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Abstract

We propose an efficient approximation of the swaption normal volatility to estimate the

mean reversion separately from the other volatility parameters in the Gaussian two-factor

model. We compare our two-step approach with a one-step method that calibrates all

parameters simultaneously. The comparison is based on the data from interest rate market

of Korea and the US. The parameter estimates of our proposed two-step method are more

stable than those of the one-step method in that the latter is overly sensitive to market

changes whereas the former is not. The proposed approach also eliminates many existing

problems in the Gaussian two-factor model.

Introduction

This paper aims to detail and address the calibration and parameter-control issues associated

with the Gaussian two-factor model (G2PP) in the affine term structure model (ATSM) class.

The G2PP model, characterized by two mean reversions and volatility parameters, is prevalent

among market practitioners for derivatives pricing and risk management because it is concise

and easy to handle analytically. Despite its popularity, previous studies have not reported cali-

bration problems faced while using this model. Hull and White [1] propose the basic proce-

dure for the calibration of the Hull-White model using a tree method. However, there are still

some critical issues that this paper aims to address.

First, it is often argued that the adoption of time-dependent parameters in the G2PP model

can lead to overfitting. However, prior literature does not present specific cases to elucidate

this issue. Consequently, the boundary conditions of the model remain unclear. For example,

under what contexts and to what extent can such overfitting concerns be justified? This also

raises the question of how to configure the model parameters, given specific applications such

as piecewise constant parameters. Second, how do we calibrate model parameters when they

are time-dependent? When configuring a specific parameter, we need to determine the strat-

egy to be used when calibrating the model and whether to regard some parameters as time-

dependent or not. Third, one of the most critical issues from the trader’s point of view is how

to control the model parameters in line with their intuitions. Traders often want to incorporate

their market views in the pricing model by adjusting the model parameters. However, the

existing literature does not provide a method for incorporating traders’ views into the model

parameters.
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This study addresses these issues. Our approach presents sufficient control over the param-

eters while allowing sufficient freedom of fitting. We analyze three methods to calibrate the

parameters in simultaneous or two-step approaches. The simultaneous method estimates all

parameters at once, whereas the two-step method estimates some parameters first and then the

others. Next, we propose a method for the approximation of the swaption normal volatilities.

Our approach leads to a very efficient approximation, especially for constant model parame-

ters, and provides additional insight into market and model relationships because of its explicit

form. We demonstrate the importance of the mean-reversion parameters when fitting several

swaption tenors over the entire swaption matrix. We find that the approximation produces sta-

ble calibration results when considering both the mean reversions and volatility parameters as

constants.

In summary, this study extends the ideas of Hull and White [1,2]. We investigate whether

to impose constraints to some time-dependent parameters and analyze various issues such as

parameter stability and the relationship between model parameters and the market price (or

volatility) of calibration instruments. Therefore, our study is a complementary and detailed

follow-up of the work done by Hull and White [1,2].

We highlight ATSM over the market model started by Brace et al. [3] and Jamshidian [4],

which has become the standard to price structured interest rate products. In the market

model, the dynamics of observable market interest rates such as the London Interbank Offered

Rate (LIBOR) and swap rates, are incorporated directly. The model is attractive to market

practitioners because it facilitates the calibration of the market cap and swaption volatility and

initial yield curves. However, the class of market models has one critical disadvantage. It can

be implemented only through simulation, not through a closed form. This simulation is usu-

ally slow because several state variables must evolve. It is a typical problem for path-dependent

products (i.e., range accrual products) that require the simulation of many paths to achieve

sufficient accuracy. The problem can be even more critical for early exercise products (i.e., call-

able swap and bermudan swaption) because simulation is inconvenient to perform backward

calculations to determine the optimal exercise time [5]. Unlike market models, ATSM

attempts to capture bond yields by modeling short-term and unobservable interest rates. In

this regard, ATSM has several advantageous properties.

First, analytical calculations are possible, admitting closed forms for the cap/floor and effi-

cient price estimation for European swaption. Second, it is simpler for ATSM to implement

Monte Carlo simulation than for the market model to do so. Third, in ATSM, all interest rates

(i.e., futures and swap rates with different maturity/payment dates) can be easily calculated

from short rates. By contrast, market models often require interpolation and extrapolation for

dates that do not match the date of the standard model. Many market practitioners still use

ATSM for trading, hedging, and risk management, even after market models have been intro-

duced owing to the computational efficiencies provided by ATSM.

The remainder of this paper is organized as follows. Section 2 reviews the G2PP model. It

includes analytic formulas required for our analysis, including an approximation of swaption

normal volatility. Section 3 suggests how to calibrate models under various configurations.

Section 4 presents the numerical results used to test the calibration methods and discusses

their performance. Section 5 concludes the paper.

Model dynamics and closed forms

To evaluate the swaption price analytically, we analyze the variance of the zero-coupon bond

ratio and the functions that characterize the affine structure of the bond. We use the closed
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formulas found in previous studies [6]. In the G2PP model, the short rate is given by:

rðtÞ ¼ xðtÞ þ yðtÞ þ yðtÞ; ð1Þ

where θ is the deterministic function, and x, y are stochastic processes. In S1 Appendix, we

specify the mean and variance of x and y, the zero-coupon bond price, and the swaption price

more explicitly.

Dynamics

Under a risk-neutral measure Q, the stochastic differential equations (SDE) of the G2PP

model can be written as:

rðtÞ ¼ xðtÞ þ yðtÞ þ yðtÞ; rð0Þ ¼ r0;

dxðtÞ ¼ � aðtÞxðtÞdt þ sðtÞdW1ðtÞ; xð0Þ ¼ 0;

dyðtÞ ¼ � bðtÞyðtÞdt þ ZðtÞdW2ðtÞ; yð0Þ ¼ 0;

ð2Þ

with the time-dependent functions as follows: {a(t), b(t)} for the mean reversions, {σ(t), η(t)}
for the volatility parameters, and<dW1(t), dW2(t)> = ρ(t)dt. The function θ(t) reflects the

exact initial curve. r(t) follows a normal distribution with mean and variance as:

E½rðtÞjFs� ¼ E½xðtÞjFs� þ E½yðtÞjFs� þ yðtÞ;

Var½rðtÞjFs� ¼ Var½xðtÞjFs� þ Var½yðtÞjFs� þ 2Cov½xðtÞ; yðtÞjFs�;
ð3Þ

where Fs is a σ-field generated by r(t) up to s. The zero-coupon bond P(t, T) can be written as a

G2PP

Pðt;TÞ ¼ Aðt;TÞexpf� Bða; t;TÞxðtÞ � Bðb; t;TÞyðtÞg; ð4Þ

where the functions Aðt;TÞ and Bð�; t;TÞ are described and explained in Appendix A. Using

Ito’s lemma,

dPðt;TÞ
Pðt;TÞ

¼ r tð Þdt � s tð ÞB a; t;Tð ÞdW1 tð Þ � Z tð ÞB b; t;Tð ÞdW2 tð Þ: ð5Þ

To derive the closed forms, we consider the bond ratio with fixing at time TF and payment

at TP (t�TF�TP), which has the dynamics in the TP-forward measure as:

d
Pðt;TFÞ

Pðt;TPÞ

� �

¼
Pðt;TFÞ

Pðt;TPÞ
sðtÞðBða; t;TPÞ � Bða; t;TFÞÞdWTP

1 ðtÞ þ ZðtÞðBðb; t;TPÞ � Bðb; t;TFÞÞdWTP
2 ðtÞ�:ð6Þ

�

The integrated variance of
Pðt;TF Þ

Pðt;TPÞ
is

Vpðt;TF;TPÞ ¼
R TF

t s2ðuÞðBða; u;TPÞ � Bða; u;TFÞÞ
2du

þ
R TF

t Z2ðuÞðBðb; u;TPÞ � Bðb; u;TFÞÞ
2du

þ 2
R TF

t rðuÞsðuÞZðuÞðBða; u;TPÞ � Bða; u;TFÞÞðBðb; u;TPÞ � Bðb; u;TFÞÞdu

¼ Vxðt;TFÞBða;TF;TPÞ
2
þ Vyðt;TFÞBðb;TF;TPÞ

2

þ 2Covx;yðt;TFÞBða;TF;TPÞBðB;TF;TPÞ;

ð7Þ

where Vx and Vy are the variance of x and y respectively, and Covx,y is the covariance of x
and y.
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Closed form for caplet and swaption. Let us consider a caplet with strike K, fixing date

TF, and paying date TP. The caplet can be written as a zero-coupon bond put option (ZBP).

Applying the black formula to the variance of the bond ratio produces:

Caplet K;TF;TPð Þ ¼ 1þ Kdð ÞZBP TF;TP;
1

1þ Kd

� �

;

ZBPðTF;TP;XÞ ¼ KPð0;TFÞNðd1Þ � Pð0;TPÞNðd2Þ;

d1 ¼

ln
Pð0;TFÞX
Pð0;TPÞ

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VPð0;TF;TPÞ

p þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VPð0;TF;TPÞ

p
; d2 ¼ d1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VPð0;TF;TPÞ

p
;

ð8Þ

where δ = δ(TF, TP) is the fraction in years from TF to TP.

Next, let us consider a payer swaption with notional N, strike K, option expiry T0, swap

maturity TP, and swap cash flows at time {Ti}i = 1,� � �,n (TP = Tn). In the G2PP model, Jamshi-

dian’s decomposition for the coupon-bearing-bond option and European swaptions are not

applicable. Therefore, such products need to be priced via alternative methods, such as numer-

ical integration or Monte Carlo simulations. The swaption price when the model parameters

of the G2PP are constant is as follows:

PSwaptionðK;T0;TPÞ

¼ NP 0;T0ð Þ
R1
� 1

e
�

1

2

x � ~m1

~s1

� �2

~s1

ffiffiffiffiffiffiffi
2P
p Fð� h1ðxÞÞ �

Xn

i¼1

liðxÞe
kiðxÞFð� h2ðxÞÞ

" #

dx;
ð9Þ

where

h1 xð Þ ¼
�x � ~m2

~s2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ~r2
p �

~rðx � ~m1Þ

~s1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ~r2
p ; h2 ¼ h1 xð Þ þ B b;T0;Tið Þ~s2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ~r2

p
;

liðxÞ ¼ ciAðT0;TiÞe
� xBða;T0 ;TiÞ;

Xn

i¼1

lie
� �xBðb;T0 ;TiÞ ¼ 1;

ci ¼ Kti for a < i < b and cb ¼ 1þ Ktb;

ki xð Þ ¼ � B b;T0;Tið Þ ~m2 �
~s2

2
ð1 � ~r2Þ

2
Bðb;T0;TiÞ þ ~r~s2

x � m1

~s1

� �

;

~m1 ¼
s2

2a2
1 � e� 2aT0ð Þ þ

sZr

b
B aþ b; 0;T0ð Þ �

s2

a
þ
sZr

b

� �

B a; 0;T0ð Þ;

~m2 ¼
Z2

2b2
1 � e� 2bT0
� �

þ
sZr

a
B aþ b; 0;T0ð Þ �

Z2

b
þ
sZr

a

� �

B b; 0;T0ð Þ;

~s1 ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e� 2aT0

2a

r

; ~s2 ¼ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � e� 2bT0

2b

r

; ~r ¼
sZr

~s1~s2

B aþ b; 0;T0ð Þ;
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A T 0; T �

� �
¼ exp

1

2
V2

PðT0;TiÞ �

Z Ti

T0

FðuÞdu

( )

;

F: cumulative distribution function of the standard normal distribution.

An approximation of swaption normal volatility. The aforementioned equation analyti-

cally expresses the swaption price but depends on the implied volatility obtained from the

swaption price calculated using the parameters a(t), b(t), σ(t), η(t), and ρ(t). Hence, to calibrate

the model parameters, the swaption prices must be calculated using numerical integration.

Conversely, if we can use the normal volatility of swaption in the calibration procedure, there

is no need to perform numerical integration. Therefore, this section proposes an approxima-

tion to calculate not swaption prices but swaption normal volatilities.

We approximate the swaption normal volatility using the swap market model (SMM). In

this model, the swap rate has martingale dynamics. Given the effective date T0 and maturity

date Tn with t<T0<Tn, the swaption payoff is

VswaptionðT0Þ ¼ AðT0ÞðSðT0Þ � KÞþ; ð10Þ

where A(t) and S(t) are the swap annuity and forward swap rate, respectively:

AðtÞD¼A0;NðtÞ ¼
XN� 1

i¼0

tiPðt;Tiþ1Þ;

S tð ÞD¼S0;N tð Þ ¼
Pðt;T0Þ � Pðt;TNÞ

AðtÞ
:

ð11Þ

In the G2PP model, A(t) and S(t) are determined by x(t) and y(t):

AðtÞ ¼ Aðt; xðtÞ; yðtÞÞ;

SðtÞ ¼ Sðt; xðtÞ; yðtÞÞ:
ð12Þ

Thus, using Ito’s lemma and changing measure from the risk-neutral measure to the annu-

ity measure, we have:

dSðtÞ ¼ drift þ
@S
@x
ðt; xðtÞ; yðtÞÞsðtÞdW1ðtÞ þ

@S
@y
ðt; xðtÞ; yðtÞÞZðtÞdW2ðtÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@S
@x
ð�ÞsðtÞ

� �2

þ
@S
@y
ð�ÞZðtÞ

� �2

þ 2rðtÞsðtÞZðtÞ
@S
@x
ð�Þ
@S
@y
ð�Þ

s

dWAðtÞ

¼ sSðtÞdWAðtÞ:

ð13Þ

Because the functions @S
@x t; xðtÞ; yðtÞð Þ; @S

@y t; xðtÞ; yðtÞð Þ are close to constants, we can approx-

imate,

@S
@x

t; xðtÞ; yðtÞð Þ �
@S
@x

t; �xðtÞ; �yðtÞð Þ;

@S
@y

t; xðtÞ; yðtÞð Þ �
@S
@y

t; �xðtÞ; �yðtÞð Þ;

ð14Þ

where ð�xðtÞ; �yðtÞÞ is a deterministic proxy of a random vector (x(t), y(t)), for instance (0,0). If σ
(t) and η(t) are not too high, then ð�xðtÞ; �yðtÞÞ as (0,0) is a simple choice. Furthermore, it allow

replacing Pðt;T; �xðtÞ; �yðtÞÞ with P(0, T)/P(0, t) [6]. Using this formula, we can obtain the
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swaption normal volatility directly as:

Swaption normal volatility ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR T0

0
sSðtÞdt
T0

s

: ð15Þ

Parameter specifications

To integrate the functions a(t), b(t), σ(t), and η(t) analytically and easily, we set them to piece-

wise constant functions. Let us consider the time grid {ti}i = 1,� � �,N−1, where N is the number of

grid points. Because a, b, σ, η are piecewise constant, we only need to define the values {ai},

{bi}, {σi}, {ηi} at {ti}i = 1,� � �,N−1 at [0, +1).

For example,

aðtÞ ¼
ai t 2 ½ti; tiþ1Þ i ¼ 0 � � � ;N � 1

aN t � tN

: ð16Þ

(

This can be explained by assuming a time grid running for up to 20 years with 1-year inter-

vals. There are N = 21 grid points, for example, (t0 = 0, t20 = 20). Therefore, a typical piecewise

constant function is defined with 21 values, which means 84 parameters, including mean

reversions and volatility parameters. The excessive number of parameters makes the calcula-

tions computationally expensive; hence, we need to impose some constraints.

One way to reduce the number of parameters is to match the number of parameters with market

instruments using methods such as bootstrap. This strategy is typically used for Hull–White one-fac-

tor (HW1F) model; however, it is not suitable for G2PP. In the HW1F model, one parameter exists

per basket [7]; however, in G2PP, two or more parameters exist in one calibration basket.

To reduce the number of parameters, we predetermine the correlation coefficient. Andersen and

Piterbarg [6] suggest that the forward rate correlation, ρ(t), is not necessarily a monotonic function.

For calibration purposes, it is often useful to consider ρ(t, t,1), the correlation between the short rate

and the long-dated forward rate. Assuming a time-homogeneous correlation structure, we obtain

r t; t;1ð Þ ¼
1þ rC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rC þ C2

p ; C ¼
ZðtÞ
sðtÞ

; ð17Þ

an expression that does not depend on the mean reversions of x and y. Assuming that C is a con-

stant, we can obtain the correlation coefficient ρ from this relationship with no other model

parameters. The cms spread option market provides us with information on the correlation

between the interest rates. However, in the absence of such a market, this scheme may be useful.

Calibration methodologies

This section suggests methods to calibrate the G2PP model at the swaption market (volatilities)

using the swaption approximation equation presented in Section 2. By calibration methodolo-

gies, we mean the following: (1) the choice of constant or time-varying mean reversions and

volatilities, (2) the choice of products for calibration, (3) whether to calibrate locally or glob-

ally, (4) whether to calibrate the mean reversions and the volatilities at once or separately and

in the latter case, how to estimate them independent of the other.

Relationship between market data and model parameters

Before starting the calibration procedures, it is useful to consider what types of the swaption

normal volatilities are obtained from the G2PP model. This section aims to study the effect of

mean reversions and volatility parameters on the swaption normal volatility.
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We change the value of the constant volatility parameters σ and η with fixed mean rever-

sions at 0.01. We display the result in Fig 1 for the option expiries of 3M and 10Y. In panel A

of Fig 1, it is clear that as the volatility parameters of the model increase, the swaption normal

volatility increases. Furthermore, at fixed option expiry, the ratios between two normal

Fig 1. Swaption normal volatilities for the G2PP model with different model volatilities. Panel A shows the swaption normal volatilities for the

3-months option expiry in the G2PP model with different volatility parameters and fixed mean reversions (a, b = 0.01). Panel B shows the swaption

normal volatilities for the 10-years option expiry in the G2PP model under the same conditions as those in Panel A. Here, it is difficult to determine

the relationship between mean reversions and swaption normal volatility.

https://doi.org/10.1371/journal.pone.0280829.g001
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volatilities with swap tenors vary little with volatility parameters. That is, the normal volatility

ratio of swaption is independent of the volatility parameters. The volatility parameters σ and η
are affected by the level of the normal volatility curves, without significantly changing their

shapes. More details are given in next Section 4.1.

Next, we fix the volatilities parameters and change the mean reversions to constants. The

results are shown in Fig 2, which indicates that 0 have a qualitatively different effect on the

swaption normal volatility. When the change between 0.5% and 20% is considered, we see that

the swaption normal volatility curve decreases monotonically as the swap maturity increases,

unless the mean reversion is 20%.

Calibration on the mean reversion

Market practitioners tend to implement two methodologies to calibrate the HW1F model for

vanilla products such as callable swap. The first method calibrates both the mean reversions

and the volatility parameters simultaneously. The second calibrates the mean reversions first

and then calibrates the volatility parameters for cap/floor and/or swaption volatilities.

We compare two strategies to calibrate the G2PP model. The first calibrates all parameters,

including ρ simultaneously. The second one that we propose fixes ρ, a, b and then calibrates

only the volatility parameters to swaption. We present detailed numerical examples of the sec-

ond method. Note that this study does not aim to identify which method is better. Rather, we

present the strategies and collect some numerical results. We believe our results are useful to

practitioners, and to the best of our knowledge, are the first to be reported in the literature.

Bootstrap vs. global calibration

The bootstrap method is the first strategy we consider. This method uses the first market

instrument to estimate model parameters from 0 to the first maturity T1, and the second mar-

ket instrument to estimate model parameters from T1 to T2, etc.

In the first-time grid, up to five parameters exist that need to be calibrated. However, this

often results in a large change in parameters. Moreover, the optimization results highly depend

on the initial seeds owing to the curse of dimensionality. To avoid such disadvantages, we sug-

gest the implementation of the following strategy.

First, we do not perfectly fit specific instruments for calibration; rather, we consider them

as baskets for optimization. Second, we choose parametric forms for the mean reversions and

volatility parameters excluding the correlation coefficient ρ, as explained in the previous sec-

tion. The number of model parameters and fitted instruments are not necessarily equal. Next,

we calibrate all model parameters (except ρ) to fit all the market instruments simultaneously,

between the model and market volatilities.

We can add constraints to the model parameters in the parametric forms for the calibration

basket. Therefore, if we take the functionals suitably, such as the addition of a penalty function

with boundary conditions, no big jumps will appear. However, a disadvantage is that it is diffi-

cult to find how one parameter affect the parametric forms for a calibration basket. Generally,

we must perform multi-dimensional optimizations, such as the Levenberg–Marquardt algo-

rithm [8]. A goal of this study is to show that imposing constraints on model parameters pro-

duces more stable and meaningful results.

Calibration to swaptions

This section introduces three calibration methods. The key difference among the methods is

the way the mean reversions are handled regardless of whether the parameters are constant or

a function of time. First, we estimate the mean reversions independently of the volatility
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parameters and then find the volatility parameters. The second method simultaneously esti-

mates the mean reversions and volatility parameters with a fixed correlation coefficient. In the

third method, the mean reversions, volatility parameters, and correlation coefficient are all

estimated simultaneously. All optimizations to calibrate the parameters are performed using

Fig 2. Swaption normal volatilities for the G2PP model with different mean reversions. Panel A shows the swaption normal volatilities for the

3-months option expiry in the G2PP model with different mean reversions and fixed volatility parameters (σ = 50bp, η = 50bp). Panel B shows the

swaption normal volatilities for the 10-years option expiry in the G2PP model under the same conditions as those in Panel A. Here, it is difficult to

determine the relationship between mean reversions and swaption normal volatility.

https://doi.org/10.1371/journal.pone.0280829.g002
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the Levenberg–Marquardt algorithm. The user must select the initial seed of the optimization.

In practice, the latest calibration results are used as the initial seed. These methods are

described in the following subsections.

Method I (Two-step approach). The first method (Method I hereafter) comprises two

steps: (1) Calibrate the mean reversion parameters {a, b} using the volatility ratios of swaptions

described further in this section. (2) Calibrate on the volatility using the SMM approximation

with the mean reversions in (1).

In step (1), by making two assumptions, we do not need the volatility parameters of G2PP.

We can only consider the ratio of two swap variances with the same option expiry Mi but dif-

ferent swap tenors Tj and Tk. Thus,

VarðMi;TjÞ

VarðMi;TkÞ
�

C2C2
aðMi;TjÞ

RMi
0

e2atdt þ C2
bðMi;TjÞ

RMi
0

e2btdt

þ2CCaðMi;TjÞCbðMi;TjÞ
RMi

0
e2ðaþbÞtdt

0

@

1

A

C2C2
aðMi;TkÞ

RMi
0

e2atdt þ C2
bðMi;TkÞ

RMi
0

e2btdt

þ2CCaðMi;TkÞCbðMi;TkÞ
RMk

0
e2ðaþbÞtdt

0

@

1

A

; ð18Þ

where

Ca Mi;Tkð Þ ¼
e� aMiPð0;MiÞ � e� aTkPð0;TkÞ � Sð0Þ

PN� 1

i¼0
tiPð0;Tiþ1Þe� aTiþ1

aAð0Þ
;

C ¼
s

Z
;

which is independent of the volatility parameters. Using the volatility ratio of swaption

between model and market, we can obtain the mean reversions without the volatility parame-

ters {σ, η} of G2PP. More precisely, we can use the market swaption normal volatilities with

option expiry Mi and swap tenor Tj such that there are nm option expiries and nt swap tenors.

We can calibrate the mean reversions {a, b} (possibly multi-dimensional) at which the func-

tion

G a; bð Þ ¼
X

1 � i � nm;

1 � j; k � nt� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðMi;TjÞ

VarðMi;TkÞ

s

�
VmktðMi;TjÞ

Vmkt
ðMi;TkÞ

 !2

; ð19Þ

has its minimum value.

Step (2) is an estimation of the volatility parameters. We only estimate the volatility parame-

ters, such that the analytical swaption normal volatility Vmod
a;b;ρðMi;TjÞðs; ZÞmatches the swap-

tion normal volatility Vmkt
ðMi;TjÞ from the market. Vmod

is an approximation formula that

calculates the swaption normal volatility in Section 2.3 using at-the-money (ATM) options.

The subscripts for {a, b, ρ} indicate that the mean reversions and correlation coefficient have

been fixed at predefined values. That is, our volatilities are the points σ, η at which the function

Ga;b;rðs; ZÞ ¼
X

1 � i � nm

1 � j � nt� 1

ðVmod
a;b;rðMi;TjÞðs; ZÞ � Vmkt

ðMi;TjÞÞ
2
; ð20Þ

has a minimum value. This method requires the performance of two two-dimensional (2-D)

optimizations.
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Method II. The second method (Method II) is very simple with just one step: calibration

of the mean reversions and the volatility parameters simultaneously. The calibrated mean

reversions and volatility parameters are the points at which function

Grða; b; s; ZÞ ¼
X

1 � i � nm

1 � j � nt� 1

ðVmod
r
ðMi;TjÞða; b; s; ZÞ � Vmkt

ðMi;TjÞÞ
2
; ð21Þ

has its minimum value. This method means that we perform one four-dimensional (4-D) minimiza-

tion. It is more sensitive to the initial seed than Method I because there are more targets to optimize.

Method III. In the third method (Method III), the mean reversions, volatility parameters,

and correlation coefficient are calibrated simultaneously. This method involves performing

one five-dimensional (5-D) minimization with the following objective function:

Gða; b; r; s; ZÞ ¼
X

1 � i � nm

1 � j � nt� 1

ðVmodðMi;TjÞ � VmktðMi;TjÞÞ
2
: ð22Þ

It is more sensitive to the initial seed than Method I and Method II because it has more tar-

gets to optimize.

Results

This section shows the numerical results. We apply the methods described in Section 3 to the

Korea Won ATM swaption. The swaptions dataset comprises the swaption normal volatility of

option expiries 1-, 3-, 6-, 9-, 18-months, 1-, 2-, 3-, 4-, 5-, 7-, and 10-years, with underlying

swap maturities of 1-, 2-, 3-, 4-, 5-, 7-, and 10-years each (84 swaption contracts exist in total).

To follow the market convention, a swaption is considered ATM option when the strike rate

equals the forward swap rate for the same swap maturity. To construct the yield curve, we use

1-day call rate, 3-months Certificates of Deposit (CD) rate, and swap rate with maturity 6-, 9-,

18-months, 1-, 2-, 3-, 4-, 5-, 7-, 10-, 11-, 12-, 15-, 20-, 25-, 30-years.

The summary statistics of the KRW yield curve from January 2017 to December 2020 are

reported in Panel A of Table 1. The number of observations is 997. Panel B, C, D, and E of

Table 1 show the summary statistics of KRW swaption normal volatility for the same period.

We obtain all data from the Refinitiv composite page quoted by the broker [9].

Swaption normal volatility by SMM approximation

The swaption normal volatility using the SMM approximation in Section 2.3 shows the effect

of the mean reversions and volatility parameters. Using this approximation, we can determine

the relationship between each model parameter and the swaption normal volatilities.

Fig 1 shows the swaption normal volatilities using the SMM approximation corresponding

to different volatility parameter η values (10, 20, 50, 100, and 200 bp) while fixing the mean

reversions at 0.01, and the other volatility parameter σ at 50 bp. This figure shows that the

swaption normal volatilities with high η are larger than those with low volatility parameters.

Fig 2 shows the swaption normal volatilities calculated using SMM approximations accord-

ing to different mean reversion b values (0.005, 0.01, 0.05, 0.10, and 0.20) while fixing the vola-

tility parameters at 50 bp and the other mean reversion a at 0.01. The relationship between the

mean reversion and swaption normal volatility is inconclusive.

Panel A of Figs 3 and 4 display the ratios of the swaption normal volatilities with fixed C ¼
s=Z under the mean reversion parameters. Panel B of Figs 3 and 4 focuses on the influence of

changing the volatilities on the normal volatility ratios with fixed mean reversions. All
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swaption normal volatilities used in Figs 3 and 4 are computed using the SMM approximation.

The swaption normal volatility ratios are insensitive to the volatility parameters changes; they

depend mainly on the mean reversions.

Fig 3. Swaption normal volatility ratios to swap maturity of 10Y with option expiry of 3M. Panel A shows the swaption normal volatility ratios to

swap maturity 10Y and other tenors under various mean reversions and fixed volatility parameters. All swaptions had an option expiry of 3M. The

swaption normal volatility ratio curve moves downward as the mean reversion parameters increase. Panel B shows the swaption normal volatility

ratios to swap maturity of 10Y and other tenors under various volatility parameters when the mean reversions and the ratio of volatility parameters

are fixed. The swaption normal volatility ratio curves for the various volatility parameters are above the same line. That is, the swaption normal

volatility ratios with equal swap maturity depend entirely on the mean reversions.

https://doi.org/10.1371/journal.pone.0280829.g003

PLOS ONE How to calibrate Gaussian two-factor model using swaption

PLOS ONE | https://doi.org/10.1371/journal.pone.0280829 February 23, 2023 14 / 21

https://doi.org/10.1371/journal.pone.0280829.g003
https://doi.org/10.1371/journal.pone.0280829


In summary, the volatility ratios of swaptions with the same option expiry depend mainly

on the mean reversion parameters if C ¼ s=Z is fixed. This observation inspires the second cal-

ibration strategy where the mean reversions and volatility parameters are calibrated separately.

Fig 4. Swaption normal volatility ratios to swap maturity of 10Y with option expiry of 10Y. Panel A shows the swaption normal volatility ratios to

swap maturity of 10Y and other tenors under various mean reversions and fixed volatility parameters. All swaptions have an option expiry of 10Y.

The swaption normal volatility ratio curve moves downward as the mean reversion parameters increase. Panel B shows the swaption normal volatility

ratios to swap maturity of 10Y and other tenors under various volatility parameters when the mean reversions and the ratio of volatility parameters

are fixed. The swaption normal volatility ratio curves for the various volatility parameters are above the same line. That is, the swaption normal

volatility ratios with equal swap maturity depend entirely on the mean reversions.

https://doi.org/10.1371/journal.pone.0280829.g004
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Choice of instruments

Let us consider the case of calibrating KRW swaptions. Our data comprised 84 swaptions. This

does not refer to 84 degrees of freedom. Instead, the user can select a subset of swaptions to

estimate the parameters of the model. Future tests will consider local calibration, a popular

strategy among practitioners. This calibration selects swaptions with a fixed co-terminal

Table 2. Calibration basket of “20NC1Yr callable CMS spread floater”. This table presents a calibration basket

comprising 36 swaptions. The basket contains co-terminal swaption and comprises two indexes that make up the CMS

spread, a swaption with a swap maturity of 20Y and 10Y. The option expiry of the basket can be either the early exercise

date of the callable product or option expiry quoted in the swaption market. In this study, we use the option expiry

quoted in the swaption matrix.

Swap Maturity

Option expiry Co-terminal Swaption SpreadIndex1 SpreadIndex2

1M 19Y11M 10Y 2Y

3M 19Y9M 10Y 2Y

6M 19Y6M 10Y 2Y

9M 19Y3M 10Y 2Y

1Y 19Y 10Y 2Y

18M 18Y6M 10Y 2Y

2Y 18Y 10Y 2Y

3Y 17Y 10Y 2Y

4Y 16Y 10Y 2Y

5Y 15Y 10Y 2Y

7Y 13Y 10Y 2Y

10Y - 10Y 2Y

19Y (last call date) 1Y - -

https://doi.org/10.1371/journal.pone.0280829.t002

Table 3. Calibration basket for step (1) of the two-step approach. This table presents the calibration basket for step

(1) of the two-step approach. Based on the volatility with swap maturity of 10Y, the longest swap maturity in the market

quote, the basket comprises the swaption volatility ratio with swap maturity of 1Y, and the shortest swap maturity on

the market. In our test case, the non-call period is 1-year; thus, we use an option expiry from 1Y to 10Y. Moreover, we

include the ratio of volatility with swap maturity of 5Y in the basket.

Option

expiry

Swap Maturity in

denominator

Swap Maturity in

numerator

Swaption Normal Volatility Ratio

1Y 10Y 1Y Vmktð1Y; 10YÞ=Vmktð1Y; 1YÞ
5Y Vmkt

ð1Y; 10YÞ=Vmkt
ð1Y; 5YÞ

2Y 10Y 1Y Vmktð2Y; 10YÞ=Vmktð2Y; 1YÞ
5Y Vmkt

ð3Y; 10YÞ=Vmkt
ð3Y; 5YÞ

3Y 10Y 1Y Vmkt
ð3Y; 10YÞ=Vmkt

ð3Y; 1YÞ
5Y Vmktð3Y; 10YÞ=Vmktð3Y; 5YÞ

4Y 10Y 1Y Vmkt
ð4Y; 10YÞ=Vmkt

ð4Y; 1YÞ
5Y Vmkt

ð4Y; 10YÞ=Vmkt
ð4Y; 5YÞ

5Y 10Y 1Y Vmktð5Y; 10YÞ=Vmktð5Y; 1YÞ
5Y Vmkt

ð5Y; 10YÞ=Vmkt
ð5Y; 5YÞ

7Y 10Y 1Y Vmktð7Y; 10YÞ=Vmktð7Y; 1YÞ
5Y Vmkt

ð7Y; 10YÞ=Vmkt
ð7Y; 5YÞ

10Y 10Y 1Y Vmkt
ð10Y; 10YÞ=Vmkt

ð10Y; 1YÞ
5Y Vmktð10Y; 10YÞ=Vmktð10Y; 5YÞ

https://doi.org/10.1371/journal.pone.0280829.t003
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(option expiry + swap maturity) and an underlying swap. We consider the 20Y co-terminal

swaption and the 10Y-2Y spread index. Table 2 summarizes the results of this study.

For Method II in Section 3.4, we need an additional calibration basket for the mean rever-

sions. The instruments for the calibration basket comprise two swaptions with the same option

expiry and different swap tenors. As shown in Table 3, we choose 1-, 2-, 3-, 4-, 5-, 7-, 10-years

for option expiry, 10-years for long swap maturity, and 1-year for short swap maturity. Our

test uses four-year data from January 2017 to December 2020, where we perform the calibra-

tion daily.

Co-terminal 20Y and 10Y-2Y spread index

In the simplest case of constant a, b, σ, and η, we can find a typical behavior of overfitting on the

mean-reversion side. This section compares the results of the three aforementioned methods.

Fig 5. (Method I) model parameters calibrated to 20Y co-terminal and 10Y-2Y spread with ρ = −0.9. Panel A

shows the mean reversions calibrated with step (1) of the two-step approach, and panel B shows the volatility

parameters calibrated with step (2). A significant change occur in the 2nd and 3rd quarters of 2019 in all panels. This is

because the swap rates declined owing to cuts in the US and Korea’s benchmark rate, and swaption normal volatility

rose.

https://doi.org/10.1371/journal.pone.0280829.g005
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Figs 5–7 show the parameters obtained by Methods I, II, and III, respectively. In all cases

except Method III, significant changes in mean reversions are observed in the 2nd and 3rd

quarters of 2019. The swap rates decline owing to cuts in the benchmark rates of Korea and

the US, and the swaption normal volatility rose.

In Fig 5, the mean reversion a and the volatility parameter σ behave similarly. However, we

can see that the other volatility parameter η changes significantly when the mean reversion b
has a significant change. The parameters reflect changes in the market when market events

such as falling benchmark interest rates occur.

Figs 6 and 7 show that the results from Methods II and III can change significantly depend-

ing on market conditions, even without large market events. Naturally, the more the parame-

ters to be calibrated, the more the sensitivity of the results to even small market changes

(owing to the curse of dimensionality); numerous local minima exist in the optimization algo-

rithm. Therefore, the parameters significantly depend on the initial seeds. This problem affects

the measure of sensitivity, such as the delta and vega. For structured products, no closed form

Fig 6. (Method II) model parameters calibrated to 20Y co-terminal and 10Y-2Y spread with ρ = −0.9. Panels A and

B show the mean reversions and volatility parameters, respectively, calibrated with the one-step method. The mean

reversions and volatility parameters change significantly every day. Many significant changes occur (e.g., in the 2nd

and 3rd quarters of 2019).

https://doi.org/10.1371/journal.pone.0280829.g006
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exists for the sensitivity. Therefore, we typically change the market data to numerically com-

pute the sensitivity. Here, if the model parameters are overly sensitive when the interest rate

increases by 1bp, delta or vega are not stable, which results in poor risk management. Gener-

ally, we conclude that the two-step method (Method I) produces more stable results than the

alternatives, proving the practical validity of our suggestion.

Conclusion

This paper suggests an efficient approximation of the swaption normal volatility in the G2PP.

We analyze the one-step approach and the novel two-step approach to estimate the model

parameters using the approximation. The one-step method calibrates all parameters

Fig 7. (Method III) model parameters (ρ included) calibrated to 20Y co-terminal and 10Y-2Y spread. Panels A, B,

and C show the mean reversions, volatility parameters, and correlation coefficient, respectively, calibrated with the

one-step method. Here, the correlation coefficient stands out and is sensitive to changes in market data. Whereas, the

mean reversion parameter hardly moves, the others change dramatically.

https://doi.org/10.1371/journal.pone.0280829.g007
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simultaneously. The two-step approach estimates the mean reversion in the separation of the

other volatility parameters of the G2PP. We compare the two-step method with the one-step

method in the interest rate market of Korea and the US. We find that the parameter estimates

from our two-step approach are more stable than those from the one-step method.

This study adds two contributions to the literature. First, we provide detailed documenta-

tion and numerical examples of calibration methods for the G2PP model that the existing liter-

ature has disregarded. Our findings will be a useful starting point for practitioners to

implement their calibration because it would save trial and error attempts. Second, we dispute

some negative opinions about the G2PP model [10]. For example, it is widely known that the

G2PP model cannot fit the swaption matrix well and becomes unstable as the number of

parameters increases. We find that the two-step approach eliminates these problems.

This study has three limitations. First, we do not aim to identify the best calibration

method. Instead, we compare the three calibration methods using constant parameters. Users

can select a calibration method depending on their purpose and preference for fitting quality,

run time, and simplicity of implementation. Nevertheless, a low degree of freedom in the opti-

mization provides more stable results, and we show how to calculate mean reversions with a

lower degree of freedom. We use the Levenberg–Marquet algorithm for the optimization

method. Whereas the results from the optimization algorithm are usually sensitive to seed val-

ues owing to the nature of the algorithms, we can overcome such problems with the proposed

two-step approach, which has a smaller dimension.

Second, although we propose and analyze a constant parameter approach, other creative

alternatives are possible. Future studies can investigate other parameter settings with different

degree of freedom. For example, one can modify the two-step approach, assuming constant

mean reversions in the first step and piecewise constant volatility parameters in the second

step.

Third, we use calibration to calculate the sensitivity and the price of the derivatives. To eval-

uate a single product, one would need as many as hundreds of calibration processes. In the

future, deep learning techniques can be applied to this calibration process, whereas this study

highlights only the two-step approach.
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