð, x), (2.8)

for x, y ∈ A and ð ∈ ∂ . Letting z = x+y
2 and w = x–y

2 in (2.8), we have

H(ð, z) + H(ð, w) = H(ð, z + w),

for z, w ∈ A and ð ∈ ∂ . So the mapping H : ∂ × A → B is Cauchy additive, i.e., H(ð, z + w) =
H(ð, z) + H(ð, w) for z, w ∈ A and ð ∈ ∂ .

Letting y = x in (2.1), we have

μf (ð, x) = f (ð,μx),
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for μ ∈ T1 and x ∈ A and ð ∈ ∂ . Similarly, we have

μH(ð, x) = H(ð,μx),

for μ ∈ T1 and x ∈ A and ð ∈ ∂ . Thus, one can prove that the mapping H : ∂ × A → B is
C-linear.

According to (2.2),

diag
[∥∥H(ð, xy) – H(ð, x)H(ð, y)

∥∥
B, . . . ,

∥∥H(ð, xy) – H(ð, x)H(ð, y)
∥∥

B

]
n×n

= diag

[
lim

k→∞
1
4k

∥∥f
(
ð, 4kxy

)
– f

(
ð, 2kx

)
f
(
ð, 2ky

)∥∥
B, . . . ,

lim
k→∞

1
4k

∥∥f
(
ð, 4kxy

)
– f

(
ð, 2kx

)
f
(
ð, 2ky

)∥∥
B

]

n×n

� diag

[
lim

k→∞
1
4k ϕ1

(
2kx, 2ky

)
, . . . , lim

k→∞
1
4k ϕn

(
2kx, 2ky

)]

n×n

� diag

[
lim

k→∞
1
2k ϕ1

(
2kx, 2ky

)
, . . . , lim

k→∞
1
2k ϕn

(
2kx, 2ky

)]

n×n

= diag[0, . . . , 0]n×n,

for x, y ∈ A and ð ∈ ∂ . So,

H(ð, xy) = H(ð, x)H(ð, y),

for x, y ∈ A and ð ∈ ∂ .
According to (2.3),

diag
[∥∥H

(
ð, x∗) – H(ð, x)∗

∥∥
B, . . . ,

∥∥H
(
ð, x∗) – H(ð, x)∗

∥∥
B

]
n×n

= diag

[
lim

k→∞
1
2k

∥∥f
(
ð, 2kx∗) – f

(
ð, 2kx

)∗∥∥
B, . . . ,

lim
k→∞

1
2k

∥∥f
(
ð, 2kx∗) – f

(
ð, 2kx

)∗∥∥
B

]

n×n

� diag

[
lim

k→∞
1
2k ϕ1

(
2kx, 2kx

)
, . . . , lim

k→∞
1
2k ϕn

(
2kx, 2kx

)]

n×n

= diag[0, . . . , 0]n×n,

for x ∈ A and ð ∈ ∂ . So,

H
(
ð, x∗) = H(ð, x)∗,

for x ∈ A and ð ∈ ∂ .
Thus, H : ∂ × A → B is a C∗-algebra homomorphism satisfying (2.4), as desired. �

Theorem 2.2 Assume f : ∂ × A → B is a mapping for which there exist functions ϕi : A2 →
[0,∞) satisfying (2.1), (2.2) and (2.3) for i = 1, . . . , n. Furthermore, if there exist constants
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Li < 1 s.t. ϕi(x, 0) ≤ 1
2 Liϕi(2x, 0) for each x ∈ A and i = 1, . . . , n, then there exists a unique

C∗-algebra homomorphism H : ∂ × A → B s.t.

diag
[∥∥f (ð, x) – H(ð, x)

∥∥
B, . . . ,

∥∥f (ð, x) – H(ð, x)
∥∥

B

]
n×n (2.9)

� diag

[
L1

2 – 2L1
ϕ1(x, 0), . . . ,

Ln

2 – 2Ln
ϕn(x, 0)

]

n×n
,

for x ∈ A and ð ∈ ∂ .

Proof We consider the linear mapping J : X → X s.t.

Jg(ð, x) := 2g
(
ð,

x
2

)
,

for x ∈ A and ð ∈ ∂ .
It follows from (2.5) that

[∥∥∥∥f (ð, x) – 2f
(
ð,

x
2

)∥∥∥∥
B

, . . . ,
∥∥∥∥f (ð, x) – 2f

(
ð,

x
2

)∥∥∥∥
B

]

n×n

�
[
ϕ1

(
x
2

, 0
)

, . . . ,ϕn

(
x
2

, 0
)]

n×n

�
[

L1

2
ϕ1(x, 0), . . . ,

Ln

2
ϕn(x, 0)

]

n×n
,

for x ∈ A and ð ∈ ∂ . Hence d(f , Jf ) ≤ ( L1
2 , . . . , Ln

2 ).
According to Theorem 1.3, there exists a mapping H : ∂ × A → B s.t.
(1) H is a fixed point of J , i.e.,

H(ð, 2x) = 2H(ð, x), (2.10)

for x ∈ A. Moreover, the mapping H is a unique fixed point of J in the set

Y =
{

g ∈ X : d(f , g) < (∞, . . . ,∞)︸ ︷︷ ︸
n

}
.

This implies that H is a unique mapping satisfying (2.10) s.t. there exists (C1, . . . , Cn) ∈
(0,∞)n satisfying

diag
[∥∥H(ð, x) – f (ð, x)

∥∥
B, . . . ,

∥∥H(ð, x) – f (ð, x)
∥∥

B

]
n×n

� diag
[
C1ϕ1(x, 0), . . . , Cnϕn(x, 0)

]
n×n

for x ∈ A and ð ∈ ∂ .
(2) d(Jkf , H) → (0, . . . , 0)︸ ︷︷ ︸

n

as k → ∞. This deduces the equality

lim
k→∞

2kf
(
ð,

x
2k

)
= H(ð, x)

for x ∈ A and ð ∈ ∂ .
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(3) d(f , H) ≤ ( 1
1–L1

, . . . , 1
1–Ln

)d(f , Jf ) claims the inequality

d(f , H) ≤
(

L1

2 – 2L1
, . . . ,

Ln

2 – 2Ln

)
,

which infers that the inequality (2.9) holds.
The rest of the proof is similar to the proof of Theorem 2.1. �

Theorem 2.3 Assume f : ∂ × A → B is an odd mapping for which there exist functions ϕi :
A2 → [0,∞) satisfying (2.1), (2.2) and (2.3) for i = 1, . . . , n. Moreover, if there exist constants
Li < 1 s.t. ϕi(x, 3x) ≤ 2Liϕi( x

2 , 3x
2 ) for x ∈ A and i = 1, . . . , n, then there exists a unique C∗-

algebra homomorphism H : ∂ × A → B s.t.

diag
[∥∥f (ð, x) – H(ð, x)

∥∥
B, . . . ,

∥∥f (ð, x) – H(ð, x)
∥∥

B

]
n×n (2.11)

� diag

[
1

2 – 2L1
ϕ1(x, 3x), . . . ,

1
2 – 2Ln

ϕn(x, 3x)
]

n×n
,

for x ∈ A and ð ∈ ∂ .

Proof Assume the set

X := {g : ∂ × A → B},

and introduce the generalized metric d on X as

d(g, h) := inf
{

(C1, . . . , Cn) ∈R+ : diag
[∥∥g(ð, x) – h(ð, x)

∥∥
B, . . . ,

∥∥g(ð, x) – h(ð, x)
∥∥

B

]
n×n

� [C1, . . . , Cn]T
n×1 diag

[
ϕ1(x, 3x), . . . ,ϕn(x, 3x)

]
n×n,∀x ∈ A,ð ∈ ∂

}
.

Then the space (X, d) is complete.
Now we assume the linear mapping J : X → X s.t.

Jg(ð, x) :=
1
2

g(ð, 2x),

for x ∈ A and ð ∈ ∂ .
According to Theorem 3.1 of [1],

d(Jg, Jh) ≤ (L1, . . . , Ln)d(g, h),

for g, h ∈ X.
Letting μ = 1 and replacing y by 3x in (2.1), we have

diag
[∥∥f (ð, 2x) – 2f (ð, x)

∥∥
B, . . . ,

∥∥f (ð, 2x) – 2f (ð, x)
∥∥

B

]
n×n (2.12)

� diag
[
ϕ1(x, 3x), . . . ,ϕn(x, 3x)

]
n×n,

for x ∈ A and ð ∈ ∂ . So,

diag

[∥∥∥∥f (ð, x) –
1
2

f (ð, 2x)
∥∥∥∥

B
, . . . ,

∥∥∥∥f (ð, x) –
1
2

f (ð, 2x)
∥∥∥∥

B

]

n×n
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� diag

[
1
2
ϕ1(x, 3x), . . . ,

1
2
ϕn(x, 3x)

]

n×n
,

for x ∈ A and ð ∈ ∂ . Hence d(f , Jf ) ≤ ( 1
2 , . . . , 1

2 ).
According to Theorem 1.3, there exists a mapping H : ∂ × A → B s.t.
(1) H is a fixed point of J , i.e.,

H(ð, 2x) = 2H(ð, x), (2.13)

for x ∈ A and ð ∈ ∂ . In addition, the mapping H is a unique fixed point of J in the set

Y =
{

g ∈ X : d(f , g) < (∞, . . . ,∞)︸ ︷︷ ︸
n

}
.

This concludes that H is a unique mapping satisfying (2.13) s.t. there exists (C1, . . . , Cn) ∈
(0,∞)n satisfying

diag
[∥∥H(ð, x) – f (ð, x)

∥∥
B, . . . ,

∥∥H(ð, x) – f (ð, x)
∥∥

B

]
n×n

≤ diag
[
C1ϕ1(x, 3x), . . . , Cnϕn(x, 3x)

]
n×n,

for x ∈ A and ð ∈ ∂ .
(2) d(Jnf , H) → (0, . . . , 0)︸ ︷︷ ︸

n

as n → ∞. This infers the equality

lim
n→∞

f (ð, 2nx)
2n = H(ð, x),

for x ∈ A and ð ∈ ∂ .
(3) d(f , H) ≤ ( 1

1–L1
, . . . , 1

1–Ln
)d(f , Jf ) confirms the inequality

d(f , H) ≤
(

1
2 – 2L1

, . . . ,
1

2 – 2Ln

)
.

Therefore, the inequality (2.11) holds.
The rest follows immediately from the proof of Theorem 2.1. �

Theorem 2.4 Assume f : ∂ × A → B is an odd mapping for which there exist functions
ϕi : A2 → [0,∞) satisfying (2.1), (2.2) and (2.3), for i = 1, . . . , n. In addition, if there exist
constants Li < 1 s.t. ϕi(x, 3x) ≤ 1

2 Liϕi(2x, 6x) for x ∈ A and i = 1, . . . , n, then there exists a
unique C∗-algebra homomorphism H : ∂ × A → B s.t.

diag
[∥∥f (ð, x) – H(ð, x)

∥∥
B, . . . ,

∥∥f (ð, x) – H(ð, x)
∥∥

B

]
n×n (2.14)

� diag

[
L1

2 – 2L1
ϕ1(x, 3x), . . . ,

Ln

2 – 2Ln
ϕn(x, 3x)

]

n×n
,

for x ∈ A and ð ∈ ∂ .
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Proof We assume the linear mapping J : X → X s.t.

Jg(ð, x) := 2g
(
ð,

x
2

)
,

for x ∈ A and ð ∈ ∂ .
According to (2.12),

diag

[∥∥∥∥f (ð, x) – 2f
(
ð,

x
2

)∥∥∥∥
B

, . . . ,
∥∥∥∥f (ð, x) – 2f

(
ð,

x
2

)∥∥∥∥
B

]

n×n

� diag

[
ϕ1

(
x
2

,
3x
2

)
, . . . ,ϕn

(
x
2

,
3x
2

)]

n×n

� diag

[
L1

2
ϕ1(x, 3x), . . . ,

Ln

2
ϕn(x, 3x)

]

n×n
,

for x ∈ A and ð ∈ ∂ . Hence d(f , Jf ) ≤ ( L1
2 , . . . , Ln

2 ).
Using Theorem 1.3, there exists a mapping H : ∂ × A → B s.t.
(1) H is a fixed point of J , i.e.,

H(ð, 2x) = 2H(ð, x), (2.15)

for x ∈ A and ð ∈ ∂ . Further, the mapping H is a unique fixed point of J in the set

Y =
{

g ∈ X : d(f , g) < (∞, . . . ,∞)︸ ︷︷ ︸
n

}
.

This indicates that H is a unique mapping satisfying (2.15) s.t. there exists (C1, . . . , Cn) ∈
(0,∞)n satisfying

diag
[∥∥H(ð, x) – f (ð, x)

∥∥
B, . . . ,

∥∥H(ð, x) – f (ð, x)
∥∥

B

]
n×n

� diag
[
C1ϕ1(x, 3x), . . . , Cnϕn(x, 3x)

]
n×n

for x ∈ A and ð ∈ ∂ .
(2) The condition d(Jkf , H) → (0, . . . , 0)︸ ︷︷ ︸

n

as k → ∞ derives the equality

lim
k→∞

2kf
(
ð,

x
2k

)
= H(ð, x),

for x ∈ A and ð ∈ ∂ .
(3) The inequality d(f , H) ≤ ( 1

1–L1
, . . . , 1

1–Ln
)d(f , Jf ) claims

d(f , H) ≤
(

L1

2 – 2L1
, . . . ,

Ln

2 – 2Ln

)
,

which concludes that the inequality (2.14) holds.
The rest of the proof follows from the proof of Theorem 2.1. �
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3 Multi-stability of derivations on C∗-algebras
In this section, we let A be a C∗-algebra with norm ‖ · ‖A.

Recall that a C-linear mapping δ : ∂ × A → A is a derivation on A if δ satisfies δ(ð, xy) =
δ(ð, x)y + xδ(ð, y) for x, y ∈ A and ð ∈ ∂ .

We are going to present the generalized Hyers-Ulam stability of derivations on C∗-
algebras for the functional equation Dμf (ð, x, y) = 0.

Theorem 3.1 Assume f : ∂ ×A → A is a mapping for which there exist functions ϕi : A2 →
[0,∞) for i = 1, . . . , n, such that

diag
[∥∥Dμf (ð, x, y)

∥∥
A, . . . ,

∥∥Dμf (ð, x, y)
∥∥

A

]
n×n � diag

[
ϕ1(x, y), . . . ,ϕn(x, y)

]
, (3.1)

diag
[∥∥f (ð, xy) – f (ð, x)y – xf (ð, y)

∥∥
A, . . . ,

∥∥f (ð, xy) – f (ð, x)y – xf (ð, y)
∥∥

A

]
n×n (3.2)

� diag
[
ϕ1(x, y), . . . ,ϕn(x, y)

]
n×n,

for μ ∈ T1 and x, y ∈ A, ð ∈ ∂ . Additionally, suppose there exist constants Li < 1 such that
ϕi(x, 0) ≤ 2Liϕi( x

2 , 0) for x ∈ A and i = 1, . . . , n. Then there exists a unique derivation δ :
∂ × A → A satisfying

diag
[∥∥f (ð, x) – δ(ð, x)

∥∥
A, . . . ,

∥∥f (ð, x) – δ(ð, x)
∥∥

A

]
n×n (3.3)

� diag

[
L1

1 – L1
ϕ1(x, 0), . . . ,

Ln

1 – Ln
ϕn(x, 0)

]

n×n
,

for x ∈ A and ð ∈ ∂ .

Proof By the same reasoning as the proof of Theorem 2.1, there exists a unique evolutive
C-linear mapping δ : ∂ × A → A satisfying (3.3). The mapping δ : ∂ × A → A is given by

δ(ð, x) = lim
k→∞

f (ð, 2kx)
2k ,

for x ∈ A and ð ∈ ∂ .
Applying (3.2),

diag
[∥∥δ(ð, xy) – δ(ð, x)y – xδ(ð, y)

∥∥
A, . . . ,

∥∥δ(ð, xy) – δ(ð, x)y – xδ(ð, y)
∥∥

A

]
n×n

= diag

[
lim

k→∞
1
4k

∥∥f
(
ð, 4kxy

)
– f

(
ð, 2kx

) · 2ky – 2kxf
(
ð, 2ky

)∥∥
A, . . . ,

lim
k→∞

1
4k

∥∥f
(
ð, 4kxy

)
– f

(
ð, 2kx

) · 2ky – 2kxf
(
2ky

)∥∥
A

]

n×n

� diag

[
lim

k→∞
1
4k ϕ1

(
2kx, 2ky

)
, . . . , lim

k→∞
1
4k ϕn

(
2kx, 2ky

)]

n×n

� diag

[
lim

k→∞
1
2k ϕ1

(
2kx, 2ky

)
, . . . , lim

k→∞
1
2k ϕn

(
2kx, 2ky

)]

n×n

= diag[0, . . . , 0]n×n
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for x, y ∈ A and ð ∈ ∂ . So,

δ(ð, xy) = δ(ð, x)y + xδ(ð, y)

for x, y ∈ A and ð ∈ ∂ . Thus δ : ∂ × A → A is a derivation satisfying (3.3). �

Theorem 3.2 Assume f : ∂ ×A → A is a mapping for which there exist functions ϕi : A2 →
[0,∞) satisfying (3.1) and (3.2) for i = 1, . . . , n. Also assume there exist constants Li < 1
s.t. ϕi(x, 0) ≤ 1

2 Liϕi(2x, 0) for x ∈ A and i = 1, . . . , n. Then there exists a unique derivation
δ : ∂ × A → A s.t.

diag
[∥∥f (ð, x) – δ(ð, x)

∥∥
A, . . . ,

∥∥f (ð, x) – δ(ð, x)
∥∥

A

]
n×n (3.4)

� diag

[
L1

2 – 2L1
ϕ1(x, 0), . . . ,

Ln

2 – 2Ln
ϕn(x, 0)

]

n×n
,

for x ∈ A and ð ∈ ∂ .

Proof The proof is similar to the proofs of Theorems 2.2 and 3.1. �

Remark 3.3 For the inequalities controlled by the product of powers of norms, one can
obtain results similar to Theorems 2.3 and 2.4.

4 Multi-stability of homomorphisms in Lie C∗-algebras
A C∗-algebra C , endowed with the Lie product [x, y] := xy–yx

2 on C , is called a Lie C∗-algebra.

Definition 4.1 ([14]) Assume A and B are Lie C∗-algebras. A C-linear mapping H : ∂ ×
A → B is called a Lie C∗-algebra homomorphism if H([x, y]) = [H(x), H(y)] for x, y ∈ A.

Throughout this section, we assume A is a Lie C∗-algebra with norm ‖ · ‖A, and B is a
Lie C∗-algebra with norm ‖ · ‖B.

We show the generalized Hyers–Ulam stability of homomorphisms in Lie C∗-algebras
for the functional equation Dμf (x, y) = 0.

Theorem 4.2 Assume f : ∂ × A → B is a mapping for which there exist functions ϕi : A2 →
[0,∞) for i = 1, . . . , n satisfying (2.1) and

diag
[∥∥f

(
ð, [x, y]

)
–

[
f (ð, x), f (ð, y)

]∥∥
B, . . . ,

∥∥f
(
ð, [x, y]

)
–

[
f (ð, x), f (ð, y)

]∥∥
B

]
n×n (4.1)

� diag
[
ϕ1(x, y), . . . ,ϕn(x, y)

]
n×n

for x, y ∈ A, ð ∈ ∂ . Furthermore, if there exist constants Li < 1 s.t. ϕi(x, 0) ≤ 2Liϕi( x
2 , 0) for x ∈

A, and i = 1, . . . , n, then there exists a unique Lie C∗-algebra homomorphism H : ∂ ×A → B
satisfying (2.4).

Proof By the same arguments as the proof of Theorem 2.1, there exists a unique C-linear
mapping δ : ∂ × A → A satisfying (2.4). The mapping H : ∂ × A → B is defined by

H(ð, x) = lim
k→∞

f (ð, 2kx)
2k ,

for x ∈ A and ð ∈ ∂ .
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Utilizing (4.1),

diag
[∥∥H

(
ð, [x, y]

)
–

[
H(ð, x), H(ð, y)

]∥∥
B, . . . ,

∥∥H
(
ð, [x, y]

)
–

[
H(ð, x), H(ð, y)

]∥∥
B

]
n×n

= diag

[
lim

k→∞
1
4k

∥∥f
(
ð, 4k[x, y]

)
–

[
f
(
ð, 2kx

)
, f

(
ð, 2ky

)]∥∥
B, . . . ,

lim
k→∞

1
4k

∥∥f
(
ð, 4k[x, y]

)
–

[
f
(
ð, 2kx

)
, f

(
ð, 2ky

)]∥∥
B

]

n×n

� diag

[
lim

k→∞
1
4k ϕ1

(
2kx, 2ky

)
, . . . , lim

k→∞
1
4k ϕn

(
2kx, 2ky

)]

n×n

� diag

[
lim

k→∞
1
2k ϕ1

(
2kx, 2ky

)
, . . . , lim

k→∞
1
2k ϕn

(
2kx, 2ky

)]

n×n

= diag[0, . . . , 0]n×n,

for x, y ∈ A and ð ∈ ∂ . Hence,

H
(
ð, [x, y]

)
=

[
H(ð, x), H(ð, y)

]
,

for x, y ∈ A and ð ∈ ∂ .
In summary, H : ∂ × A → B is a Lie C∗-algebra homomorphism satisfying (2.4), as de-

sired. �

Theorem 4.3 Assume f : ∂ × A → B is a mapping for which there exist functions ϕi : A2 →
[0,∞) satisfying (2.1) and (4.1) for i = 1, . . . , n. Further, if there exist constants Li < 1 s.t.
ϕi(x, 0) ≤ 1

2 Liϕi(2x, 0) for x ∈ A, and i = 1, . . . , n then there exists a unique Lie C∗-algebra
homomorphism H : ∂ × A → B satisfying (2.9).

Proof The proof follows similarly from the proofs of Theorems 2.2 and 2.3. �

Remark 4.4 For the inequalities controlled by the product of powers of norms, one can
derive results similar to Theorems 2.3 and 2.4.

5 Multi-stability of Lie derivations on C∗-algebras
Definition 5.1 ([15]) Let A be a Lie C∗-algebra. A C-linear mapping δ : ∂ × A → A is
called a Lie derivation if δ(ð, [x, y]) = [δ(ð, x), y] + [x, δ(ð, y)] for x, y ∈ A and ð ∈ ∂ .

Throughout this section, we assume A is a Lie C∗-algebra with norm ‖ · ‖A.
We prove the generalized Hyers–Ulam stability of derivations on Lie C∗-algebras for the

functional equation Dμf (ð, x, y) = 0.

Theorem 5.2 Let f : ∂ × A → A be a mapping for which there exist functions ϕi : A2 →
[0,∞) satisfying (3.1) and

diag
[∥∥f

(
ð, [x, y]

)
–

[
f (ð, x), y

]
–

[
x, f (ð, y)

]∥∥
A, . . . , (5.1)

∥∥f
(
ð, [x, y]

)
–

[
f (ð, x), y

]
–

[
x, f (ð, y)

]∥∥
A

]
n×n

� diag
[
ϕ1(x, y), . . . ,ϕn(x, y)

]
n×n
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for x, y ∈ A, ð ∈ ∂ and i = 1, . . . , n. Besides, there exist constants Li < 1 s.t. ϕi(x, 0) ≤
2Liϕi( x

2 , 0) for x ∈ A and i = 1, . . . , n. Then there exists a unique Lie derivation δ : ∂ ×A → A
satisfying (3.3).

Proof By the same reasoning as the proof of Theorem 2.1, there exists a unique evolutive
C-linear mapping δ : ∂ × A → A satisfying (3.3). The mapping δ : ∂ × A → A is further
defined by

δ(ð, x) = lim
n→∞

f (ð, 2nx)
2n ,

for x ∈ A and ð ∈ ∂ .
According to (5.1),

diag
[∥∥δ

(
ð, [x, y]

)
–

[
δ(ð, x), y

]
–

[
x, δ(ð, y)

]∥∥
A, . . . ,

∥∥δ
(
ð, [x, y]

)
–

[
δ(ð, x), y

]
–

[
x, δ(ð, y)

]∥∥
A

]
n×n

= diag

[
lim

k→∞
1
4k

∥∥f
(
ð, 4k[x, y]

)
–

[
f
(
ð, 2kx

)
, 2ky

]
–

[
2kx, f

(
ð, 2ky

)]∥∥
A, . . . ,

lim
k→∞

1
4k

∥∥f
(
ð, 4k[x, y]

)
–

[
f
(
ð, 2kx

)
, 2ky

]
–

[
2kx, f

(
ð, 2ky

)]∥∥
A

]

n×n

≤ diag

[
lim

k→∞
1
4k ϕ

(
2kx, 2ky

)
, . . . , lim

k→∞
1
4k ϕ

(
2kx, 2ky

)]

n×n

≤ diag

[
lim

k→∞
1
2k ϕ

(
2kx, 2ky

)
, . . . , lim

k→∞
1
2k ϕ

(
2kx, 2ky

)]

n×n

= diag[0, . . . , 0]n×n

for x, y ∈ A and ð ∈ ∂ . So,

δ
(
ð, [x, y]

)
=

[
δ(ð, x), y

]
+

[
x, δ(ð, y)

]
,

for x, y ∈ A and ð ∈ ∂ . Thus, δ : ∂ × A → A is a derivation satisfying (3.3). �

Theorem 5.3 Assume f : ∂ ×A → A is a mapping for which there exist functions ϕi : A2 →
[0,∞) satisfying (3.1) and (5.1) for i = 1, . . . , n. In addition, if there exist constants Li < 1 s.t.
ϕi(x, 0) ≤ 1

2 Liϕi(2x, 0) for x ∈ A and i = 1, . . . , n, then there exists a unique Lie derivation
δ : ∂ × A → A satisfying (3.4).

Proof The proof is similar to the proofs of Theorems 2.2 and 2.3. �

Remark 5.4 For the inequalities controlled by the product of powers of norms, one can
obtain results similar to Theorems 2.3 and 2.4.

6 Multi-stability by matrix valued multicontrol functions
Corollary 6.1 Assume r < 1, θ > 0 and f : ∂ × A → B is a mapping such that

diag
[∥∥Dμf (ð, x, y)

∥∥
B, . . . ,

∥∥Dμf (ð, x, y)
∥∥

B

]
9×9 � θW

(‖x‖r
A + ‖y‖r

A
)
, (6.1)



Rezaei Aderyani et al. Journal of Inequalities and Applications         (2023) 2023:35 Page 20 of 24

diag
[∥∥f (ð, xy) – f (ð, x)f (ð, y)

∥∥
B, . . . ,

∥∥f (ð, xy) – f (ð, x)f (ð, y)
∥∥

B

]
9×9 (6.2)

� θW
(‖x‖r

A + ‖y‖r
A
)
,

diag
[∥∥f

(
ð, x∗) – f (ð, x)∗

∥∥
B, . . . ,

∥∥f
(
ð, x∗) – f (ð, x)∗

∥∥
B

]
9×9 � θW

(
2‖x‖r

A
)
, (6.3)

for μ ∈ T1 and x, y ∈ A and ð ∈ ∂ . Then there exists a unique C∗-algebra homomorphism
H : ∂ × A → B s.t.

diag
[∥∥f (ð, x) – H(ð, x)

∥∥
B, . . . ,

∥∥f (ð, x) – H(ð, x)
∥∥

B

]
9×9 � 2rθ

2 – 2r W
(‖x‖r

A
)
, (6.4)

for x ∈ A and ð ∈ ∂ .

Proof The proof follows from Theorem 2.1 by taking

diag
[
ϕ1(x, y), . . . ,ϕ9(x, y)

]
9×9 := θW

(‖x‖r
A + ‖y‖r

A
)

for x, y ∈ A. Setting Li = 2r–1, i = 1, . . . , 9, we have the desired result. �

Corollary 6.2 Assume r > 2, θ > 0 and f : ∂ × A → B is a mapping satisfying (6.1), (6.2)
and (6.3). Then there exists a unique C∗-algebra homomorphism H : ∂ × A → B s.t.

diag
[∥∥f (ð, x) – H(ð, x)

∥∥
B, . . . ,

∥∥f (ð, x) – H(ð, x)
∥∥

B

]
9×9 � θ

2r – 2
W

(‖x‖r
A
)
, (6.5)

for x ∈ A and ð ∈ ∂ .

Proof The proof follows from Theorem 2.2 by taking

diag
[
ϕ1(x, y), . . . ,ϕ9(x, y)

]
9×9 := θW

(‖x‖r
A + ‖y‖r

A
)
,

for x, y ∈ A. Choosing Li = 21–r , i = 1, . . . , 9, we get the desired result. �

Corollary 6.3 Assume r < 1
2 , θ > 0 and f : ∂ × A → B is an odd mapping satisfying

diag
[∥∥Dμf (ð, x, y)

∥∥
B, . . . ,

∥∥Dμf (ð, x, y)
∥∥

B

]
9×9 � θ ·W(‖x‖r

A · ‖y‖r
A
)
, (6.6)

diag
[∥∥f (ð, xy) – f (ð, x)f (ð, y)

∥∥
B, . . . ,

∥∥f (ð, xy) – f (ð, x)f (ð, y)
∥∥

B

]
9×9 (6.7)

� θ ·W(‖x‖r
A · ‖y‖r

A
)
,

diag
[∥∥f

(
ð, x∗) – f (ð, x)∗

∥∥
B, . . . ,

∥∥f
(
ð, x∗) – f (ð, x)∗

∥∥
B

]
9×9 � θ ·W(‖x‖2r

A
)
, (6.8)

for μ ∈ T1 and x, y ∈ A and ð ∈ ∂ . Then there exists a unique C∗-algebra homomorphism
H : ∂ × A → B s.t.

diag
[∥∥f (ð, x) – H(ð, x)

∥∥
B, . . . ,

∥∥f (ð, x) – H(ð, x)
∥∥

B

]
9×9 � 3rθ

2 – 22r W
(‖x‖2r

A
)
, (6.9)

for x ∈ A and ð ∈ ∂ .
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Proof The proof follows from Theorem 2.3 by taking

diag
[
ϕ1(x, y), . . . ,ϕ9(x, y)

]
9×9 := θ ·W(‖x‖r

A · ‖y‖r
A
)
,

for x, y ∈ A. Picking Li = 22r–1, i = 1, . . . , 9, we come to the desired result. �

Corollary 6.4 Assume r > 1, θ > 0 and f : ∂ × A → B is an odd mapping satisfying (6.6),
(6.7) and (6.8). Then there exists a unique C∗-algebra homomorphism H : ∂ × A → B s.t.

diag
[∥∥f (ð, x) – H(ð, x)

∥∥
B, . . . ,

∥∥f (ð, x) – H(ð, x)
∥∥

B

]
9×9 � θ

22r – 2
W

(‖x‖2r
A

)
, (6.10)

for x ∈ A and ð ∈ ∂ .

Proof The proof can be derived from Theorem 2.4 by taking

diag
[
ϕ1(x, y), . . . ,ϕ9(x, y)

]
9×9 := θ ·W(‖x‖r

A · ‖y‖r
A
)
,

for x, y ∈ A. Letting Li = 21–2r , i = 1, . . . , 9, we get the desired result. �

Corollary 6.5 Assume r < 1, θ > 0 and f : ∂ × A → A is a mapping s.t.

diag
[∥∥Dμf (ð, x, y)

∥∥
A, . . . ,

∥∥Dμf (ð, x, y)
∥∥

A

]
9×9 � θW

(‖x‖r
A + ‖y‖r

A
)
, (6.11)

diag
[∥∥f (ð, xy) – f (ð, x)y – xf (ð, y)

∥∥
A, . . . ,

∥∥f (ð, xy) – f (ð, x)y – xf (ð, y)
∥∥

A

]
9×9 (6.12)

� θW
(‖x‖r

A + ‖y‖r
A
)
,

for μ ∈ T1 and x, y ∈ A and ð ∈ ∂ . Then there exists a unique derivation δ : ∂ × A → A s.t.

diag
[∥∥f (ð, x) – δ(ð, x)

∥∥
A, . . . ,

∥∥f (ð, x) – δ(ð, x)
∥∥

A

]
9×9 � 2rθ

2 – 2r W
(‖x‖r

A
)
, (6.13)

for x ∈ A and ð ∈ ∂ .

Proof The proof follows from Theorem 3.1 by taking

diag
[
ϕ1(x, y), . . . ,ϕ9(x, y)

]
9×9 := θW

(‖x‖r
A + ‖y‖r

A
)
,

for x, y ∈ A. Setting Li = 2r–1, i = 1, . . . 9, we come to the conclusion. �

Corollary 6.6 Assume r > 2, θ > 0 and f : ∂ × A → A is a mapping satisfying (6.11) and
(6.12). Then there exists a unique derivation δ : ∂ × A → A s.t.

diag
[∥∥f (ð, x) – δ(ð, x)

∥∥
A, . . . ,

∥∥f (ð, x) – δ(ð, x)
∥∥

A

]
9×9 � θ

2r – 2
W

(‖x‖r
A
)
, (6.14)

for x ∈ A and ð ∈ ∂ .
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Proof The proof comes directly from Theorem 3.2 by taking

diag
[
ϕ1(x, y), . . . ,ϕ9(x, y)

]
9×9 := θW

(‖x‖r
A + ‖y‖r

A
)

for x, y ∈ A. Choosing Li = 21–r , i = 1, . . . , 9, we get the desired result. �

Remark 6.7 For the inequalities controlled by the product of powers of norms, one can
obtain results similar to Corollaries 6.3 and 6.4.

Corollary 6.8 Assume r < 1, θ > 0 and f : ∂ × A → B is a mapping satisfying (6.1) s.t.

diag
[∥∥f

(
ð, [x, y]

)
–

[
f (ð, x), f (ð, y)

]∥∥
B, . . . ,

∥∥f
(
ð, [x, y]

)
–

[
f (ð, x), f (ð, y)

]∥∥
B

]
9×9 (6.15)

� θW
(‖x‖r

A + ‖y‖r
A
)
,

for x, y ∈ A and ð ∈ ∂ . Then there exists a unique Lie C∗-algebra homomorphism H : ∂ ×
A → B satisfying (6.4).

Proof The proof follows from Theorem 5.2 by taking

diag
[
ϕ1(x, y), . . . ,ϕn(x, y)

]
9×9 := θW

(‖x‖r
A + ‖y‖r

A
)
,

for x, y ∈ A. Then setting Li = 2r–1, i = 1, . . . , 9, we deduce the desired result. �

Corollary 6.9 Assume r > 2, θ > 0 and f : ∂ × A → B is a mapping satisfying (6.1) and
(6.15). Then there exists a unique Lie C∗-algebra homomorphism H : ∂ × A → B satisfying
(6.5).

Proof The proof follows from Theorem 5.3 by taking

diag
[
ϕ1(x, y), . . . ,ϕn(x, y)

]
9×9 := θW

(‖x‖r
A + ‖y‖r

A
)
,

for x, y ∈ A. Letting Li = 21–r , i = 1, . . . , 9, we get the desired result. �

Remark 6.10 For the inequalities controlled by the product of powers of norms, one can
obtain results similar to Corollaries 6.3 and 6.4.

Corollary 6.11 Assume r < 1, θ > 0 and f : ∂ × A → A is a mapping satisfying (6.11) s.t.

diag
[∥∥f

(
ð, [x, y]

)
–

[
f (ð, x), y

]
–

[
x, f (ð, y)

]∥∥
A, . . . , (6.16)

∥∥f
(
ð, [x, y]

)
–

[
f (ð, x), y

]
–

[
x, f (ð, y)

]∥∥
A

]
9×9

� θW
(‖x‖r

A + ‖y‖r
A
)
,

for x, y ∈ A and ð ∈ ∂ . Then there exists a unique Lie derivation δ : ∂ × A → A satisfying
(6.13).
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Proof The proof comes directly from Theorem 5.2 by taking

diag
[
ϕ1(x, y), . . . ,ϕ9(x, y)

]
9×9 := θW

(‖x‖r
A + ‖y‖r

A
)
,

for x, y ∈ A. Then setting Li = 2r–1, i = 1, . . . , 9, we have the desired result. �

Corollary 6.12 Assume r > 2, θ > 0 and f : ∂ × A → A is a mapping satisfying (6.11) and
(6.16). Then there exists a unique Lie derivation δ : ∂ × A → A satisfying (6.14).

Proof It follows from Theorem 5.3 by taking

diag
[
ϕ1(x, y), . . . ,ϕ9(x, y)

]
9×9 := θW

(‖x‖r
A + ‖y‖r

A
)
,

for x, y ∈ A. Then choosing Li = 21–r , i = 1, . . . , 9, we imply the desired result. �

Remark 6.13 For the inequalities controlled by the product of powers of norms, we can
derive results similar to Corollaries 6.3 and 6.4.

7 Conclusion
Using a new class of control functions defined by some special function, we study the
generalized Hyers–Ulam stability of homomorphisms and multi-stability of derivations
in C∗-algebras and Lie C∗-algebras for the following random operator equation based on
fixed point methods:

μf
(
ð,

x + y
2

)
+ μf

(
ð,

x – y
2

)
= f (ð,μx),

where μ a complex number with |μ| = 1.
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