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ABSTRACT Major improvements in biometric authentication have been made in recent years due to the
advancements in deep learning. Through the use of a deep learning-based facial recognition model with
metric learning, more discriminative facial features can be extracted from faces. A large threat to user privacy
could result from the disclosure of more discriminatory feature vectors related to biometric information.
Among many biometric template protection (BTP) schemes, there have been studies that have attempted to
protect feature vectors from the learning process of facial recognition models, while considering security
requirements. One of them is secure triplet loss (STL) based BTP, which is an end-to-end BTP scheme using
deep learning model that merges an additional layer on a pre-trained facial recognition model. STL-based
BTP takes a pre-defined key and an image as inputs, and it is designed to become closer only when both
the identity and the key are matched simultaneously. In this paper, we propose an efficient impersonation
attack algorithm on STL-based BTP and our impersonation attack algorithm is conducted in a black-box
setting using only the similarity scores between a target template and the template from the queried image
and key pair. We have succeed in the impersonation attack using approximately 329.59 and 256.57 queries
for the two types of black-box target systems. Furthermore, we conduct an analysis of our impersonation
attack algorithm along with the implementation code.

INDEX TERMS Authentication, biometrics, face recognition, impersonation attack.

I. INTRODUCTION
Biometric authentication systems have been widely used in
applications. Although it offers users convenience, leakage of
the original biometric information raises numerous security
and privacy concerns. In this paper, we propose an imperson-
ation attack algorithm against one of these biometric authen-
tication systems.

The original biometric information is transformed into a
biometric template and entered into the system. The biometric
templates must include the features of the subject because the
system evaluates the similarity across templates to establish
whether they are generated from the same identity; that is,
they belong to the same person. Therefore, extracting the
more discriminative features from the biometric information
is crucial for the performance of biometrics. Recently, deep

The associate editor coordinating the review of this manuscript and

approving it for publication was Zahid Akhtar .

neural networks (DNNs) have shown good performance
as feature extractors and hence DNN-based biometrics are
rapidly growing, especially for facial recognition systems [1],
[2], [3]. In facial recognition systems, a network preserves
similarity between facial images while it maps facial images
to feature vectors. The distance between feature vectors can
be used to interpret similarity between the feature vectors.

However, registering these feature vectors as biometric
templates in the system without any security remains insuf-
ficient. Several attack methods [4], [5], [6] were reported
to reconstruct the original face images from compromised
templates. If an adversary can steal a deep face template then
it is quite possible to reconstruct a fake image from the stolen
template [4], [5]. In contrast to the former, the attacker’s
capabilities can be weakened. Reference [6] showed that the
adversary can impersonate the target biometric authentica-
tion system only with the ability to steal similarity scores.
Since the majority of biometric authentication systems use
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FIGURE 1. Biometric template protection through a separated or
end-to-end process.

a similarity score between an input and the template database
to determine whether they are coming from the same person,
we consider an attacker’s ability to steal only similarity scores
in our attack scenario.

Biometric templates must be highly protected due to
the aforementioned security issues, and biometric template
protection (BTP) schemes have been studied for decades
to alleviate such issues. There are three standard security
requirements for BTPs (ISO/IEC 24745:1)

• Irreversibility: It is computationally infeasible to
recover original biometric information from compro-
mised templates.

• Revocability/Cancelability: The protected templates
can be replaced by a new protected template if
compromised.

• Unlinkability: It is computationally impossible to
retrieve the biometric information from the protected
template for the same subject when the subject is reg-
istered on different systems.

Although DNN-based facial recognition systems have
demonstrated good performance to identify people, numerous
biometric template protection systems frequently result in
performance degradation. It is still challenging to protect
biometric templates that satisfy the requirements while pre-
serving their performance. Hence, there are several efforts
to make an end-to-end BTP scheme as shown in the Fig. 1,
by training DNNs that is directly mapping the facial images
to the protected templates [7], [8], [9], [10].

Although the approach in [10] is rather novel, show-
ing good performance, we raise a question about whether

1https://www.iso.org/standard/75302.html

FIGURE 2. Overview of our impersonation attack algorithm that finds a
pair of the image and key, which can pass the verification test of the
target system with high probability. The attacker can impersonate the
subject using the similarity scores received from the black-box target
system.

neural networks can learn aforementioned security require-
ments. In particular, it does not employ any cryptographic
or information-theoretic tools, although a secret key is used.
Thus, careful analysis is necessary for the security argument
of such a DNN-based BTP in [10]. In this paper, we pro-
pose an impersonation attack algorithm against [10], one of
the end-to-end BTP schemes using neural networks without
additional cryptographic tools.

A. CONTRIBUTIONS
In our attack scenario, we investigate a DNN-based BTP
trained by the secure triplet loss (STL), a recently pro-
posed end-to-end BTP scheme that claims to satisfy all three
security requirements with only minor performance degrada-
tion [10]. STL-based BTP receives a pair of the facial image
and the user-specific key as an input and maps directly to
a protected template. The authors of [10] expect relatively
higher security due to the additional user-specific key and rel-
atively small performance degradation since the user-specific
key is well combined with the feature extraction network
without any quantization that often causes severe efficiency
loss.

The overview of our impersonation attack algorithm is
presented by Fig. 2. We consider the attacker who can only
obtain similarity scores between the adversarial queries and
the target template in the black-box model. Numerous studies
have considered such an attacker [6], [11], [12]. We note
that the attacker in our scenario is weaker than typical inver-
sion attackers [4], [5] since the similarity score can always
be computed from the compromised template. First of all,
the attacker fixes an arbitrary facial image regardless of the
target’s facial image, and sets a randomly generated key as
an initial key. The pair of the fixed facial image and the
initial key is entered into the black-box target system, and
then the attacker can obtain the similarity score between the
target template and the template from the queried pair. For
convenience, the template from the queried pair is referred
to as a query template in the Fig. 2. We demonstrate that

124356 VOLUME 10, 2022



B. Jeong et al.: Analysis on Secure Triplet Loss

the attacker can successfully impersonate the subject using
the similarity scores received from the black-box target sys-
tem. Precisely, we propose an impersonation attack algorithm
that finds a pair of the image and key, which can pass the
verification test of the target system with high probability.
Our experiments guarantee the practicality of the proposed
impersonation attack algorithm.

II. BACKGROUND
A. SIMILARITY SCORE IN FACIAL RECOGNITION SYSTEMS
Facial recognition systems measure the similarity score
between templates. The system decides acceptance by com-
paring the similarity scores with a pre-determined threshold
in the verification phase. Numerous facial recognition sys-
tems have been proposed in various ways, but in general,
they transform the given facial images into templates, called
feature vectors.

The similarity can be measured by the distance of such
feature vectors. It can be expected that the two input images
come from the same subject if the distance between two fea-
ture vectors is closer than the pre-determined threshold. If the
similarity score is defined as the distance and the similarity
score between the two feature vectors is smaller than the pre-
determined threshold, then the systems become to decide that
the two feature vectors were extracted from the images of the
same subject. To accomplish this, the loss function should be
designed to minimize the intra-class distance and maximize
inter-class discrepancy. Metric learning is one of the notable
approaches, which has led to significant performance growth
in facial recognition systems [1], [2], [3].

B. TRIPLET LOSS
The triplet loss [1] is the most prominent example of metric
learning and has been widely used in practice. The basic
idea of the triplet loss is the following; facial images are
sampled as a triplet, which consists of three facial image
called anchor, positive sample, and negative sample. From
this, the objective of the triplet loss function is tominimize the
Euclidean distance between anchor & positive samples and
to maximize the distance between anchor & negative sample.
Formal description of the triplet loss is given as follow:

l = max{0, α + |f (xA)− f (xP)| − |f (xA)− f (xN )|} (1)

where xA, xP and xN are an anchor, a positive sample, and a
negative sample, respectively, and α is a margin to facilitate
the desired objective.

C. SECURE TRIPLET LOSS
Inspired by the triplet loss, the STL-based BTP is proposed
by [10]. STL is a loss function designed to train an end-to-
end BTP using deep learning model with metric learning.
STL-based BTP is a two-factor DNN-based authentication
system since it takes not only the user’s biometric data but
also the user-specific key as input and then the DNN outputs
the protected template. The architecture of STL-based BTP
is provided in Fig. 3.

FIGURE 3. Network architecture of STL-based BTP (b) and its baseline
network Inception-Resnet-v1 (a).

The objective of the STL is to reduce the distance between
outputs when not only the identity of the biometric data but
also the user-specific key from each input pairs is matched.
There are four types of distances, both positive identity and
key, positive identity but negative key, negative identity but
positive key, and both negatives, which is summarized in
Table 1. For each distance, the first one dSP (both positives)
must be minimized, and the remainders must be maximized.
From this, the authors of [10] proposed two loss functions lC
and lL for cancelability and unlinkability, respectively.

TABLE 1. Distances in the secure triplet loss [10].

They contended that cancelability is attained by minimiz-
ing dSP when both identity and key are matched, and by
maximizing remainders. The loss function for cancelability,
lC , is the following.

lC = max[0, α + dSP − min(dDP, dSN , dDN )] (2)

where α is a margin to facilitate the desired objective.
In addition, they added a loss component, lL , to enhance
unlinkability. They calculated the mean and standard devi-
ation of distances when keys are different since it should be
challenging to differentiate between dDP and dDN .

lL = |µ(dDP)− µ(dDN )| + |σ (dDP)− σ (dDN )|
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where µ is a mean of distances and σ is a standard deviation
of distances. The final loss function to enhance unlinkability,
lSTL , includes above two loss components lC and lL with
balance parameter γ .

lSTL = γ lC + (1− γ )lL (3)

where γ is a hyperparameter to balance the loss components
lC and lL .

III. PROPOSED ATTACK ALGORITHM
A. TARGET MODEL
In this paper, we propose an impersonation attack algorithm
against STL-based BTP. The structure of the network is
divided into two parts. The first part is a pre-trained feature
extractor, which outputs the feature vector from the input
image. The second part is additional layers to bind the key
with the feature vector, which consists of two fully connected
layers. In detail, the feature vector from the first part is
concatenated with the user-specific key. The keys are binary
vectors in {0, 1}100 and normalized before concatenation.
After this, passing through the second part, STL-based BTP
finally outputs the protected template. Figure 3 illustrates the
overall structure of the network.

Following the loss functions proposed by [10], our target
models are two types; STLC and STLL . The two target mod-
els have the same structure, but they are trained by the loss
function with different hypherparameter γ in (3). For STLC ,
γ is set to 1 and it indicates that the loss function has only
containing a loss component lC . For STLL , γ is set to 0.9,
which is recommended to achieve best performance by the
author of [10]. Comparing the two target models, STLC has
better performance than STLL . Therefore, we set up the two
target models expecting that the attack performance would be
different.

B. ATTACK SCENARIO
We present our attack scenario in this section, and the follow-
ing section presents the details of our impersonation attack
algorithms. The attacker’s ability and main goal are as fol-
lows:
• Attacker’s ability: The attacker has access to the target
model as a black-box. That is, the attacker can query
pairs of image and key to black-box target model and
obtain similarity scores between the target template and
the templates which are extracted from the queries.

• Attacker’s goal: The goal of the attacker is imperson-
ation. This indicates that a query is accepted by the target
model even when one of the image or the key does not
match to target template’s one.

The strategy of our impersonation attack is the following.
The attacker starts by selecting any facial image and creating
a random key. The attacker then query this pair of image and
key to the system, obtaining the similarity score between the
query and the target template. Note that the chosen image
is fixed during our attack while updating the key through

our proposed algorithms. The process of updating the key is
repeated until the attacker finds a pair of the image and key
that causes impersonation for the target template.

C. ATTACK ALGORITHM
We assume that the target template t from the subject whom
the attacker attempt to impersonate is stored at the black-
box target model T, and the attacker can obtain the similarity
score s between the target template t and the template from
the queried pair (img, k) of image and key. The proposed
impersonation attack algorithm is presented in Algorithm 1.

Algorithm 1 Attack Algorithm for the Real-Valued Key
Require: target model T, image img, scale factor α ∈ R
Ensure: Key k ∈ Rd

1: Initialize k
$
←− [0, 1]d

2: Query (img, k) to T and get score s← T(img, k)
3: while T rejects the query do
4: Set noise← N (E0, Id )
5: Set k ′← k + α × noise
6: Query (img, k ′) to T and get score s′← T(img, k ′)
7: if s′ < s then

Update s← s′ and k ← k ′

8: end if
9: end while
10: Return k

In Algorithm 1, an initial key k is set to a real-valued vector
uniformly sampled from [0, 1]d . The attacker queries (img, k)
to the black-box target modelT and obtains the decision and a
score s. If the decision is rejection, then the attacker randomly
samples a noise from Gaussian distribution2 N (E0, Id ) and
scaled the noise by a factor of α to make a new key k ′ by
adding the scaled noise to the previous key k . The attacker
queries (img, k ′) to the T and obtain the decision and a new
score s′. If the decision is rejection and the new score s′ is
smaller than the previous score s, the attacker updates the key
k to the new key k ′. Note that, in this case, the similarity
score is defined as the distance between the templates. The
attacker repeats the process until the T accepts the queried
pair. Finally, the attacker can obtain the key to impersonate
the target subject with an arbitrary facial image regardless of
the target subject.

As the results will be discussed in Section IV, Algorithm 1
is successful to impersonate the target subject. But the target
model can be made to reject the real-valued vectors to defend
against such impersonation attacks which uses Algorithm 1.
Note that the STL-based BTP generates binary vectors as
keys and the keys are converted into real-valued vectors by
the normalization.

For this reason, we add the assumption that the attacker
can query the target model only with binary keys and

2Although the impersonation attack is successful using other distributions,
we will only describe the Gaussian distribution because we experimentally
confirm that the Gaussian distribution succeeds in the impersonation attack
with the least queries.
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Algorithm 2 Attack Algorithm for the Binary Key
Require: target model T, image img, number of flip

n ∈ {1, . . . , d}
Ensure: Key k ∈ {0, 1}d

1: Initialize k
$
←− {0, 1}d

2: Query (img, k) to T and get score s← T(img, k)
3: while T rejects the query do
4: Set k ′← RFlip(k, n)
5: Query (img, k ′) to T and get score s′← T(img, k ′)
6: if s′ < s then

Update s← s′ and k ← k ′

7: end if
8: end while
9: Return k

Algorithm 3 RFlip Algorithm

Require: k = (k1, . . . , kd ) ∈ {0, 1}d , n ∈ {1, . . . , d}
Ensure: k ′ = (k ′1, . . . , k

′
d ) ∈ {0, 1}

d

1: Randomly sample n indices i1, . . . , in from {1, . . . , d}
and set I := {i1, . . . , in}

2: for i ∈ {1, . . . , d} do
3: if i ∈ I then

Set k ′i ← ki + 1 (mod 2)
4: else
5: Set k ′i ← ki
6: end if
7: end for
8: Return k ′

propose another Algorithm 2which only exploits binary keys.
In Algorithm 2, an initial key k is set to a binary vector uni-
formly sampled from {0, 1}d . The attacker queries (img, k)
to the black-box target model T and obtains a score s in the
same manner of Algorithm 1. Then, the attacker makes a new
key by randomly flipping bits of the key through Algorithm 3
instead of sampling noise. The remaining processes are iden-
tical to those of Algorithm 1. The overall algorithm for the
binary key is given in Algorithm 2 and 3.

IV. ATTACK RESULTS
A. EXPERIMENTAL SETTINGS
To validate our impersonation attack algorithm, we experi-
ment with the same circumstance as that in [13]. Precisely,
for the recognition backbone architecture, we employed
Facenet with the structure of Inception-Resnet-v1 pretrained3

on vggface2 [14] and fine-tuned each networks in YTF-
Databases [15] in the same manner as in [10]. Then, based on
this architecture, STLC attains 13.44% equal error rate (EER)
with a 0.0261 threshold, and STLL attains 14.95% EER with
0.0174 threshold.4

3https://github.com/timesler/facenet-pytorch
4Note that, for simplicity, we used a pre-determined threshold and our

impersonation attack can be easily generalized for the hidden threshold
scheme since our impersonation attack does not rely on the knowledge of
the threshold at all.

TABLE 2. Average of Queries required and Success rates in Algorithm 1.

TABLE 3. Average of queries required and success rates in Algorithm 2.

We attempted to impersonate the 500 target subjects. Each
subject has a pair of the facial image and the user-specific key.
The target facial images were selected from the well-known
face database, CASIA-Webface [16]. Each user-specific keys
was uniformly sampled from {0, 1}100 and normalized, fol-
lowing the setting in their work [13]. In addition, we exper-
imented with increasing the scale factors α from 0.01 to
0.05 in Algorithm 1 and increasing the number of flip n from
1 to 5 in Algorithm 3.

B. EXPERIMENTAL RESULTS
For the two target models, we calculated the average num-
ber of queries required from 500 trials of each imperson-
ation attack. The results are presented in Tables 2 and 3.
We chose any facial image independent of the target identity
to demonstrate that false acceptance happens when both the
identity and key are unmatched. As a result, we found pairs
that impersonated the system. The obtained pairs are shown
in Fig. 4.

In Algorithm 1, we experimented on the different scale
factors α and achieved the best results when α = 0.05.
We discovered that a pair of the image and key is accepted
by the targetmodel for the target template after approximately
329.59 and 256.57 queries on STLC and STLL , respectively,
when α = 0.05. The target model STLC requires more
queries than STLL . Since the STLC has better verification
performance than the STLL , the protected templates from the
former has a low tendency to rely on the key than the latter.
Note that STL-based BTPs take a pair of an image and a
key and our impersonation attack algorithm only uses the key
update.

In Algorithm 2, we experimented on the different numbers
of flip n for the binary vectors. According to the choice of
n, we achieved the best results, which take approximately
649.17 queries on STLC for n = 3 and 490.79 queries on
STLL for n = 2. In both algorithms, the final key for
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FIGURE 4. For each subfigure, the pairs of facial image and key are recognized as the same identity and key pair on the target model. the above pair
is the target’s facial image and the key, and the below one is the pair of the query image and retrieved key via our impersonation attack algorithms.
For visualization, we reshaped each 100-dimensional key into a 10 × 10 matrix.

successful impersonation was entirely different from that of
the target template. Remark that neither the identity nor the
key were matched since we fixed the negative identity with
the target, as shown in Fig. 4.

Sparsely, the queries were required much more than the
average since the our impersonation attack algorithm can be
interpreted as an optimization problem to minimize the score
obtained from the target model. The choice of starting point is
crucial for such an optimization problem. If a starting point,
an initial image and key pair in our context, lies nearby a
local minimum, then the attacker would fail to impersonate
the target model. To alleviate this problem, the attacker may
try other starting points when the algorithm does not halt
within some fixed number of iterations. In our experiments,
we limited the number of iteration to 1000 for choosing
other starting point. We decided that the impersonation attack
is successful when the number of updates in starting point
is less than 10. As we showed in the Table 2 and 3, our
impersonation attack achieves the attack success rate 99.8%
and 98.4% in Algorithm 1 and 2, respectively.

C. ANALYSIS ON THE STL
From the results of our impersonation attack experiments,
it was possible to occur the false acceptance by changing only
the key. This implies that protected templates are influenced
by the 100 dimensional keys rather than the facial images.
We found the reason in the last two layers of the targetmodels.

The keys in the target models are only impacted by the last
two layers. Two fully connected layers are added following
the concatenation of the feature vector and key, and then
ReLU functions are used (FC-ReLU-FC-ReLU). We call the
first fully connected layer FC1, the second one FC2. Then,
the final protected template t can be represented through the
following equation:

t = R ◦ FC2 ◦ R ◦ FC1(X ) (4)

where R(x) = max{0, x} is the ReLU function and X ∈ R1892

is the input vector of FC1.
Let FC1(x) = Wx + b and FC2(x) = Wx + b, where

the weight matrices W ∈ R100×1892,W ∈ R100×100 and

FIGURE 5. Weight matrix W of the FC1 and vector multiplied by the
matrix. The entries of the matrix W were colored in darker red as the
absolute value was larger so that W can be separated by the left
1792 columns W1 and right 100 columns W2. The gray part of the vector
is the feature vector x extracted from the image, and the red part of the
vector is the normalized key k.

biases b,b ∈ R100. Let x ∈ R1792 is the feature vector from
the image and k ∈ R100 is the normalized key. Before the
FC1, x and k are concatenated to the 1892-dimensional vector
X = (x,k). Then, (4) is represented as follows:

t = R(W × R(WX + b)+ b)

= R(W × R(W × (x,k)+ b)+ b) (5)

We printed out the elements of the weight matrix W in
(5) and confirmed the weights with large absolute values are
concentrated in the last 100 units. For the absolute values
of weights, the mean weights of W is approximately 0.009.
However, the mean value is approximately 0.06 in the last
100 units, while approximately 0.006 in the front 1792 units.
In the front 1792 units, the weights are close to zero, and
this consequently reduces the influence of the preceding
1792-dimensional vector x extracted from the image. This
implies that the network becomes more focused on the last
100 vector k, key. We visualize the absolute values of weight
for easy understanding in Fig. 5. The larger the absolute value
of the element, the darker the red color. The elements colored
red are concentrated in the last 100 units; that is, the absolute
values of weights are large in the last 100 units.

In addition, both of the two target models STLC and STLL
have a tendency to rely on the 100 dimensional key k rather
than the feature vector x. However, STLC has better veri-
fication performance than STLL and requires more queries
in the attack results. This indicates that the influence of the
feature vector x is relatively large in STLC . We found the
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FIGURE 6. Positions of the negative numbers after the FC2. Each column
is a 100-dimensional vector obtained from FC2 before the ReLU activation
layer. All negative entries are colored blue, and they will become zero
after the ReLU function.

reason in the norm of x. The norm of k is fixed to 1 since
the k is normalized, but the norm of the feature vector x is
approximately 4.51 in STLC and 3.58 in STLL . This is why
the queries required for the impersonation attack are different
in the two target models.

As shown in Fig. 5, the matrix W in (5) can be separated
into the first 1792 columns and last 100 columns. Let matrix
W1 be the first 1792 columns and the matrix W2 be the last
100 columns as shown in Fig. 5, and then W = [W1||W2].
Since the entries ofW1 are close to zero, the term ofW1 does
not significantly affect the templates. Therefore, we omit the
term of W1 and obtain the following approximation.

t = R(W × R(W1x+W2k+ b)+ b)

t ≈ R(W × R(W2k+ b)+ b) (6)

Since the ReLU function affects only negative numbers,
we present the intermediate vectors between the fully con-
nected layer andReLU activation layer in Fig. 6. Each column
is a 100 dimensional vector, the intermediate vector obtained
from FC2. For the 500 different facial images and keys, the
negative numbers were mostly observed in similar locations.
Similar results were found in the case of FC1. The position of
zero is already decided by the fully connected layers prior to
the ReLU activation layers since the positions of the negative
integers are largely comparable before the ReLU function.
Hence, we omit the ReLU function in (6).

t ≈ WW2k+Wb+ b (7)

WW2k ≈ t−Wb− b (8)

This indicates that the protected templates t depends on
the normalized key k. Simplifying (7) with respect to k,
it becomes (8), which is the form of Ax ≈ b where A ∈
R100×100, b ∈ R100 and x ∈ R is an unit vector whose entries
consist of 0 or 1/

√
α for some positive integer α < 100. It is

reduced to the optimization problem by finding a subset of
column vectors of A so that the sum of column vectors is
close to vector b. Such x can be easily found with a greedy
algorithm in general, such as Algorithm 4. The optimization
problem to find the unit vector k satisfying (8) is the case
when m = n in Algorithm 4.
For a matrix A ∈ Rm×n and a vector b ∈ Rm, the goal

of Algorithm 4 is to find an unit vector x satisfying Ax is
closest to b. First, calculate the inner product of each column
of A with b and select the column with the largest value of
inner product. Then, except for the selected column, calculate

Algorithm 4 Algorithm for the Unit Vector x

Input: A ∈ Rm×n, b ∈ Rm, and N = {1, · · · , n}
Output: unit vector x ∈ Rn

1: Parse A as [a1|| · · · ||an] where ai ∈ Rm for i ∈ N
2: Set A← N , B← ∅, and v← {0}m
3: for j ∈ N do
4: Set k ′← argmaxk∈A〈ak , b〉
5: Set A← A \ {k ′} and v′← ak ′
6: Set v′← v+ v′

√
j

7: if 〈v′, b〉 > 〈v, b〉 then
8: Set v←

√
j

√
j+1

v′ and B← B ∪ {k ′}
9: if j = n then

10: Set x ← {1}n

11: break
12: end if
13: else
14: Set x ← {0, 1}n where xi = 1 for i ∈ B and xi =

0 for i /∈ B
15: break
16: end if
17: end for
18: Set x ← x

‖x‖
19: Return x

the inner product of the remaining each column with b and
repeat the process. Since the greedy algorithm find the local
minimum of ‖Ax − b‖2, such x is not the optimal solution
of Ax ≈ b. If the local minimum is less than the predefined
threshold of the target model, then such x will be accepted by
the target model with an arbitrary image. This indicates the
attack success rates and we confirmed experimentally that the
attack success rate is 96.4% in the worst case.

V. CONCLUSION
We proposed an impersonation attack algorithm against the
STL-based BTP [10], one of the end-to-end BTP schemes.
Although the STL-based BTP maps pairs of a facial image
and the user-specific key to protected templates, the key was
only impacted by the last two layers. We printed out the
weight of the two layers; the weight is concentrated on the
columns corresponding to the key rather than the image. This
implies that the model can be under threat from the key-only
attack. Hence, we proposed the two types of impersonation
attack algorithm for a real-valued key and a binary key.
We succeeded in the impersonation attack for a real-valued
key using approximately 329.59 and 256.57 queries on the
target model STLC and STLL , respectively. Further, we suc-
ceeded in the impersonation attack for a binary key through
approximately 649.17 and 490.79 queries on the target model
STLC and STLL , respectively.
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