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ABSTRACT Recently, there has been a rapidly emerging demand for localization technologies to provide
various location-based services in indoor environments, such as smart buildings, smart factories, and parking
lots, as well as outdoor environments. Ultra-wideband (UWB), an emerging wireless technology, provides
opportunities for precise indoor positioning with sub-meter accuracy, much more accurate than WiFi or
BLE-based techniques, thanks to its signal and communication characteristics. UWB technology has recently
begun to be applied to personal devices such as smartphones and is expected to be used for indoor localization
of personal devices. However, personal devices often cause signal problems because they are worn on human
hands or bodies and move dynamically or are in a non-line-of-sight (NLoS) condition, such as pockets or
bags. Therefore, these challenges in the dynamic environment of personal devices must be addressed to
enable accurate indoor positioning services based on UWB. In this paper, we propose a novel UWB-based
indoor positioning approach that significantly improves localization accuracy under dynamic personal
device environments. Our proposed approach detects various NLoS conditions of personal environments
by leveraging channel impulse response (CIR) and deep learning. Based on the detected NLoS conditions,
the proposed approach adjusts the Kalman filter to adaptively estimate the position of the target UWB-based
personal device. Specifically, the distance measurement errors by NLoS are minimized by applying weights
determined by deep learning to the Kalman filter. Through experiments conducted in practical indoor
environments, we have shown that our proposed approach considerably improves the accuracy compared
to the traditional Kalman filter-based and trilateration approaches. According to our method of counting the
number of points relative to ground truth, the proposed positioning system improved positioning accuracy
significantly by 20.84% to 27.22% with an error tolerance of ±25 cm and by 7.78% to 22.78% with an error
tolerance of ±50 cm, compared to the traditional approaches.

INDEX TERMS UWB, personal device, indoor localization, TWR, ranging error compensation, deep
learning, LoS & NLoS classification, trilateration positioning algorithm, weight adaptive Kalman filter.

I. INTRODUCTION
Various location-based technologies for indoor environments
have been emerging in response to the demand for indoor
localization services. There is a particularly high demand
for high-precision indoor localization across industries [1].
This demand leads to the evolution of various applications
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for location-based services delivered in indoor environ-
ments, including buildings, department stores, airports, and
museums.

However, due to the limitations of conventional localiza-
tion methodology based on (1) wireless communication [2],
[3], [4], [5], [6] or (2) various sensor techniques [7], [8],
[9], it has been difficult for the traditional approaches to
meet the high-precision requirements of applications, such as
navigation and robot positioning [10].
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Wireless communication technologies such as WiFi and
Bluetooth low energy (BLE) calculate locations leveraging
the received signal strength indicator (RSSI). However, RSSI
tends to fluctuate due to environmental obstacles such as
multipath fading, refraction, diffraction, and interference by
devices using similar frequency bands [11], [12], [13], [14],
[15]. As a result, positioning accuracy by inaccurate RSSI is
difficult to trust.

In addition, positioning based on sensors, such as vision
and inertial measurement unit (IMU) sensors, makes it chal-
lenging to achieve positioning with stable accuracy because
of the physical limitations of the sensor in certain environ-
ments. Several sensor fusion techniques and data filtering
techniques for indoor position tracking have been studied to
overcome these accuracy degradation problems [7], [8].

However, as sensor fusion technology requires multiple
sensors, processing large amounts of sensor data increases
hardware costs and computation time for filtering the data,
which delays the positioning refresh cycle significantly.

The ultra-wideband (UWB) technology is now viewed
as a game changer to overcome the aforementioned
challenges [16]. Following this trend, personal device
manufacturers are starting to include UWB capability in
their personal devices by default because of the technolog-
ical advantages of UWB. Leading smartphone manufacturers
such as Google, Apple, and Samsung have launched their
flagship smartphones with built-in UWB chipsets [17]. Also,
recently, Apple and Samsung started developing their own
UWB chips.

UWB uses ultra-wideband frequencies; thus, UWB has the
advantage of being resistant to interference with other com-
munications thanks to its wide bandwidth, having a fading
margin, and a high multi-path diversity gain [17]. UWB can
also provide a more accurate and stable positioning tech-
nology compared to RSSI-based positioning methods [18],
which are heavily affected by radio signal attenuation due to
obstacles, multipath fading, and signal interference because
UWB uses the time-of-flight (ToF) method for ranging or
positioning.

UWB positioning methods are roughly threefold; (1) tri-
lateration, (2) multilateration, and (3) angle-of-arrival (AoA).
The trilateration determines the position based on the distance
measured between the devices using a radius of the circle
(or sphere) from each device. The multilateration is similar
to trilateration except that it uses hyperbolas (in 2D cases)
or hyperboloids (in 3D cases) using TDoA (time difference
of arrival) instead of circles or spheres using ToA (time of
arrival). AoA positioning uses the distance data and the phase
angle of the arrival signal [16], [19]. In all three methods, dis-
tance data calculated through the signal transfer time between
equipment is an important factor in determining the accuracy
of the positioning [20].

Personal device location tracking usingUWB is potentially
highly accurate compared to location tracking using other
wireless communications and does not require a separate
device.

However, when the UWB terminal dynamically moves,
because the direct propagation path of the UWB signal can be
obstructed, the additional delay will occur in the ToF, result-
ing in biased range measurements. The dynamic circum-
stances around UWB devices render high-precision ranging
challenging [21].

For example, personal devices, such as mobile phones,
move dynamically with the user in hand, resulting in incorrect
ToF calculations by indirect path signals due to the lack of
a direct path of UWB signal propagation by unpredictable
obstacles, which can lead to ranging errors and potentially
positioning errors [21].

Ranging errors are particularly noticeable in channel envi-
ronments where line-of-sight (LoS) is not secured [22], [23],
such as inside pockets and bags.

To address the challenges with the personal device envi-
ronments, we propose an indoor positioning scheme using a
novel ranging error correction technique for high-accuracy
indoor positioning systems for personal devices such as
mobile phones. The key idea of our approach is to estimate the
reliability of UWB ranging using channel impulse response
(CIR) through deep learning.

We use the Kalman filter to reduce errors in distance
data with the filter parameters based on CIR-based ranging
measurements to improve correction efficiency. Based on the
estimated reliability of the measured distance values through
deep learning, we determine the estimates of the distance
values by adjusting the weights for the measurement of the
measurement model and the prediction of the system model
of the Kalman filter.

The main contributions of our approach are as follows:
• We propose novel deep learning-based UWB two-way
ranging (TWR) error correction algorithms for the
high-accuracy localization of personal devices as UWB
tags. (Section III)

• We propose an optimal Kalman gain calculation logic
for the Kalman filter along with a non-line-of-sight
(NLoS) probability calculation model based on UWB
CIR using deep learning. (Section III-C)

• The proposed optimal model for Kalman gain and
the logic for NLoS probability can readily incorporate
dynamic ranging errors and can be applied to UWB
localization algorithms.

• Through realistic experiments, our approach signifi-
cantly improves the localization accuracy by 20.84%
to 27.22% with an error tolerance of B125 cm and
by 7.78% to 22.78% with an error tolerance of
B150 cm, compared to the traditional Kalman filter and
trilateration-based approaches. (Section IV-C)

The rest of this paper is organized as follows: Section II
presents a literature review of existing research on
UWB-based ranging. In Section III, we propose a novel
approach for distance error compensation in personal
device positioning environments. Section IV evaluates the
performance of the proposed approach. Section V concludes
the paper.
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FIGURE 1. Message exchange in Single-sided TWR.

FIGURE 2. Process of UWB Single-sided TWR.

II. RELATED WORK
Since the advent of UWB wireless communication technol-
ogy, recent advancements in research on indoor positioning
systems using UWB have drawn considerable interest from
researchers. In particular, in UWB TWR-based trilateration
positioning, one of the main research streams has been a tech-
nique for correcting ranging errors to enable high-precision
position estimation in an indoor environment.

This section reviews the study of distance measure-
ment techniques using UWB, line-of-sight (LoS) and non-
line-of-sight (NLoS) classification studies using UWB
channel impulse response (CIR), error correction of dis-
tance data measured by TWR between two UWB nodes,
and UWB-based localization accuracy improvement studies
using deep learning.

A. UWB-BASED RANGING METHOD
Because the UWB characteristic is robust in multipath and
has a short pulse width, it has a high resolution, which
enables precise measurement of time-of-flight (ToF). UWB
uses TWR technology to calculate distance based on ToF.
TWR is commonly used to measure the distance between two
wireless transceiver nodes.

Although UWB can accurately measure ToF, but still con-
tains errors. Techniques for correcting errors for more accu-
rate positioning have been studied [24], [25], [26].

FIGURE 1 provides a brief description of the single-sided
TWR (SS-TWR) method, one of the representative TWR
methods. SS-TWR is a method of ranging through one
message exchange between the initiator and the responder.
FIGURE 2 illustrates the specific UWB SS-TWR process.
In SS-TWR, the initiator obtains information about Treply
from the response message received from the responder. You
can then calculate ToF, which is half the difference between
the two, from the known Tround and Treply. This method is less
accurate than other improved TWRmethods but is often used
because it is suitable for low-performance embedded systems
due to low computation.

FIGURE 3. NLoS components included in the received UWB signals.

Among other improved TWR methods, Sidorenko et al.
[27] studied message exchange procedures in TWR in
other ways: asymmetric double-sided two-way ranging
(ADS-TWR), alternative double-sided TWR (AltDS-TWR),
and symmetrical double-sided TWR (SDS-TWR), which
demonstrate the effect of smaller ranging measurement errors
compared to commonly used SS-TWR methods [28], [29].
However, the complexity of the message exchange method
itself increases the channel resources required for ranging,
and there is still a problem that ranging speed is greatly
reduced in communication between multiple nodes.

B. LoS, NLoS CLASSIFICATION METHODS USING UWB CIR
In the field of wireless communication technology, research
has been actively conducted for channel state estimation
through transmission and reception signals. In particular,
since the UWB transmission signal is ideally close to the
pulse signal, it is possible to estimate the channel status with
the received signal because the received signal reflects most
of the channel status.

Propagation signals are divided into the direct path through
the shortest path andmultipath through diffraction, refraction,
reflection, etc. Naturally, multipath signals take longer to
reach the receiver than the direct path signal. Thus, multipath
signals tend to be further attenuated in terms of power while
the signal is propagated, as shown in FIGURE 3, making it
more difficult for the receiver to sense the reception time and
reception strength of the signal.

In order to distinguish the direct path signal and indi-
rect path signals, it is necessary to determine whether the
received signals include multipath signals generated under
NLoS conditions [30], [31]. Channel impulse response (CIR)
is a representative indicator for distinguishing the direct path
signal and indirect path signals in UWB communication as
illustrated in FIGURES 4 and 5.

The CIR data indicate the characteristics of the channel,
such as skewness, kurtosis, and location of samples with
the maximum size and the average over-delay, which allows
reasonable classification of data with nonlinear features [32],
[33], [34], [35].

Belowwe illustrate the formula for obtaining the indicators
of the CIR reflecting the channel characteristics. The received
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FIGURE 4. Received UWB signals via various paths.

FIGURE 5. Top view of received channel impulse responses of various
paths in UWB TWR shown in FIGURE 4.

signal from the UWB is formulated as follows:

r(t) = s(t) ∗ h(τ ; t) + n(t) (1)

The energy of the received signal is as follows:

E =

∫
∞

−∞

|r(t)|2dt (2)

The maximum amplitude of the received signal is as
follows:

rmax = maxr(t) (3)

The index of the maximal amplitude in the CIR represents
rise time:

Trise = argmin
t

cmax (4)

The Mean excess delay is as follows:

τm =

∫
∞

−∞
t|c(t)|2dt

E
(5)

Kurtosis:

κ =
E[(|c(t)| − µ)4]

σ 4 (6)

Skewness:

γ =
E[(|c(t)| − µ)3]

σ 3 (7)

We utilized the amplitude data of CIR of the received
signals as they are most commonly used for LoS and NLoS
classification.

C. MITIGATION OF UWB TWO-WAY RANGING
MEASUREMENT ERROR
Various studies have been conducted to mitigate the errors
contained in the TWR measurement data of the UWB. The
TWR measurement data includes errors due to the environ-
ment being measured, the device’s own fault, etc.

In particular, since errors according to the measurement
environment are inevitable errors that occur outside the
device, many studies are being conducted to classify environ-
ments that contain many errors as a way to solve this problem.
Among them, when calculating TWRusingUWB, studies are
active to reduce the ranging error using an indicator called
CIR that can identify channel states.

Channel impulse response (CIR) signals are used directly
to extract high semantic features to estimate LoS or NLoS
conditions [36]. Among several attempts to classify the envi-
ronment by analyzing CIR, a prominent approach in recent
studies is the use of artificial intelligence.

Wymeersch et al. [25] proposed a machine learning-based
ranging error mitigation technique. This is a strategy
that combines information about constraints on ranging
errors with SVM or regression techniques and significantly
improves performance over traditional approaches. Yu et al.
[37] proposed ways to identify and scope NLoS based
on low environmental dependence and prior knowledge
independent fuzzy comprehensive evaluation. Kim et al.
[38]. proposed a method to estimate the error values
included in UWB TWR measurements based on chan-
nel conditions through the LSTM model and correct them
through EKF.

D. UWB-BASED POSITIONING METHOD
In the latest UWB standard, the IEEE 802.15.4z standard, the
ranging method introduces TWR, OWR (one-way ranging)
for TDoA localization, as the recommended ranging tech-
nology used by devices applying the IEEE 802.15.4/4z stan-
dard [39]. The use cases of UWB technology can be extended
to the localization of tags through this ranging technology.
This section briefly describes the two typical methods of
recommended localization technology.

1) OWR-BASED MULTILATERATION POSITIONING METHOD
The tag periodically sends a Blink signal to the anchor.
Because each anchor is at a different distance from the
tag, the tag transmits a signal and arrives at all anchors
at different times. The difference in the time the signal
arrives at the two anchors can be used to calculate
hyperbolic [40], [41], [42], [43].

At least three hyperbolic intersect to provide the location of
the tag. This method does not require tags to be synchronized
with anchors, but anchors must be synchronized with each
other. The accuracy of this synchronization has a significant
impact on location accuracy [44].

FIGURE 6 shows a conceptual diagram of an OWR-based
multilateration consisting of four anchors.

20098 VOLUME 11, 2023



S. Sung et al.: Accurate Indoor Positioning for UWB-Based Personal Devices Using Deep Learning

FIGURE 6. UWB OWR-based multilateration Positioning.

FIGURE 7. UWB TWR-based trilateration Positioning.

2) TWR-BASED TRILATERATION POSITIONING METHOD
The TWR-based trilateration positioning scheme is nei-
ther complicated nor requires time synchronization between
anchors compared to the OWR-based method. This means
that configuring the positioning infrastructure can be sim-
pler [40], [45]. Because the location is calculated through
TWR, distance data using the propagation time of UWB
signals inevitably contain errors due to errors in signal arrival
time by multipath [18], [46], [47]. Therefore, achieving high
positioning accuracy requires mitigating errors in TWRmea-
surements. For example, the approach proposed in this paper
uses distance and UWB CIR analysis to mitigate and correct
measurement errors. FIGURE 7 shows a conceptual diagram
of a TWR-based trilateration.

E. UWB POSITIONING ACCURACY IMPROVEMENT BASED
ON ARTIFICIAL INTELLIGENCE
The accuracy of UWB TWR-based trilateration position-
ing techniques can be improved by modifying trilateration

positioning algorithms or directly ranging error mitigation
techniques at the physical layer to minimize the ranging error.

Kalman filter (KF), used in existing ranging error mit-
igation techniques [48] and localization algorithms, have
received widespread attention because they are classical
methods for state estimation of dynamic systems [49], [50],
[51]. However, this uses a fixed noise covariancematrix, mak-
ing it difficult to reflect all the changing noise in a dynamic
positioning environment. To address this problem, ranging
error mitigation techniques using machine learning [25] and
deep learning have recently been studied. There are also
studies of applying deep learning directly to localization
algorithms [52].

However, in previous studies, deep learning-based rang-
ing error mitigation techniques were studied in simulation
level [48] or required accurate LoS, NLoS classification
because they corrected ranging errors through binary classi-
fication for LoS, NLoS. In addition, modifications to deep
learning-based localization algorithms require extensive data
collection and a lot of data processing time, as models must
be learned and used based on different types of data, such as
ranging measurement, CIR, TDoA, and RSSI.

In this study, UWB CIR ranging measurements are used to
obtain deep learning-based NLoS probabilities and use them
to determine the size of the noise matrix of the Kalman filter
to immediately mitigate ranging errors that vary in real-time.
In addition, by using the learning data limited to rangingmea-
surements and CIR, the collection of learning data required
for deep learning model learning can be simplified, and data
processing time can be drastically reduced.

III. PROPOSED APPROACH FOR UWB-BASED PERSONAL
DEVICE POSITIONING
The indoor positioning accuracy of a personal device such as
amobile phone usingUWBchanges its pose (e.g., angles) and
position dynamically depending on the characteristics of the
personal device being tagged, so the direction of the antenna
and the presence or absence of obstacles to propagation vary
from time to time. The effects of these characteristics of
personal devices behave the same as an obstacle to accurate
positioning. Therefore, UWB-based indoor positioning sys-
tems on personal devices require steps tominimize contextual
distance errors and minimize errors in calculated positions.

However, dynamically changing postures and environ-
ments make it difficult to predict all errors that occur.
We have developed a new indoor location estimation tech-
nique for mobile phones based on deep learning to flexibly
consider their pose and environment. UWB data measured in
different environments can be used to classify the positioning
environment and to update the parameters of theKalman filter
for specific environments to improve accuracy for distance
predictions.

Our proposed indoor positioning system for personal
devices consists of three main elements.

• Element 1: Deep learning-based propagation environ-
ment classifier
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TABLE 1. Abbreviations and acronyms.

• Element 2: Kalman filter-based ranging measurement
error correction algorithm

• Element 3: Trilateration positioning algorithm

This section describes the abbreviated list, the overall sys-
tem structure, the proposed deep learning-based classification
model, Kalman filter-based distance error correction, and
trilateration positioning algorithms.

Before diving into the discussion on our proposed
approach, we provide a list of abbreviations used to improve
the readability of the paper is shown in TABLE 1, to be used
throughout the rest of the paper because many abbreviations
are used in the field of UWB, positioning, and deep learning.

A. SYSTEM ARCHITECTURE
We propose a novel Kalman filter-based TWR error correc-
tion system for mobile phone positioning to take into account
the environmental factors between UWB tags and anchors
that affect positioning results. The ultimate purpose of this
system is to increase the accuracy of location tracking with
UWB CIR information when mobile phone positioning is
disadvantageous. UWB CIR is used as a key indicator for
classifying situations in which the location of UWB mobile
phones is disadvantageous. Here, to increase the accuracy
of CIR-based LoS and NLoS classification, we obtain data
by further segmenting NLoS situations rather than binary
classification.

It takes advantage of the fact that the correlation between
the measured CIR values in the NLoS situation is higher than
in the LoS situation and that the NLoS situation in the per-
sonal device can be determined by several typical situations
with high probability. Therefore, the model’s contextual clas-
sification ability is also enhanced by learning deep learning
models by collecting data that can further specify the NLoS
situation. For example, NLoS due to pockets is more similar
to NLoS for bags and humans than to LoS. This can provide
more evidence for classifiers to distinguish between NLoS
situations.

FIGURE 8 shows the proposed overall system structure.
In the first environment to obtain data, we assume that the
mobile phone positioning environment is divided into three
cases - two NLoS cases (Cases 1 and 2 in FIGURE 8) and
one LoS case (Case 3 in FIGURE 8). First, we obtained data
forCase 1: when a personal device is in a pocket andCase 2:
when a personal device is in a pocket. In addition, we obtained
data under LoS (Case 3) by assuming the situation personal
device in an open space.

Since the proportion of learning data is ultimately an
important factor in determining the classification propensity
of deep learning models, we obtain similar amounts in all
three cases. We performed experiments on the test environ-
ment with the tag in the pocket, bag, or hand in ranging sit-
uations between the anchor and the tag. The UWB data used
for learning consists of 1016 CIR and distance measurements
and labels for the case. After preprocessing the sample data,
we train the model and perform the task of classifying cases
through the learnedmodel. The classification results are given
as probability values between 0 and 1 for each LoS, pocket,
and bag used to determine the NLoS situation.

There are three categories of typical examples of specific
NLoS: (1) Case where the personal device is in a person’s
hand, (2) Case where the personal device is in the pocket, and
(3) Case where the personal device is in the bag. In these three
cases, we train deep learning-based classifiers with measured
CIR and distance data. The learned classifier calculates the
probability of LoS and NLoS when new distance and CIR
information are provided as input. The probabilities to NLoS
of themeasurement are determined by using it to calculate the
Kalman gain of the Kalman filter, which corrects the distance
data through the calculated probability. This can make the
Kalman filter’s predictions more accurate by trusting the
system’s predictions rather than trusting the measured data
under unfavorable measurement conditions.

Our system consists of four main components, including
the learning stages of deep learning models. The first com-
ponent uses CIR and distance data to learn classification
models based on deep learning. Deep learning models can
use stochastic inferences by quantifying ambiguous chan-
nel situations by computing probabilities of LoS and NLoS
through the application of the softmax function. The data used
for learning improves the performance of the classifier by
collecting 1016 CIR data from the pocket and the bag for
a long time. Training data are collected from about 30,000
pieces of data in each environment. Deep learning models
learned in the second component obtain probabilities for LoS,
and NLoS when real UWB range data are input and pass
this probability information and distance data as input to the
third element, Kalman Filter-based distance error correction
algorithm. The third component receives LoS and NLoS
probability information and distance data and adjusts the
error matrix of contextual Q. The Kalman gain is determined
based on the determined Q and R. This process can improve
the distance error correction performance of the Kalman
filter. We calculated the position data using the trilateration
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FIGURE 8. Proposed UWB-based positioning system architecture.

positioning algorithm based on the distance data corrected in
the fourth element.

The proposed position estimation algorithm improves the
accuracy of location estimation by reflecting the probability
inference that measurements have for NLoSwhen calculating
Kalman gain for distance data. FIGURE 9 shows the pro-
posed ranging measurement correction algorithm using the
deep learning model and weighted adaptive Kalman filter
(WAKF). FIGURE 10 depicts the operation of the Kalman
filter to calibrate the ranging measurement.

B. PROPOSED DEEP LEARNING MODEL
We use a DNN model as a classification model using deep
learning to learn CIR data, which is used as a core in our
system. The DNN model can learn the properties of data
regardless of continuous or categorical types, and the higher
the amount of data when extracting features of data, the
higher the prediction accuracy generally compared to other
machine learning techniques.

It can also be used for applications that require rapid cal-
culation because it can classify data quickly and accurately.

To use the DNNmodel, we divided it into learning stages and
classification stages. During the learning phase, the learning
data is used as 80% and 20% test data of the entire collec-
tion data. The data used for learning is the collection of NLoS
data from the bag and pocket environment and the LoS data
from the open environment. The accuracy of mobile phone
distance measurement depends on the distance between the
tag and the anchor measurement terminal.

However, due to the nature of the mobile phone, there
is a possibility that distance measurement accuracy may be
compromised by dynamic movement and various obstacles,
so special environmental factors should be considered. For
example, there may be an NLoS path even if the distance
is close, or there may be an LoS path even if it is further
away. Therefore, UWB learning data was acquired according
to distance and environment.

The learning data collected 30,000 datasets in each of the
two NLoS situations and 30,000 datasets in the LoS situa-
tions to obtain specific characteristics of the NLoS situations,
consisting of 90,000 total datasets. This is a data acquisition
environment assuming the two most likely NLoS situations
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FIGURE 9. Proposed ranging measurement correction algorithm.

FIGURE 10. Ranging measurement correction process based on Kalman Filter.

so that the location target characteristics of the mobile phone
can be well considered. To prevent feature bias in the data,
we learned by collecting data sets at a similar rate across all
environments. The ratio of the learning data is collected as

close to 1:1:1 as possible for a bag, pocket, and open space,
but we have trained the model by increasing the proportion
of the data that we want in the deep learning model for better
classification.
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During the classification phase that utilizes the deep learn-
ingmodel, distance andCIR data are extracted from the actual
positioning sites, and then the probability for the type of
propagation environment is calculated using the DNN clas-
sification model. The activation function used in the model
used the softmax function, and the probability value for the
type of propagation environment is output. The prediction
result of the model is defined as a real number between
0 and 1, and the sum of the total output data is 1.

C. PROPOSED KALMAN FILTER-BASED DISTANCE
CORRECTION ALGORITHM
The UWB theoretically transmits a pulse signal and must
receive a pulse signal, but the received signal arrives reflect-
ing the characteristics of the channel through which the signal
is propagated.

The received signal can be used to verify the reliability of
the TWRmeasurement between the UWB anchor and the tag.
This measurement reliability is used as a key parameter for
the Kalman filter.

The Kalman filter consists largely of prediction and update
phases. The prediction step defines a system model and pre-
dicts the following states based on the defined system model.
The update phase calculates the Kalman gain, weights the
predicted state andmeasurements in the prediction phase, and
updates the state estimates. The system model was modeled
assuming a constant velocity model.

In the Kalman filter, it is determined by Kalman gain that
the system prediction model or measurement model is more
reliable in predicting the following conditions. We used a
DNN-based classification model to adjust the Kalman gain
according to the classified channel type.

This method can compensate for the distance error value
of the environment by giving more weight to the system
prediction model of the Kalman filter in environments where
accurate ranging is difficult.

Initialize Q and R in the behavior of the initial Kalman
filter: system noise condition, and measurement noise con-
dition, respectively. It then initializes the predictive value of
the system’s initial state and the state error covariance.

From the next behavior of the Kalman filter, the system
model predicts the next state variable as shown in (8).

x̂−
t = Ax̂t−1 + But (8)

The results of the DNN-based classification model deter-
mineQ andR to obtain the process noise covariance, as shown
in (9), (10).

P−
t = APt−1AT + Q (9)

Kt = P−
t H

T (HP−
t H

T
+ R)−1 (10)

We can construct an errormatrix that reflects different error
matrices depending on the channel state estimated in real
time.

The process noise covariance and R calculate the new
Kalman gain, predict the system state variables from

the determined Kalman gain and distance measurements,
and update the system state error covariance as shown
in (11), (12).

x̂t = x̂−
t + Kt (zt − x̂−

t ) (11)

Pt = (I − KtH )P−
t (12)

The predicted value of the system state variable is the
output of the Kalman filter and the corrected distance data
we are trying to obtain.

The state transition expression for the prediction phase is
as follows:

xt =

[
s(t)
v(t)

]
(13)

xt = Axt−1 =

[
1 1t
0 1

]
xt−1 (14)

zt = Dt (15)

where Dt is the UWB ranging measurement at time t .

D. PROPOSED TRILATERATION-BASED POSITIONING
ALGORITHM
We use the trilateration positioning algorithm to determine
the final position through the corrected distance data. Each
of the measured distance data from the three anchors is cali-
brated and used as an input to the final positioning algorithm.

The trilateration-based positioning method is calculated
by (16)-(29).

1. Define the equations of three circles

(x − x1)2 + (y− y1)2 = r21 (16)

(x − x2)2 + (y− y2)2 = r22 (17)

(x − x3)2 + (y− y3)2 = r23 (18)

2. l1 Equation of a straight line passing through the inter-
section of circles 1 and 2

2(x2 − x1)x + 2(y2 − y1) = r21 − r22 − x21 + x22 − y21 + y22
(19)

2(x3 − x2)x + 2(y3 − y2) = r22 − r23 − x22 + x23 − y22 + y23
(20)

3. Expression for x, y

A = 2(x2 − x1) (21)

B = 2(y2 − y1) (22)

C = r21 − r22 − x12 + x22 − y12 + y22 (23)

D = 2(x3 − x2) (24)

E = 2(y3 − y2) (25)

F = r22 − r32 − x22 + x32 − y22 + y32 (26)

Ax + By = C (27)

Dx + Ey = F (28)[
x
y

]
=

[
A B
D E

]−1 [
C
F

]
(29)
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IV. EVALUATION
This section describes the assessment of the proposed accu-
rate positioning system. This section is described in the fol-
lowing order: Description of experimental environment and
equipment installation, setup of data sets for experiments,
performance evaluation of classification models based on
deep learning, evaluation of position from proposed distance
correction algorithm, comparing experimental results with
position from existing Kalman filter-based correction algo-
rithm and calculated position.

A. EXPERIMENTAL SETUP
1) SETUP FOR ENVIRONMENTS
The experiment was conducted in the lobby of the Fusion
Tech Center building at Hanyang University’s Seoul Campus
in South Korea. To experiment with UWB-based accurate
positioning algorithms, we use the SS-TWRmethod as UWB
ranging method. The UWB device used in the experiment is
Qorvo’s DWM3000.

The DWM3000 equipment weighs 200g and is 7cm wide
and 13.3cm long, similar to a regular mobile phone. The
applied UWB chipset is the DW3000 in Qorvo. The DW3000
is a fully integrated single chipset and complies with the IEEE
802.15.4z [39] standard. UWB Communication Channel 5
(6.5 GHz) was used.

For the positioning experiments, we used three anchors to
cover a rectangular positioning areameasuring 11mwide and
11 m long. In the experiment, the DWM3000 acts as both an
anchor and a tag and consists of three anchors and one tag.

Each anchor station consists of three fixed anchor stations,
each serving as a responder for TWR communications. In the
experiment, the tags communicate with the anchors to trans-
mit the measured CIR and distance data to the server running
the deep learning model and positioning engine.

Each anchor is installed in a fixed position 2.5 meters high
relative to the antennamodule, with anchor 1 at (0,0) (meters),
anchor 2 at (11,0) (meters), and anchor 3 at (11,11) (meters).
Installing each anchor station at a constant height increases
the accuracy of the positioning results.

For accurate CIR measurements, the module is installed
with the orientation facing the inside of the positioning area.
Our positioning experiment is a square measuring 8.5 meters
by 9.5 meters, and the transceiver antenna is installed at
45 degrees toward the center of the square. Antenna angles
for each anchor station are configured arbitrarily and may
contain errors. Fine setting of antenna angles is not an essen-
tial factor to consider because this work aims to improve the
accuracy of Kalman filter position estimation according to
CIR analysis.

To establish a reference path for positioning, a person
moved into a rectangular positioning area consisting of an
anchor station with a mobile phone in three ways: inside a
bag, inside a pocket, and in an open space estimated into a
hand. FIGURES 11 and 12 show the UWBDWM3000 equip-
ment and installation environment used in the experimental
evaluation.

FIGURE 11. DWM3000 and NUCLEO F429ZI Development kit.

We selected three LoS, NLoS scenarios as an experiment
in which the proposed deep learning-based classification
model improves the positioning accuracy by reducing the
ranging error occurring in the NLoS situation of the personal
device: The scenario of moving with the tag on hand, the
scenario of moving the tag in the bag, the scenario of mov-
ing the tag in the pocket. Three experimental scenarios for
evaluating the proposed algorithmic settings are shown in
FIGURES 13, 14, and 15.

2) SETUP FOR DATASETS
The dataset used in the experiment is the amplitude data of the
CIR measured at the same time as the distance measurement.
Distance measurements include errors due to design errors
in the equipment itself, the location of objects present in the
indoor environment, and the material of the objects.

To obtain more accurate location data, a process of cor-
recting the errors contained in this distance measurement is
required. The CIR data is an indicator of the quality of the
UWB communication channel and can be used to compensate
for errors in distance measurements.

Our CIR data acquisition environment is an environment in
which tag and anchor act as initiators and responders, respec-
tively, and communicate through SS-TWR. Here, TWR was
performed between the anchor and the tag with LoS path,
as well as between the anchor and the tags in the pocket
and the bag. In addition, we also extracted CIR through the
ranging measurement.

We have divided the NLoS path into two cases to allow
deep learning models to learn specific features about the
NLoS path through multi-classification. Finally, We obtained
CIR data assuming three scenarios. The three scenarios
include the open space, the pocket, and the bag. And the
distances between the tag and the anchor are 8, 9, and
10meters, respectively. The proportions of CIR data collected
for distances of 8, 9, and 10 m for tags in the bag, the pocket,
and the open space are shown in FIGURE 16 and are used as
learning data for deep learning.
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FIGURE 12. Installation of UWB anchors in experimental environment.

FIGURE 13. Indoor positioning experimental environment for tags on
hand.

The total number of learning data is 90,000, and each of
the three wireless environments consists of 30,000 data. Deep
learning-based propagation environment multi-classifiers use
this CIR data to classify open space, bag, and pocket. We had
1,016 CIR data in one TWR we acquired, but the data
meaningful for interpretation was after the first path, so we
extracted CIR data from 850ns and later. Each plot shows the
amplitude distribution of the CIR over the time axis for all
samples from which the learning data was obtained.

FIGURE 14. Indoor positioning experimental environment for tags in
pocket.

FIGURE 15. Indoor positioning experimental environment for tags in bag.

FIGURE 17 shows a top view of the amplitude dis-
tribution of real numbers and imaginary numbers in the
CIR data in three propagation environments between the
UWB transmitter and the UWB receiver. Since the actual
positioning environment is a typical indoor environment
rather than a chamber, there are many indirect path sig-
nals due to the surrounding walls and multipath. To enable
deep learning models to learn this better, the learning data
acquisition environment has acquired CIR data in a more
realistic environment as a laboratory environment, not an
anechoic chamber. For example, the CIR amplitude near
index 7500 is indented compared to other indexes, as shown
in FIGURE 17 (b), which can be seen as a signal degradation
caused by multipath present in the environment.

FIGURE 17 (a)-(c) shows the amplitude of the CIR that
appears when it is 8, 9, and 10 m away from the anchor
fixed to the tag in the open space. In FIGURE 17 (a),
we can see that the peak is maintained without noise, but
in FIGURE 17 (b), we can see that noise is included due to
multipath from the surrounding environment as the distance
increases. Since these noises are so small that they can occur
when the tag moves, we used the corresponding data contain-
ing noise in the learning as it is to enable the deep learning
model to learn efficiently.
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FIGURE 16. Ratio of CIR data obtained in three scenarios.

FIGURE 17. The top view of the learning data (CIR amplitude) distribution: (a)-(c) CIR amplitude measured at the tag in open space 8 m (a), 9 m (b), 10 m
(c) away from the anchor, respectively; (d)-(f) CIR amplitude measured at the tag in pocket 8 m (a), 9 m (b), 10 m (c) away from the anchor, respectively;
(g)-(i) CIR amplitude measured at the tag in bag 8 m (a), 9 m (b), 10 m (c) away from the anchor, respectively.

FIGURE 17 (d)-(f) shows the amplitude of the CIR that
appears when it is 8, 9, and 10 m away from the anchor
fixed to the tag in the pocket. Compared to other distances,

we can see that the peak of the CIR decreases as the distance
between the tag and the anchor increases. The propagation
path between the anchor and the tag in FIGURE 17 (e) is
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NLoS, and the amplitude of the CIR is unevenly distributed as
the distance increases, as there is an obstruction to the signal
from the tag in the pocket. We can see that the maximum
amplitude of the CIR has also decreased as moves to 10 m.

FIGURE 17 (g)-(i) shows the CIR amplitude at 8, 9, and
10 m from the anchor in the bag in the fixed anchor and
NLoS path. Like tags in pockets, there is no LoS path between
anchors, so the amplitude of the CIR is unevenly distributed
as the distance increases, but the signal is more disturbed by
items in the bag, such as books and laptops, compared to tags
in the pocket. Moving to 10 m, we can see that the maximum
amplitude of the CIR is difficult to distinguish signals by
multipath.

Compared with FIGURE 17 (f) and (i), we can see that
the CIR magnitude peak in FIGURE 17 (c) is constant and
produces less noise. In addition, the maximum amplitude of
the CIR measured at the same distance by the environment
was most pronounced in the open space.

B. DNN-BASED CLASSIFICATION RESULTS
To improve the positioning accuracy of the position error
correction algorithm, we trained a DNN-based deep learn-
ing classification model using distance-specific CIR learn-
ing data. The proposed deep learning model learns from a
preprocessed dataset by assigning labels corresponding to
propagation environments where tags were placed during a
single TWR, simultaneously with 1016 amplitude data from
CIR measured as learning data from deep learning models.

Depending on the characteristics of the mobile phone, the
learning data are constructed by specifying the situation in
which themobile phonemay exist with high probability in the
pocket and bag so that the contextual CIR characteristics can
be learned better by the deep learning model. Deep learning
models can learn the propagation environment according to
CIR amplitude distribution and distance.

Experiments in the position error correction algorithm per-
form SS-TWR between the UWB tag and the anchor and
use the obtained CIR and distance data as inputs to the
pre-trained deep learning model. The deep learning model
uses the acquired data to classify which class the propagation
environment of the current tag belongs to and outputs it
as probability data. The softmax-based activation function
then obtains the sum of all class probabilities as 1 with a
probability between 0 and 1 by weighing the Kalman filter’s
measurement model and the system prediction model using
the output from the deep learning model.

FIGURES 18 and 19 show graphs for classification
accuracy and loss of deep learning models, respectively.
In FIGURE 18, the model accuracy reached stable 0.99 after
40 epochs. Also, FIGURE 19 shows the model loss appears
to be less than 0.1 after 40 epochs. We see that the proposed
model achieves a higher classification of accuracy as the
epoch of learning continues.

C. POSITIONING RESULTS
This section tests the proposed positioning system for indoor
UWB personal devices. To verify the correction level, the

FIGURE 18. Training and test accuracy of proposed DNN model.

FIGURE 19. Training and test loss of proposed DNN model.

proposed trilateration-based positioning algorithm compares
the trilateration positioning calculated from UWB-based
TWRmeasurement data with the positioning result calculated
from ranging data corrected using the KF estimator and the
positioning result of our proposed WAKF.

In our experiments, we possess UWB in two represen-
tative ways since we cannot obtain accurate knowledge of
the various environmental-specific UWB TWRmeasurement
errors of mobile phones in multiple positions. The situation
of having a mobile phone is divided into the case of putting a
mobile phone in a bag, putting it in a pocket, and carrying it
in hand, just like how learned learning data.

Positioning is performed using TWR-based trilateration
positioning with 5 position calculations per second.

It is judged that it is difficult to trust the measured value if
the output value classified by the tag of the pocket and bag is
close to 1, so increase the value of the process noise covari-
ance and reduce the value of themeasured noise covariance of
the measured noise. When the noise matrix is set, the Kalman
filter adjusts the Kalman gain for the data in that input to
output a calibrated distance prediction.

We compared location data calculated from TWR distance
data obtained from human travel paths to trilateration-based
locations, Kalman Filter-based locations to Kalman Filter-
based locations, and WAKF, calculated from distance data
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FIGURE 20. Estimated positions of the tag on hand. Red dots are
positioned by the trilateration algorithm, blue points are positioned by
the normal Kalman filter, and green dots are positioned by the proposed
WAKF. The orange area is an area extending by ±50 cm in width based on
ground truth.

corrected by the proposed deep learning-based distance error
correction algorithm.

The comparison method thickens the path with a constant
ratio of error for ground truth, which is determined to be
8.5 meters × 9.5 meters in size, and compares how much
location data is contained inside.

FIGURE 20 shows the results of an experiment in which
the UWB terminal moved along a specified path with the
UWB terminal on hand. The red dots represent where the
distance measurement data were calculated by the trilat-
eration positioning algorithm. The blue dots represent the
positions where the trilateration positioning algorithm is cal-
culated from distance data calibrated with a typical Kalman
filter. The green dots mark where the trilateration position-
ing algorithm is calculated from distance data applied with
the proposed correction algorithm. We can see the esti-
mated results of applying our proposed algorithm close to
the ground truth in black. This shows the distance error
occurring in the NLoS situation was accurately classified and
estimated.

The orange area in FIGURE 20 has an error tolerance of
±50 cm for ground truth. Within this area, 347 WAKF-based
location data, 315 KF-based location data, and 319 general
trilateration-based location data were observed. We can see
that the proposed algorithm estimated its location more accu-
rately than other algorithms.

FIGURE 21. Estimated positions of the tag in the pocket. Red dots are
positioned by the trilateration algorithm, blue dots are positioned by the
normal Kalman filter, and green dots are positioned by the proposed
WAKF. The orange area is an area extending by ±50 cm in width based on
ground truth.

FIGURE 21 shows experimental results when the UWB
terminal moved with the UWB terminal in its pocket. The
location data based on trilateration shows that the value
is more unstable than when moved on hand. We can
see the TWR-based distance measurement data contained
more errors from NLoS and Multipath. As illustrated
in FIGURE 21, the location estimated by our proposed
algorithm was closer to the black ground truth; 344
WAKF-based location data, 292 KF-based location data, and
262 trilateration-based location data were observed in the
orange area.

FIGURE 22 shows the results of an experiment in which
the UWB terminal moved with the UWB terminal in the
bag. We can see that the error in the location data is greater
compared to the experiments of the hands and pockets. This is
because interference factors such as laptops and books in bags
that contain terminals have a greater impact on UWB signal
propagation, resulting in ranging errors. In the orange area,
342 WAKF-based location data, 262 KF-based location data,
and 262 trilateration-based location data were included. The
experimental results with ±25 cm and ±100 cm, including
±50 cm, are shown in TABLE 2.
According to TABLE 2, the proposed positioning system

improved positioning accuracy by up to 27.22% and at least
20.84% in the ±25 cm of error tolerance, by up to 22.78%
and at least 7.78% in the ±50 cm of error tolerance, by up to
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FIGURE 22. Estimated positions of the tag in the bag. Red dots are
positioned by the trilateration algorithm, blue dots are positioned by the
normal Kalman filter, and green dots are positioned by the proposed
WAKF. The orange area is an area extending by ±50 cm in width based on
ground truth.

TABLE 2. Accuracy comparison between the proposed approach (WAKF)
and traditional approaches (Kalman Filter and Trilateration) for three
scenarios with different error tolerances. (Raw data are available upon
request*.)

8.33% and at least 0.27% in the ±100 cm of error tolerance.
A notable result is that the proposed method has nearly 100%
accuracy for ±100 cm of error tolerance to the ground truth.

V. CONCLUSION
In this study, we appliedUWB technology to provide accurate
indoor positioning of personal devices such asmobile phones.
Since TWR measurement errors occur in NLoS conditions

FIGURE 23. Amplitudes of CIR measured at the tag in open space and the
anchor at a distance of 8 m.

FIGURE 24. Amplitudes of CIR measured at the tag in open space and the
anchor at a distance of 9 m.

FIGURE 25. Amplitudes of CIR measured at the tag in open space and the
anchor at a distance of 10 m.

between UWB terminals, we applied a deep learning-based
propagation environment classification model to classify
NLoS conditions through UWB CIR and device-to-device
distances and perform error correction through the Kalman
filter.

At this time, to improve the classification accuracy of the
deep learning model, the NLoS conditions were subdivided
into consideration of the representative portable method of
the mobile phone to collect the learning data.
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FIGURE 26. Amplitudes of CIR measured at the tag in the pocket and the
anchor at a distance of 8 m.

FIGURE 27. Amplitudes of CIR measured at the tag in the pocket and the
anchor at a distance of 9 m.

FIGURE 28. Amplitudes of CIR measured at the tag in the pocket and the
anchor at a distance of 10 m.

As a result, we developed an indoor precision localiza-
tion scheme for UWB trilateration-based mobile phones.
To reduce the environmental TWR measurement error,
WAKF was used as the main estimator, and Kalman gain was
adjusted by applying the propagation environment classifica-
tion results. Experimental results show that the WAKF esti-
mator has been able to significantly reduce errors occurring
in typical mobile phone-carrying situations.

FIGURE 29. Amplitudes of CIR measured at the tag in the bag and the
anchor at a distance of 8 m.

FIGURE 30. Amplitudes of CIR measured at the tag in the bag and the
anchor at a distance of 9 m.

FIGURE 31. Amplitudes of CIR measured at the tag in the bag and the
anchor at a distance of 10 m.

Overall, our proposed WAKF-based algorithms for per-
sonal devices localization enhances positional accuracy by up
to 27.22% with ±25 cm of error tolerance over an unfiltered
positioning algorithm and by up to 23.89% with ±25 cm of
error tolerance over a typical Kalman filter-based positioning
algorithm.

Our approach can be applied to environments where learn-
ing data for deep learning has been acquired, and in new and
expanded environments, additional learning data and deep
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FIGURE 32. Estimated positions of the tag on hand. The orange cover
area is an area extending by ±25 cm in width based on ground truth.

FIGURE 33. Estimated positions of the tag in a pocket. The orange cover
area is an area extending by ±25 cm in width based on ground truth.

learning models need to be improved. In future research,
we will study adaptive deep learning models according to
changes in the positioning environment, data learning that
does not require improvement of deep learning models, and
feedback learning methods that can automatically calculate
system errors/measurement errors of the Kalman filter.

FIGURE 34. Estimated positions of the tag in a bag. The orange cover area
is an area extending by ±25 cm in width based on ground truth.

FIGURE 35. Estimated positions of the tag on hand. The orange cover
area is an area extending by ±100 cm in width based on ground truth.

APPENDIX
FIGURES 23-31 illustrate amplitudes of CIRmeasured under
different environments (an open space, a pocket, and a bag)
at different distances (8 m, 9 m, and 10 m).

FIGURES 32-37 demonstrate estimated positions of the
tag under different environments (a hand, a pocket, and
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FIGURE 36. Estimated positions of the tag in a pocket. The orange cover
area is an area extending by ±100 cm in width based on ground truth.

FIGURE 37. Estimated positions of the tag in a bag. The orange cover area
is an area extending by ±100 cm in width based on ground truth.

a bag) and different error tolerances (from ± 25 cm to
± 100 cm).
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