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Abstract: Incessant generation and mismanagement of industrial waste, resource scarcity, and
environmental degradation have created non-sustainability in human life. Though industrial wastes
are hazardous or non-hazardous in nature based on their source, open dumping disposal is commonly
done for both types of waste. The adversity associated with waste enhances the environmental and
health impacts. However, this waste has the potential to recycle and minimize resource scarcity. The
circular economy works on the concept of reuse, recycling, and recovery to convert waste into a
resource. Thus, industrial waste can benefit the environment and economic growth to build industrial
ecology. However, the opportunities and challenges associated with industrial ecology for the reuse
and recycling of waste have to be identified and preserved. Therefore, this study has identified
challenges associated with waste, analyzed their impact, and industrial regulations, prioritized
their criticality, and developed solution strategies to alleviate them. Two case studies on industrial
byproducts, i.e., fly ash and red mud, based on different income groups are discussed in this study.
It highlights the circular economy has minimized waste generation and enhanced the recovery of
secondary resource materials. In addition, this study supports achieving the sustainable development
goals (SDGs) 11 and 12 to build a sustainable industrial ecosystem.

Keywords: industrial waste; environmental impact; circular economy; red mud; coal fly ash

1. Introduction

The rapid increase in urban population, rise in living standards, pace in economic
growth and, consequently, the change in behavioral lifestyle have resulted in different
adversities. Due to the “throw-away” practice in the society, a tremendous increase in waste
generation has been recorded, which comes from different sources and different practices.
Commonly, “waste” is a substance belonging to the refused, rejected, abandoned mass,
and unwanted surplus volume, which is generated by different anthropogenic and/or
biological activities [1]. They can be divided into several categories according to their
source of generation, hazardous property, disposal techniques, and degradation properties
(refer to Figure 1).

Due to the structural changes in the societal behavior of an economic system, industrial
activities are very important [2]. In fact, it has become an intrinsic part of the modern era to
fulfill their day-to-day demands from basic needs to luxurious items by either exploring the
primary sources or tapping secondary (end-of-life) materials. In order to run sustainable
industrial activities, two points are vital, they are (a) the continuous supply of raw materials
and (b) effective disposal of the waste generated by the industrial activities (which is an
obvious part of the industrial process). Since the industrial waste generation is a huge
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volume as per the scale of operations (for the small/medium/large scale industries), their
proper handling becomes more important than other waste (relatively in a lower quantity
at the individual level, if compared with household wastes or institutional wastes or
construction wastes). Though industrial waste varies in its types and characteristics and
few have been summarized in Table 1. It is observed that still very less research has been
done to manage industrial waste in a sustainable manner [3].
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Table 1. Types of industrial waste.

Industry Type of Waste References

Agro and food industry

Banana peel, orange peels, rice bran, wheat bran, grape marc, palm
biomass wastes, oil mill wastewater, grape skin pulp extract, olive

pomace, sunflower-oil, pomegranate peel waste, pomegranate peels
app, dairy waste, rice straw biomass, pineapple cannery waste, empty

fruit bunch, spent coffee ground waste, fermented cheese whey

[4,5]

Mining and
manufacturing Industries

Acid and bases, spent solvents, organic constituents, heavy metal
solutions, waste ink solvent, waste water containing benzene and

other hydrocarbons, spent petroleum catalyst, waste sludge, toluene
and benzene, electronic scrap, computer printer circuit board, waste
battery, sludge containing heavy metal cyanide waste, paint waste,
metallurgical slags, gaseous and particulate emissions, overburden,

waste rock, mineral beneficiation tailings, paper and pulp
wastewater; paper sludge; paper mill waste; pulp and paper liquor

[5–7]

Petroleum Industry

Spent chemical solutions, waste oil, plastics, toxic drilling mud, oily
wastewater, sour water, desalter wastewater, spent amine solution,

spent caustic, oil free wastewater, metal scraps, spent catalyst,
charcoal bags, sewage, CO, CO2, H2S, SOx, NOx, NH3, off-gas,

particulate matter, oil-contaminated solids, oil sludge, empty drums,
office and domestic waste

[8,9]

Aluminum Industry Waste rock, red mud, scrap materials, dross, and spent pot lining [10]

Thermal Industry Coal fly ash, coal boiler ash, waste gases CO2, SOx, NOx, Off-gas,
particulate matter [11]
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Kaza et al. [12] have correlated industrial waste generation with a country’s income
group like high-income (42.62 kg/capita), upper-middle-income (5.72 kg/capita), and
lower-middle-income (0.36 kg/capita) countries. For instance, American industries are
quantified to be generated ~7.6 Gt of industrial waste, which is evaluated to be ~3.5 Gt
for China in 2019 [10,13]. As per an estimation data from Sweden, annually 66 Mt of
waste is produced whereas about 58 Mt belongs to the industrial waste category. Only
16 Mt are reused by the industries themselves, while 26 Mt (including waste from mining
activities) are going for dumping as the industrial dumps, and 4.5 Mt waste that consists
of non-branch-specific waste (including construction and demolition waste) are sent to
landfills. As environmental regulations become stricter worldwide, it is important to find
a sustainable solution for industrial waste disposal other than landfilling. Interestingly,
as per the disposal techniques, waste can be categorized into four types: municipal solid
waste, electronic waste, bio-medical waste, and nuclear waste. It indicates that a significant
quantity of industrial waste is merged with other disposal categories, which is inappropriate
to be mixed. For example, the waste generated by small and medium enterprises (SMEs) are
always dumped as municipal solid waste, sometimes including electronic and mine waste.
The waste generated by these SMEs are very different in nature, for instance particle size,
moisture content, density, permeability, and heavy metal composition than that of other
types of wastes; however, they are vital for the economic and social development of any
country and necessitate managing industrial waste to avoid environmental pollution and
minimize limited resource consumption. Owing to this, the concept of circular economy
is introduced in the industrial sectors that work on the concept of recycling and reuse for
efficient utilization of resources and issues associated with disposal.

Additionally, the United Nations Sustainable Development Goals (SDGs), SDG11 and
SDG12, also highlight the sustainable management of industrial waste and recycling for the
re-use of end-of-life (waste) materials as the potential secondary resource. Henceforth, in-
depth understanding is needed to improve waste processes to shift towards sustainability
and create an environmentally friendly society, free from the risk of resource exhaustion
for their well-being. The opportunities and challenges for reuse and recycling should be
preserved. Nevertheless, cumulative discernment, rapid elaboration, and diverse societal,
political, and economic challenges result in very different technical and non-technical
barriers that present a complex and uncertain issue [14]. Indeed, it also needs to understand
the opportunities and challenges for their reuse under the industrial ecology and recycling
for solving the associated social and environmental issues. Highlighting these opportunities
and challenges is a significant step towards improving waste management outcomes,
developing technologies, and implementing alternative solutions.

2. Research Methodology

To extract the articles on the topic presented herein, the initial keyword “industrial
waste management” was searched, yielding more than 27 million results. Then after the
searched keywords “industrial waste management articles” could reduce the number to a-half.
To narrow down the search, we used the same keywords in sciencedirect.com, which limited
the search to 192,027 (17,537 reviews; 124,327 research articles; 3432 encyclopedias; and
24,005 book chapters), which could be limited to 129,030 for the years between 2011–2023,
and we focused on research articles only (more than 89,000 articles). Later on, red mud
management (5938 articles) and coal fly ash management (6384 articles) were chosen to go
through. To ensure relevance to the topic of this review article and needful information to
share with the readers, about 220 items were manually screened out and included herein.

3. Why Industrial Waste Is a Problem and Sustainable Management Is Required?

The discharge of industrial activities is crucial to producing different forms of waste
that widely range from manufacturing to electronics and auto repair. This includes scrap
metal, chemicals, plastic waste, and a range of other potentially toxic compounds [15,16].
Industrial waste poses a serious threat to both the environment and human health. It
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can cause severe contamination of soil, water, and air if it is not disposed of properly.
Subsequently, this can have negative impacts on humans, including the health of the
workers in the industrial facility and its surroundings. Interestingly, open dumping is
yet to be regulated as it is still a common disposal practice in various industries. The
legacy of mining activities in the form of debris mountains is usually seen, while the fly-ash
mountain is a common view near a coal-burning power plant or smelter using metallurgical
industries [17].

A large part of industrial waste contains heavy metals which can be hazardous and
toxic in nature (refer to Table 2), however, infiltration of which can pose significant adversity
to the flora and fauna. In and around the dumping yards, leachate generation due to the
degradation of organics and/or weathering effects is supposed to happen when water is
infiltrating through the wastes, which directly changes the soil nature of the surroundings
and contaminates the groundwater. Dust and litter from the waste can be scattered by the
wind, which leads to air quality deterioration in the vicinity of disposal sites. Sanitary
methods of waste disposal also produce odor and affect the aesthetics of the area. The
decomposition of wastes also releases noxious gases like dioxins and other toxins which
lead to skin irritation, respiratory problems, and other illness related to the lungs, neuro, and
heart [18–20]. Consequently, the greenhouse gas (GHG) emission generated by the waste
is creating hazards, causing global warming, strong storms, typhoons, and unbearable
heat that leads to climate change. The emission of carbon dioxide gas (CO2), a prominent
GHGs can increase the rates of carbonation in reinforced concrete structures, reducing
the life of infrastructure [21]. It changes the size of the habitat animals need to survive
in the environment [22–24]. Waste and garbage can also affect animals and marine life as
soil and water can be poisoned due to the waste-induced toxic chemicals that arise from
industrial waste [25–28]. Climate change along with soil and water contamination leads
to the extinction of species and a threat to biodiversity [29–31]. Additionally, waste from
nuclear reactors and spent fuel are growing concerns as they pose a serious problem to the
biological systems [32–35]. In nutshell, the issues related to industrial waste that leads to
environmental pollution can be seen in Figure 2.

Table 2. The adversities related to different metal contents in industrial wastes [36].

Toxic Metals Limit, ppm Disease Caused by Exposure to the above Permissible Limit

Ag * 5.0 Excessive amount causesblue pigments on the body, damaging the brain, lungs, liver, and kidney

As ** 5.0 Chronic effect and causes skin disease and lung cancer and impaired nerve signaling

Ba ** <100 Causes brain swelling, muscle weakness, damage to the heart

Be ** 0.75 Causes lung cancer, beryllicosis, skin disease, carcinogens

Br ** 0.1 thyroid gland damage, hormonal issues, skin disorder, DNA damage, hearing loss

Cd ** 1.0 Pose a risk of irreversible impacts on human health particularly the kidney

CN ** <0.5 Cyanide poisoning, >2.5 ppm may cause to coma and death

Cr(VI) ** 5.0 Toxic in the environment, causing DNA damage and permanent eye impairment

Hg ** 0.2 Damages brain, kidney and foetuses

Li * <10 # Diarrhea, vomiting, drowsiness, muscular weakness

Ni * 20.0 Causes allergic reaction, bronchitis, reduces lung function, lung cancers

Pb *** 5.0 Damages brain, nervous system, kidney, and reproductive system, causes acute and chronic
effects on human health

Sb ** <0.5 Carcinogen, causing stomach pain, vomiting, diarrhoea and stomach ulcer

Se ** 1.0 High concentration causes selenosis

Sr *** 1.5 Somatic as well the genetic changes due to this cancer in bone, nose, lungs, skin

Zn ** 250.0 nausea, vomiting, pain, cramps and diarrhea

CFCs ** <1.0 for 8 h/day Impacts on the ozone layer which can lead to greater incidence of skin cancer

PCBs ** 5.0 PCB causes cancer in animals and can lead to liver damage in human

PVC ** 0.03 Hazardous and toxic air contaminants, the release of HCl causes respiratory problems

* Critical; ** hazardous and toxic; *** radioactive waste; # limit in serum/blood.
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Air pollution, damage to watersheds, and contamination of soil are issues due to
improper management of industrial waste. Since the 1970s, laws have existed to prevent
the disposal of chemicals and industrial or radioactive wastes into the ocean. However,
several environmental incidents have happened that led to new regulations and care for
sustainable management. According to the Environmental Protection Authority Act (EPA)-
1968, the ocean-dumping practices have been quantified to 4.5 million tons of industrial
waste, 38 million tons of dredged material (34% polluted), and 4.5 million tons of sewage
sludge (contaminated with heavy metals). Waste management infrastructure becomes
overburdened when materials are eligible for recycling but finds their way to landfills
instead of being reused or repurposed. Therefore, it is of utmost importance to manage the
waste coming out from different industrial sources.
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On the other hand, incessant requirements for industrial products have also created
unsustainability in material supply. The raw materials (primary resource materials) used in
the industries are limited and created a huge burden in material logistics that is converted
as industrial waste. Therefore, proper handling of waste volume along with recycling,
reuse, and smart disposal techniques can be a sustainable way to industrial waste manage-
ment. The decision-making process toward efficient waste management is greatly impeded
by environmental pressures, economic growth, and societal sustainability [37]. Neverthe-
less, sustainable waste management needs in-depth studies on the reduction, treatment,
recycling, and final disposal (waste combustion and landfilling) of industrial wastes and
it helps in reducing the rapid elaboration, cumulative discernment, and diverse social,
political, environmental, and economic challenges [14,38]. It should also contain resource
efficiency, carbon neutrality, and endorse cleaner production activities to conserve “waste
as a resource” [14].

4. Industrial Waste Regulations

International regulations and laws, such as the Kyoto Protocol (1997), Paris Agreement
(2015), COP27 [39] have addressed the issues of carbon emission, climate change, and
resource conservation. Recently, COP27 has highlighted the contribution of the waste sector
towards global GHG emissions is 10%. It was also estimated that open dumping accounts
for 31% of waste management whereas some lower-income countries rely on it for up to
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93% of their waste disposal. Mismanaged waste affects health and the environment, and
contributes to GHG emissions, as the black carbon aerosols may have 5000 times more
global warming potential than CO2 [39]. Therefore, a regulation on waste management
not only saves the environment and protects human health, but also mitigates the risk of
massive fines and penalties for non-compliance. The Environmental Protection Authority
(EPA) of Taiwan sets the laws on industrial waste management namely, “Environmental
Protection (Industrial Waste Resource) Regulations 2009” under the hierarchy of eleven
principles of environmental protection contained in the EPA-1970. It provides information
on (i) characterizing constituents of industrial waste, (ii) waste minimization, (iii) fact
sheets, and (iv) assessing risks posed by certain wastes. The waste management hierarchy
shows the order of preference as follows:

1. Avoidance
2. Reuse and recycling
3. Recovery of energy
4. Treatment and disposal.

Accordingly, the best practice can be to minimize waste generation instead of its
treatment and disposal, which is the least preferred approach. Additionally, the EPA
can fine over $72,000 per day, per violation for non-compliant hazardous waste disposal
or processes. Moreover, the US EPA also provides resources for state-by-state policies
and guidance for all waste streams, whereas, the Federal Resource Conservation and
Recovery Act (RCRA) provides oversight of hazardous wastes. As such, every state can
also apply for EPA state authorization, which turns over the responsibility of hazardous
waste management to the state level.

In this context, the Taiwanese government promotes industrial waste recycling under
the Waste Disposal Act (WDA), Resource Recycling and Reuse Act (RRRA), and Environ-
mental Basis Law (EBL) by imposing regulations on industrial waste management [40].
The resultant concept has been jointly developed by Taiwan’s EPA and Industrial Develop-
ment Bureau (under the Ministry of Economic Affairs) after commissioning the Industrial
Technology Research Institute (ITRI) that established the Industrial Waste Exchange In-
formation Center (IWEIC) for the promotion of industrial waste exchange, as depicted
in Figure 3 [41,42]. Besides, Korea has also endorsed the Framework Act on Resource
Circulation (FARC) like Europe in 2016, to build a sustainable material circulation society
by minimizing primary resource consumption and waste generation. It has enabled re-
cycling and suitable disposal of the generated waste [43,44]. The FARC has emphasized
giving priority to building a circular society through waste management that can reduce
the waste at source, reusing the generated wastes, recycling wastes that cannot be reused,
and thermally recycling the wastes that are difficult to recycle will be landfilled. India and
Thailand governments have implemented hazardous and industrial waste management
that includes the Factory Act and Hazardous Substance Act [45,46].
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5. Sustainable Management of Industrial Waste

The waste generated from industries is crucial to treat and has been classified into
three categories: (i) chemical waste, (ii) solid waste, and (iii) toxic and hazardous waste
based on their treatment. The linear economy model has been used in the industry i.e.,
take-make-dispose, which is unsustainable and creates huge amounts of waste materials
that can be either toxic or have the potential to recycle as resources [47]. Environmental
problems and resource conservation have been critical issues worldwide therefore, a closed-
looped circular economy has been introduced to industrial design and process where
the recycling and reuse concept is introduced to convert waste into a resource [44,48].
The industrial circular model proposed by Li et al. [49] showed that the linear economy
where raw materials go to manufacturing and disposal can be reversed flow in a closed
loop system. Wherein disposed materials are reprocessed and recycled to further use in
manufacturing and from that product can be made (as depicted in Figure 4). Thus, the
circular model can minimize waste generation, provide secondary raw materials, and
generate revenue.

Recently, Kanwal et al. [10] assessed the recyclability of industrial waste for anthropogenic
circularity for 18 different classes of industrial waste (refer to Table 3). A lower recyclability of
industrial waste of grade (D) indicates a less efficient metal recovery; whereas, a higher degree
of material mixing (H) is more accessible and economical to recycle than others. On contrary,
a lower degree of mixing with a higher R-value is better in terms of the process economy.
For example, red mud, gold tailings, gypsum, and Cu-slag have higher recycling rates than
that Fe-vanadium-slag, dried oily sludge, and coal fly ash has lower recyclability. In order to
understand industrial waste management, therefore, we have chosen one case study from
each type of industrial by-product i.e., (i) red mud from Bayer processing of bauxite ore, and
(ii) fly ash from coal-burning; leading towards the circular economy approach that minimizes
environmental pollution and to build industrial ecology.

Table 3. Entropy, grade, and recyclability of industrial waste [10].

Waste Category Type H (bit) D R (/bit)

Slag

Iron and steel slag 0.03–0.48 5.56 23.18
Stainless steel slags 0.03–0.37 2.26 37.89

Red mud 0.001–0.51 9.28 40.75
Copper slag 0.07–0.53 3.69 38.49
Gypsum slag 0.03–0.48 4.00 35.71

Desulfurized gypsum 0.03–0.53 4.58 34.32
Iron vanadium slag 0.01–0.15 4.34 17.00

Tailings

Copper tailings 0.014–0.53 12.88 23.56
Iron tailings 0.04–0.53 10.74 27.12
Gold tailings 0.003–0.49 9.76 45.69

Arsenic filter cake 0.01–0.53 5.40 22.09
Phosphogypsum 0.01–0.53 9.90 27.94

Sludge
Dried oily sludge 0.34–0.28 5.71 32.77

Copper sludge 0.15–0.52 2.33 27.59
Electroplating sludge 0.08–0.52 3.95 21.77

Petrochemical waste Spent catalyst 0.48–0.51 0.97 12.24

Fly ash
Coal fly ash 0.01–0.53 9.35 28.04

Mixed fly ash 0.0056–0.28 5.20 28.73

5.1. Industrial Waste Management of Red Mud

Red mud belongs to one of the major stockpiles of industrial wastes, which is generated
by the Bayer process in alumina production from the primary mineral, bauxite (refer
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Figure 5a) [50]. As an estimate, the global stockpile of red mud is over 4 billion tons and
growing at a rate of 175.5 Mt/year [51]. On average, 1.0–1.5 tons of red mud are generated
during each ton of primary alumina production [52]. Along with its generation in large
quantity, the high alkalinity (i.e., pH between 10 to 13) of red mud is a major hurdle to
dispose of this industrial hazard [53], resulting in costlier disposal [54]. Currently, they are
majorly stored in artificial ponds/dams and then allowed to be dried in open areas that
pose environmental risks. Several incidents of dam failures significantly increase social
and environmental threats [55]. Therefore, finding a cost-efficient and environmentally
sustainable technique for the safer disposal of red mud is highly desirable. Depending upon
their physio-chemical properties, the individual and integrative approach to utilizing red
mud as construction materials, contaminants’ removal, neutralizing agent to acidic waste,
valuable metals recovery, etc. can be sustainable [56–58]. Red mud has been classified
according to the production process of alumina, as follows [59]: (i) Bayer process red mud,
(ii) sintering process red mud, and (iii) combined process red mud, summarizing their
properties in Table 4. The XRD analysis in Figure 5b shows the typical mineral phase
therein the sample and SEM-EDX depicts the surface morphology of the red mud.

As can be seen from Table 4, the composition of all types of red mud is different and their
characteristics vary with the origin of the bauxite, which can change over time when stocked
in the open. Different types of red mud mainly have Fe2O3, SiO2, Al2O3, TiO2, Na2O, K2O,
CaO, and MgO. β-2CaO·SiO2 is the main mineral phase existing in the sintering process of red
mud, which differs from the Bayer process red mud, with mineral phases consisting of sodium
aluminosilicate, calcite, aragonite, boehmite, and perovskite, along with Fe2O3, suggesting
that calcium silicate is the primary phase [50,59]. Among the physical characteristics of red
mud, it is a very fine material (average particle size <10 µm) of surface area 64–187 m2/g,
contains large water content (700 to 1000 kg/m3) that accounts for 79–93% of the total weight,
is porous in structure (void ratio 2.5–3.0), of high compressibility (Eg = 28–40 MPa), and
has low shear strength (C = 9.6–74.3 kPa and ϕ = 13.5–21.0◦). Due to the aforementioned
characteristics of red mud, it exerts tremendous stress on the environment.
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Figure 5. (a) Schematic for the extraction of alumina from bauxite using Bayer’s and sintering process,
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the red mud sample [60].

Table 4. The chemical and mineral composition of different types of red mud [59].

(a) Chemical composition Wt.% in Bayer process
red mud

Wt.% in Sintering process
red mud

Wt.% in Combined process
red mud

Fe2O3 28.3 10.97 6.66
Al2O3 17.67 7.68 9.18
SiO2 8.34 22.67 18.1
CaO 20.88 40.78 38.09

Na2O 2.29 2.93 4
TiO2 7.34 3.26 6.72
K2O 0.059 0.38 –
MgO 0.65 1.77 –
Sc2O3 – – 0.02
Nb2O5 – – 0.0193
TREO – – 0.25

(b) Minerals composition and name Wt.% in Bayer process
red mud

Wt.% in Sintering process
red mud

Wt.% in Combined process
red mud

β-Ca2SiO4 (Belite) 46 43 –
(Na2O·Al2O3·1.7SiO2·nH2O) ·NaX or

Na2X (Sodium aluminosilicate) 4 4 20
3CaO·Al2O3·3Si2O2 or

3CaO·Al2O3·xSiO2·(6-2x)
H2O(Anorthite)

5 2 20

CaCO3 (calcite) 14 10 19
Fe2O3·H2O (Limonite) 7 4 4
Al2O3·H2O (Boehmite) – 2 1
CaO·TiO2 (Perovskite) 4 12 15

4CaO·Al2O3·Fe2O3 (Slag) 6 12 –
FeS2 (Pyrite) 1 – –

Loss of ignition 13.88 11.77 16.96
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Table 5 reviews the advantages and disadvantages of the existing predominant red
mud disposal/management processes [61–64]. As presented in the table, the dry stacking
has advantages over lagooning and marine disposal albeit they are not effective in terms of
the environment and resource management. Therefore, right from the stockpiling to the
metal recycling from red mud needs to be evaluated to design a sustainable management
of this residual waste of global concern.

Table 5. Pros and cons of the red mud disposal/management process [61–64].

Pros Cons

Marine disposal

No closure and rehabilitation of storage areas required Hazard effect on sea-bed and the marine ecosystem
Capital and operating expenditures are lower than land-based
disposal methods

Toxic metals contamination to the marine environment,
non-productive for eco-system

Disposal pretreatment like additional thickening or filtration of
the slurry is not needed

Mg and Al compound colloids formation and increase in the
turbidity of seawater

No chance of leaching of toxic metals, contamination of surface
and ground waters and dusting Loss of metal, soda, and alumina values

Dry stacking

Storage needs relatively less land area and structures It needs land and structures and dust mitigation process
is essential

Toxic metals leaching is minimum Challenging in high rainfall and low net evaporation weather
Recycle of soda and alumina values in the liquor for Bayer
process plant Before disposal, thickening or filtration is required

Possible de-liquoring and proper management with rapid
rehabilitation of land Residue production requires filtration plant

Recovery of solids waste with good alternative applications Requires relatively high capital and operating cost

Lagooning

Lowest capital cost for the land-based disposal Loss of metal soda and alumina values
Soda and alumina values in the liquor do not contaminate the
Bayer process plant

Required land areas are quite significant, needs a long-term
planning for rehabilitation

No dusting problem Maintenance cost is high

Before disposal, no thickening or filtration of the slurry is needed Highly alkaline slurry poses hazard to the environment and
human health
Ground water contamination and eventually effect the
food chain

5.1.1. Stockpiling Design of Yard

Red mud stocking can be categorized into two parts: (i) wet (involves slurry transportation
and stocked after precipitation) and (ii) dry stocking (wherein desiccative red mud is transported
and accumulated by air and sun drying). Dry stockpiling with an increased capacity is suitable
for the sintering process, however, the construction and maintenance are costlier. To stock
slurry, the stockpile dam should be firmer and impermeable contrary to the wet stockpiling, it
is suitable for Bayer process red mud. Alternatively, Qiao [65] and Sun [66] designed a mixed
stock method using sintering red mud and Bayer red mud in the initial dam, and Bayer red mud
in the sub-dams that give advantages of small investment of the initial dam and sub-dam with
uncomplicated operation management. The design schematic of a “mixed stocking” is depicted
in Figure 6 [59]. Prevention of dam failure is an important safety factor by discharging the
accumulated volume of liquid. For this, Zhou [67] recommended increasing the quantity and
quality of overflow wells for an improved discharge rate of the liquid, keeping the dam stable,
whereas Wang [68] compared several drainage reinforcement methods, such as horizontal,
radiation, light, horizontal + vertical jointed well, point drainage, etc. From the finite element
analysis of seepage, the study revealed that the combined vertical horizontal seepage drainage
yielded better efficiency. Li et al. [69] suggested using finite element analysis in the red mud
disposal field, while the development of cracks appearing in dry red mud is studied by Rao [70]
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who pointed out that the factors like the rate of settlement, dehydration, salt dissolution, and
pressure differences leading towards the cracks and dam failure.
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5.1.2. Red Mud Diversion to Be Used in Various Applications

Due to a huge stockpiling of red mud in an open environment in continuous mode
of generation, there are several efforts have been taken to divert the residue material to
different applications. As per the attention given in this direction, it can be divided into
three categories: (i) to recover valuable metals from red mud, (ii) use as blending materials
(in particular, to cement), and (iii) as a filling material (in road and building construction
sites, and abandoned mines, not discussed due to less scientific importance). Besides, it has
also been shown as a soil supplement (fertilizer) [71–73] but still, a lot has to be done to fix
this application as a prominent waste management of red mud, and hence, this is excluded
from the scope of this review article.

Metals Recovery from Red Mud

A significant quantity of iron in red mud is attractive to use as a potential source;
however, the presence of other impurities like P, S, Na, and Si makes it difficult by creating
problems for the fluidity of slag and alkali accumulation [74]. A direct magnetic separation
has been employed to physically separate iron with reduced energy costs as compared to
the smelting technique [75]. The thus separated magnetic part can undergo iron production
(refer to Figure 7) while the non-magnetic portion can be sent to construction materials [74].
Using the magnetic separation, the improvement in iron grade was observed from 41.08%
to 45.46% and 20.84% to 35.47% but with a lower recovery rate of up to 35% [76].

Hence, researchers tried to reduce red mud in a smelter furnace to produce pig
iron [77,78] though the recovered iron has been found of a complex structure due to mixing
with other metals, making it necessary to recover all major elements, like Ti and Al as well
(refer to Figure 7). In this context, various reductants like coal [79], coal char [80], coke [81],
carbon [82], carbon powder [83], carbon-pellets [84], etc., are employed while low-energy
consuming plasma technique has been also studied with iron separation efficacy of 71%
and above [85,86]. Alternatively, red mud is directly roast-reduced at different parameters
of carbon dosage, temperature, and red mud ratio, getting a total iron content of about 89%
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with a recovery efficiency >81% [83], while the residual mass undergoing as a construction
material. The reactions involved in the roast-reduction process can be as follows [81]:

3Fe2O3 + C→ 2Fe3O4 + CO (1)

Fe2O3 + 3C→ 2Fe + 3CO (2)

CO2 + C→ 2CO (3)

Fe3O4 + CO→ 3FeO + CO2 (4)

FeO + CO → Fe + CO2 (5)

FeO + C → Fe + CO (6)

Further, to enhance the iron recovery efficiency, several researchers explored changing
iron grain growth using different additives in the reduction roasting process. The addition
of Na2SO4 + CaO leads to a formation of compounds 2CaO·Al2O3·SiO2, NaO·Al2O3·2SiO2,
2CaO·SiO2, CaO·Al2O3, and 12CaO·7Al2O3 that ameliorate the magnetic separation be-
tween alumina and iron [87]. Moreover, Na2SO4 also improved iron grain growth which
increased the iron grade and yielded >92% recovery. Alternatively, Zinoveev et al. [88]
added 22.01% K2CO3 with Na2CO3 for reduction roasting performed at 1250 ◦C and 3 h of
duration. However, the high amount of potassium salt was an issue that was significantly
lower while using Na2SO4 additive with Na2CO3 (both were 6% of the red mud) with
a higher yield of iron about 95% [89,90]. However, as the reduction roasting requires
a prolonged energy-intensive process, several researchers applied microwave technique
for red mud roasting [91,92], thereby achieving a magnetic concentrate of iron with lower
metallization (69.3%) but at a 40% shorter time. Despite showing recovery potential, the
pyrometallurgical techniques need good stability of the refractory depending upon the
composition and temperature of the molten mass; henceforth, an effective technique is yet
to be discovered in terms of environmental beingness [93].

To overcome the pyrometallurgical challenges, the aqueous processes depending upon
the solution chemistry of metals have gained tractions in the recent past (refer to Figure 7).
Debadatta and Pramanik [94] used 8.0 (N) H2SO4 at a pulp density of 20% and temperature
of 100 ◦C maintained for 24 h yielded a 47% iron leaching, which was much lower than
its calcination (at 600 ◦C) followed by H2SO4 leaching process that yielded 97% of iron
extraction from red mud due to the hydrated mineral phases conversion to their anhydrous
phases after the calcination of red mud [95]. Using organic acid, Yu et al. [96] applied
oxalic acid with UV light that precipitated iron-oxalate with 90% of yield. In other studies,
Çengeloğlu et al. [97,98] applied Donnan dialysis for the recovery of Fe, Ti, and Al by
dissolving red mud HCl solution (0.05 to 1.0 M concentrations) prior to recovering the
metals through the charged heterogeneous and Neosepta CMB and CMX cation exchange
membranes. Pepper et al. [99] studied the dissolution of amorphous anatase with only
24% efficacy in diluted H2SO4 which could be enhanced up to 64.5% using 6.0 N H2SO4 at
60 ◦C and 5% pulp density [100]. Zhang et al. [101] applied HCl leaching for dissolving the
metals into the acid solution, which was followed by a two-step solvent extraction process
employing Aliquat 336 for iron extraction and then P204 for scandium extraction from the
leach liquor. Salman et al. [102] studies acid digestion to enhance the rare earth’s dissolution
and subsequently employed ion exchange followed before the solvent extraction for better
separation and recovery of the concerned metals. In a recent study, selective leaching of
scandium on a pH basis (at pH values ≥2.0 using HNO3 as the lixiviant medium) was
employed, exhibiting the interfacial diffusion mechanism with the apparent activation
energy value of 19.5 kJ/mol [103].
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A combinational pyro+hydroapproach was employed by Erçag and Apak [104] to ex-
tract valuable minerals from red mud with coal and dolomite sintered pellet was smelted at
1550 ◦C for 30 min to produce pig iron while the residual slag was leached in 30% H2SO4 solu-
tion at 90 ◦C to dissolve the anatase phase. Further, the solvent extraction of Ti was performed
using 5 vol.% D2EHPA in kerosene to extract ~85% Ti. In another study, Kasliwal and Sai [105]
employed soda roasting at 1150 ◦C, which converted sodium aluminate as water-soluble
species to enrich TiO2 as high as 76% in the leached residue. In order to extract rare earth, red
mud is roasted with H2SO4 forming rare-earth sulfates and converting the other metal sulfates
into corresponding oxides to further leach metals in the water-soluble form [106,107]. The
water-soluble rare-earth sulfates decompose at high temperatures (700–850 ◦C) in comparison
to titanium, aluminum, and iron sulfates (340–540 ◦C). The water leaching step was conducted
at high liquid ratios due to the solubility limitations of the rare-earth sulfates, while the leach-
ing was conducted at high agitations or in the presence of ultrasonic waves to ensure proper
contact between roasted red mud particles and water [106,107]. The sulfation-roasting-leaching
process was followed by scandium precipitation with NaOH at a pH of 7.0–8.0 and oxalic acid
at a pH of 1.0–1.25, respectively [108]. Recently, Ding et al. [103] reported 92% Sc leaching
using the same sulfation roasting-water leaching process at the optimized condition of roasting
at 1023 K for 1 h duration using H2SO4 to red mud ratio 0.9 mL/g followed by leaching at
323 K, pulp density 5 mL/g, stirring speed 200 rpm, and time 2 h. Whereas, Archambo and
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Kwatra [109] reported rare earth’s extraction from red mud iron nugget slag which could
raise their concentration by 100% and subsequently sent to HCl leaching to dissolve the REOs.
Finally, the REE-oxalates were recovered by the oxalic acid precipitation route.

A generalized flow sheet for metals recovery is shown in Figure 7. Figure 7a illustrates
the iron recovery by dissolving aluminum in the alkali solution via solubilizing the water-
soluble sodium aluminate mineral phase of red mud. In contrast, Figure 7b depicts iron
recovery through the smelting, while the slag generated in the process was subjected to
sintering, acid leaching, and carbochlorination to recover other metal values like Al and Ti
along with enrichment of rare earth in the residual mass. Figure 7c shows the carbothermal
reduction for iron recovery through the magnetic separation of roast-reduced product,
remaining Ti, and Al in the tailing mass. Figure 7d illustrates the soda roasting, NaOH
leaching to dissolve sodium aluminate while the residue was roast-reduced with carbon to
perform the magnetic separation of iron. Other than the alkaline medium, Figure 7e,f show
sulphation roasting with H2SO4, which was followed by a water leaching step to dissolve
Sc and rare earths in the solution and leaving other metals in the residue.

Red Mud as a Blending Material

The bulk utilization of red mud to produce building materials like glass ceramics,
cement, and geopolymer bricks has made progress in the recent past to minimize waste
disposal. Dicalcium silicate (as β-2CaO·SiO2) is a major phase in red mud (refer to Table 4)
that can be vital in the crystallization of cement clinker. In comparison to coal fly ash
(mainly composed of SiO2 and Al2O3), the use of red mud in cement could reduce energy
consumption along with increasing the early strength and resistance to sulfate attack
[58,110]. Due to the high Na2O in red mud, the solidification of Na+ helps to avoid the
alkali-aggregate reaction [93]. Researchers showed the production of standard Portland
cement with a large utilization of red mud (~50 wt.%) through thermal activation and
adding metallurgical slag as a modifier [98–113].

The structure of red mud is quite similar to glass-ceramics (CaO-SiO2-Al2O3); hence,
numerous studies have been also reported on red mud utilization in that direction [114,115].
It has been observed that the ~85% of red mud + fly ash mixture can be pushed in the
glass-ceramic to lower the raw material consumption with environmental benefits [116],
albeit the impurity of iron and manganese often alters the color of the final product [117]
and yielding a dense product which can be solved by foam ceramics production [118]. To
replace the Portland cement, the synthesis of aluminosilicate material with red mud is also
tested [119–121]. It has been found that red mud can produce an inorganic polymer of
compressive strength ~21 MPa and a 3% less water adsorption therein [121].

5.2. Industrial Waste Management of Coal Fly Ash

Fly ash is a major residue produced from the combustion of pulverized coal in thermal
power plants and steel plants. USA, China, and India produce 75–120 million tons of coal
fly ash while Europe, Africa, the Middle East, Australia, Japan, and the Russian Federation
collectively produce around 150 million tons of coal fly ash every year. Fly ash utilization
is only 1/4 of the total production (refer to Figure 8) [122–126] India and China have less
than 50% utilization rate, while the Russian Federation, Middle East, and Africa have the
lowest utilization rate [127].

Similar to red mud, fly ash also consists of a variety of heavy metals therein (refer to
Table 6), therefore, large-scale storage of it also results in severe environmental degradation
soon. The potential adverse effects of fly ash are: (i) leaching of potentially toxic substances
like Ca, Na, K, Mn, Fe, S, and Pb from ash into soils and groundwater, (ii) changes in plant
elemental composition, (iii) increased cycling of these toxic elements through the food chain
and (iv) respiratory problems to human beings [128]. Fly ash is generally spherical having
10 to 85% of total coal residue [129], while the main mineral phases are SiO2, Al2O3, Fe2O3,
and CaO [130] along with some unburnt carbon (refer to Figure 9) [131,132]. The ASTM
Standard C-618 divided fly ash into two broad categories, according to their chemical
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compositions. If SiO2 + Fe2O3 + Al2O3 is higher than 70%, fly ash is said to be Class F fly
ash, whereas if SiO2 + Fe2O3 + Al2O3 is between 50% and 70%, then it is said to be Class C
fly ash. Class F fly ash (low-lime fly ash) generally contains less than 10% CaO [133].
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The coal-fired thermal power plants (TPP) cannot generate electricity without creating
environmental pollution in one form or another, be it air, water, or soil [134,135]. The major
fly ash factors that affect the release of pollutants from fly ash to the groundwater include
the quality of coal, source of water, pH, soil attenuation capacity, release mechanisms, long-
term weathering, and solubility-controlling mechanisms [136]. The major disadvantage of
fly ash application to agricultural land is the metal(loid) enrichment and toxicity, and plant
nutrient imbalance such as phosphorous deficiency in soil [137–139]. Inhaling of fly ash
particles imposes health risks by leaching genotoxic compounds that cause diseases like
asthma, bronchitis, and even lung cancer [136,140].

Table 6. Concentrations of trace elements in fly ash.

Trace Element Concentration (mg/kg) Trace Element Concentration (mg/kg)

Mn 250 Pb 56.8
Hg 0.1 Ag 3.2
Be 5 V 252
Zn 148 Se 7.7
Sb 4.6 Cd 3.4
Cu 112 Ba 806.5
Co 36 Cr 136
Sr 775 Tl 9
F 29 Ni 77.7

AS 43.4 B 311

To cope with the associated issues with coal fly ash, an average utilization rate of it
is 60% [140], which has been separately found to be 68–70% for China (comprehensive
utilization of 408 Mt), 54% for the United States (comprehensive utilization of 23.76 Mt),
nearly 100% for Japan (12 Mt), 90% for the European Union (comprehensive utilization
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of 36 Mt), and 63% for India (comprehensive utilization of 106 Mt) [141,142]. The main
aim of any environmental policy is to minimize the environmental impact of waste and
to motivate recycling on a large scale [142–145]. According to the European Standard
EN 450 “Fly Ash for Concrete” means high lime fly ash obtained from the combustion of
pulverized lignite coal cannot be utilized as concrete addition and must be used for filling
open cast mines [146]. In the United States, laws and regulations associated with coal fly ash
management are different between distinct states. Fly ash management includes the current
disposal practices, the cost of alternative disposal methods, as well as the current and
potential future utilization of coal fly ash [147]. According to the Resource Conservation
and Recovery Act, coal fly ash has been classified as non-hazardous solid waste and suitable
for surface impoundments, landfills, and as fill-in surface or underground mines. The US
energy protection agency also limits toxic discharges like cadmium, and chromium (less
than 90%) from coal-fired power plants’ ash wastewater [148]. The utilization of fly ash
in China is a slow-developed process and only building material purposes, construction
projects, and Al-extraction are the common practices [149]. According to the Law of the
People’s Republic of China on the Prevention and Control of Environmental Pollution by
Solid Waste, industrial solid wastes can be termed as (a) general industrial solid wastes
and (b) industrial hazardous wastes. General industrial solid wastes are further divided
into two categories, i.e., class I and class II, depending on the environmental impact. Coal
fly ash falls into class II general industrial wastes and it is not hazardous according to the
Chinese environmental protection agency [150]. Japan Coal Energy Center (JCOAL) leads
the development of the utilization of coal fly ash. Coal fly ash utilization in Japan is 66%
in the cement area, 14% in the civil engineering area, 4% in building, 1% in agriculture,
and 15% in other uses [147]. Australian Environmental Protection Act and Management
regulations follow the same law and regulations as those of the United States. However,
the Department of Environment and Climate Change of New South Wales strictly limits
lead (>100 mg/kg), Cadmium (>10 mg/kg), and mercury (>5 mg/kg) content in the coal
fly ash and hot water-soluble concentration not to exceed 60 mg/kg [151]. The Ministry
of Environment and Forests (MoEF) of India issued a regulation on 14 September 1999 in
which existing (old) and new coal-based thermal power plants must utilize 100% of the
produced fly ash [152].
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5.2.1. Fly Ash Diversion to Be Used in Various Applications

Coal fly ash is rich in metal oxides (like SiO2, Al2O3, Fe2O3, CaO, etc.), suitable to
be used as a cement supplement to replace gypsum, zeolite preparation, and geopoly-
merization while the potential recovery of a significant quantity of rare earth has also
been explored. A brief summary of coal fly ash treatment and the action mechanism is
shown in Figure 10. Due to coal remains a major energy source worldwide and therefore
its continuous generation needs to be taken care of, mainly via (i) the blending with cement
and geopolymer materials, and (ii) recovery of metal values particularly the rare earth
elements, besides sending it as a filling material.
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Use in Cement and Geopolymer Production

Due to a huge stockpiling of red mud in an open environment in continuous mode of
generation, there are several efforts have been taken to divert the residue material to different
applications. The efficient utilization of fly ash is a need of our modern society so that disposal
costs can be minimized by decreasing disposal permitting requirements and it will be a source of
finance or can replace some scarce or expensive resources. The concept of a circular economy
has been implemented to manage fly ash in TPP and has been categorized as the fifth largest
raw material resource [153] and used as an alternative to conventional materials in the cement
industry [154]. Velandia et al. [155] reported the addition of Na2SO4 as a chemical activator to
produce the blended cement that contains about 50% of fly ash. They claimed that the chemical
activation by Na2SO4 did not have the same effect on ettringite formation while using fly ash of
higher (9–11%) Fe2O3 content. Wilinska et al. [156] employed Ca(OH)2 together with Na2SO4 for
the hydration and activation of fly ash-to-cement mixture at a ratio of (80:20). They found that
the chemical activation promotes ettringite precipitation after 28 days of hydration. The result
was in-line with the development of the pozzolanic activity, ettringite formation, and increased
rate of hydrolyzed precipitation [157]. Recently, Toit et al. [158] mixed 70% siliceous coal fly ash
with 30% Portland cement and added 5% Na2SO4 as the chemical activator to investigate the
effect of mechanical activation by milling the mixture for up to 365 days. An increased rate of the
pozzolanic reaction was observed in the following order: unclassified coal fly ash < unclassified
coal fly ash + 5% Na2SO4 < mechanically activated coal fly ash < mechanically activated coal fly
ash + 5% Na2SO4.

Singh et al. [159] reported that the maximum utilization of fly ash has remained at 44.26%
in the cement sector, followed by the reclamation of low-lying areas (10.77%), mine filling
(13.0%), fly ash dyke raising, roads and embankments (12.88%), bricks and tiles (11.72%), and
agriculture (1.93%) in recent years. Even after application in these sectors, only 55.69% of
the total fly ash is utilized. In a scanty work by Gautam et al. [160], the mechanochemical
activation technique via ball milling of fly ash was followed by calcination at 600 ◦C, and then,
NaOH fusion at 600 ◦C for 2 h was performed before the functionalization of fly ash. This
study was based on the earlier determined breakage distribution function (between 0.2088
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and 0.5253) and specific rate of breakage (between 0.0409 and 0.1896 per min) for a particle
size ranging between 20–125 µm [161] along with diffusivity rate of dissolved silica through
porous media (i.e., 2.28×10−11 to 2.96×10−10 cm2/s) [131]. To achieve the functionalization of
fly ash, the alkali-fused mass was separately treated with epichlorohydrin and aminopropyl
triethoxysilane to obtain the α-glycol substituted and amine-substituted fly ash (as illustrated
in Figure 11). Both functionalized fly ash exhibited the desired rheological and filtration loss
behavior, meeting the standard specifications of API-grade bentonite. The thus obtained
functionalized fly ash was found suitable to replace the API-grade bentonite used as the
drilling fluid additive in an oil well.

Fly ash was also converted into a geopolymer precursor, which is used as an additive
binder for the production of cement. Fly ash exhibits hydraulic or pozzolanic behavior and
reacts with water or aqueous calcium hydroxide to form pozzolanic cement (a hydration
product). The direct replacement of fly ash with high bulk volume with cement is not
common as it retards hydration, delays setting time, and reduces the development of
early-age strength in concrete. However, the utilization of fly ash may be improved by
adjusting the fineness, particle size distribution, shape morphology, surface smoothness,
bulk density, compressive strength, permeability, porosity, the mineral composition of the
phases, and the pozzolanic activity of fly ash [162,163]. Alkali-assisted dissolution of fly ash
has become an important area of research in the last two decades to synthesize inexpensive
and ecologically sound cement-like construction materials. Fly ash is also used in oil well
drilling applications, where it acts as a stabilizing agent for the drilling fluid wastes to
avoid groundwater contamination, as the extraction toxicity procedure does not exceed the
limits when flying ash and drilling fluid mixture is subjected to land disposal [164,165]. It
was also used as a foamable drilling fluid for deep water offshore well operations [166]. Fly
ash was used as a solidifier to solidify reserve pit fluids immediately following the well
completion, which prevents mobilization of potential contaminants into the soil and/or
groundwater [167] and also reduces free water and toxic contaminants by solidification
(which is also referred to as encapsulation, briquetting, fixation, and stabilization). Usually,
the hydration of the fly ash forms a crystalline structure, consisting of calcium-alumino-
silicate which results in a rock-like, monolithic and hardened mass [168]. High-calcium
(Class-C) fly ash has the property of cementation and is very useful in stabilizing the
drilling fluid.

Valuable and Rare Metals Recovery from Fly Ash

Burnet et al. [169] employed the magnetic separation of fly ash and took the non-magnetic
fraction to be mixed with carbon and chlorinated in a fixed bed. Iron was primarily removed
at a lower temperature of 400–600 ◦C followed by Al-recovery at ~900 ◦C, which was in
variance with the results of Mehrotra et al. [170,171] wherein only 25% of Al and Ti were
recovered. Leaching of non-magnetic separation in nitric acid followed by Al-crystallization
has been also reported. Using the hydrometallurgical techniques, Al and Ti were recovered by
acid/alkali leaching-precipitation-solvent extraction, or re-crystallization route [172–174].

Focusing on Al-dissolution in alkali leaching at different temperatures, Shoppert et al.
[175,176] showed interesting results by controlling the formation of Na6(Al6Si6O24)·Na2X at a
higher pulp density of >5% and Na2O concentration 400 g/L. Moreover, the kinetics analysis
indicated that the leaching process was limited by the surface chemical reaction at a temperature
lower than 100 ◦C, which was shifted to the diffusion-controlled reaction at a higher temperature
of >100 ◦C. A group of researchers focused on (NH4)HSO4 leaching of coal fly ash to dissolve
aluminum in ammonia solutions and found that the surface tension of ammonium aluminum
sulfate in water decreased with raising the temperature albeit the as-obtained crystals possessed
a rhombic shape with a smooth surface [177]. However, the neutralization of ammonium
aluminum sulfate with ammonium hydroxide leads to form the pseudobohemite [178] whose
particle size could be enhanced from a median diameter of 20.1 µm to 31.3 µm by adding
0.5 g/L sodium dodecylbenzene sulfonate [179]. A raise in temperature up to ~180 ◦C resulted
in NH4Al3(SO4)2(OH)6 precipitation that hinders the alumina leaching process [180,181]. Fur-
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thermore, it has been observed that the particle size distribution was a little affected by varying
the calcination temperature [182]. To achieve a higher selectivity on Al-leaching over iron, the
use of (NH4)SO4 instead of (NH4)HSO4 has been also suggested [183]. The thermochemical
treatment performed at a temperature = 600 ◦C and (NH4)SO4-to-fly ash ratio = 1:3 for 1 h was
subjected to water leaching that resulted in 95% of aluminum [184].
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In a study, Xu et al. [185] employed the acid mixture of (NH4)HSO4 in H2SO4 that
resulted in the leaching of more than 97% aluminum from the coal fly ash. Whereas, Aphane
et al. [186] employed a combined acid and alkali leaching using H2SO4 solution in the first
step and NaOH solution in the second step of leaching. The thus leached Na2SiO3 was used
for a sol-gel synthesis in the presence of polyethylene glycol (as a surfactant) and H2SO4 (as a
catalyst), yielding ultra-pure SiO2 nanoparticles. Several researchers applied pressure acid
leaching mainly to target aluminum and iron leaching. Such process includes three stages
of magnetic separation for iron separation, floatation for carbon separation, and autoclave
pressure leaching in acid solution [187]. Pressure leaching carried out in an HCl solution of
354 g/L concentration at 210 ◦C and a pulp density of 20% yielded 95% Al leaching after
3 h, which was below 45% at 160 ◦C [188]. Applying the pressure acid leaching in nitric
acid, 80% of Al and 78% of Ga could be leached at the condition of temperature = 220 ◦C,
pulp density = 25%, HNO3 concentration = 340 g/L, and time = 2 h [189]. Alternative to
the pressure acid leaching process, Gao et al. [190] have recently applied sequential leaching
with HCl following the H2SO4 solution that yielded an overall efficiency of 96.75% Al and
97.64% Fe. Further, the HCl leached solution was taken for precipitation by adding Al(OH)3 to
adjust the solution pH at 3.5. Then after heating the solution at 65 ◦C for 4 h, the sulfuric acid
leached solution was added, mixed, and kept for 24 h to synthesize the polymeric aluminum
ferric chloride sulfate coagulant that can be used for wastewater treatment. Employing the
multi-step dissolution process, Valeev et al. [191] applied HCl leaching to dissolve aluminum



Minerals 2023, 13, 51 20 of 30

and thus obtained AlCl3.6H2O after salting out from the leach liquor was subjected to alkaline
treatment and recrystallization of Al(OH)3 by seeding effect with coarse Al(OH)3 addition.
The thus obtained Al(OH)3 was calcined at 1000 ◦C for 1 h to recover the sandy grade alumina
as a final product.

To recover the high-pure alumina as a final product, a few researchers also adopted
the high-temperature pre-treatment of coal fly ash. Yan et al. [192] used calcination with
CaCO3 at 1390 ◦C for 1 h, which was further dissolved in a Na2CO3 solution at 70 ◦C
for 30 min to dissolve more than 87% aluminum in the alkali solution. The evolved CO2
was recycled to the leached solution to allow Al(OH)3 precipitation, which again sent
for calcination between 400–550 ◦C to finally yield a high-grade γ-Al2O3 (65/550) with
a surface area of 230 m2/g. Recently, Yang et al. [193] applied the NaOH molten-salt
calcination that transformed the Al-rich mullite phase into nepheline (NaAlSiO4) at a mass
ratio of NaOH:Fly ash = 0.8:1 and temperature = 400 ◦C. The calcined mass leached with
40% NaOH solution at 260 ◦C for 1 h could dissolve 94% of alumina, leaving silicon in the
residue as NaCaHSiO4 mineral phase.

To design a clean process, the electrolytic treatment of coal fly ash has been explored as
a potential alternative to chemical treatment. Using the anode made of TaOx/IrOx-coated
Ti and Ti-cathode, Shi et al. [194] performed a controlled reduction of iron, thereby allowing
different iron products like Fe3O4, FeOOH, and Fe0 with a purity of above 98% at a current
density of 2500 Amp/m2. In their subsequent study [195], the alteration of the charge
sequence of Al3+, Fe3+, and H2O was achieved to first separate Fe0 and leave Al2(SO4)3 in
the solution at a higher current density of 5000 Amp/m2. As a continuous improvement
on the process, they further utilized the heat produced during the electrolytic process for
the in-situ hydrolysis of titanium as Ti(OH)4, and overall recovery of 97.6% iron, 93.1%
titanium, and 88.5% alumina was achieved [196].

Coal is a good source of gallium and germanium that gets enriched in fly ash after burning
coal. Meawad et al. [197] investigated water/acid/alkali leaching followed by precipitation,
distillation, ion flotation, adsorption (with activated carbon), and solvent extraction. In a
study conducted by Arroyo [198], leaching with oxalic acid yielded 90% Ge and sulfuric acid
yielded 82% Ga, which was differing from the leaching with corrosive (6.0 M) HCl followed
by Fe-precipitation and solvent extraction of Ga with LIX54 [199]. Font et al. [200] used
water leaching at 90 ◦C for yielding 86% Ge, while Hernandez-Exposito et al. [201] employed
ion-flotation with different reagents (hydroquinone, pyrogallol, catechol, and resorcin) and
observed that they yielded 100% Ge extraction from the fly ash at pH ranges between 4.0 to
7.0. In contrast, in the leaching conducted at alkaline pH (~12.0), Wang et al. [202] observed
55–69% of Se, which was also supported by the study of Iwashita et al. [203].

In the recent past, the contents of rare earth in coal fly ash have become an attraction and
plenty of lab studies have been conducted and reviewed [204]. Pan et al. [205] tested three
different samples of origins from the lab muffle, circulating fluidized bed, and pulverized coal
furnace to investigate the liberation of rare earths from the fly ash samples. The results showed
a 50% higher leaching efficiency in the HCl solution while using the samples from the muffle
and circulating fluidized bed than that was obtained with the pulverized coal furnace. The
major route searched for the rare earth’s extraction from coal fly ash is shown in Figure 11. As
with the suitability of rare earth forming chloride species, Honaker et al. [206] applied HCl
leaching of coal fly ash (refer to Figure 12a). The leach liquor containing rare earth metal chloride
species were separated by solvent extraction with D2EHPA and subsequently the loaded organic
was stripped with oxalic acid to recover metal precipitates in their oxalate form. Using P204
extractant in n-heptane, the extraction order was obtained to be La < Ce < Pr < Nd [207], which
consisted of the rule of lanthanide shrinkage. At the optimized condition of 6 vol.% P204, feed
solution pH 2.1, and the organic-to-aqueous ratio of 1, the extraction efficiency of La, Ce, Pr, Nd,
and Y was above 89%, 94%, 95%, 96%, and 99%, respectively.

Alternatively, a direct sulfuric acid leaching of fly ash performed at 1.5 M H2SO4 at a
pulp density of 20% for 5 h has been reported to yield 50% light and 90% heavy rare earth
dissolution efficiency [208]. Looking at the difficulties in acid leaching, Wang et al. [209]
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applied caustic leaching to first remove silica as CaSiO3. The leached residue was subjected
to an HCl leaching to dissolve rare earth in an acid solution, which was passed through an
ion exchange resin to separate Ga and Al while the rare earth remaining in the raffinate were
precipitated using oxalic acid (refer to Figure 12b). Alternately, Tang et al. [210] introduced
an alkaline fusion of fly ash and observed that the added fluxes (Na2CO3, Na2O2, NaOH,
and KOH) were able to break the matrix of fly ash and making rare earth amenable to leach
out in acid solution (with the efficiency between 57% to 65%). Furthermore, to improve the
recovery efficiency, a sequential acid, and alkali treatment were applied by Ma et al. [211]
thereby, 78% Al2O3, 80% Li, 72% Ga, and 55% rare earth were extracted after 2-step HCl
treatment(refer to Figure 12c). Moreover, a second NaOH treatment was able to extract
63% Si and then re-leaching of residue in HCl solution presented abundant mesopores
of a high specific surface area, i.e., 273 m2/g [212]. In another work, Wen et al. [213]
applied mechanically enhanced alkaline pre-treatment of fly ash at a ratio of 1:8 followed
by leaching in 3.0 M HCl solution at 90 ◦C for 90 min, yielding >79% extraction efficiency
of La, Nd, and Ce.
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6. Perspectives

In nutshell, this review identifies the challenges associated with industrial waste which
is disposed of directly into the environment. The open disposal of industrial waste (herein,
red mud, and coal fly ash) created environmental havoc. However, they can be managed in
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a sustainable manner by proper characterization, scientific treatments, resource recovery,
and implementing a circular economy in the industrial process. Fly ash and red mud
have enough potential to be used as a secondary source, as they are widely used in the
construction sectors but due to the presence of metals, their applications in construction
are limited. Therefore, this study emphasizes the removal of metals from these byproducts
using the hydrometallurgical method and further to be used for the construction purpose.
The reclamation of several critical elements such as rare earths, titanium, gallium, and
germanium have been discussed comprehensively to achieve the aim of sustainable waste
management. It needs to be emphasized that the techniques related to critical metals’
recovery from these waste materials are still on their infantilism and testing at the pilot
scale is highly desirable to make it applicable at the commercial scale. The real challenge
lies in their low contents and in further raising their concentration to make them suitable
feed for economic exploitation.

7. Conclusions

This study assessed the challenges and regulations associated with industrial solid
waste. Two case studies on industrial waste i.e., red mud and fly ash were evaluated to
determine the potential of industrial waste. It is noted that the circular economy concept
used in the industrial process not only minimizes waste generation but also generates
secondary resource materials. However, it is recommended to characterize the materials to
identify their potential and improved the utilization of secondary materials. The circular
economy in the red mud process highlights that valuable metals present in red mud can be
recovered and the remaining materials can be used as blending materials in cement and
filling material. Moreover, fly ash has tremendous applications in the cement industry, and
metal can be recovered through hydrometallurgy. Thus, this study elaborates the industrial
waste management in a sustainable manner where the industrial waste will be a source of
secondary materials and minimize the pollution load. The circular economy has created a
sustainable pathway between industry and the environment and helps in achieving SDGs.
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