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I. INTRODUCTION 

With the rapid increase in the operating frequency of RF de-

vices, research on the application of dielectrics in RF technology 

has been actively conducted. In particular, the extraction of 

complex permittivity in a millimeter-wave (mmWave) band is 

necessary for the development of new 5G communication de-

vices. There are several ways to extract the complex permittivity 

of dielectrics, including resonant methods, open-ended methods, 

free-space methods, and transmission/reflection methods [1]. 

Among these, resonant methods use the Q-factor of a resonator 

to extract complex permittivity [2, 3]. However, although these 

methods are the most accurate, their bandwidth is very limited.  

For resonant methods, it is necessary to manufacture many 

resonators at different interested frequencies, leading to consider-

able manufacturing costs and time consumption. Meanwhile, 

open-ended methods [4] use a waveguide or a coaxial cable to 

extract the complex permittivity based on the reflection coeffi-

cient S11. Such methods can extract the complex permittivity of 

non-destructive materials that have electrically large thicknesses. 

However, to extract the complex permittivity of an electrically 

thin material, an additional metal plate needs to be attached 

precisely to the material under test (MUT). Moreover, while 

measurement errors are susceptible to the contact conditions of 

the open-ended device, the MUT, and the metal plate, they are 

significantly increased in the case of a mmWave band. 
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Abstract 
 

This research presents a novel methodology for measuring the complex permittivity of a material under test (MUT) in a millimeter-wave 

(mmWave) band by using two rectangular waveguide adapters. Contrary to the conventional Nicolson-Ross-Weir (NRW) method, the 

proposed complex permittivity measurement method does not require a material fabrication process for exact MUT insertion into a wave-

guide. In our complex permittivity measurement, simple commercial waveguide adapters are employed instead of large flange structures. 

The proposed complex permittivity measurement of a non-destructive MUT is achieved by combining the NRW method, the Gaussian 

weighting moving average filtering technique, a full-wave electromagnetic analysis, and an optimization technique. Furthermore, the proposed 

methodology is validated by fabricating a Teflon-based MUT and by measuring the complex permittivity of the MUT in the Ka band 

(26.5–40 GHz). The results indicate that the proposed methodology exhibits good agreement with the data sheet. 
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Free-space and transmission/reflection methods extract the 

complex permittivity of the MUT using a two-port network. 

Generally, S11 and S21 are measured, following which the 

complex permittivity is extracted using the Nicolson-Ross-Weir 

(NRW) technique [5, 6]. Free-space methods measure S-

parameters by placing the MUT between two antennas [7]. 

Notably, free-space measurement is possible without additionally 

processing the MUT in a wide bandwidth. However, its accuracy 

is relatively low due to multiple reflections/diffractions, besides 

the requirement for expensive measurement equipment. Another 

method that uses a two-port network is the transmission/ 

reflection method [5, 6, 8], which extract the complex permittivity 

by inserting the MUT inside a waveguide or a coaxial cable. 

Although these methods can extract the complex permittivity in 

a wide frequency range, they require highly refined processing of 

the MUT, since it must be inserted precisely into the waveguide 

or the coaxial cable. Moreover, although a time-gating technique 

may be used in the case of a non-destructive MUT, this 

methodology would require very large flanges [9, 10].  

This study proposes a novel measurement technique for deter-

mining the complex permittivity of a non-destructive MUT in a 

mmWave band. In the proposed measurement method, two 

commercial rectangular waveguide adapters are used, without any 

additional large flanges. The complex permittivity of the non-

destructive MUT is extracted using a combination of the NRW 

method, the Gaussian weighting moving average filtering tech-

nique, a full-wave electromagnetic analysis, and an optimization 

technique.  

The remainder of this manuscript is organized as follows. 

First, the NRW method is reviewed, following which our new 

measurement method for complex permittivity using two simple 

rectangular waveguide adapters is presented. Next, the complex 

permittivity measurement results of Rogers RO3003 in the Ka 

band (26.5–40 GHz) are provided to validate the proposed 

measurement technique. 

II. METHODOLOGY 

Fig. 1 depicts the conventional transmission/reflection meth-

od using two ports for the complex permittivity measurement of 

the MUT. As shown in Fig. 1, the measurement structure is 

divided into three subsections. Sections I and III represent an 

empty waveguide at the input and output ports, respectively, while 

Section II represents the region where the MUT is present. 

When measuring the S-parameters for the structure in Fig. 1 

using a vector network, the reference planes of the measured S-

parameters are Port 1 (in Section I) and Port 2 (in Section III). 

However, to extract the complex permittivity of the MUT, S-

parameters that consider only Section II are required. This de-

embedding process can be achieved by thru-reflect-line (TRL) 

calibration [11], leading to shifts in the S-parameter reference 

planes to Port 1' and Port 2'. In the following measurements, all 

S-parameters calibrated by the TRL technique are considered.  

The NRW method can easily calculate the complex electro-

magnetic properties of the MUT [5, 6]. First, the partial reflec-

tion coefficient (Γ) and the transmission coefficient (T) are re-

lated to the S-parameters, 
 Γ ൌ Χ േ ඥΧଶ − 1 (1)T ൌ 𝑆ଵଵ ൅ 𝑆ଶଵ − Γ1 − ሺ𝑆ଵଵ ൅ 𝑆ଶଵሻΓ (2)

where 
 Χ ൌ 𝑆ଵଵଶ − 𝑆ଶଵଶ ൅ 12𝑆ଵଵ . 
 

Then, the complex permittivity and permeability are calculated 

using the following equations: 
 𝜇௥ ൌ 1Λ 1 ൅ Γ1 − Γ 1ඨ 1𝜆଴ଶ − 1𝜆௖ଶ 

(3)𝜀௥ ൌ 𝜆଴ଶ𝜇௥ ൬ 1𝜆௖ଶ ൅ 1Λଶ൰ (4)

where 
 1Λଶ ൌ − ൤ 12𝜋𝐿 ln ൬1Τ൰൨ଶ  

 

where 𝜆଴ indicates the free-space wavelength, 𝜆௖ refers to the 

cutoff wavelength, and L is the MUT length. 

The above-mentioned NRW method is highly suitable for 

cases in which the material is inserted precisely into a waveguide. 

However, it is difficult to fabricate the material so that it fits 

precisely inside the waveguide, especially in a mmWave band. 

The complex permittivity measurement of a non-destructive 

material using rectangular waveguides would be possible by in-

cluding two additional large flanges [9, 10]. 

Fig. 2 depicts a schematic diagram of the two proposed simple 

waveguide adapters for the complex permittivity measurement 

of a non-destructive MUT. Considering that the MUT is not 

inserted into the waveguide in the measurement configuration, Fig. 1. Transmission/reflection method.
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two main issues should be addressed. First, since electromagnetic 

scattering occurs in opened waveguide regions, unwanted ripples 

may exist in the S-parameters. To tackle this issue, we apply the 

Gaussian weighting moving average filter [12] to measure the 

S-parameters in this study. As an explanatory example, the 

measured S-parameters of Rogers RO3003 in the Ka band are 

considered to illustrate the effects of the Gaussian weighting 

moving average filtering technique. Fig. 3 demonstrates the 

magnitude and phase of S11, depending on whether the Gaussian 

weighting moving average filtering technique is applied or other-

wise. The black line indicates the original S11 result, while the 

red line shows the S11 result on the application of the Gaussian 

weighting moving average filter. In the case of the original 

unfiltered S11 result, noticeable ripples are observed in both the 

magnitude and phase because scattered electromagnetic fields 

deteriorate the result. On the other hand, these unwanted ripples 

are remarkably removed from the result when the Gaussian 

weighting moving average filter is employed. Similarly, the 

Gaussian weighting moving average filtering technique eliminates 

unpleasant ripple effects in the S21 result as well, as shown in 

Fig. 4. 
Second, the conventional NRW technique does not work 

properly in our measurement configuration, because the complex 

permittivity of the MUT in this method is determined by the 

closed waveguide condition. To address this issue, the combina-

tion of a full-wave electromagnetic analysis and an optimization 

technique is employed. Specifically, the full-wave electromag-

netic analysis is iteratively performed by optimizing the complex 

permittivity such that the calculated S-parameters (𝑆௜௝௖௔௟) are 

successfully curve-fitted to the measured S-parameters with the 

Gaussian weighting moving average filter (𝑆௜௝௠௘௔௦). In this study, 

the method of moment (MoM) [13, 14] with a parallel-plate 

Green’s function is employed to calculate the S-parameters [10]. 

It should be noted that MoM is highly suitable for the optimi-

zation-based approach because it is significantly faster than other 

 
Fig. 2. Schematic diagram of the two proposed simple waveguide 

adapters for complex permittivity measurement. 

 

 
(a) 

 
(b) 

Fig. 3. S11 results with and without the application of the Gaussian 

weighting moving average filtering technique: (a) magni-

tude and (b) phase. 

 
(a) 

 
(b) 

Fig. 4. S21 results with and without the application of the Gaussian 

weighting moving average filtering technique: (a) magni-

tude and (b) phase.
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full-wave electromagnetic analysis methods, such as the finite 

element method [15] or the finite-difference time-domain 

method [16–20]. The complex permittivity extracted by the 

NRW method is used as an initial value for the MoM solver in 

the optimization process. Furthermore, both the S11 and S21 

parameters are considered in the optimization, with the step 

tolerance δ set as 10ି଺. The procedure of the complex permit-

tivity measurement method used in this study is as follows: 

- Measure the S-parameters. 

- Apply the TRL calibration. 

- Use the Gaussian weighting moving average filter for the 

TRL-calibrated S-parameters. 

- Extract the complex permittivity using the conventional 

NRW method for the S-parameters obtained from 3. 

- Use the complex permittivity extracted in 4 as the initial 

value of the MoM solver for optimization. 

- Calculate the S-parameters using the MoM solver. 

- Repeat the MoM calculation to optimize the complex per-

mittivity for |𝑆௜௝௖௔௟ − 𝑆௜௝௠௘௔௦| ≤ δ. 

III. MEASUREMENT RESULTS 

This section presents the measurement results to validate the 

proposed method for measuring the complex permittivity of a 

non-destructive MUT in a mmWave band. Fig. 5 shows the 

measurement setup, which is composed of a vector network 

analyzer (Anritsu MS4647B), two commercial Ka-band wave-

guide adapters (Fairview Microwave UG-599), and a non-

destructive MUT. In this study, the complex permittivity of 

Rogers RO3003 (𝜀௥ᇱ  = 3, 𝜀′௥ᇱ  = 0.001, 0.77 mm) in the fre-

quency range of 26.5–40 GHz is measured by the conventional 

NRW method using the original measured S-parameters, the 

NRW method using the Gaussian filtered S-parameters, and 

our proposed method. 
Fig. 6 presents the complex permittivity for the three above-

mentioned cases. The extracted complex permittivity results 

using the conventional NRW method are observed to be very 

inaccurate due to the effect of electromagnetic scattering, and 

they change severely compared to the frequency. When the 

NRW method is applied to the measured S-parameters using 

the Gaussian weighting moving average filtering technique, the 

accuracy of the complex permittivity results shows an improve-

ment compared to the original NRW method. However, the 

presence of an active material is indicated by this approach (neg-

ative values in the imaginary part of the complex permittivity). In 

contrast to the above two methods, the measurement results of 

our proposed method agree well with the reference results for 

both the real and imaginary parts of the MUT’s complex per-

mittivity in the frequency range of interest. Notably, its root-

mean-square relative error (RMSRE) is 2.56%. 

IV. CONCLUSION 

This research proposes a novel technique for measuring the 

complex permittivity of a MUT. The proposed measurement 

technique utilizes two simple commercial waveguide adapters, 

without a requirement for any additional large flanges, to deter-

mine the complex permittivity of a non-destructive MUT. First, 

the Gaussian weighting moving average filtering technique is 

employed to alleviate the effects of electromagnetic scattering 

from the open structure. Next, the complex permittivity extracted 

 
(a) 

 
(b) 

Fig. 6. Complex permittivity results: (a) real part and (b) imaginary part. 

 

Fig. 5. Measurement setup. 
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by the conventional NRW method using the filtered S-parameters 

is used as the initial value for the MoM calculation. Finally, the 

complex permittivity is determined by curve fitting the calculated 

S-parameters with their filtered measurement counterparts. The 

experimental results validate our proposed non-destructive 

measurement method for complex permittivity in a mmWave 

band. 
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