
RESEARCH ARTICLE

Flexico: An efficient dual-mode consensus

protocol for blockchain networks

Shuyang Ren1, Choonhwa LeeID
1*, Eunsam Kim2, Sumi Helal3

1 Department of Computer Science, Hanyang University, Seoul, Korea, 2 Department of Computer

Engineering, Hongik University, Seoul, Korea, 3 CISE Department, University of Florida, Gainesville, FL,

United States of America

* lee@hanyang.ac.kr

Abstract

Blockchain is a Byzantine fault tolerant (BFT) system wherein decentralized nodes execute

consensus protocols to drive the agreement process on new blocks added to a distributed

ledger. Generally, two-round communications among 3fþ 1 nodes are required to tolerate

up to f faults in BFT-based consensus networks. This communication pattern corresponds

to the worse-case scenario of consensus achievement, even under asynchronous network

conditions. Nevertheless, it is not uncommon for a network to operate under better condi-

tions, where a consensus can be reached with a lower communication cost. Hence, with the

addition of a faster optimistic path toward an agreement, the idea of dual-mode consensus

has been proposed as a promising approach to enhance the performance of asynchronous

BFT protocols. However, this opportunity is not completely exploited by existing dual-mode

protocols as the fast path can be followed only in a nonfaulty and synchronous network. This

article presents a novel dual-mode protocol consisting of fast and backup subprotocols. To

create different consensus committees for fast and backup-mode operations, the network

contains both active and passive nodes. A consensus can be expedited through a fast-

mode operation when majority of the active nodes can communicate synchronously. Under

non-ideal conditions, the backup protocol takes over the agreement process from its fast-

mode counterpart without starting over the suspended round. The safety and liveness of the

proposed protocol are guaranteed with lower communication costs, which balance the

trade-off between protocol efficiency and availability.

Introduction

Over the years, replication technologies have been widely used in distributed systems to ensure

consistency and fault tolerance. Particularly, replication technologies can be divided into active

and passive replications [1]. In a passive replication, a client request is processed by the pri-

mary node, and the result is transferred to other replicas. In an active replication, also known

as a state machine replication (SMR), the same request is processed by all replicas. In recent

years, Byzantine fault tolerant (BFT) SMR protocols have been increasingly employed as con-

sensus algorithms in decentralized and tamper-resistant blockchain systems. Following the
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success of cryptocurrencies, blockchain technologies have also been used in the Internet of

Things devices, smart homes, healthcare, and other areas of application [2–10]. Correspond-

ingly, BFT protocols have attracted considerable attention in academia and industry. Such pro-

tocols can tolerate Byzantine faults, where adversary nodes can exhibit arbitrary behaviors,

making them vital components in maintaining the security of blockchain systems. However,

unlike a standard SMR use case, blockchain systems mostly comprise large-scale nodes, which

present new challenges to the implementation of BFT protocols.

To understand this problem, we must consider the operation of BFT protocols. Let us con-

sider the classic practical BFT (PBFT) algorithm, an asynchronous BFT algorithm widely used

in private blockchains, as an example [11]. To tolerate Byzantine nodes, 3fþ 1 nodes must run

a consensus algorithm comprising three phases: pre-preparation, preparation, and commit-

ment phases. In the pre-preparation phase, the leader node multicasts a pre-prepared message

to other nodes. After receiving the pre-prepared message, each node broadcasts a prepared

message to other nodes during the preparation phase. Similarly, when each node receives the

prepared message, it broadcasts a commitment message during the commitment phase to

complete the consensus processing. However, this all-to-all communication mode increases

the communication complexity to Oðn2Þ, which increases the number of messages exponen-

tially with increasing number of nodes. Consequently, BFT protocols are unsuitable for block-

chain systems composed of large-scale nodes and are limited to small-scale private blockchain

systems. Therefore, increasing number of studies have focused on reducing communication

costs and improving the efficiency of the applied protocols.

A synchronous network environment is undoubtedly beneficial for establishing efficient

consensus protocols because only two phases, i.e., preparation and commitment, are required

for a synchronous consensus protocol. This lowers the communication cost, thereby improv-

ing the efficiency of the protocol. However, robustness against asynchronous networks is criti-

cal in actual blockchain systems. Bearing this in mind, a set of dual-mode protocols that

provide an optimistic fast-path protocol in a synchronous network environment, as well as a

backup protocol in an asynchronous network environment, is typically adopted [12–15]. The

original objective of this idea is to obtain a highly efficient synchronous consensus protocol

while ensuring robustness against asynchronous networks. Among the related protocols, fast

and efficient protocols need to be executed in a purely synchronous and error-free system.

However, uncertain network delays are common in real-world systems, and thus, fast proto-

cols are generally useless; consequently, the protocols rely heavily on backup protocols. In

addition, dual-mode protocols usually apply fast protocols by default and require a view

change to switch to the backup protocol, thus increasing the cost associated with backup pro-

tocol running compared with the standard BFT approach.

To address the issues of dual-mode protocols mentioned above, in this paper, we propose a

new dual-mode protocol that can reach a consensus with maximum use of the fast protocol.

The key concept behind this approach consists of two parts. First, we divide the system nodes

into active and passive nodes. By default, the system allows active nodes to take lead while run-

ning a fast protocol. At this time, passive nodes do not participate in the consensus processing

but update the state according to the consensus results obtained from the active nodes. When

the active nodes fail to successfully complete the consensus process owing to an unstable net-

work delay, the system switches to the backup protocol. At this point, the passive nodes partici-

pate in the consensus process, continuing the execution of the fast protocol left incomplete by

the active nodes without the need for a view change. This provides the advantage of maintain-

ing the robustness of the consensus protocol against asynchronous networks while improving

the efficiency of the fast protocol. Moreover, our consensus protocol can seamlessly switch

between the fast protocol and backup protocol without incurring additional communication
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costs. Instead of restarting the unfinished consensus processing of the active nodes, the passive

nodes simply take over the process, which implies that the messages collected by the nodes in

the default fast protocol are not wasted even if the system switches to the backup protocol. Sec-

ond, we relax the operating limitations of our fast protocol. Thus, our fast protocol can achieve

consensus when more than half of the active nodes are error-free and communicate synchro-

nously with each other. As an advantage of this change, in contrast to other dual-mode proto-

cols that require the entire system to be purely synchronous and error-free, the condition for

our fast protocol operation is significantly easier to satisfy in practice. Consequently, our con-

sensus protocol can maximize the use of the fast protocol to complete consensus processing.

The key to realizing this approach lies in ensuring that the fast protocol can run when more

than half of the active nodes are error-free and are able to communicate synchronously. Fur-

thermore, messages exchanged while running the default fast protocol should be continually

utilized after the system switches to the backup protocol. Therefore, based on our previous

study we propose Flexico, a dual-mode protocol that relies on a t-of-n threshold Boneh-Lynn-

Shacham (BLS) signature [16–18]. The threshold BLS signature scheme uses a distributed key

generation (DKG) protocol to generate keys for the nodes and can tolerate arbitrary t < n=2

malicious parties [19]. In addition, for the same message M, any subset of nodes larger than t

can generate an aggregated signature that can be verified based on a unique fixed-group public

key. We use the threshold BLS signature scheme as a voting mechanism to verify the validity of

the proposed blocks. Owing to the gossip communication model, blocks can reach a consensus

after a single round of one-way communication, reducing the communication complexity

associated with verification of the blocks to Oð log nÞ [20].

This study contributes in terms of the following key aspects:

• We address the low utilization of fast protocols in existing dual-mode protocols. The condi-

tions for running the fast protocol are more relaxed, which allows our protocol to run the

fast protocol and reach consensus to the maximum extent possible.

• The system runs the fast protocol by default and switches to the backup protocol when the

network becomes unstable. However, switching between these two modes does not require a

change in view. The backup protocol overtakes the unfinished fast protocol, and the mes-

sages recorded in the fast protocol can still be utilized in the backup protocol.

• Our protocol combines the threshold BLS signature technique with the gossip communica-

tion model, reducing the communication complexity of the protocol to Oð log nÞ.

• Compared with the state-of-the-art SBFT protocol, our protocol achieves a 40% lower

latency. In addition, our protocol increases the probability of achieving a consensus using its

fast protocol to over 95%, which is greater than the corresponding 50% or lower probability

of the SBFT protocol.

The remainder of this paper is structured as follows. In the next section, we discuss the tech-

nological background for this study. The overall design and detailed description of the proto-

col are presented in the section on the Flexico protocol. Subsequently, we present an analysis

of the liveness of our fast-mode protocol and report the results of our performance evaluation.

We then summarize previous related studies and describe the future scope of our research.

Finally, certain concluding remarks regarding this study are provided.

Background

Generally, a consensus protocol assumes realistic target networks wherein either crash or Byz-

antine faults can occur. Previous studies have proven that the achievement of a consensus is
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impossible in a purely asynchronous environment with a single faulty node [21]. Thus, to

make the problem more tractable, certain protocols implement a consensus in synchronous

networks, wherein a finite bound Δ for the message delivery is known to establish bounds for

communication delays [22–24]. for the message delivery is known to establish bounds for

communication delays. Therefore, to provide liveness, several BFT consensus protocols for

asynchronous blockchain systems rely on partially synchronous networks [25]. In particular,

two circumstances can be considered partially synchronous. For the first, an upper bound Δ
exists but is unknown to the participants. For the second, Δ is known, but the bound holds

after an unspecified finite time. Under a partially synchronous assumption, the system requires

at least 3fþ 1 nodes and two rounds of message exchanges to tolerate Byzantine faults. The

PBFT protocol is one of the most well-known consensus protocols that rely on partially syn-

chronous time assumptions [11]. Subsequently, several BFT-compliant consensus protocols

have been explored to improve the performance of BFT protocols. The characteristics of some

representative protocols are summarized in Table 1. Because a BFT protocol is mostly leader-

based, when a malicious node is elected as the leader, it negatively affects the performance of

the protocol. Therefore, protocols such as Algorand, IBFT, and Prosecurtor [26–28] add a

leader selection algorithm to avoid the selection of malicious nodes as leaders. In addition,

although numerous BFT protocols maintain liveness based on partially synchronous time

assumptions, HoneyBadger and other approaches [29–32] use consensus protocols developed

to run in asynchronous networks, improving the availability of BFT protocols. Moreover,

other approaches, including DAG-Rider and Tusk [33, 34] utilize a directed acyclic graph

(DAG) structure to improve the performance of the BFT consensus protocol.

To ensure good performance of BFT protocols, a synchronous network is undoubtedly the

best operating environment because an unstable asynchronous network adds an additional

communication burden on the consensus process. However, in practical large-scale networks,

an unstable network latency is extremely common. It is, thus, also important for consensus

algorithms to become robust against asynchronous networks. Therefore, certain protocols

attempt to maintain improved performance in a synchronous network environment while also

achieving robustness against asynchronous networks. Accordingly, several systems have

adopted this idea by utilizing a dual-mode consensus protocol [12–15, 35, 36]. The characteris-

tics of such protocols are summarized in Table 2. Particularly, dual-mode protocols consist of

a fast optimistic subprotocol and a backup protocol. The optimistic fast protocol operates

when the network state is synchronous, whereas the backup protocol tolerates unfavorable net-

work conditions.

Table 1. Comparison of BFT-based consensus protocols.

Protocol Adversary tolerate Communication model Communication complexity Throughput Latency Finality

Algorand [26] f < n/3 Patially synchronous N/A Medium Medium Instant

IBFT [27] f < n/3 Patially synchronous O(n2) N/A Low Deterministic

Prosecutor [28] f < n/3 Patially synchronous O(n) Medium Low Deterministic

HoneyBadger [29] f < n/3 Asynchronous O(n2) Low High Instant

Dumbo1 [30] f < n/3 Asynchronous O(n2) Medium Medium Instant

Dumbo2 [30] f < n/3 Asynchronous O(n2) High Medium Instant

DispersedLedger [31] f < n/3 Asynchronous O(n) High Low Instant

AleaBFT [32] f < n/3 Asynchronous O(n2) Medium High Deterministic

DAG-Rider [33] f < n/3 N/A O(n) N/A N/A N/A

Tusk [34] f < n/3 N/A O(n) Very High Low N/A

https://doi.org/10.1371/journal.pone.0277092.t001
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Although Byzantine adversaries can behave arbitrarily and delay communication, they can-

not subvert cryptographic techniques used in message authentication. In advanced BFT proto-

cols, although the use of cryptography is beyond such authentication, it is also an efficient

strategy for collecting signatures as a voting approach to prove block validity among consen-

sus-processing participants. Previous studies have developed an efficient and robust threshold

signature scheme based on the BLS approach [17, 18]. Herein, participants secretly share their

keys through an interactive DKG protocol, and the threshold signature can be verified using a

unique corresponding public key [19]. Compared to other signature schemes, such as Rivest–

Shamir–Adleman and Schnorr, the BLS signature has a significantly shorter length [37, 38]. In

addition, the threshold BLS signature can be generated in a non-interactive manner with no

extra overhead, rendering the scheme favorable for some consensus protocols, such as SBFT

and FBFT [39].

Flexico protocol

Herein, we introduce Flexico, a novel dual-mode consensus protocol that includes fast- and

backup-mode protocols. Flexico is built on Concordia, an efficient BFT protocol based on a

threshold BLS signature scheme and a gossip communication pattern.

System model

We assume a standard partially synchronous BFT protocol model wherein a Byzantine adver-

sary can control at most f nodes among all the 3fþ 1 nodes. Each node holds a pair of keys

containing public and private keys. Moreover, we assign identities to participants in the system

based on a peer-discovery algorithm, where the nodes are assumed to have network connectiv-

ity. The system divides time into epochs, that is, predefined periods. At each epoch e, we

assume that we generate a random seed Rnde. After successfully establishing the identities, we

use Rnde as an input to the Fisher–Yates shuffle algorithm to compute a pseudo-random per-

mutation pe of 1; 2; :::; n for the identities [40]. The permutation is further divided into two

parts to identify the active and passive nodes.

For the execution of our fast protocol, we assume a weakly synchronous network condition,

wherein the majority of active nodes can communicate within a known upper bound Δ. As

illustrated in Fig 1, the network comprises active and passive nodes. Fig 1(a) depicts the net-

work conditions for the execution of the fast-mode protocol. Active nodes A1, A2, and A3

form a synchronous communication group, and A4 and A5 constitute another synchronous

group whose communication delay is smaller than Δ. In this case, the largest synchronous

group consists of three active nodes, that is, the majority of active nodes. Therefore, a

Table 2. Comparison of dual-mode consensus protocols.

Protocol Fast-mode Backup-mode View

changeAdversary

tolerate

Communication

model

Communication

complexity

Adversary

tolerate

Communication

model

Communication

complexity

Zyzzyva [14] f = 0 Synchronous O(n) f< n/3 Patially synchronous O(n2) ✓

Azyzzyva [15] f = 0 Synchronous O(n) f< n/3 Patially synchronous O(n2) ✓

CheapBFT [13] f = 0 Synchronous O(n2) f< n/3 Patially synchronous O(n2) ✓

Bolt-Dumbo

[35]

f < n/3 Synchronous O(n) f< n/3 Asynchronous O(n2) ✓

Jolteon-Ditto

[36]

f < n/3 Synchronous O(n) f< n/3 Patially synchronous O(n2) ✓

SBFT [12] f = 0 Synchronous O(n) f< n/3 Patially synchronous O(n) ✓

https://doi.org/10.1371/journal.pone.0277092.t002
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consensus can be achieved using the fast-mode protocol. Fig 1(b) depicts two synchronous

groups: {A1, A2} and {A4, A5}. Their group size is two, which is less than that of the group

with majority of the active nodes. Therefore, the fast-mode protocol can no longer maintain its

liveness, and the consensus mode returns to the backup protocol.

To confirm the validity of the blocks, we used threshold BLS signatures as a voting mecha-

nism. Notably, each node holds a pair of keys, i.e., a private key used to generate a signature

share as a vote regarding the validity of the block and a public key that can verify the signature.

For a threshold BLS signature with threshold t, any valid signatures can be combined into an

aggregated signature. This aggregated signature possesses the properties of uniqueness and

verifiability and is generated based on a non-interactive method. Thus, the aggregated signa-

ture can be used both as a proof of block validity and as a random seed Rnde for each round

and epoch. The validity of the aggregated signature can be verified using the group public key

generated through the DKG protocol.

As stated, our protocol comprises two subprotocols: a fast protocol and a backup protocol.

Each subprotocol has a different consensus committee. Therefore, we generate different group

public keys for both subprotocols. We assume that the system comprises n nodes, among

which m are active. For the backup protocol, ðx1; x2; :::; xnÞ !
ð2fþ1;nÞ

xB, pkB ¼ gxB , where xi

denotes the private key of node i, and g denotes the generator of the multiplicative group. Simi-

larly, for the fast protocol, ðx1; x2; :::; xmÞ !
ðfþ1;mÞ

xF, pkF ¼ gxF . Correspondingly, pkB and pkF

are the group public keys of the backup and fast protocols, respectively, which are used to verify

the aggregated signatures generated during the consensus processing of the two subprotocols.

Protocol overview

As depicted in Fig 2, different consensus committees are formed for the fast and backup

modes. The nodes in the system play two roles: active and passive. At the beginning of each

Fig 1. Network conditions for fast-mode and backup protocols.

https://doi.org/10.1371/journal.pone.0277092.g001
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epoch, the roles are randomly assigned according to the pseudo-random permutation pe gen-

erated by the epoch random seed Rnde. To further elaborate, in pe, nodes with sequence num-

bers 1; 2; :::;m are active nodes, and nodes with sequence numbers mþ 1;mþ 2; :::; n are

passive nodes. Correspondingly, the active nodes constitute the consensus committee of the

fast protocol, and all nodes in the system, including both active and passive nodes, constitute

the consensus committee of the backup protocol. For consensus processing, the fast-mode

protocol is run by default when the population of well-behaving active nodes is sufficient to

constitute a consensus committee for the default mode. When the fast-mode protocol fails to

achieve a consensus owing to asynchronous communications among the active nodes, the con-

sensus protocol operation switches to the backup mode, where passive nodes participate in the

execution of the protocol, along with the active nodes. Owing to the addition of the backup

protocol as a complement to the fast-mode protocol, the agreement protocol can avoid stalling,

which results from unfriendly network conditions.

The consensus protocol proceeds through a sequence of epochs, where each epoch is subdi-

vided into an increasing number of rounds. We select a block proposer from among the active

nodes during each round and let the proposer publish a block. As illustrated in Fig 3, a consen-

sus is achieved using either fast- or backup-mode protocols. The consensus process begins

with a fast protocol by default. After generating the block, the proposer signs it and distributes

it among other nodes, along with the signature through the gossip protocol. Thereafter, the

block proceeds to the verification procedure, which is essentially the process of aggregated sig-

nature generation. An honest node is expected to sign the block and gossip it out along with all

previously collected signatures. When the block successfully collects the signatures of fþ 1

active nodes, any node can run the recovery algorithm of the threshold BLS signature to gener-

ate the aggregated signature sr;F. This signature can be verified by the previously generated

group public key pkF and used as a random seed to select the block proposer for the next

round. At this point, the fast protocol completes the round of consensus processing. If the

block fails to collect the signatures of fþ 1 active nodes before timeout, the system switches to

the backup mode to continue consensus processing. After the switching of the operation

mode, the passive nodes join the consensus committee and continue consensus processing for

the current round. Unlike the fast protocol, when running the backup protocol, passive nodes

also participate in the block verification process, that is, passive nodes can sign the block, pro-

viding a vote on the block validity. When the block collects 2fþ 1 signatures from active

nodes and passive nodes, similar to the fast protocol, any node can run the recovery algorithm

Fig 2. Consensus committee formation for fast-mode and backup-mode protocols.

https://doi.org/10.1371/journal.pone.0277092.g002
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of the threshold BLS signature to generate the aggregated signature sr;B. This signature can be

verified by the previously generated group public key pkB and used as a random seed to elect

the block proposer for the next round. At this point, the backup protocol completes the current

round of consensus processing, and the system automatically switches back to the default fast

protocol for consensus processing in the next round.

For protocol safety, we allow every participant to vote once during each round, and the

final signature generated based on the collected votes proves the finalization of the proposed

block. Owing to synchronous communication among the majority of active nodes, a mode-

switching message can be sent after timer expiration to recruit passive nodes that are eligible

to participate in the voting process of the backup protocol. Notably, our backup protocol con-

tinues the block verification procedure during the current round using all the signatures col-

lected by the default fast-mode protocol, thereby avoiding costly view changes.

Fast-mode protocol

As the default operation for consensus processing, the fast-mode protocol consists of four pri-

mary components.

1. A distributed randomness generation scheme: This scheme enables participants to jointly

produce an output that is verifiable and unpredictable across the system. This randomness

generating component is built based on the threshold BLS signature generated during the

previous round and is determined using Eq 1

Rndrþ1 ¼ HðRndrjjsrÞ ð1Þ

where Rndrþ1 denotes the randomness for the next round, H denotes a hash function, Rndr

Fig 3. Overall operation of Flexico dual-mode protocol.

https://doi.org/10.1371/journal.pone.0277092.g003
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denotes the randomness used in the current round, and sr denotes the threshold signature

generated during the current round, which can be either sr;F or sr;B. Throughout the pro-

cess of randomness generation, the threshold signature sr is unpredictable, and the hash

function H is verifiable. In addition, the calculation is non-interactive. Thus, participants

can independently generate correct and identical randomness, and the results are thereby

verifiable and unpredictable.

2. A block proposer selection component based on the generated random seed: A legal block

proposer is chosen from a list of active nodes, that is, a list of public keys ordered based on

round randomness. The block proposer position Bpp, which indicates the position of its

public key in the list, is computed using Eq 2

Bpp ¼ Rndr mod ðm � 1Þ ð2Þ

where m denotes the number of active nodes. Owing to the distributed round randomness

generation procedure, the operation of the block proposer selection is unbiased and unpre-

dictable. Moreover, similar to randomness generation, the participants independently

determine the position of the block proposer. The Bpp selection operation produces consis-

tent results across the network, ensuring that the validity of the proposed block can be veri-

fied using the signature of the block proposer.

3. A block verification process collecting signature shares for the proposed block: Block verifi-

cation is executed by exchanging signature shares. We utilize a gossip protocol to propagate

the blocks and signatures throughout the network, thereby reducing the communication

complexity. The block proposer randomly selects log ðmÞ nodes to gossip the proposed

block and initiate block verification. When a node receives the proposed block, it checks its

validity and attaches its signature as a vote for the block. The signature share sr;i of node i

for the current round r is generated using its private key xi. The signature share is computed

using Eq 3

sr;i ¼ HðrjjBrÞ
xi ð3Þ

where H denotes a hash function, r denotes the current round number, and Br denotes the

proposed block. This received block is then gossiped with all the gathered signatures. The

block verification procedure is repeated until the block acquires a sufficient number of sig-

natures to achieve valid approval.

4. A decentralized threshold signature recovery scheme to generate a block finalization proof:

When receiving a block with a sufficient number of signatures attached, any participant can

run Recoverðsr;1; :::; sr;fþ1Þ to compute the aggregated threshold signature sr;F for the cur-

rent round. For this, the signature shares sr;1; :::; sr;fþ1 must be provided by fþ 1 different

active nodes, after which the Recover function computes the “Lagrange interpolation” for

the signatures. Moreover, the threshold signature sr;F, which proves that a sufficient num-

ber of active nodes have voted for the validity of the block, is sufficient to confirm block

finalization. The recovered threshold signature can be verified efficiently using the corre-

sponding public key. Consequently, threshold signature recovery can be conducted in a

decentralized and easy-to-verify manner.

The message flow during a fast-mode protocol operation is illustrated in Fig 4. The consen-

sus network contains four nodes, i.e., three active nodes and one passive node. Active node 1 is

selected as the block proposer, active node 3 is faulty, and the passive node is not involved in

the consensus processing of the fast mode. During the signature-exchange period, the block
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proposer randomly selects log ðmÞ nodes to send the block proposal and signature. Upon

receiving the proposal, active node 2 tests the validity of the block and attaches its signature

share. With fþ 1 signatures appended to the block, the protocol can recover the threshold sig-

nature confirming block finalization. Specifically, active node 2 recovers the finalization proof

and initiates threshold signature gossiping by randomly selecting log ðnÞ nodes to forward the

block with the recovered signature. Thus, the finalized block is propagated across the network.

Consequently, the passive node states are also updated according to the finalized blocks.

Owing to the use of a threshold signature scheme and gossip communication pattern, our pro-

tocol can minimize the communication cost associated with consensus processing.

Operation mode switching

The network conditions required to run our fast-mode protocol are much easier to achieve

than those of existing dual-mode protocols. However, the operation mode should switch to the

backup-mode protocol if the default protocol is stuck owing to asynchronous communication

between the active modes. In this case, a backup protocol should be triggered to take over the

ongoing consensus process. Thus, a careful design of this operation-mode switching mecha-

nism is required. For this, we introduce an operation-mode switching scheme for mode transi-

tion in consensus execution. According to the switching operation, active nodes initiate an

operation-mode transition by firing a WakeUp message. This message has several compo-

nents, < WakeUp;Br� 1;sr� 1
>si

, where Br� 1;sr� 1
denotes the block finalized in the immediately

previous round with a valid threshold signature sr� 1, and si denotes the signature of message

sender i. The pseudocode for operation-mode switching is presented in Alg 1. Upon receiving

the threshold signature for the block in the previous round, a node calculates the randomness

of the next round and sets a timer. If the timer goes off before receiving the current round

block with a valid threshold signature, the node broadcasts a WakeUp message across the net-

work. As the gossip propagates, all active and passive nodes append their signature shares to

Fig 4. Message flow for n = 4, f = 1.

https://doi.org/10.1371/journal.pone.0277092.g004
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the WakeUp message. The collected signatures are then recovered into a threshold signature,

proving the validity of the WakeUp message.

Algorithm 1: Operation mode switching
// <WakeUp> message initiation;
while true do
if isReceived(Br;sr;F

) before timeout then
Reset the timer;

else
Gossip(<WakeUp>si

);
// <WakeUp> message confirmation;
while !confirmed do
<WakeUp> = RcvNewInputs();
// Check if Br is finalized;
if isFinalized(Br) then
Send back(Br;sr;F

);

break;
if count(sigShares) > 2f + 1 then
σw,r = RecoverGroupSig(sigShares);
Gossip(<WakeUp>sw;r

);

Confirm(<WakeUp>) = true;
else
sigShares = AppendOwnSignature(<WakeUp>);
Gossip(<WakeUp>, sigShares);

Fig 5 illustrates operation-mode switching. Herein, a node initiates mode switching by

forwarding a WakeUp message if the finalized block of the current round is not received

before timeout. In this scenario, if a node has already received block Br with a valid threshold

signature sr;F, in response to the WakeUp message, it sends back the finalized block to the

sender node. The sender node then returns to the default protocol operation by terminating

Fig 5. Protocol switching processing.

https://doi.org/10.1371/journal.pone.0277092.g005
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the mode-switching execution. Otherwise, the node gossips out the WakeUp message with

its signature added, which continues the mode-switching execution. Similar to block finali-

zation, WakeUp messages are considered verified when they collect 2fþ 1 signature shares

to indicate that 2fþ 1 correct nodes are ready to form a consensus committee for backup

protocol execution. The signature shares are then recovered into a threshold signature σw,r,

which signifies the verification of the WakeUp message. During the mode-switching proce-

dure, the consensus-processing mode can return to the default protocol in the middle,

where it can be determined from a valid Br;sr;F
receipt, indicating block finalization. After

verification of the WakeUp message, the consensus-processing mode changes to a backup

protocol operation.

Backup protocol

After passive nodes locate their positions in the consensus committee, the backup protocol

assumes responsibility of consensus processing under partially synchronous conditions. Dur-

ing the backup protocol operation, < WakeUp>sw;r
is attached to the block in question, and

the block continues to propagate across the network with all collected signature-share votes.

Passive nodes participate in the execution of the backup protocol by attaching signature shares

as their votes for the block. The threshold signature recovery for the current block is based on

all the signature shares collected from the active and passive nodes. Note that passive nodes

can only sign a WakeUp message or a proposed block with a valid WakeUp message attached.

If a passive node receives a block without a WakeUp message, the node ignores it.

The backup protocol is described in Alg 1. After receiving a WakeUp message with valid

threshold signatures, passive nodes participate in the protocol execution together with active

nodes. Any node that obtains both the verified WakeUp message and the valid proposed

block can propagate two messages together to launch the block verification process of the

backup protocol. Similar to the default operation, the gossip protocol is employed for the

block verification procedure to propagate the proposed block and signature shares across the

network. Both active and passive nodes attach their signatures to the proposed block as votes

for block validity. The block verification process is repeated until the block obtains a sufficient

number of approvals. Compared with the default protocol, which requires a threshold of fþ 1

signatures, the backup protocol requires 2fþ 1 signature shares to recover the threshold signa-

ture during the block verification process. After successful recovery of the threshold signature,

the proposed block is finalized. The signature is then utilized as a random seed for block pro-

poser selection in the subsequent round. At this point, the backup protocol execution is con-

sidered complete. As soon as they receive the threshold signature, passive nodes update their

states and reset the timers to quit the consensus committee. More specifically, passive nodes

no longer participate in consensus processing until they wake up again in response to a

WakeUp message and become a part of the consensus committee. The operation mode then

reverts to the default protocol from the subsequent round.

Checkpoint protocol

To prevent adaptive adversaries from attacking the blockchain network, we re-shuffle commit-

tee members during every epoch by generating a new random permutation to reconstruct the

consensus committee. Consequently, the node type may change during consensus voting. For

example, a passive node in the previous epoch can be listed as an active node in the current

epoch. To ensure protocol safety in the forthcoming epoch, the states of all participants must

be updated to be consistent with the others, prior to changing their roles. Thus, we employ a

checkpoint protocol to synchronize the states of all nodes at the end of each epoch.
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Algorithm 2: Backup protocol
while !finalized do
// �� The flag for the validity of WakeUp message;
legalWakeUp = fault;
// �� The flag for the validity of the proposed block;
legalBlock = fault;
sigShares, groupSig, Br = RcvNewInputs();
// �� Check if the WakeUp mesage is verified with 2f + 1 signatures;
if isVerified(WakeUp) then
legalWakeUp = true;

// �� Check if the block is generated by the selected proposer;
if isValid(Br) then
legalBlock = true;

if count(sigShares) > 2f + 1 then
σr,B = RecoverGroupSig(sigShares);
Gossip(Br;sr;B

);

finalized = true;
else
sigShares = AppendOwnSignature(Br);
Gossip(Br, sigShares);

The checkpoint protocol is executed by all system nodes, including active and passive

nodes, where threshold signature recovery requires 2fþ 1 signature shares. Unlike regular

proposed block-packing transactions, checkpoint blocks carry a state digest instead. Moreover,

unlike the regular proposed blocks that rely on a valid WakeUp message to obtain passive

node signature shares, passive nodes now verify checkpoint block validity by checking the

round number of the block, which is divisible by a pre-known value, e.g., 1024. Owing to the

use of a fixed round number, all nodes in the system can attach their signature votes after

receiving a valid proposed checkpoint block. Therefore, the checkpoint block can be propa-

gated throughout the network to obtain sufficient signatures for threshold signature recovery.

The checkpoint block finalization proceeds as follows. Similar to regular block verification

processing, a proposer is chosen to propagate the checkpoint block proposal represented by

the tuple < e; r; p;d > sBpp, where e denotes the epoch number, r denotes the round number

of the block, p denotes the hash pointer to the previous block, sBpp denotes the signature of the

block proposer, and d denotes the digest of the state. The block proposer spreads the block

using the gossip protocol. Upon receiving the checkpoint block proposal, a node attaches its

signature as a vote and gossips out the received block if all information is valid. Similar to regu-

lar proposed blocks, the threshold signature confirms block finalization. In addition, the recov-

ered signature is used as a source of epoch randomness to obtain a permutation for node

identities that engage in the subsequent epoch.

Fast-mode protocol liveness analysis

Similar to other dual-mode consensus protocols, the fast-path component of our protocol is

the key aspect for enhancing its efficiency. The higher the probability of a successful execution

to maintain the safety and liveness of the protocol, the better the protocol efficiency. In this

section, the probability of successful execution of our fast-mode protocol is analyzed, and the

results are compared with those of SBFT, which is a representative dual-mode consensus pro-

tocol. We assume that consensus protocols operate in a network with n nodes, where r is the

probability that the communication delay between two nodes is lower than D, that is, the

upper bound of the communication delay in a synchronous network.

Notably, protocol liveness relies on network synchrony. For the fast-path protocol of SBFT,

maintaining liveness requires a purely synchronous network, which implies that the
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communication delay between any two nodes must be lower than D. Given a network with

size n, the total number of connections between nodes is calculated using the combinations

ð
n

2
Þ. The probability p of a successful consensus execution through the fast path of SBFT is cal-

culated using Eq 4

p ¼ rð
n
2
Þ ð4Þ

By contrast, our fast-mode protocol operation requires a smaller synchronous communication

group of active nodes in the network to maintain liveness. Considering the same network size

n, the number of active nodes m is computed using Eq 5, and the total connections between

active nodes are ð
m

2
Þ. For the fast mode of Flexico, more than m=2 active nodes are required to

communicate synchronously. Accordingly, the probability p of a successful agreement is cal-

culated using Eq 6

m ¼
2nþ 1

3
ð5Þ

p ¼
Pðm

2
Þ

i¼ð
m=2þ1

2
Þ
ri � ð1 � rÞ

ðm
2
� iÞ

ð6Þ

Fig 6 compares the results of the fast-mode operations for network sizes ranging from 4 to

100 nodes under different assumptions of r. In the case of the SBFT protocol, even for

r ¼ 0:9, the successful execution probability of the fast-path protocol decreases dramatically

from 53% to 0 when the network size is greater than 10 nodes. This situation worsens when we

consider r ¼ 0:5, where it becomes nearly impossible to reach an agreement through the fast-

path protocol. However, our protocol can always maintain a high success probability of

approximately 100% for r ¼ 0:9. For r ¼ 0:5, the probability of a successful execution fluctu-

ates in small networks. However, as the network size increases, the fast-mode protocol attains

and maintains a high successful execution probability.

Fig 6. Analysis of fast-mode protocol availability against different network sizes.

https://doi.org/10.1371/journal.pone.0277092.g006
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Performance evaluation

In this section, an evaluation of the Flexico protocol based on a simulation is presented, along

with an analysis of the results. Note that the primary objective of our evaluation was to analyze

the viability and performance of our protocol under different network environments.

Experimental setup

The tests were conducted using a system equipped with a 2.80 GHz Intel(R) Core(TM) i5-8400

CPU and 8 GB RAM. We implemented our consensus protocol on top of the Cothority frame-

work in Golang. One of the primary goals of this evaluation study was to test whether our pro-

tocol experienced severe performance degradation while switching from the default to the

backup protocol. The performance of the Flexico protocol was evaluated in terms of the

throughput, number of transactions per second (TPS), and latency, that is, the time required

to reach a consensus. To demonstrate the effectiveness of our approach, we compared our pro-

posed protocol with other prominent approaches, including PBFT, SBFT, and Concordia. The

experiments were conducted using the same testbed under identical restrictions.

Consensus performance

We evaluated the performance of our consensus protocols in terms of the latency and TPS

metrics. Notably, the latency denotes the time required to complete an entire round of a con-

sensus protocol. This metric is primarily affected by the number of nodes participating in con-

sensus processing and the block size. TPS, the evaluation standard for measuring the

throughput of the protocol, can be calculated based on the block size and the resulting consen-

sus latency.

For this experiment set, we evaluate the performance of our fast-mode and backup-mode

protocols. We create a fixed-size network of 100 consensus nodes and run the protocols with

block sizes ranging from 128KB to 5MB. As shown in Fig 7, consensus latency increases with

the block size growing. The increasing pattern is similar between fast and backup protocols

Fig 7. Protocol performance for different block sizes.

https://doi.org/10.1371/journal.pone.0277092.g007
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since both feature the same signature share collection. However, with passive nodes in a dor-

mant state during default operation, the consensus committee size is smaller for fast-mode

protocol than for backup protocol. Owing to the efficient block verification procedure, the

latency does not significantly increase after the operation mode switches from the fast protocol

to the backup protocol. Consequently, compared to the fast protocol, the backup protocol only

increases the latency and TPS by 10% on average. The default and backup protocols demon-

strate a latency of approximately 10 s for block sizes of up to 2 MB among the 100 participants.

Consensus latency comparison

Consensus latency is one of the most critical metrics for evaluating a consensus protocol. Dur-

ing the experiment, we fixed the block size to 1 MB and ran protocols with varying network

sizes ranging from 20 to 100 nodes. The latency results for Flexico, PBFT, and Concordia are

plotted in Fig 8. Because PBFT represents a classical consensus protocol for Byzantine environ-

ments, we chose it as our baseline protocol. In addition, our protocol was derived from

Concordia.

As shown in Fig 8, the consensus latency increased with the number of nodes in the system.

As expected, the PBFT protocol exhibited the highest latency owing to its all-to-all broadcast

pattern. The fast-mode protocol of Flexico achieved the best consensus latency owing to the

smaller committee size and use of a gossip-based communication protocol, which decreased

the communication complexity to Oð log mÞ. These results indicate that the fast protocol of

Flexico can achieve 70% lower latency than PBFT. The backup protocol of Flexico demon-

strated a slight degradation in performance. However, the latency was maintained at an accept-

able level. Compared to our previous study on Concordia, which is an efficient synchronous

consensus protocol, we did not focus on improving the performance here. However, Flexico

significantly improved the availability of Concordia by building a consensus protocol that

could process a consensus in both weakly and partially synchronous environments. A compar-

ison of the different consensus protocols is presented in Table 3.

Performance comparison with dual-mode protocol

We ran an additional set of experiments to compare our protocol with the state-of-the-art

dual-mode SBFT protocol, which uses the BLS-threshold signature scheme. SBFT uses linear

communication between replicas with commit collectors, whereas our approach exploits gos-

sip-based message propagation. The latency results of the fast- and default-mode protocols for

SBFT and Flexico are compared in Fig 9.

As shown in the Fig 9, after switching to the backup protocol, the performance degraded

for both SBFT and our proposed protocols. However, our proposed fast mode and backup-

mode protocols resulted in a lower latency than SBFT. Moreover, owing to different commu-

nication patterns, the increased latency originating from the increasing network size exhibited

different rates. As expected, in the case of SBFT, the latency increased at a linear rate, whereas

the latency of our protocol exhibited a logarithmic growth. Compared to SBFT, the latency of

Flexico increased more gradually. As the network size increased, the latency of our backup

protocol became smaller than that of the fast protocol of SBFT.

We also compared the switching times between the two modes for the SBFT and Flexico

based approaches. To measure the operation-mode switching time, we set the timeout value to

a preconfigured value t value. The obtained results are plotted in Fig 10. The figure indicates

that the time required to activate the backup protocol is almost identical for both SBFT and

Flexico in a small-scale network. However, the gap becomes more apparent as the network size

increases, which can be attributed to message gossiping.
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The comparison between Flexico and the state of art dual-mode protocol SBFT is shown in

Table 4. Compared with SBFT, our fast-mode protocol can tolerate up to f < n=3 Byzantine

adversaries. In addition, our fast protocol can operate in a weakly synchronous network,

which allows it to achieve a fairly high usage rate. The fast protocol of the SBFT protocol, by

contrast, has an extremely low usage rate owing to the requirement of a pure synchronous

Fig 8. Consensus performance comparison.

https://doi.org/10.1371/journal.pone.0277092.g008

Table 3. Flexico and its predecessor consensus protocols.

Protocol Adversary Tolerate Communication Model Communication Complexity Throughput Latency

PBFT f< n/3 Patially Synchronous O(n2) Low High

Concordia f< n/2 Weakly Synchronous O(n2) High Low

Flexico-fast f< n/3 Weakly Synchronous O(log m) High Low

Flexico-backup f< n/3 Patially Synchronous O(log n) High Low

https://doi.org/10.1371/journal.pone.0277092.t003
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network state. In addition, we further reduce the linear communication complexity of SBFT to

that of logarithmic communication. Moreover, our protocol does not require a view change

when conducting consensus-processing mode switching. These features enable our protocol to

achieve better performance.

Related work

Notably, distributed consistency protocols are the focal point of distributed computing sys-

tems. Crash fault tolerant protocols requiring 2fþ 1 nodes in a partially synchronous network

are being utilized by several notable systems including Google Chubby and Apache Zookeeper

[41, 42]. To deal with Byzantine faults, 2fþ 1 nodes are required in a synchronous network,

whereas 3fþ 1 nodes are required in a partially synchronous network. Thus, certain BFT pro-

tocols such as Synchronous BFT and FlexibleBFT [24, 43] assume synchronous networks for a

smaller consensus quorum, which indicates a lower cost for message exchange. However, in

Fig 9. Dual-mode protocol latency comparison.

https://doi.org/10.1371/journal.pone.0277092.g009
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Fig 10. Protocol switching time comparison.

https://doi.org/10.1371/journal.pone.0277092.g010

Table 4. Comparison with SBFT protocol.

SBFT Flexico

Fast-mode Adversary tolerate f = 0 f < n/3

Communication model Synchronous Weakly synchronous

Communication complexity O(n) O(log m)

Utilization Very low Very high

Backup-mode Adversary tolerate f < 3/n f < 3/n
Communication model Partially synchronous Partially synchronous

Communication complexity O(n) O(log n)

View change ✓ ☓

https://doi.org/10.1371/journal.pone.0277092.t004
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reality, pure synchrony cannot be easily obtained, which is one of the reasons why partially

synchronous BFT protocols are becoming mainstream. PBFT, the first practical BFT protocol,

is widely used in several distributed systems including permissioned blockchain systems. How-

ever, the performance of the PBFT protocol is considered problematic owing to the communi-

cation complexity of Oðn2Þ.

Thus, significant effort has been dedicated to improve the efficiency of partially synchro-

nous BFT protocols. To that end, Hotstuff [44] and SBFT protocols [12] turn all-to-all commu-

nication model into a linear approach and thus decrease the communication complexity to

OðnÞ. Although the protocol execution adds extra steps, the communication cost is lower than

that of PBFT. LibraBFT [45] further refines the Hotstuff protocol used in the Libra blockchain

[46]. ByzCoin [47] builds a PBFT-style consensus protocol on top of Schnorr’s collective sign-

ing protocol, which lowers its communication complexity to Oð log nÞ. Similarly, other pro-

tocols have proposed consensus schemes based on the BLS-threshold signature technology.

The recovered threshold signature is 32 bytes long, which is much smaller than that of the

other methods. Although the proposed protocol employs a BLS-threshold signature, unlike

protocols that require two rounds of message exchanges, our protocol requires only a single

round of communication to achieve block finalization.

A group of protocols including [12–15] add an optimistic sub-protocol for faster consensus

processing. add an optimistic subprotocol for faster consensus processing. Specifically, SBFT

introduces a fast-path protocol for friendly network conditions comprising nonfaulty synchro-

nous nodes. The protocol returns to the linear PBFT protocol when a fault occurs in the sys-

tem. Similarly, CheapTiny is an optimistic protocol that resorts to the MinBFT protocol if the

network conditions deteriorate [48]. In addition, the CheapBFT protocol is augmented by

leveraging trust hardware to prevent equivocation, which reduces the minimum network size

from 3fþ 1 to 2fþ 1. These dual-mode protocols allow operation-mode switching between

optimistic and backup protocols and demonstrate better performance under different system

conditions. However, to benefit from a dual-mode operation, the protocols require a nearly

ideal condition wherein all nodes in the network are nonfaulty and synchronous. By contrast,

the conditions for our default protocol appear relaxed for improved-performance options.

Future work

With the development in IoT and edge computing technologies, more attention is being paid

to the security of IoT data in edge networks. Over the past years, blockchain as a decentralized

tamper-proof data store has been hailed as a solid foundation on which to devise technical

solutions to the issue. In fact, this study is a part of our long-term project on developing a

secure edge platform on top of blockchain layer. In contrast to traditional cloud nodes, it is

common that edge nodes and IoT devices are constrained in terms of computation power and

communication capability. In this regard, resource-hungry mining algorithms, such as the

Proof of Work, are not a good fit to edge network environments. Many blockchain consensus

protocols targeting edge computing environments look to committee-based BFT variants. One

downside of these protocols is that they require stable networking conditions for good perfor-

mance. Flexico is designed to perform reasonably well in degenerating network conditions as

well, being able to manage a low latency even under unstable network conditions. This opens

up a possibility of Flexico as a versatile agreement protocol for IoT edge networks where net-

work instability and communication disruption are more likely. In the future, we plan to

develop an edge computing architecture, built on Flexico protocol, capable of securely process-

ing IoT data and automating provisioning and management decisions for the network.

Through a case study involving IoT data and edge computing scenarios, we hope to gain
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deeper insights on the gains and further possibility of Flexico, and accordingly upgrade the

protocol.

Conclusion

This article proposes Flexico, a highly efficient dual-mode consensus protocol whose consen-

sus performance is substantially boosted using a fast-path component. Its backup protocol

companion complements fast-mode protocol executions to continue consensus processing

even under deteriorated network conditions. Our evaluation results indicate that the default

protocol of Flexico exhibits a better performance in terms of the confirmation latency, which

is approximately 7s in a network with 100 nodes and a block size of 1 MB. Furthermore, its

backup protocol can enhance the liveness of the protocol while achieving a comparable latency

of approximately 10s. By exploiting both passive and active nodes for consensus voting, our

proposed protocol maximizes its performance gain at a lower communication cost. In addi-

tion, switching operations between the two modes can be conducted without expensive view

changes, which further adds to the efficiency gain of the protocol. Our protocol can still be

improved in several aspects. One particular problem that remains to be addressed is its ability

to support large-scale networks. Currently, Flexico can accommodate hundreds of nodes,

which seems satisfactory for our target network. If one considers a case of vast IoT networks

comprising a huge number of nodes, further research would be needed to enhance the scalabil-

ity of the consensus protocol.
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