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Abstract
We introduce the numerical range of a bounded linear operator on a semi-inner-
product space. We compute the numerical ranges of some operators on �

p
2(C)

(1 ≤ p <∞) and show that the numerical range of the backward shift on an
infinite-dimensional space �p is the open unit disc. We define a conjugation and a
complex symmetric operator on a semi-inner-product space and discuss complex
symmetry in the dual space. We prove some properties of a generalized adjoint of a
complex symmetric operator. We also show that the numerical range of the complex
conjugation on �

p
n (n ≥ 2) is the closed unit disc. Finally, we discuss the sequentially

essential numerical ranges of operators on a semi-inner-product space.
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1 Introduction
For the study of operator theory in Banach spaces, Lumer [12] introduced a semi-inner-
product, which is different from an inner product in that it is in general not conjugate sym-
metric. Thus a semi-inner-product is generally nonlinear with respect to its second vari-
able. Giles [7] showed that in a fairly large class of Banach spaces, it is possible to construct
a semi-inner-product with some desirable properties of the inner product. He proved that
every normed space is a semi-inner-product space on which the semi-inner-product sat-
isfies an extra homogeneity condition and gave fundamental properties extending Hilbert
space type arguments to Banach spaces. Recently, semi-inner-products have been used as
a useful tool in establishing the concept of reproducing kernel Banach spaces for machine
learning [14].

On a separable complex Hilbert space H, a conjugation is an isometric antilinear involu-
tion C from H to H. A simple example of a conjugation on a Hilbert space is the pointwise
complex conjugation on L2(�,μ), where (�,μ) is a measure space with a positive measure
μ. Garcia et al. [6, Lemma 2.11] proved that there exists an orthonormal basis {en}n≥1 in H
such that Cen = en for any positive integer n, which asserts that every conjugation is unitar-
ily equivalent to the canonical conjugation on an �2-space of the appropriate dimension.
Takagi [13] studied the antilinear eigenvalue problem Tx = λx where T is an n × n sym-
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metric complex matrix and x denotes the complex conjugation of the vector x in C
n. The

result of Godič and Lucenko [8] states that any unitary operator U on H can be factored
as U = CJ and is both C-symmetric and J-symmetric, where C and J are conjugations on
H. This generalizes the well-known fact that any planar rotation can be factored as the
product of two reflections. Chō and Tanahashi [2] defined a conjugation on a complex
Banach space and studied some spectral properties of complex symmetric operators.

The numerical range of T ∈ L(H) is the collection of complex numbers of the form
〈Tξ , ξ 〉 with ξ ranging through the unit vectors in H. The numerical range is very useful
in studying operators and has many applications (see [9] for details), for example, numer-
ical ranges are regarded as a rough estimate of eigenvalues, and generalizations of the nu-
merical range are used to study quantum computing [3]. Recently, Hur and Lee [10] also
studied the numerical ranges of conjugations and antilinear operators acting on a Hilbert
space.

We now give a brief outline of the paper. In Sect. 2, we study the numerical range of a
bounded linear operator on a semi-inner-product space. Using the standard semi-inner-
product on �

p
n(C), we compute numerical ranges of several operators, where �

p
n(C) is the

complex n-dimensional space with the �p-norm (1 ≤ p < ∞). Particularly, we compute
numerical ranges of some operators acting on �

p
2(C) and show that the numerical range of

the backward shift on �p(C) is the open unit disc, where �p(C) is an infinite-dimensional
space. In Sect. 3, we introduce a conjugation and a complex symmetric operator on a semi-
inner-product space and investigate their basic properties. We prove some properties of
a generalized adjoint of a complex symmetric operator on a semi-inner-product space.
Moreover, we show that the numerical range of the complex conjugation on �

p
n(C) (n ≥ 2)

is the closed unit disc. Finally, we discuss the sequentially essential numerical ranges of
operators multiplied by a conjugation in a semi-inner-product space.

2 Numerical ranges of semi-inner-product space operators
After introducing a semi-inner product space by Lumer [12], semi-inner-products have
widely been applied to study bounded linear operators on Banach spaces [4]. Many prop-
erties of semi-inner-products were discovered by many authors, in particular, Giles [7].
We first recall the definitions of the semi-inner-product and the numerical range of a
bounded operator on a semi-inner-product space and point out elementary properties
of the numerical range.

Definition 2.1 Let X be a complex vector space. A semi-inner-product onX is a function
[·, ·] : X ×X →C satisfying the following properties: for any x, y, z ∈X ,

(1) [x + y, z] = [x, z] + [y, z],
(2) [λx, y] = λ[x, y] for all λ ∈C,
(3) [x, x] > 0 for x 	= 0,
(4) |[x, y]|2 ≤ [x, x][y, y].

We say that X equipped with a semi-inner-product is a semi-inner-product space.

Lumer [12] proved that a semi-inner-product space is a normed vector space with norm
‖x‖ = [x, x]1/2 and every normed linear space can be made into a semi-inner-product space.
We see that a semi-inner-product is an inner product if and only if the induced norm
satisfies the parallelogram law. Giles [7] showed that every normed vector space can be
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represented as a semi-inner-product space with the homogeneity property, that is,

[x,λy] = λ[x, y] for all x, y ∈X and λ ∈C. (1)

He proved the Riesz representation theorem for Hilbert space in the context of uniform
semi-inner-product spaces, which says that if f is a continuous linear functional on X ,
then there is a unique vector y in X such that f (x) = [x, y] for all x in X .

It is well known that for 1 < p < ∞, the space �
p
n(C) has the semi-inner-product defined

by

[x, y]p =
1

‖y‖p–2
p

n∑

j=1

xjyj|yj|p–2 for x, y 	= 0,

which is consistent with the �p-norm ‖ · ‖p. For p = 1, the semi-inner-product is given by

[x, y]1 = ‖y‖1

n∑

j=1

xj sgn(yj),

where sgn(z) is z/|z| if z ∈C \ {0}, and 0 if z = 0.
In a semi-inner-product space X , the numerical range W (T) of T ∈ L(X ) was defined

in [12] as the set of numbers

W (T) :=
{

[Tx, x] : [x, x] = 1, x ∈X
}

.

This definition extends the classical one in a Hilbert space. It is well known that the nu-
merical range of an operator in a Hilbert space is always convex; the proof can be done by
reducing the problem to considering the numerical range of 2 × 2 matrices. However, the
numerical range in a semi-inner-product space is not convex in general [12, Theorem 15].

Throughout this paper, X and L(X ) denote a semi-inner-product space with semi-
inner-product [·, ·] and the set of bounded linear operators on X , respectively, unless
specified otherwise. We always assume that every semi-inner-product space has this ho-
mogeneity property.

The following elementary properties were observed by Lumer [12]. Let T , S ∈L(X ) and
α,β ∈ C. We denote by σa(T) the approximate point spectrum and by ∂σ (T) the boundary
of the spectrum.

(i) 1
4‖T‖ ≤ w(T) ≤ ‖T‖ for the numerical radius w(T) = sup{|[Tx, x]| : x ∈X },

(ii) W (T) = {λ} if and only if T = λI ,
(iii) W (T) contains all of the eigenvalues of T ,
(iv) W (αT + βI) = αW (T) + β ,
(v) W (T + S) ⊆ W (T) + W (S),

(vi) σa(T) ⊆ cl[W (T)], i.e., ∂σ (T) ⊆ cl[W (T)] where cl[W (T)] denotes the closure of
W (T).

In this section, we explicitly compute the numerical range in a finite-dimensional semi-
inner-product space. We denote by �

p
n(C) (p ≥ 1) the complex n-dimensional space C

n

equipped with the �p-norm. We first consider the numerical ranges of 2×2 matrices acting
on the space �

p
2(C).
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Example 2.2
(1) If T =

( 1 0
0 0

)
acts on �

p
2(C) (1 ≤ p < ∞), then the numerical range W (T) is the closed

interval [0, 1] since [Tu, u]p = |x|p for any unit vector u =
( x

y
)
.

(2) For T =
( 0 1

0 0

)
acting on �1

2(C), the numerical range W (T) is the open unit disc.
Indeed, let u =

( x
y
)

in �1
2(C) be any unit vector, so |x| + |y| = 1. Then we have that

[Tu, u]1 = y sgn(x) =

⎧
⎨

⎩
0 if x = 0,

yeiθ if x 	= 0,

where θ is a real number such that eiθ = x
|x| . If |[Tu, u]1| = 1 for nonzero x, then we

have 1 = |[Tu, u]1| = |y|| sgn(x)| = |y|. However, we should have |x| = 0 because of
|x| + |y| = 1, which contradicts to assumption. Thus the numerical range W (T) is
the open unit disc.

When 1 < p < ∞, we now investigate the numerical range of T =
( 0 1

0 0

)
acting on �

p
2(C).

Lemma 2.3 For 1 < p < ∞, the range of the function f (t) := (tan t)
2
p (cos t)2 defined on

[0,π/2) is the interval [0, 1
p (p – 1)

p–1
p ].

Proof We see that f (0) = 0 and limt→ π
2

– f (t) = 0. Since

f ′(t) = 2(tan t)
2
p cos t

(
1

p sin t
– sin t

)
,

f has the absolute maximum when sin t = 1/√p. In this case, we have

tan t =
1√

p – 1
and cos t =

√
p – 1

p
,

so that the maximum value of f is equal to 1
p (p – 1)

p–1
p . By the intermediate value theorem

the range of f is [0, 1
p (p – 1)

p–1
p ]. �

Example 2.4 For 1 < p < ∞, let Dp be the closed disc of radius 1
p (p – 1)

p–1
p centered at the

origin. For T =
( 0 1

0 0

)
acting on �

p
2(C), we see that W (T) is the closed disc Dp.

To show that W (T) = Dp, we take any unit vector u =
( x

y
)

in �
p
2(C) with |x|p + |y|p = 1.

Since [Tu, u]p = yx|x|p–2 and |y|p = 1 – |x|p, we have

∣∣[Tu, u]p
∣∣p =

(
1 – |x|p)|x|p(p–1).

Since the function g(t) = (1 – tp)tp(p–1) has the maximum value 1
pp (p – 1)p–1 at t = ( p–1

p )1/p,

|[Tu, u]p| has the maximum value 1
p (p – 1)

p–1
p when |x|p = p–1

p . Thus we see that W (T) is
contained in the closed disc Dp.

To show the reverse inclusion, let λ be any complex number in Dp. We can write λ = reiθ

for some 0 ≤ r ≤ 1
p (p – 1)

p–1
p and θ ∈R. We take a unit vector

u =
(| cosα| 2

p , eiθ | sinα| 2
p
)t ∈ �

p
2(C)
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for any real number α. We note that the arctangent function arctan : R → (– π
2 , π

2 ) is 1–1
and onto. By Lemma 2.3 there exists a unique real number α ∈ [0, arctan((p – 1)

p–1
2 p– p

2 )]
such that r = | tanα| 2

p | cosα|2. Consequently, for such a unit vector u, we have

[Tu, u]p = eiθ | sinα| 2
p | cosα| 2p–2

p = eiθ | tanα| 2
p | cosα|2 = reiθ = λ,

which completes the proof.

Proposition 2.5 Let T =
( a b

0 –a

)
act on �1

2(C) where a ∈ R \ {0} and b ∈C. Then

W (T) =

⎧
⎨

⎩
{x + iy ∈C : (x + a)2 + y2 ≤ 4a2} if |b| = 2|a|,
{x + iy ∈C : y2 ≤ |b|2

|4a2–|b|2| (x – a)2} if |b| 	= 2|a|.

Proof For any unit vector u = (eiα cos2 θ , eiβ sin2 θ )t ∈ �1
2(C) with 0 ≤ α,β < 2π and 0 ≤ θ <

π , we have

[Tu, u]1 = a cos2 θ + bei(β–α) sin2 θ – a sin2 θ

= a cos 2θ +
b
2

(1 – cos 2θ )ei(β–α).

Letting [Tu, u]1 =: x + iy with x, y ∈R, we have the equation

(x – a cos 2θ )2 + y2 =
|b|2

4
(1 – cos 2θ )2,

so that the following quadratic equation for cos 2θ holds;

(
4a2 – |b|2) cos2 2θ – 2

(
4ax – |b|2) cos 2θ + 4x2 + 4y2 – |b|2 = 0. (2)

In the case of |b| = 2|a|, we have the equation 2a(x – a) cos 2θ = x2 + y2 – a2. If x = a, then
we have y = 0. Assumet that x 	= a. Then it follows that

| cos 2θ | =
∣∣∣∣
x2 + y2 – a2

2a(x – a)

∣∣∣∣ ≤ 1.

In the case of a(x – a) > 0, we have W (T) = ∅. On the other hand, in the case of a(x – a) < 0,
we get the inequality (x + a)2 + y2 ≤ 4a2, so that

W (T) =
{

x + iy ∈C : (x + a)2 + y2 ≤ 4a2} \ {
(a, 0)

}
.

By combining these cases we have W (T) = {x + iy ∈C : (x + a)2 + y2 ≤ 4a2}.
In the case of |b| < 2|a|, since cos 2θ must be real, the discriminant of equation (2) gives

the inequality

(
4ax – |b|2)2 –

(
4a2 – |b|2)(4x2 + 4y2 – |b|2) ≥ 0,
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so that

y2 ≤ |b|2
4a2 – |b|2 (x – a)2.

In the case of |b| > 2|a|, we similarly get the inequality

y2 ≤ |b|2
|b|2 – 4a2 (x – a)2.

These complete the proof. �

Example 2.6 If T =
( 1 i

0 –1

)
acts on �1

2(C), then it follows form Proposition 2.5 that the nu-
merical range W (T) is the region satisfying – 1√

3 (x – 1) ≤ y ≤ 1√
3 (x – 1) as follows.

Proposition 2.7 Let T =
( a b

0 c

)
act on �1

2, where a, c ∈R \ {0}, a + c 	= 0, and b ∈C. For any
unit vector u = (x, y)t ∈ �1

2, we have

[Tu, u]1 =

⎧
⎪⎪⎨

⎪⎪⎩

a if |x| = 1 and |y| = 0,

c if |x| = 0 and |y| = 1,

a|x| + c(1 – |x|) + bxy
|x| if |x| 	= 0 and |y| = 1 – |x|.

Proof The proof can be obtained by simple computations, so we omit it. �

Remark 2.8 In Proposition 2.7, we suppose that b, x, y are pure imaginary numbers. Let
b = αi for a nonzero real number α. If |x| = r for 0 < r < 1, then

[Tu, u]1 =
{

ra + (1 – r)c
}

+ (1 – r)αi.

So, [Tu, u]1 converges to a as r → 1. On the other hand, [Tu, u]1 goes to c ± αi as r → 0.

Corollary 2.9 Let T be as in Proposition 2.7, and let u = (x, y)t ∈ �1
2 be a unit vector. If, in

addition, b is a nonzero real number, then for x 	= 0 and y with |y| = 1 – |x|,

W (T) ⊂
{
λ ∈C :

∣∣Re(λ)
∣∣ ≤ |a + b + c|

2
and

∣∣Im(λ)
∣∣ ≤ |b|

2

}
.
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Proof If x = x1 + ix2 and y = y1 + iy2, where xj and yj are real numbers (j = 1, 2), then we
obtain from Proposition 2.7 that

[Tu, u]1 =
{

(a – c)|x| + c +
b
|x| (x1y1 + x2y2)

}
+ i

b
|x| (x1y2 – x2y1).

By the Cauchy–Schwarz inequality, we get that for t :=
√

x2
1 + x2

2,

(x1y1 + x2y2)2 ≤ (
x2

1 + x2
2
)(

y2
1 + y2

2
)

=
(
x2

1 + x2
2
)(

1 –
√

x2
1 + x2

2

)2

= t2(1 – t)2 =: f (t).

On the interval (0, 1), f has the maximum 1
16 at t = 1

2 , so that we get |x1y1 + x2y2| ≤ 1
4 , and

this gives the inequality

∣∣Re
(
[Tu, u]1

)∣∣ ≤ |a + b + c|
2

.

In this case, we also get the inequality | Im([Tu, u]1)| = |2b(x1y2 – x2y1)| ≤ |b|
2 by a similar

method. This completes the proof. �

Theorem 2.10 Let T be the backward shift on an infinite dimensional Banach space �p(C)
for 1 ≤ p < ∞. Then the numerical range W (T) is the open unit disc.

Proof Let x = (x1, x2, x3, . . .) be any unit vector in �p(C), and let k = min{i ≥ 1 : xi 	= 0}. Then
we have

∣∣[Tx, x]p
∣∣ ≤

∞∑

j=k

|xj+1||xj|p–1

≤ 1
p

∞∑

j=k

{|xj+1|p + (p – 1)|xj|p
}

=
1
p

{
(p – 1)|xk|p + p

∞∑

j=k+1

|xj|p
}

=
1
p

{
p

∞∑

j=k

|xj|p – |xk|p
}

= 1 –
|xk|p

p
< 1,

where the second inequality follows from the inequality of arithmetic and geometric
means. Hence we obtain that |[Tx, x]p| < 1 for any unit vector x ∈ �p(C), which implies
that W (T) is contained in the open unit disc.

To show the reverse inclusion, let λ = reiθ be any vector in the open unit disc with 0 ≤
r < 1. We take the vector x ∈ �p(C) given by

x =
((

1 – rp) 1
p , r

(
1 – rp) 1

p eiθ , r2(1 – rp) 1
p e2iθ , r3(1 – rp) 1

p e3iθ , . . .
)
.
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Then we see that ‖x‖p = 1, so that [x, x]p = ‖x‖2
p = 1. Moreover, we get that

[Tx, x]p = reiθ (1 – rp)
∞∑

k=1

r(k–1)p = reiθ = λ,

which implies that W (T) contains the open unit disc. This completes the proof. �

3 Conjugations and complex symmetric operators
A conjugation C defined on a complex Hilbert space H is an antilinear operator that is
involutive (C2 = IH) and isometric, meaning that the following equality holds;

〈Cξ , Cη〉 = 〈η, ξ 〉 for all ξ ,η ∈H. (3)

Thus it follows from (3) that 〈Cξ , Cη〉 = 〈ξ ,η〉. Chō and Tanahashi [2] introduced a conju-
gation C on a complex Banach space B as the operator satisfying the following relations;

C2 = IB , ‖C‖ ≤ 1, C(x + y) = Cx + Cy and C(λx) = λCx (4)

for all x, y ∈ B and λ ∈C.
Like in a Hilbert space, we will define a conjugation on a semi-inner-product space using

a semi-inner-product. Throughout this section, X denotes a semi-inner-product space
with a semi-inner-product [·, ·], unless specified otherwise.

Definition 3.1 An operator C : X →X is a conjugation if it is involutive (C2 = IX ) and

[Cx, Cy] = [x, y] for all x, y ∈X . (5)

Proposition 3.2 If C is a conjugation on X , then relation (4) holds for all x, y ∈ X and
λ ∈C.

Proof By the Cauchy–Schwarz inequality for a semi-inner-product, we have that ‖Cx‖2 =
[Cx, Cx] = [x, x] ≤ ‖x‖2 for every x ∈ X , which implies that ‖C‖ ≤ 1. Since a semi-inner-
product is linear in the first variable, we have

[
C(x + y), Cz

]
= [x + y, z] = [x, z] + [y, z]

= [Cx, Cz] + [Cy, Cz] = [Cx + Cy, Cz]

for all x, y, z ∈X . Since the operator C is surjective, we can take z ∈X such that

Cz := C(x + y) – Cx – Cy.

Then we get that 0 = [C(x + y) – Cx – Cy, Cz] = [Cz, Cz], so that Cz = 0, that is, C(x + y) =
Cx + Cy. To show that C(λx) = λCx for any x ∈X and λ ∈C, take any element y ∈X . Then
we have

[
C(λx), y

]
= [λx, Cy] = λ[x, Cy]
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= λ[Cx, y] = [λCx, y],

which means that C(λx) = λCx. Therefore C satisfies relation (4). �

Let C be a conjugation on a complex Hilbert space H. A bounded linear opera-
tor T on H is C-symmetric if T = CT∗C, where T∗ is a Hilbert space adjoint of T ,
which is equivalent to 〈Tx, y〉 = 〈x, CTCy〉 for all x, y ∈ H. Chō et al. [1] have extend
the notion of C-symmetric operators to Banach space operators via linear functionals
in its dual space. However, we would like to extend the notion of the complex sym-
metry to semi-inner-product space operators without using linear functionals. Even
though semi-inner-products in general are not additive in the second variables, we will
use a semi-inner-product to define the C-symmetric operator on a semi-inner-product
space.

Definition 3.3 Let C be a conjugation on X . We say that T ∈L(X ) is C-symmetric if

[Tx, y] = [x, CTCy] for all x, y ∈X . (6)

Remark 3.4 In Definition 3.3, equation (6) is equivalent to

[x, Ty] = [CTCx, y] for all x, y ∈X . (7)

Indeed, by putting Cx, Cy into (6) instead of x, y we obtain that [TCx, Cy] = [Cx, CTy]. It
follows from the definition of a conjugation C that [CTCx, y] = [Cx, CTy] = [x, Ty].

Proposition 3.5 Let C be a conjugation on X , and let T ∈ L(X ) be a C-symmetric oper-
ator.

(i) λT is C-symmetric for any complex number λ.
(ii) If T is invertible, then T–1 is also C-symmetric.

(iii) If S ∈L(X ) is C-symmetric and commutes with T , then so is TS.

Proof (i) For any complex number λ, we have

[
(λT)x, y

]
= λ[Tx, y] = λ[x, CTCy]

= [x,λCTCy] =
[
x, C(λT)Cy

]
,

so that λT is C-symmetric.
(ii) For any y ∈ X , there exists z ∈ X such that y = CTCz. Indeed, since T is invertible

and C is a conjugation, CT–1C is also invertible. Putting z := CT–1Cy, we get y = CTCz.
For any x, y ∈X , we have

[
T–1x, y

]
=

[
T–1x, CTCz

]
=

[
TT–1x, z

]
= [x, z] =

[
x, CT–1Cy

]
,

where the second equality follows from the C-symmetry of T . Thus T–1 is C-symmetric,
which completes the proof.
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(iii) If S ∈L(X ) commutes with T and is C-symmetric, then it follows that

[
(TS)x, y

]
= [Sx, CTCy] =

[
x, CSC(CTCy)

]
=

[
x, C(ST)Cy

]
=

[
x, C(TS)Cy

]
.

Hence TS is C-symmetric. �

Let T ∈ L(X ) and y ∈ X . By the Riesz representation theorem in a semi-inner-product
space [7], there is a unique vector T†y such that [Tx, y] = [x, T†y] for all x ∈ X , where
T† is a generalized adjoint, which is not usually linear [11]. On the other hand, if C is a
conjugation on X and if T ∈L(X ) is C-symmetric, then we obtain that

[
x, T†y

]
= [Tx, y] = [x, CTCy] for all x, y ∈X ,

so that T† = CTC. Since CTC is linear, T† becomes a linear operator on X . It follows from
(7) that [x, Ty] = [CTCx, y] = [T†x, y] for all x, y ∈X . Furthermore, T† is also C-symmetric.
Indeed, for all x, y ∈X ,

[
T†x, y

]
= [CTCx, y] = [TCx, Cy] =

[
Cx, T†Cy

]
=

[
x, CT†Cy

]
.

A uniform semi-inner-product space means a uniformly continuous semi-inner-product
space where the induced normed vector space is complete and uniformly convex. Here the
(uniform) continuity implies that

Re
{

[y, x + ty]
} → Re

{
[y, x]

}
(uniformly) as t ∈ R→ 0.

Giles [7, Theorem 7] proved that for a uniform semi-inner-product spaceX , the dual space
X  is also a uniform complex semi-inner-product space with respect to the semi-inner-
product defined by [x, y] = [y, x]. Moreover, he proved that for every continuous linear
functional x in a dual space X , there exists a unique vector x ∈X such that

x(z) = [z, x] for all z ∈X ,

so that the map x �→ x = [·, x] is a one-to-one mapping fromX ontoX . For any T ∈L(X ),
the dual operator T ∈L(X ) is given by Ty(z) = y(Tz) for all y ∈X  and z ∈X .

If C is a conjugation on a uniform semi-inner-product space X , then we define the dual
operator C : X  →X  by

(
C

(
x

))
(z) := x(Cz) for all z ∈X . (8)

We have that (C(x))(z) = x(Cz) = [Cz, x] = [z, Cx] = (Cx)(z), so that C(x) = (Cx). Thus
we have the following commutative diagram:

X C––––––→ X
⏐⏐�

⏐⏐�

X  ––––––→
C

X 



An and Heo Journal of Inequalities and Applications        (2022) 2022:150 Page 11 of 15

Moreover, the dual operator C is a conjugation on X . Indeed, for any x, y ∈ X , there
exist unique vectors x and y in X such that

[
Cx, Cy

]


=
[
(Cx), (Cy)

]


= [Cy, Cx] = [y, x] =
[
x, y

]

.

Since (Cx) = C(x) for all x ∈X , we observe that relation (4) implies equation (5).

Proposition 3.6 Let C be a conjugation on a uniform semi-inner-product space X .
(i) If T ∈L(X ) is C-symmetric, then T ∈L(X ) is also C-symmetric.

(ii) If T ∈L(X ) is C-symmetric, then (T†) = (T)†.
(iii) If {Tn} is a sequence of C-symmetric operators such that Tn → S in the strong

topology, then S is C-symmetric.

Proof (i) Suppose that T is a C-symmetric operator onX . Let f and g be arbitrary elements
in the dual space X . Since X is a uniform semi-inner-product space, there exist unique
vectors x and y in X such that x = f and y = g . First, we observe that Tx = (T†x).
Indeed, for any z ∈X , we have

(
Tx

)
(z) = x(Tz) = [Tz, x] =

[
z, T†x

]
=

(
T†x

)(z).

Moreover, for any z ∈X and y ∈X , we see that

(
CTC

)
y(z) = y(CTCz) = (CTC)y(z),

so CTC = (CTC). Thus we have

[
Tx, y

]


=
[
y, T†x

]
=

[
CT†Cy, x

]

=
[
x,

(
CT†Cy

)]


=
[
x, (CTC)y

]


=
[
x, CTCy

]

,

which means that T is C-symmetric.
(ii) For any z ∈X and y ∈X , we obtain that

(
T†

)y(z) = (CTC)y(z) =
(
CTC

)
y(z).

On the other hand, it follows from (i) that T is C-symmetric. Hence, for all x ∈X ,

[
x,

(
T

)†y
]


=
[
Tx, y

]


=
[
x,

(
CTC

)
y

]

.

This means that (T†) = (T)†.
(iii) Since ‖(S – Tn)x‖ → 0 for all x ∈X , for all x, y ∈X , we have

[CSCx, y] = lim
n→∞[CTnCx, y] = lim

n→∞[x, Tny] = [x, Sy],

where the third equality follows from uniform continuity. Thus S is a C-symmetric oper-
ator. �
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Now we compute the numerical range of a conjugation on �
p
n(C).

Example 3.7 Let C be a complex conjugation on �
p
n(C) (1 ≤ p < ∞) given by Cx = x =

(x1, . . . , xn) for x ∈ �
p
n(C). Then we have:

(1) W (C) = {λ ∈C : |λ| = 1} for n = 1,
(2) W (C) = {λ ∈C : |λ| ≤ 1} for n ≥ 2.
It is easy to prove (1). Indeed, for any x ∈ �

p
1(C) with |x| = 1, we write x = eiθ for some real

number θ . Obviously, we have [Cx, x]p = [x, x]p = e–2iθ , and so W (C) = {λ ∈C : |λ| = 1}.
To show the second statement, let x ∈ �

p
n(C) be any unit vector, i.e., ‖x‖2

p = [x, x]p = 1. By
the Cauchy–Schwarz inequality we have

∣∣[Cx, x]p
∣∣2 ≤ [Cx, Cx]p[x, x]p = [x, x]p[x, x]p = 1,

which implies that W (C) ⊆ {λ ∈C : |λ| ≤ 1}.
For the reverse inclusion, let λ be any complex number with |λ| ≤ 1. We write a polar

form λ = |λ|eiθ for some real number θ . Now we take a unit vector x ∈ �
p
n(C) given by

x =
((

1 + |λ|
2

) 1
p

e– iθ
2 ,

(
1 – |λ|

2

) 1
p

ie– iθ
2 , 0, . . . , 0

)
.

Then we have

[Cx, x]p = [x, x]p =
(

1 + |λ|
2

–
1 – |λ|

2

)
eiθ = |λ|eiθ = λ,

which implies that W (C) contains the closed unit disc. Therefore the numerical range
W (C) is the closed unit disc.

Let C be the usual complex conjugation given in Example 3.7. Then we see that

w(C) = sup
{∣∣[Cx, x]p

∣∣ : [x, x] = 1, x ∈ �p
n
}

= 1 for all n ≥ 1,

where w(C) is the numerical radius of C. Moreover, we can find infinitely many unit vectors
x that attain the numerical radius of the complex conjugation C on �1

n(C) (n ≥ 1), that is,
vectors x with |[Cx, x]1| = 1. We explicitly construct vectors attaining the numerical radius
w(C) in the following example.

Example 3.8 Let n ≥ 2. For any λ ∈ C with 0 < |λ| ≤ 1
n–1 , we take the vector x =

(x1, x2, . . . , xn)t ∈ �1
n(C) given by

xj =

⎧
⎨

⎩
λ if 1 ≤ j ≤ n – 1,

( 1
|λ| – n + 1)λ if j = n.

(9)

Then we have that

[x, x]1 = 1 and
∣∣[Cx, x]1

∣∣ =
∣∣∣∣

(
λ

|λ|
)∣∣∣∣

2

= 1.
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For any complex number λ with |λ| ≥ n – 1, we put x = (x1, x2, . . . , xn) ∈ �1
n(C), where

xj =

⎧
⎨

⎩
λ

–1 if 1 ≤ j ≤ n – 1,

λ
–1(|λ| – n + 1) if j = n.

(10)

Then it follows that

[x, x]1 = 1 and
∣∣[Cx, x]1

∣∣ =
∣∣∣∣

( |λ|
λ

)∣∣∣∣
2

= 1.

Similarly, we also have infinitely many numerical radius attaining vectors in the infinite-
dimensional space �1(N) in the same way as (9) and (10) except for jth terms with 0 (j > n).

The essential numerical range for a bounded linear operator on a Hilbert space is de-
fined as the closure of the numerical range of the image in the Calkin algebra, and many
equivalent conditions are known [5]. We now introduce the sequentially essential numer-
ical range of T on a semi-inner-product space X by

We(T) =
{

z ∈C : lim
n

[Txn, xn] = z for some {xn} ⊂X with [xn, xn] = 1, xn
w−→ 0

}
.

Theorem 3.9 Let T ∈L(X ), and let C be a conjugation on X . Then we have

W (CTC) = W (T) and We(T) = We(CTC),

where S denotes the complex conjugation of S.

Proof If z ∈ W (CTC), then there exists a vector x ∈X with [x, x] = 1 such that

z = [CTCx, x] = [TCx, Cx] ∈ W (T).

This means that W (CTC) ⊂ W (T). Since W (T) = W (C2TC2) ⊂ W (CTC), we get the re-
verse inclusion. Therefore we have W (CTC) = W (T).

If z ∈ We(CTC), then there exists a sequence {xn} ⊂ X with [xn, xn] = 1 and xn
w−→ 0.

Since limn xn = 0 in the weak sense, we obtain that limn f (xn) = 0 for all f ∈X . Since Cf ∈
X  for all f ∈ X , we have limn f (Cxn) = limn Cf (xn) = 0, which implies that Cxn

w−→ 0.
Thus we have

z = lim
n

[CTCxn, xn] = lim
n

[TCxn, Cxn] ∈ We(T).

This implies that We(CTC) ⊂ We(T). The reverse inclusion follows from

We(T) = We
(
C2TC2) ⊂ We(CTC),

which completes the proof. �

Corollary 3.10 Let C be a conjugation on X , and let T ∈L(X ) be C-symmetric.
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(i) W (T†) = W (T) and We(T†) = We(T).
(ii) W (T) = {[x, Tx] : [x, x] = 1, x ∈X }.

(iii) If, in addition, X is a uniform semi-inner-product space, then

W
(
CTC

)
= W

(
T

)
=

{[
x, Tx

]


:
[
x, x

]


= 1, x ∈X 
}

.

Proof It immediately follows from Proposition 3.6 and Theorem 3.9. �

We say that T ∈ L(X ) is an isometry if [Tx, Ty] = [x, y] for x, y ∈ X , a unitary if it is
isometric and surjective, and a Hermitian operator if W (T) ⊂ R. For a conjugation C on
X , we have that T is an isometry (a unitary or a Hermitian operator, respectively) if and
only if CTC is an isometry (a unitary or a Hermitian operator, respectively). Indeed, if T
is an isometry, then for x, y ∈X ,

[CTCx, CTCy] = [TCx, TCy] = [Cx, Cy] = [x, y],

which implies that CTC is an isometry. Conversely, if CTC is an isometry, then for x, y ∈X ,

[Tx, Ty] = [TCz, TCw] = [CTCz, CTCw] = [z, w] = [Cz, Cw] = [x, y],

where z = Cx and w = Cy. Similarly, we can see that T is a unitary if and only if CTC
is a unitary. It follows from Theorem 3.9 that T is Hermitian if and only if CTC is also
Hermitian.

In [8, Lemma 3.1] and [6, Theorem 3.1], it has been proved that any unitary operator on
a Hilbert space can be constructed by gluing together two copies of essentially the same
antilinear operator. The following proposition provides a perspective on the structure of
unitary operators in a semi-inner-product space.

Proposition 3.11 If C and G are conjugations on X , then U = CG is a unitary and is both
C-symmetric and G-symmetric.

Proof For any x, y ∈X , we have

[Ux, Uy] = [CGx, CGy] = [Gx, Gy] = [x, y],

which means that U is isometric. Since C and G are conjugations on X , it is obvious that
U is surjective, so that it is a unitary. Moreover, we have

[CUCx, y] = [GCx, y] = [Cx, Gy] = [x, CGy] = [x, Uy]

and

[GUGx, y] = [GCx, y] = [Cx, Gy] = [x, CGy] = [x, Uy].

Thus U is both C-symmetric and G-symmetric. �
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Remark 3.12 (i) In Proposition 3.11, if U† is a generalized adjoint of a unitary U = CG, then
we get from C-symmetry of U that U† = CUC = GC. Hence we have UU† = U†U = IX .
This means that U† = U–1.

(ii) Suppose that X in Proposition 3.11 is a uniform semi-inner-product space. Let
C and G be conjugations on X  corresponding to C and G, which are given by (8).
By Propositions 3.6 and 3.11, U = CG is a unitary on X  and is both C-symmetric
and G-symmetric. It also follows from C-symmetry of U that (U)† = GC, so that
(U)† = (U)–1.
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