
Received 13 September 2022, accepted 2 November 2022, date of publication 4 November 2022,
date of current version 11 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3219859

Hybrid Transactional/Analytical Processing
Amplifies IO in LSM-Trees
JONGBIN KIM, JAECHAN AHN, KITAEK LEE , MINSOO RYU , AND HYUNGSOO JUNG
Department of Computer Science, Hanyang University, Seoul 04763, South Korea

Corresponding author: Hyungsoo Jung (hyungsoo.jung@hanyang.ac.kr)

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) funded by the
Korean Government [Ministry of Science and ICT (MSIT)] through Decentralized High Performance Consensus for Large-Scale
Blockchains under Grant 2021-0-00590.

ABSTRACT The log-structured merge tree (LSM-tree) has become an essential component in many
key-value systems and expanded its scope to full-fledged database engines (e.g., MyRocks). In the database
landscape, vendors face growing customer demands for real-time analytic solutions to handle hybrid trans-
actional/analytical processing (HTAP) workloads that pose significant challenges. Among the challenges is
IO amplification that drives system designers to rethink write-optimized engines to survive HTAP loads.
This paper follows the same philosophy, reexamines LSM-trees used for database systems, and rethinks
IO amplification under HTAP loads to shed some light on practical remedies for upcoming challenges.
We propose two practical techniques to alleviate IO amplification: 1) aligned compaction for reducing
write amplification, 2) snapshot filters for reducing read amplification. The two techniques are lightweight
(i.e., near-zero resource consumption) and are compatible with state-of-the-art methods. We integrated our
techniques into RocksDB and demonstrated that the modified RocksDB exhibits reduced IO amplification
under HTAP workloads with negligible resource consumption.

INDEX TERMS LSM-tree, key-value store, MVCC, HTAP, I/O amplification.

I. INTRODUCTION
Log-structured merge trees (LSM-trees) have been main-
stream structures for many key-value storage systems.
The elegance stands from its scalable architecture for
update-intensive workloads and its competitive read perfor-
mance. The past decade has seen that numerous data manage-
ment systems [1], [2], [3], [4], [5] have adopted LSM-based
architecture for their storage engine; for example, Facebook
has released MyRocks [6], MySQL built atop RocksDB.
As LSM-trees expand their scope into databases as such, their
underlying architecturemust address the same challenges that
traditional relational database engines strive to survive hybrid
transactional/analytical processing (HTAP) workloads.

HTAP combines transactions (i.e., updates) with data
analytics (i.e., reads), and there is a growing demand for
HTAP systems from users; commercial products use extract-
transform-load (ETL) pipelines while striving to maintain

The associate editor coordinating the review of this manuscript and
approving it for publication was Byung-Gyu Kim.

data freshness between transactional and analytic databases.
ETL-based systems deliver decent performance on data ana-
lytics acting on reshaped data ingested from transaction
engines but lose their real-time degree of data analytics
mainly due to long delays in their ETL workflows. As more
organizations invest in real-time data analytics, recent years
have seen commercial solutions [7], [8], [9], [10] in indus-
try and research outcomes [11], [12], [13], [14], [15] from
academia; all of which evolve towards a single system capa-
ble of HTAP. The trend towards a single HTAP system
requires the system to combine two types of data processing,
despite their heterogeneous nature, into a single system. One
can approach this matter by adapting the existing systems
specialized for a single type of workload to HTAP [16], e.g.,
taming write-optimized databases to be suitable for HTAP.

When the LSM-tree-based databases encounter HTAP,
IO amplification remains notable and adversely affects the
systems; the systems suffer write amplification from con-
tinuous compaction triggered by transactional loads and
read amplification from massive scans by analytic queries.

117626 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1641-6556
https://orcid.org/0000-0002-4137-3052
https://orcid.org/0000-0002-5376-7200


J. Kim et al.: Hybrid Transactional/Analytical Processing Amplifies IO in LSM-Trees

FIGURE 1. Read amplification under HTAP loads.

As prior studies [17], [18], [19], [20] revealed valuable
insight about the trade-off between query latency and update
throughput, compaction strategies and underlying storage
layouts considerably influence the degree of IO amplifica-
tion. The essence of the dilemma under HTAP loads is to
pursue the dual goals of reducing all aspects of amplification
instead of being lopsided in ripening the current LSM-trees.

What makes situations more demanding and unique under
HTAP loads is, as complex analytic queries often run longer,
massive updates trigger repeated compaction that would push
data versions required by the analytic queries down further to
the higher levels. As illustrated in Figure 1, a long-running
analytic query (i.e., T20) reading a key A takes longer to
find the required version (i.e., A10) when transactions keep
updating the key. The query spends more time searching
data versions since it traverses all the levels from the root
without any chance to skip unnecessary visits. The unex-
pected phenomenon, in hindsight, results from futile attempts
to exploit bloom filters not worth aiding consistent reads
having snapshots, leading to the growing false-positive rate
and amplifying read IO. This observation motivates our
work.

We observe redundant IO in LSM-trees employing a gen-
eral leveled compaction policy. To address the problem,
we propose two optimization techniques: aligned compaction
and snapshot filters. Aligned compaction (§IV) targets to
reduce write amplification by excluding an overhang of
non-overlapping key ranges from compaction operations, and
snapshot filters (§V) aid analytic queries to skip invisible key-
values generated by recent update transactions, thus improv-
ing read amplification. Our proposed methods take negligible
resource consumption in terms of computation and memory,
and they are orthogonal to the state-of-the-art techniques
sharing the same goal. These optimizations can be applied
without concern for significant architectural change and are
compatible with prior arts.

We validate the ideas by putting them together in
RocksDB, a popular open-source LSM-tree-based key-value
store adopting a leveled compaction policy. To execute com-
plex SQL queries of HTAP workloads over the modified
RocksDB, we use MyRocks for evaluation, and the exper-
imental results demonstrate that the optimized RocksDB
reduces IO amplification without sacrificing system
performance.

This paper makes the following contributions:
1) We measure IO amplification in an LSM-tree-based

SQL database under HTAP workloads, and confirm the
presence of redundant IO (§III).

2) To alleviate IO amplification, we propose two practical
optimization techniques that are compatible with the
state-of-the-art methods (§IV,§V).

3) We apply the techniques toMyRockswith less than five
hundred lines of code and enhance IO amplification
under HTAP workloads (§VI).

II. BACKGROUND AND RELATED WORK
A. LSM-TREES
The original insert-optimized design of LSM-trees, log-
structured writing with deferred compaction, deals well with
general write-intensive loads; all modifications, including
delete operations, are made in an out-of-place way instead
of overwriting old data. LSM-trees utilize an in-memory
buffer embedding skip lists to enhance performance further;
it appends incoming writes to the in-memory buffer and
later flushes the buffer to storage as a sorted-string table
(SSTable). SSTables are immutable and will be sorted into
new SSTable files through compaction. The two goals of
compaction are 1) to sort-merge multiple SSTables to main-
tain a bounded number of sorted runs to prevent read oper-
ations from accessing an unbounded number of SSTables,
and 2) to physically remove the entries that are (logically)
overwritten or deleted. Through repeated compaction, LSM-
trees form a hierarchical structure, consisting of multiple
levels of an exponentially growing size, and higher levels
contain older versions of data than that of a lower level.
The size ratio between levels, so-called fanout, is usually
configurable, and compaction policy (a.k.a., merge policy)
determines the layout of each level.

Two policies are of prevalence, leveled and tiered; leveled
compaction maintains every entry in the same level in a
single sorted run, while tiered compaction allows multiple
sorted runs to be in the same level, which could overlap
with each other in terms of the keyspace. There is no clear
winner; leveled compaction favors queries to find the target
key by at most one lookup per level, but it requires each entry
to be written multiple times to storage until it reaches the
highest level, resulting in higher write amplification. Tiered
compaction facilitates only one write per level, but queries
should traverse multiple sorted runs in the same level, leading
to higher read amplification. Because of the trade-off between
write and read amplification, popular industrial LSM-tree-
based engines take different compaction policies according
to their purpose [21]; LevelDB [1] implements leveled com-
paction while HBase [5] and BigTable [4] adopt tiered com-
paction. Both policies are supported in RocksDB [2] and
Cassandra [3] as a configurable option, although the default
policies are leveled and tiered, respectively. Also, prior arts
from academia [19], [20], [22], [23] take the hybrid strategy
of leveled and tiered compaction to reduce the amplifications,
by considering the given workload characteristic.

VOLUME 10, 2022 117627



J. Kim et al.: Hybrid Transactional/Analytical Processing Amplifies IO in LSM-Trees

B. LEVELED COMPACTION IN RocksDB
RocksDB enforces the leveled compaction policy, the focus
of this paper, as default. RocksDB’s compaction behaves sim-
ilarly to LevelDB since it originated from a fork of LevelDB.
In each level of RocksDB, a single sorted run comprises
multiple SSTables, of which each covers a distinct key range,
except for the lowest level (L0), where SSTables flushed
from the memory buffer are stacked (i.e., tiered) without
being sorted. Once the number (for L0) or the total size
(for LN , N > 0) of SSTables in a level exceeds a certain
threshold, compaction is triggered. One or more SSTables in
the level, LN , and the overlapping SSTables in the next level,
LN+1, are picked as inputs of the compaction. Compaction
first reads the inputs to memory, sort-merges them, and writes
the merged SSTables into LN+1. After the output SSTables
are written to storage, the obsolete input SSTables are safely
deleted from the disk. When the new SSTables in LN+1 are
merged with existing SSTables in LN+2, it can push the
entries in the SSTables to a higher level, or it can merge
the entries with newly generated SSTables in LN so that it
rewrites the entries in the same level. However, the entries
never move back to lower levels, which is an important invari-
ant facilitating multi-version concurrency control (MVCC)
with LSM-trees.

C. SNAPSHOT READ IN RocksDB
Since all modifications are appended out-of-place in
LSM-trees, updates create multiple version entries with the
same key, making MVCC a natural fit for transaction pro-
cessing. To distinguish the creation time of each version entry,
RocksDB puts a monotonically increasing sequence number
next to the key, indicating the commit timestamp of the entry.
A read transaction takes the sequence number as a snapshot
when it starts and uses it to test the visibility of version entries
to guarantee point-in-time consistency; a transaction can see
the latest version entry committed before the transaction’s
snapshot. Searching a key entry navigates LSM-trees from
the memory buffer toward the highest level of RocksDB
(i.e., new-to-old version search), and it stops navigating
once detecting the first entry satisfying the consistent read.
In contrast, a range scan starts searching from all levels,
including memory buffer, since visible version entries of a
given key range could span multiple levels.

There are two commonly used auxiliary structures, also
adopted in RocksDB, to reduce the search cost at the expense
of relatively small memory space: fence pointers and bloom
filters. Fence pointers represent key ranges covered by each
SSTable, allowing binary search on a sorted run in advance
in memory to narrow down search space to a few candidate
SSTables. Bloom filters provide a membership query of a
search key against each SSTable which answers the presence
of the given keywithout traversing the SSTable.We have seen
good progress in this area of optimization [18], [24], [25],
[26], [27], all the efforts made to narrow the search space on
a key basis.

III. MOTIVATION
This section describes the hidden costs shaded beneath the
well-known IO amplification issue of LSM-trees. We first
look into compaction to comprehend the underlying nature
of redundant writes. Then, we unveil undesirable read
amplification arising from MVCC systems under HTAP
workloads.

A. WRITE AMPLIFICATION IN LSM-TREES
Deferred compaction originally intended to expedite the
upsurge of incoming writes is alleged to incur some IO in
LSM-trees, but its leveled compaction would considerably
worsen write amplification. During compaction, LSM-trees
partition the sort-merged output into fixed-size SSTables,
dividing the key range into non-overlapping groups. The
rationale for this policy lies in simplicity and clarity, thus
widely accepted as a good design decision across conven-
tional LSM-trees. However, we observe that such a faithful
design principle triggers a non-negligible impact on write
amplification.

FIGURE 2. Redundant IO in leveled compaction.

Figure 2 shows the phenomenon of the aforementioned
write amplification. The compaction first selects input SSTa-
bles from the two levels (LN and LN+1), which may con-
sist of two regions: 1) the overlapping key range that both
levels share, and 2) the overhanging key range of distinct
non-overlapping regions, also denoted as false overlaps by
Lim et al. [28]. On compaction, both regions are involved in
the sort-merge phase, creating an output containing the com-
bination of the two levels’ key range. The overlapping key
range undergoes ameaningful sort-merge process because the
keys may be out-of-order, requiring an arrangement. Unlike
the former, false overlaps are a redundant portion of the sort-
merge process since the ranges do not interleave between
the two levels. Such redundancy during compaction demands
unnecessary reads and writes to the same level, amplifying
the write IO.

The essence behind the inefficiency is the existence of
false overlaps, and eliminating such overhangs, if possible,
would reduce a considerable proportion of redundant IO in
compaction. Unfortunately, the current fixed-size partition
policy does not consider key ranges its decisive factor, mak-
ing false overlaps inevitable. We measured the ratio of false
overlaps among the entire compaction inputs in RocksDB
with the default configuration to observe the severity. Under
online transaction processing (OLTP)workloads, 743million
entries in total have participated in compaction operations,

117628 VOLUME 10, 2022



J. Kim et al.: Hybrid Transactional/Analytical Processing Amplifies IO in LSM-Trees

and 12.6% of the entries turned out to be false overlaps.
Hence, our focus is inventing a lightweight technique to
reduce false overlaps.

B. READ AMPLIFICATION IN LSM-TREES UNDER HTAP
Although LSM-trees run the continual compaction to main-
tain sorted runs for speeding up reads, its hierarchical struc-
ture is less favorable to read amplification due to the search
path across multiple levels. Despite considerable efforts to
alleviate the problem, less has happened to version searching
crucial to consistent reads inMVCC databases. In this regard,
we argue that another design dimension is worth investigating
when LSM-trees face HTAP loads; its read amplification
rises whenMVCC systems run long-running analytic queries,
as the database community has seen in numerous prior
studies [7], [13], [29], [30].

FIGURE 3. Read amplification of data version searching.

Figure 3 illustrates why read amplification gets deterio-
rated under HTAP workloads. In the early stage, a transaction
looking for the entry with key A first finds a visible version
A1 — whose sequence number is 1 —in a relatively low
level LN . As the transaction remains alive, versions pile up
from massive updates by OLTP transactions, placing newer
versions (A70 and A100) on the lower levels (LN+1 and LN ).
Now aged into a long-lived transaction, the same read on A
should fetch the visible version from a higher level (LN+2)
than that of its first read (LN ), requiring two more level
traversals.

Under HTAP workloads, transactions executing complex
online analytic processing (OLAP) queries tend to run longer,
i.e., long-lived transactions. It spends much time reading a
large portion of the database and computing complex oper-
ations (e.g., join), while OLTP transactions extensively pile
up the new entries onto the lower levels. Thus, the queries
demand that more entries be fetched from the higher lev-
els over time, aggravating read amplification. Unfortunately,
fence pointers and bloom filters are not much help in this
situation since the core matter is not on the key’s existence
but the visibility of the versions. Hence, our primary focus
is inventing a lightweight technique to aid analytic queries
by reducing unnecessary IO.

IV. ALIGNED COMPACTION
In this section, we describe the design and implementation
details of aligned compaction. The proposed solution allevi-
ates write amplification by eliminating the overhang of false
overlaps.

FIGURE 4. Aligned compaction.

A. DESIGN RATIONALE
The legacy compaction algorithm splits sort-merged entries
into multiple SSTables depending on the fixed target size of
the system configuration. Thus, the SSTables involved in the
compaction are likely to create false overlaps, triggering the
overhang issue. The central insight of aligned compaction
is to relax the constraint of the static size configuration.
By allowing dynamic sizes, the SSTables are aligned, pre-
venting false overlaps in the first place. Figure 4a shows the
layout of the disk components organized by aligned com-
paction. SSTables spanning the same key range are aligned
with each other instead of containing false overlaps. Hence,
the SSTables can be compactedwithout inducingwrite ampli-
fication for non-overlapping key ranges. Aligned compaction
writes the output SSTables while preserving the aligned lay-
out. This repetition keeps all the levels well-arranged since
compaction affects the layout of disk components.

Another merit of our proposed solution is practicality.
In the context of LSM-trees, the layout of an SSTable is
tightly bounded with RocksDB operations, deeply incorpo-
rating with operations on a massive scale of data up to
tens of petabytes. Hence, the fact that aligned compaction
does not involve any changes on the existing layout of an
SSTable introduces high compatibility and feasibility to the
technique since legacy operations are intact. Such orthogonal-
ity allows the implementation of aligned compaction practi-
cal, requiring only minor changes to the original compaction
algorithm.

B. MAIN DESIGN
To make SSTables aligned with a key range, we changed
the partitioning policy used in the output SSTable creation,
as shown in Figure 4b. When aligned compaction builds new
sort-merged entries into an output level (LN+1), it partitions
them into different sizes to align the output SSTables to the

VOLUME 10, 2022 117629



J. Kim et al.: Hybrid Transactional/Analytical Processing Amplifies IO in LSM-Trees

ones in the adjacent higher level (LN+2). The new partitioning
policy exploits two properties of the LSM-trees:

1) For any pair of overlapping SSTables in the adjacent
levels LN and LN+1, the SSTable in the higher level,
LN+1, is always created before the one in the lower
level, LN .

2) Higher-level SSTables usually cover narrow key ranges
with high density.

Property 1 guarantees the preexistence of the SSTables in
LN+2, and subsequent compaction for the new SSTables and
the SSTables in LN+2 will be executed without the redundant
behavior since they tightly overlap without false overlapping
key ranges. One exception is that the corresponding key range
of LN+2 is empty in the first place, and in this case, the aligned
compaction follows the fixed-size partitioning policy.

Allowing SSTables to absorb more or fewer entries than
the specified configuration theoretically makes the size of
SSTables unbounded. That being said, by Property 2, we can
expect that only putting a small number of more or fewer
entries into output SSTables is enough to align them with
that in the adjacent higher level. Moreover, to systematically
bound the size variance of SSTables, we set a configurable
threshold (2 by default) to prevent output SSTables from
being far from the target size under the exceptional cases. For
instance, once the size of a newSSTable being created reaches
the target size multiplied by the threshold, the compaction
logic cuts the boundary of the SSTable even if it would
partially overlap with the higher-level SSTable. Also, until
the size of the new SSTable reaches the target size divided by
the threshold, the SSTable keeps taking more entries even if
it meets the aligned point.

Aligned compaction works regardless of workload charac-
teristics, e.g., key type, range, and distribution. It decides the
key range of each partition on the fly according to the prior
dataset using the current key comparator of a target system
instead of fitting to the pre-defined static partitions. It does
not take additional memory and storage space, and it involves
negligible extra computation to check the alignment.

C. IMPLEMENTATION ON RocksDB
The compaction process of RocksDB involves three steps:
1) pick the input SSTables, 2) sort-merge them, and
3) pipeline the result to the output level, partitioning the
stream into fixed-size SSTable files. Since the essence of
the implementation of aligned compaction lies within the
partitioning policy, the point-of-interest is the last step, where
we choose the partitioning point for output files.

Algorithm 1 describes the general sequence of our aligned
compaction. The while loop iterates through the entries of
the sort-merge result by fetching an entry from the merg-
ing iterator. The key of each entry is compared with the
grandparent’s range (lines 6 and 10) to seek the partition
point. Although Property 2 holds, extreme cases are to be
taken care of by systematical restrictions (lines 4 and 7). The
maximum size of an SSTable is bound to a product of the
configured SSTable size (i.e., base_sstable_size) and

Algorithm 1 Pseudocode of Aligned Compaction
Data:

G, overlapping SSTables in output_level+1
Sout , output SSTable file

1 grandparent ← G.begin()
2 while merging_iterator .Valid() do
3 merging_iterator .NextAndGetResult(entry)
4 if Sout .size ≥ max_sstable_size then
5 Sout ← NewSSTable() // open new

SSTable

6 else if grandparent 6= G.end() and
entry.key > grandparent.largest_key then

7 if Sout .size ≥ min_sstable_size then
8 Sout ← NewSSTable()

9 grandparent ← grandparent.next()

10 else if grandparent = G.end() or
entry.key ≤ grandparent.smallest_key then

11 if Sout .size ≥ base_sstable_size then
12 Sout ← NewSSTable()

13 Sout .append(entry)

FIGURE 5. Correlation of snapshot age and its visible SSTable.

a configurable variance factor. Theminimum size upholds the
same logic, using the variance factor as a divisor.

V. SNAPSHOT FILTERS
This section describes snapshot filters to alleviate read ampli-
fication by utilizing the minimum sequence number to filter
out unnecessary access to invisible SSTables.

A. DESIGN RATIONALE
An MVCC transaction only sees a key-value entry whose
sequence number is lower than its snapshot. Suppose a mini-
mum sequence number of an SSTable representing the oldest
entry inside the table is higher than the snapshot. In that case,
it implies that all entries of the SSTable are invisible to the
transaction. Since key-value entries move toward the highest
level in LSM-trees as time passes, entries in the lower level
tend to have higher sequence numbers. Likewise, the min-
imum sequence number of each lower-level SSTables also
shows a similar tendency, as depicted in Figure 5. In LSM-
tree-basedMVCC systems, a transactionwith an old snapshot
would have skipped traversing lower-level entries or entire

117630 VOLUME 10, 2022



J. Kim et al.: Hybrid Transactional/Analytical Processing Amplifies IO in LSM-Trees

FIGURE 6. Snapshot filters.

SSTables, if the systems had tracked pertinent information.
Indeed, a single minimum sequence number can help skip
the entire SSTable, which is the essential benefit of snapshot
filters.

B. MAIN DESIGN
A snapshot filter is an SSTable-granular in-memory filter. For
each SSTable, the snapshot filter keeps track of the minimum
sequence number among its entries. When a read transaction
finds an SSTable covering the target key, it first compares its
snapshot with the corresponding minimum sequence number
in the snapshot filter. If the minimum sequence number of
the SSTable is higher than the given snapshot, the transaction
skips the SSTable since all entries in the SSTable are invisible
to the transaction. Figure 6 shows the read path of a long-lived
transaction utilizing the snapshot filter. The transaction took
a snapshot sequence number of 20 when it started, and the
recent version of entry A at that time was 5. As systems
process many updates while the read transaction lives a long
time, the then-recent version entry A5 has to go down to
L3 due to compaction. Once the transaction finds the visible
version of entry A, it can skip lower-level SSTables filledwith
newer versions than the snapshot using our snapshot filter.

Snapshot filters show a better effect for lookups on hotkey
entries that are frequently updated. Multiple versions of
hotkey entries spread across most levels, and in this case, the
bloom filters barely filter out unnecessary reads on SSTables
during the version search of the key since the filter’s domain
is based on the presence of the key not visibility. On the con-
trary, the snapshot filters are effective in this case, prevent-
ing the transaction from unnecessarily accessing invisible
SSTables, even if they contain the target key entry. Snapshot
filters can also benefit range queries that bloom filters cannot,
although the impact is less substantial than a point lookup.
A point lookup probes one SSTable per level equally (except
for L0) until it finds a visible entry. Thus, the snapshot filters
can reduce disk reads directly proportional to the number of
skippable lower levels. However, a range query scans more
SSTables at a higher level since a higher-level SSTable covers
a narrower key range. Filtering out lower-level SSTables does
not affect the range query latency asmuch as the point lookup.

FIGURE 7. Snapshot filter implementation.

Our lightweight filter uses one metadata, the minimum
sequence number, to expedite read operations onHTAPwork-
loads. The opportunity for further advancements in the fil-
ter using more complicated techniques is still open, but we
forbear the effort for two reasons. First, SSTables distributed
on the higher levels tend to show lower minimum sequence
numbers than that of lower levels. With each SSTable con-
taining sequence numbers of a somewhat bounded range, the
utilization of a single minimum sequence number does its job
of filtering out a meaningful load as implied in Figure 5. Sec-
ond, using a complex strategy may enhance the performance,
however, in a trade for extra memory or CPU consumption.
The snapshot filters take near-zero resource consumption,
using resources already held in memory, which is merit for
practicality.

The snapshot filters are not subject to crash recovery. After
a system reboots, all the preexisting entries are either visible
to or older than new snapshots, so the snapshot filters used
before the system shutdown becomes obsolete. Besides, the
snapshot filters only occupy 8 bytes of a sequence number for
each SSTable, which is a negligible footprint for a database
management system. Therefore, it is adequate to manage
snapshot filters in memory, assigning a role of an addi-
tional filtering layer together with fence pointers and bloom
filters.

C. IMPLEMENTATION ON RocksDB
In RocksDB, both point lookup and range scan involve the
action of traversing multiple SSTables to search for the
desired entries, leaving the critical difference between the two
to the direction of their access path: 1) a point lookup invokes
a vertical traversal, searching each level sequentially using
the target key, whereas 2) a range scan performs a horizontal
search with iterators, by collecting the entries while advanc-
ing the cursors on each level to the end. The implementations
of snapshot filters on both methods share the same logic for
the filtering process: by comparing the minimum sequence
number of an SSTable to the transaction snapshot. Essential to
notice is where to place snapshot filters for each correspond-
ing access path. A point lookup undergoes two filtering layers
for each level: fence pointers and a bloom filters. Since fence
pointers narrow down search candidates and bloom filters
require a higher computational cost (i.e., hashing) than our
lightweight filters, we place the snapshot filters between the
two as depicted in Figure 7a.

VOLUME 10, 2022 117631



J. Kim et al.: Hybrid Transactional/Analytical Processing Amplifies IO in LSM-Trees

TABLE 1. MyRocks default system configurations.

Figure 7b shows the process of a range scan with the
snapshot filters, making use of iterators for each level (i.e.,
LevelIterator). The iterators are combined and sorted
using a min-heap (i.e., MergingIterator). The desired
key range is extracted by advancing the cursors on each
level to the end, traversing multiple SSTables horizontally.
The movement within a level is divided into two steps:
seek and advance. First, Seek() is invoked to put the
initial cursor on the first overlapping SSTable, and then
SkipEmptyFileForward() is used to move the cursor
to the next SSTables from thereon. Both invocations induce
jumps over SSTables, implying a crucial implementation
point for our snapshot filters.

VI. EXPERIMENTAL EVALUATION
We apply our optimizations to RocksDB and evaluate them
with various workloads. We first validate the performance
gain under HTAP workloads, and then we further investigate
themwith microbenchmarks of the varying system and work-
load configurations. We execute all the experiments in the
following environment: 96 CPU cores with four Intel Xeon
E7-8890, 2 TiB of memory, and Intel NVMe SSD DC P3608.

A. MyRocks UNDER HTAP WORKLOADS
To execute complex SQL queries over RocksDB, we use
MyRocks-5.6 for the evaluation. We also use the open-source
tool of Citusdata [31] implementing CH-BenCHmark [32],
a popular HTAP benchmark, with a slight modification for
the compatibility with MyRocks. All system configuration
parameters of RocksDB remain as defaults (detailed in 1),
except for the use of bloom filters. We configure the bloom
filters with 10 bits per key in the additional experiment to
measure the accurate performance gain beyond the existing
optimizations. We dedicate 32 workers for TPC-C loads and
six for TPC-H loads and run the benchmark for 4 hours plus
extra waiting time for the very last OLAP query to end.

1) THE EFFECT OF ALIGNED COMPACTION UNDER
CH-BenCHmark
Figure 8 shows OLTP throughput and the amount of disk
writes for each level of the LSM-trees. Vanilla MyRocks and
the optimized version show a similar amount in the L0 disk
writes since all modifications should first pass through the
lowest level. The amount of disk writes on L1 is simi-
lar because SSTables in L0 are tiered, which means that
most files in L0 and L1 are usually compacted together,

FIGURE 8. OLTP throughput and disk writes of CH-BenCHmark.

covering almost the entire key range, so the compaction
rarely forms false overlaps in the first place. However, from
L1-L2 compaction, aligned compaction takes effect, reducing
the total disk writes. In terms of the overall write amplifica-
tion (i.e., total disk writes / L0 disk writes), MyRocks with
aligned compaction shows 14.9% less than vanilla MyRocks.

2) THE EFFECT OF SNAPSHOT FILTERS UNDER
CH-BenCHmark
Snapshot filters help reduce read amplification of the queries
with the following properties:
• The lifetime of the query is long enough for OLTP
transactions to pile up a considerable number of recent
versions invisible to the OLAP query.

• Internally queries perform numerous point lookups.
Out of 22 OLAP queries of CH-BenCHmark, we pick out

the notable six queries (Q9, Q14, Q15, Q17, Q19, Q21) that
show these properties. Each query is assigned to the six ded-
icated OLAP worker threads, respectively, and each worker
thread repeatedly runs the designated query until the bench-
mark terminates. As shown in Figure 9a, snapshot filters
effectively reduce the read amplification, leading to improv-
ing the query latencies, of which the degree of improvement
depends on the query type. As the query runs long, the
latency gap between the vanilla and the optimized system
widens since OLTP workers keep increasing the database
volume, creating more skippable SSTables during the query
lifetime. Note that bloom filters are effective for several long-
running queries, but we observe that MyRocks with snapshot
filters outperforms vanilla with a wide margin, especially for
certain queries (Q15 and Q21) where bloom filters barely
impact query latency. In-depth analysis through profiling
false-positive rates (i.e., FPR) of bloom filters confirms that
queries with high FPR benefit much from snapshot filters,
as shown in Figure 9b. The results confirm that long-running
queries internally performing numerous point lookup opera-
tions are susceptible to HTAP, where our snapshot filters can
be beneficial.

B. MICROBENCHMARKS FOR ALIGNED COMPACTION
In this section, we evaluate the impact of aligned com-
paction by varying the configuration. First, we adjust the
fanout of LSM-trees to observe the reduction in write
amplification. Next, we show the adaptability of aligned
compaction depending on different workload distributions.

117632 VOLUME 10, 2022



J. Kim et al.: Hybrid Transactional/Analytical Processing Amplifies IO in LSM-Trees

FIGURE 9. OLAP query latency of CH-BenCHmark.

We use RocksDB-6.17 with default configurations for the
experiments, except we disable data compression to grow
data volume faster. Microbenchmarks tested are from the
built-in benchmarks (i.e., db_bench) of RocksDB. We use
64-bit integer keys with the range of 200M, together with
1024 bytes of value each, for write-only workloads putting
200M of random key-values.

1) ALIGNED COMPACTION WITH VARYING FANOUT
To see the effect of aligned compaction on LSM-trees with
different fanout, we set the fanout to 2, 6, and 10, respec-
tively. Figure 10a shows the amount of disk writes for each
disk-component level. Since the disk writes amount on L0
represents the volume of user data written to the database,
the results of L0 for all configurations are almost the same.
Also, the results of L1 are similar for the vanilla and the
optimized system because our optimization does not benefit
L0-L1 compaction. However, from L2 to the highest level, the
optimized RocksDB shows fewer disk writes, reducing the
total disk writes.

FIGURE 10. Aligned compaction with different fanout.

Figure 10b represents the corresponding write amplifica-
tion for the evaluations. As shown in the figure, aligned
compaction benefits more to the system with lower fanout
since the false overlap range tends to be more significant; the
write amplification is reduced 24.8% in fanout of 2 and 13.8%
in fanout of 10. Reduced write amplification possibly helps
throughput increase when compaction threads cannot keep up
with the write speed. The result shows 28.4% of throughput
improvement in fanout of 2 and 6.0% in fanout of 10.

FIGURE 11. Aligned compaction with different workload distribution.

2) ALIGNED COMPACTION UNDER SKEWED WORKLOADS
Aligned compaction dynamically partitions output SSTables
to work regardless of the workload distribution. To vali-
date its adaptability, we varied the Zipfian exponent of the

VOLUME 10, 2022 117633



J. Kim et al.: Hybrid Transactional/Analytical Processing Amplifies IO in LSM-Trees

key generator from 0.0 (uniform) to 1.1 (highly skewed),
and we set the fanout as 2 to expand the LSM-trees with
more levels. Figure 11 shows the number of disk writes and
write amplification. The optimized RocksDB successfully
reduces IO under all distributions, although the improvement
diminishes when workloads become skewed. Nevertheless,
it does not necessarily mean that the effectiveness of aligned
compaction decreases. Under the highly skewed workloads
(Zipfian-exp 1.1), the system generates about 17 million dif-
ferent keys during 200 million put operations and incurring
disk writes up to L4, while 126 million different keys are
created under the uniform workloads incurring disk writes up
to L9. Considering that the false overlaps appear throughout
all levels higher than L1, there are fewer opportunities for
improvement under the skewed workloads in the first place.

C. MICROBENCHMARKS FOR SNAPSHOT FILTERS
This section evaluates snapshot filters with microbenchmarks
running synthetic workloads, using the same configuration
as the previous section. We assign a dedicated writer to put
new key-value entries continuously, which each key lies in
the range of 0 to 100 million. Each reader in every work-
load spends various think-time to mimic analytic queries,
as specified in each figure. We first demonstrate the effect
of snapshot filters on point lookups with varying think-time
and workload distributions, and then we show the range scan
performance by adjusting scan ranges. To see the behavior
of the snapshot filters on a larger-than-memory database,
for each experiment, we measured results of the low-spec
environment where the available memory capacity is limited
to 4 GiB by Linux cgroup.

1) POINT LOOKUP WITH VARYING LIFETIME
To see the correlation between transaction lifetime and
the effectiveness of snapshot filters, we adjust think-time
between the actions of taking a snapshot and reading one
million key entries, as illustrated in Figure 12a. We randomly
select keys for updates and point lookups with a uniform
distribution. As shown in Figure 12b, the optimized RocksDB
shows 58.2% improvement in query latency compared to the
vanilla system when the think-time is 0. The performance
gain reaches up to 78.1%; evenwith no think-time, the latency
is improved notably since many skippable low-level SSTa-
bles, especially in L0, are piled up during one million point
lookups.

We also measure the latency by enabling the bloom filters
in the vanilla and optimized RocksDB. Although the bloom
filters significantly reduce the latencies of the vanilla system,
the snapshot filters still exhibit meaningful enhancement,
from 35.9% to 51.0% latency reduction. The performance
gain increases as the transaction lifetime becomes longer, as
clearly demonstrated in Figure 12c. When a transaction has
a relatively recent snapshot, the snapshot filters only allow
skipping lower-level SSTables that are likely to be cached in
the page cache. The transaction gradually skips higher-level
SSTables that will likely be in storage as the transaction

FIGURE 12. Point lookup latency with different transaction lifetime.

runs long. It meaningfully reduces expensive disk reads and
impacts performance more than reducing page access in the
page cache. The next section discusses the combined effect
of the bloom filters and the snapshot filters.

2) POINT LOOKUP WITH VARYING WORKLOAD
DISTRIBUTION
Bloom filters are effective when the search key is not in
the target table. However, when a transaction finds a fre-
quently updated key entry that SSTables of multiple levels
may includewith high probability, the bloomfilters are hardly
effective in reducing read IO. Figure 13b shows the effective-
ness of snapshot filters and bloom filters with different work-
load distributions from uniform (Zipfian-exp: 0) to highly
skewed (Zipfian-exp: 1.1). Snapshot filters enhance the read
transactions’ performance throughout all workload distribu-
tions, with 45.5% latency improvement under the uniform
workload and 74.6% under the highly skewed workload. The
performance gain increases further with longer transactions
that spend 15 minutes of extra think-time since a transaction
with an older snapshot has more chances to skip SSTables.
Bloom filters also improve the latency of the vanilla system,
but the effectiveness decreases as the workload becomes
skewed, especially for long-running transactions searching
keys across more levels. Combined optimizations show the
complementarity between bloom and snapshot filters; the
latency remains stable regardless of workload distributions
and transaction lifetime.

117634 VOLUME 10, 2022



J. Kim et al.: Hybrid Transactional/Analytical Processing Amplifies IO in LSM-Trees

FIGURE 13. Point lookup latency.

Noticeable is that the false-positive rates of bloom fil-
ters and snapshot filters directly correlate to latency behav-
iors (see the colored FPR numbers on the right-hand side
of Figure 13b). Regardless of transaction lifetime, systems
with bloom filters only suffer IO amplification as workloads
become skewed. On the other hand, systems with both filters
substantially reduce read IO, especially under highly skewed
loads with long think-time, where snapshot filters would
fulfill the job effectively.1 Although measured in controlled
environments, the results confirm that our snapshot filter
technique can assist bloom filters in reducing read amplifi-
cation further under HTAP loads.

Figure 13c shows the results of the same experiments over
the memory-constrained environment. Bloom filters success-
fully reduced query latencies eliminating numerous physi-
cal disk reads, especially when the workload is not highly

1Relatively high FPR numbers observed in systems with snapshot filters
and no think-time exhibit high variance depending on query start time, so it
needs further investigation.

FIGURE 14. Range scan latency with different scan range.

skewed; with highly skewed workloads, small numbers of
frequently accessed SSTable blocks containing hotkey entries
are likely to be cached in the page cache in the first place.
The same reason applies to the system without bloom filters,
where we can see more dramatic changes in the latency
behavior. Nonetheless, the snapshot filters assisting bloom
filters still achieve further latency enhancement. It reduces
read IO by 26.6% under the uniform workloads and 61.1%
under the highly skewed workloads, and the enhancement
increases up to 39.9%, 71.4%, respectively, when the trans-
actions take extra think-time.

3) RANGE SCAN WITH DIFFERENT RANGES
In this experiment, we show the effect of the snapshot filters
under range scans. As detailed in Figure 14a, we adjust the
scan range to 100, 10K, 1M, and 100M, respectively, and
each transaction repeats the scan multiple times with the
given range after 15 minutes of think-time. Figure 14b and
Figure 14c show that the snapshot filters enhance the latency
by about 46.8% to 49.3% when the scan range is narrow, but
the improvement rapidly drops as the scan range becomes
wider. The reason is that when a scan range is narrow, the
number of skippable lower-level SSTable blocks accounts
for a large proportion of the total blocks that the range scan
iterates; in contrast, the broader the range, the greater the ratio
of the iterated blocks in the higher levels during the range
scan. Overall, the optimized system still outperforms vanilla
RocksDB throughout all scan ranges with negligible costs.

VOLUME 10, 2022 117635



J. Kim et al.: Hybrid Transactional/Analytical Processing Amplifies IO in LSM-Trees

VII. DISCUSSION
As practical remedies, aligned compaction and snapshot
filters benefit widely used key-value systems; our pro-
totype implementation in RocksDB only requires less
than 100 LOC for snapshot filters and less than 400 LOC
for aligned compaction.2 Since our focus is on practicality
without demanding hidden costs, we have excluded more
sophisticated designs for two reasons. First, such designsmay
require substantial changes from the LSM-tree architecture,
which means that deploying the solution may lose practical-
ity. Second, sophisticated designs usually demand complex
data structures and more resource requirements, which may
cause extra resource contention with storage systems. We,
therefore, leave room for improvement and further investiga-
tion. In this work, we could not explore design questions, such
as how much gain one can attain by deploying sophisticated
designs that use more resources and constraints? Would it be
beneficial to use finer-grained trackingmechanisms requiring
more memory or storage? We also have to think about the
question: would approaching HTAP issues by taming write-
optimized LSM-tree architecture be worth further investiga-
tion? or is it time to rethink the underlying architecture of
LSM-trees in the face of upcoming, complex database work-
loads? We would leave these more fundamental questions to
our community.

VIII. CONCLUSION
As we face a growing demand from the data analytics market
for HTAP, database systems confront a new challenge of
dealing with mixed types of workloads. LSM-trees pervad-
ing many key-value storage systems are deemed a suitable
alternative for a foundation of HTAP systems due to their
superior write-optimized features and acceptable read perfor-
mance. However, the workload characteristics of HTAP, i.e.,
transactional reads running together with intensive writes,
aggravate IO amplification, which would impact the overall
system performance badly. This paper proposed two practi-
cal optimizations, aligned compaction and snapshot filters,
to alleviate IO amplification under HTAPworkloads. The two
techniques are lightweight, orthogonal to existing techniques
without needing architectural changes. We demonstrated the
effectiveness of the proposed techniques by applying them to
RocksDB and showed that our proposals generally improve
IO amplification under a variety of workloads, proving that
the optimizations make LSM-trees more HTAP-friendly.

REFERENCES
[1] (2021). Google Open Source. Leveldb. [Online]. Available:

https://github.com/google/leveldb
[2] (2021). Facebook Open Source. Rocksdb: A Persistent Key-Value Store for

Fast Storage Environments. [Online]. Available: http://rocksdb.org/
[3] A. Lakshman and P. Malik, ‘‘Cassandra: A decentralized structured stor-

age system,’’ ACM SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
Apr. 2010.

2Despite being premature implementations, much of what we needed for
realizing our techniques is already available in RocksDB, such as minimum
sequence number and SSTable metadata.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, ‘‘Bigtable: A distributed storage
system for structured data,’’ ACM Trans. Comput. Syst., vol. 26, no. 2,
pp. 1–26, Jun. 2008.

[5] (2021). Apache Software Foundation. Apache Hbase. [Online]. Available:
https://hbase.apache.org/

[6] Y. Matsunobu, S. Dong, and H. Lee, ‘‘MyRocks: LSM-tree database
storage engine serving Facebook’s social graph,’’Proc. VLDBEndowment,
vol. 13, no. 12, pp. 3217–3230, Aug. 2020.

[7] J. Lee, H. Shin, C. G. Park, S. Ko, J. Noh, Y. Chuh, W. Stephan, and
W.-S. Han, ‘‘Hybrid garbage collection for multi-version concurrency
control in SAP HANA,’’ in Proc. Int. Conf. Manage. Data, New York, NY,
USA, Jun. 2016, pp. 1307–1318.

[8] (2021). Oracle. Heatwave User Guide. [Online]. Available:
https://downloads.mysql.com/docs/heatwave-en.pdf

[9] (2021). SingleStore. [Online]. Available: https://www.singlestore.com/
[10] M. Stonebraker and A. Weisberg, ‘‘The VoltDB Main Memory DBMS,’’

IEEE Data Eng. Bull., vol. 36, no. 2, pp. 21–27, Jun. 2013.
[11] A. Kemper and T. Neumann, ‘‘HyPer: A hybrid OLTP&OLAP

main memory database system based on virtual memory
snapshots,’’ in Proc. IEEE 27th Int. Conf. Data Eng., Apr. 2011,
pp. 195–206.

[12] B. Lepers, O. Balmau, K. Gupta, and W. Zwaenepoel, ‘‘Kvell+: Snapshot
isolation without snapshots,’’ in Proc. 14th USENIX Symp. Operating Syst.
Design Implement. (OSDI), Nov. 2020, pp. 425–441.

[13] J. Kim, K. Kim, H. Cho, J. Yu, S. Kang, and H. Jung, ‘‘Rethink the scan
in MVCC databases,’’ in Proc. Int. Conf. Manage. Data, New York, NY,
USA, Jun. 2021, pp. 938–950.

[14] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki,
‘‘The case for heterogeneous HTAP,’’ in Proc. 8th Biennial Conf. Innov.
Data Syst. Res., 2017, pp. 1–11.

[15] H. Saxena, L. Golab, S. Idreos, and I. F. Ilyas, ‘‘Real-time LSM-trees for
HTAP workloads,’’ 2021, arXiv:2101.06801.

[16] F. Özcan, Y. Tian, and P. Tözün, ‘‘Hybrid transactional/analytical process-
ing: A survey,’’ in Proc. ACM Int. Conf. Manage. Data, New York, NY,
USA, 2017, pp. 1771–1775.

[17] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos,
A. Ailamaki, and M. D. Callaghan, ‘‘Designing access methods: The rum
conjecture,’’ in Proc. EDBT, 2016, pp. 1–6.

[18] N. Dayan, M. Athanassoulis, and S. Idreos, ‘‘Monkey: Optimal navigable
key-value store,’’ in Proc. ACM Int. Conf. Manage. Data, New York, NY,
USA, May 2017, pp. 79–94.

[19] N. Dayan and S. Idreos, ‘‘Dostoevsky: Better space-time trade-offs for
LSM-tree based key-value stores via adaptive removal of superfluous
merging,’’ in Proc. Int. Conf. Manage. Data, New York, NY, USA,
May 2018, pp. 505–520.

[20] N. Dayan and S. Idreos, ‘‘The log-structured merge-bush & the wacky
continuum,’’ in Proc. Int. Conf. Manage. Data, New York, NY, USA,
Jun. 2019, pp. 449–466.

[21] C. Luo andM. J. Carey, ‘‘LSM-based storage techniques: A survey,’’VLDB
J., vol. 29, no. 1, pp. 393–418, Jan. 2020.

[22] K. Ren, Q. Zheng, J. Arulraj, and G. Gibson, ‘‘SlimDB: A space-efficient
key-value storage engine for semi-sorted data,’’ Proc. VLDB Endowment,
vol. 10, no. 13, pp. 2037–2048, Sep. 2017.

[23] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham, ‘‘PebblesDB:
Building key-value stores using fragmented log-structured merge trees,’’ in
Proc. 26th Symp. Operating Syst. Princ., New York, NY, USA, Oct. 2017,
pp. 497–514.

[24] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton,
and A. Pavlo, ‘‘SuRF: Practical range query filtering with fast succinct
tries,’’ in Proc. Int. Conf. Manage. Data, New York, NY, USA, May 2018,
pp. 323–336.

[25] Y. Li, C. Tian, F. Guo, C. Li, and Y. Xu, ‘‘Elasticbf: Elastic Bloom
filter with hotness awareness for boosting read performance in large key-
value stores,’’ in Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2019,
pp. 739–752.

[26] S. Luo, S. Chatterjee, R. Ketsetsidis, N. Dayan, W. Qin, and S. Idreos,
‘‘Rosetta: A robust space-time optimized range filter for key-value stores,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data, New York, NY, USA,
Jun. 2020, pp. 2071–2086.

[27] N. Dayan and M. Twitto, ‘‘Chucky: A succinct cuckoo filter for LSM-
tree,’’ in Proc. Int. Conf. Manage. Data, New York, NY, USA, Jun. 2021,
pp. 365–378.

117636 VOLUME 10, 2022



J. Kim et al.: Hybrid Transactional/Analytical Processing Amplifies IO in LSM-Trees

[28] H. Lim, D. G. Andersen, and M. Kaminsky, ‘‘Towards accurate and fast
evaluation of multi-stage log-structured designs,’’ in Proc. 14th USENIX
Conf. File Storage Technol. (FAST), Santa Clara, CA, USA, Feb. 2016,
pp. 149–166.

[29] J. Böttcher, V. Leis, T. Neumann, and A. Kemper, ‘‘Scalable garbage col-
lection for in-memory MVCC systems,’’ Proc. VLDB Endowment, vol. 13,
no. 2, pp. 128–141, Oct. 2019.

[30] J. Kim, H. Cho, K. Kim, J. Yu, S. Kang, and H. Jung, ‘‘Long-lived transac-
tions made less harmful,’’ in Proc. ACM SIGMOD Int. Conf. Manag. Data.
New York, NY, USA: ACM, 2020, pp. 495–510.

[31] (2021). Citus Data. Tools for Running CH-benCHmark With HammerDB.
[Online]. Available: https://github.com/citusdata/ch-benchmark

[32] R. Cole, M. Poess, K.-U. Sattler, M. Seibold, E. Simon, F. Waas, F. Funke,
L. Giakoumakis, W. Guy, A. Kemper, S. Krompass, H. Kuno, R. Nambiar,
and T. Neumann, ‘‘The mixed workload CH-benchmark,’’ in Proc. 4th
Int. Workshop Test. Database Syst. (DBTest), New York, NY, USA, 2011,
pp. 1–6.

JONGBIN KIM received the B.S. degree in com-
puter science and engineering from Hanyang Uni-
versity, Seoul, South Korea, in 2017, where he is
currently pursuing the Ph.D. degree in computer
science. His research interests include the design
and implementation of contemporary database
systems that can survive upcomingmulticore hard-
ware, especially focusing on high-performance
transaction processing and efficient multi-version
management systems.

JAECHAN AHN received the B.S. degree in
computer science and engineering from Hanyang
University, South Korea, where he is currently
pursuing the M.S. degree with the Department of
Computer Science and Engineering. His research
interest includes database management systems,
specifically focused on MVCC databases for
hybrid transactional/analytical processing.

KITAEK LEE received the B.S. degree in computer
science and engineering fromHanyang University,
Seoul, South Korea, in 2020, where he is currently
pursuing the M.S. degree in computer science. His
research interest includes high-performance trans-
action processing systems.

MINSOO RYU received the Ph.D. degree from the
School of Electrical Engineering and Computer
Engineering, Seoul National University, in 2002.
He is currently a Professor at the Department of
Computer Science and Engineering, HanyangUni-
versity, South Korea. His research interest includes
real-time embedded systems. His specific research
interests include real-time system design and anal-
ysis, real-time operating systems and middleware,
and diverse software engineering issues for multi-

core and/or manycore embedded computing systems.

HYUNGSOO JUNG received the B.S. degree
in mechanical engineering from Korea Univer-
sity, Seoul, in 2002, and the M.S. and Ph.D.
degrees in computer science from Seoul National
University, South Korea, in 2004 and 2009,
respectively. From 2010 to 2012, hewas a Postdoc-
toral Research Associate with The University of
Sydney, Sydney, Australia. From April to Septem-
ber 2012, he was a Researcher at NICTA. From
October 2012 to August 2015, he worked at

Amazon Web Services as a Software Development Engineer (Senior).
In September 2015, he joined Hanyang University, South Korea, as a Faculty
Member, where he is currently an Associate Professor at the Department
of Computer Science. His research interests include the areas of distributed
systems, database systems, and transaction processing.

VOLUME 10, 2022 117637


