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1. Introduction

Polio is the simple or shortened name of poliomyelitis[1], it is
known as a highly infectious or contagious disease. People of
different ages have been suffering from polio for a long time
and still are suffering as well [2]. An incident in Egyptian soci-
ety of a young man was recovered, who had his leg defected by
polio around 1400 BC[3]. Polio started hitting the mass in the
early 1900s and started multiplying in the different countries of
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Europe and Asia and found uncountable cases of polio [4]. The
Jonas Salk invented the vaccine to control the disease.

It spreads from person to person especially through fecal-
oral transmission. The main hub of the virus is the mouth.
First it goes in the throat after entering from the mouth, then
starts increasing in quantity and finally it enter in the intestine,
enters in the blood and reaches in the spinal cord and brain. As
a result the person gets paralysis and in some cases death is
possible.

Children under 5 years are the main victim of this virus,
they are highly targeted. It is harmful because in 72 percent
of infected individuals no symptoms appear, and the remaining
infected have the common symptoms such as fever, nausea,
headache, sore throat pain in body and stiffness in the neck
muscles. The main source of transmission of Polio virus is
uncleanliness such as poor sanitary condition, unclean or
unhygienic food and contaminated water [5,6].

There are different symptoms of the infected individual
ranging from normal to severe, and these conditions have dif-
ferent names, one is, Non-paralytic polio; it can stay 2 to 5 days
but disappear gradually. Paralytic polio, 1 out of 200 suffers
from it and causes paralysis which results in death. The severe
symptoms due to spinal cord and brain, called post-polio syn-
drome, are stated as Paresthesia; feeling of pins and needles in
the legs or arms. Meningitis, Infection of the coverings around
the brain and medulla spinalis. Paralysis is the condition the
movement of the legs, arms, and or breathing muscles is
reduced [7,8].

Immunization is the only source to control the Polio. The
leading and advanced countries and health organizations such
as World Health Assembly, WHO, Rotary International,
UNICEF, Malinda Gates Foundation. Gavi started a cam-
paign against Polio and passed a resolution for the eradication
of polio from the world in 1988, and the cases decreased by 99
percent since 1988 and there is not a single case in the USA
during the 20 years because children are vaccinated at the ages
of 2 months, 4 months and then twice before joining elemen-
tary school [9]. Afghanistan and Pakistan are the countries
in the world which have cases of Polio. Two polio cases have
been reported on 2 February, 2021 and both countries are con-
sidered as the exporters of the wild polio virus.

In Pakistan, there are some major complications in fighting
against polio virus since 1994 because, most of the cases were
reported in Karachi, North Waziristan, and FATA(KPK).
The major barrier to eradicate the polio from Pakistan are mil-
itant groups such as Tehreek-e-Taliban and these militants
mostly prevailed in FATA(KPK), North Waziristan, and some
areas of big cities like Karachi. The reason behind the spread-
ing of polio in these areas is the ban imposed by militant
groups on polio vaccination campaigns in regions and these
areas are under their control and very severe threats are
against the campaigners. The misconception has been spread
out by these militants that it causes infertility, Bats, on the
other hand some religious scholar declared that this vaccina-
tion is Halal according to Sharia Law|[10-12].

The campaign started on 11th January 2021 and 40 million
children have been not only vaccinated by polio vaccination
but also, have been administered a Vitamin A drops to build
general immunity of children from 6 to 59 months across
PakOistan. The vaccination Dr. Jonas Salk used an Inactivated
Polio Vaccine (IPV), Oral Polio Vaccine (OPV) developed by
Dr. Albert Sabin and first time used in 1961[13]. Two different

types of populations involved in the model are the responsible
for the communication of the disease i.e. susceptible, exposed
and infected. The immune system of people plays an important
role to control the disease, and through vaccination immune
system can be made strong to fight against viruses especially
for a particular disease. Different research works have been
considered for polio virus by many researchers such as Garfin-
kel (2003) and Tebbens (2005) [14]. They developed a model
for stimulating the spread of poliovirus infection [15]. Various
authors presented several mathematical models with integer
and non-integer derivatives in many applications like biology,
chemistry, engineering etc. [26-43,33].

Most of the Poliovirus models are classical i.e., integer
order derivations. But in this paper, fractional-order AB
derivatives are considered for studying the transmission of
the disease. Fixed point theory is applied to guarantee the
solution.

The integer-order models involve the classical derivatives
and these derivatives are local in nature. So, they can measure
the change over an interval rather than a point.

Organization of the paper is as follows, a mathematical
model for the Polio virus [39] is considered and converted into
a fractional order model. Fixed point reduction is also pre-
sented in this Section. Section 3 is meant for the existence of
the solution. Equilibrium points and stability analysis is
worked out in Section 4. Analysis of the model is made with
the help of Mittag- leffer kernel in Section 5. Numerical simu-
lations are demonstrated in the Section number 6. Conclusion
of the work is drawn in the last section.

2. Mathematical model/Fixed point reduction

For the fixed point reduction, following system of equations
are considered.

ds

= A= BSI—1BSE— (u+v)S (2.1)
”;—f: BSI+ rBSE — (b + p+ w)E (2.2)
§:UHon—m+w1 (2.3)
%V SV (2.4)

We use AB-fractional derivatives and obtain the following sys-
tem of equations.

EDIS(t) = A — BSI— rBSE — (u+v)S (2.5)
ABDVE(t) = BSI+ rBSE — (b + u+ v )E (2.6)
ABDVI(1) = (b4 v\)E — (u+ o)l (2.7)
EDV(6) = vS —uV (2.8)

Subject to the following initial conditions
S=S=20,E=Ey>0,I=1, >2=0,V=7V, >2=0. with
v € (0,1] The inclusion of fractional order parameters in the
mathematics model increases the degree of freedom, which
improves the fitting of the curve. This property of the
fractional-order differential operator is helpful in decreasing
the disease dynamics and predicting the future perspectives.
Our goal in this article is to find the solutions of the system
(2.5)-(2.8). For simplicity, we define, the system as follows,
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Ki(t,S,E,1,V) = A — BSI — rBSE — (u+v)S
K>(t,S,E,1,V) = BSI+ rBSE — (b + p+ ) E
K(t,S,E, V)= (b+w)E— (u+a)]
Ky(t,S,E,I,LV) =vS —uV

Then, by applying the AB integral [17], we have the subsequent
set of equations.

Loy S E L) +—
P T N 0|

Sm—ﬂngﬁwl(
X/ﬁ—o“m@&anmﬂ (2.9)

1—v v
= a0 S ELY) + o

x/h-@ﬁm@aagmﬁ (2.10)
0

1—v
- 'k E I
A B() (S ELY) +

x /0'075)“*

1—v y
=——K E, I _
770 S ELV) + o o

< [0

Next we construct the closed bolls for the above operators. Let
C be the space of all continuous functions and we consider
four closed ball with the radious r and center Sy, Ey, Iy, Vo in
the space of continuous functions

B.(S0) =[S, 8 € C[0, pl; [|S = Sol| < 7]

A B(v)T(v)

'K5(C, S, E, L V)dC (2.11)

'Ki(C, S, E, I V)dC (2.12)

where || - || represents the supremum norm defined on the
domain.
=
ISI < (r + So)
By(Eo) = [E,E € Cl0,p]: | E— Bl <]
|El| < (r+ Eq)
B, (ly) = [I.1 € C[0, pl; || = Lo < 1]
= ] < (r+ 1)
B, (Vo) = [V, V€ Cl0,pl; [|V— Vol < 1]

=
VI < (r+ Vo)

3. Existence of the Solution

In this section, we are to find the conditions for the existence of
the solution for the above model fractional differential equa-
tions[20] (2.5) to (2.8) one by one by fixed point theory, using
Banach fixed point theorem, Schauder’s fixed point theorem
[18]. We find Lipschitz condition, self-mapping and relative
compactness.

3.1. Mapping properties of fixed-point operators:

Each operator maps the ball B into itself. For Eq. (2.9)

1 - v
%%)K“SEIW PZION0)

x /l (1—=0)""K\(, S, E 1, V),
0

S(1) = S(0) +

by putting
K\(t,S,E,ILV) = A — BSI — rBSE — (u+v)S
S(1) = S(0) + 55 [4 — BST— rBSE — (n+v)S]

)[4 — BSI — rBSE —

e o (1= (1 +v)S)d¢

applying norm on both sides we have

IS() = SO < |55

+

—rpSE — (u+v)S||

W( Syt =14 = BSI = rBSE — s+ v)S||dC

[1S() = SO)]I <

+ ‘/ﬂ(\rmfo" o 1AL+ BIISIIAL + [FBISTIEN + i+ vl ST

Consider for K;(t,S,E,I,V)=A— pSI—rfSE — (u+ v)Swe
have
IL—v | v—1
It - sl < |20 + | beo o) [- 0
where A + (|B|(r+ C) + |r]|Bl(r+ C) + |u+v])(r+ C) = U'(r)
‘cIn both the cases #>{ and (>t the integral
f(; |t =" tag = £ for self mapping we have
1) = SO)[| < r
IR R I O VAY
_— r r)—<
A B(v) A B(v)T(v) v
1—v \J p’ r
+ —<
A B(v) ARBVTV)| v ~ U(r)
1
p < ||| (——— 122N [ (3.1)
U ) |AB(v)

Which is the condition for self-mapping.
Clearly for p to be positive we must ensure that

(1 =wU(r)
r> 7%%‘(\)) (3.2)

Similarly on the same line, for E, land V'we get the following

apriori estimation.
)} \. (3.3)
> (lfv)M (r) (34)

PZI0)
)T (3.5)

r 1—v

o< [l ol Lo

o< wanrol(s- o
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;>(1;2x¥” 6o =[eota- [w-oa- [u-ote [0
o< ool (2 - |ae))| D ga [ [

B 0 0 !
s (1 - V)R (i’) (38)

AB(v)

Theorem 3.1. If the inequalities (3.1, 3.3,3.5, 3.7) and (3.2,
3.4,3.6, 3.8) are satisfied then the operator vectors (S, E, I, V)
maps the closed set B — B.

3.2. Relative Compact Mapping:

We have

1—v v
A RB(v) Ki(t, S, L V) + A BV (v)

x/ﬁU—CY”Kmn&EJJO%
0

S(1) = S(0) +

We take the family of functions
Si(t) = S(0) + «/149‘ Kl(t SLELYV)
,4( )F ﬁ) ‘ IKI(Ca Si7E7I7 V)dg
Si(r) = S(0) +¥K1(Z* S, ELYV)
+ ot by (6= O T K S E L V)L

subtracting the above equations, we get

Sit) = Si(r') :mu ("QH”’Z‘./O G —c)"’ldg]m@,s,-.,ﬂl., V)

S0 = S(0) = 05 [ [e-ora— [ - z)“"d:] (4 — BSI— rBSE — (1+1)S)
applying norm on both sides

[15i(5) = Si(e)ll =

P a0 [/ﬂ -0 - /ﬂ - :)"‘dc] (4 = BSI— rBSE— (u+ v>S>H

1506 = i) < e || (0 = 07 = i
X(IAHIﬁIIISIHIIH+|rHl3H|SIII\EH+\u+VH|SH)

o

In self mapping we see that [4 + |B|(r + C) + |r||p|(r + C)+

|+ v|(r+ C)] = U'(r)by putting in above equation
* v ! v—1 o g . v—1 o
50 =500 < || [ - 0= [ @ - oo

(3.9)

Let I = fO’ (1=0)""de - jot (r' = ¢)""'d¢. In the first case when

t* lies between (0, 7)

]1:/ ‘ldC /
:A%—>”474 (-0 @+/“070Hﬁ7/ww70M&

— (- c)"*‘dz} - / ' (r—0)de

—[[ -0~
—|[ -0~

by putting the above value in Eq. (3.9), we get

— (=0 + / [* (" — c>"*1dc]

(1Si(1) = Si(r")] )uamr U (=0 =u-0" d(+/ (=0 ds]L(r)
* v ! * v—1 v—1
||Si(l) - S,'(l )H < ‘W (f —{) — (f -0 }dC
+ / (" =0 dLU (r)
(3.10)
clearly f(r) = (t — {)"" satisfying mean value theorem
Sy =(=0""
is continuous in [7*, {] and
Sy =(-0""
is differentiable (*,7) then 3 d € (¢, 1)
=
([_ C)vfl _ (l* _ C)vfl B
(=0 = =0 = (=)= (=)
applying norm on both sides
=0 = =0 <N = 0ll] v = 1)(r = )"
let L=(v—1)(t—d) > and

(=0 = =0 <l = 0IL

By putting value in Eq. (3.10), we get

[[uwa&+/ﬂwme&kmw
@rfw/&+/|r—g o

\mm—&wmgb@&ﬁﬁ

150 = S0 < s

[1Si(1) = Si(e)Il < ‘W)F(V)

{L|(z* —n|t+

O = SN < | ot =1
[1S:(2) = Si(t)]] < |:Q{3() ()U*( )Lr+AB(y) T'(v)

U*(')}\(f*—f)\

clearly as
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|t° —t] — 0 then||Si(t) — Si(")|]] — 0

so,if | — 1] < 6 |Si(f) — Si(*)]| < D = € where Do = ¢, then
[ISi(1) = Si()]] < e (3.11)
where
v . e —e"
D= |———UULt+——=U
PO O AT O C) (’)]

secondly we consider the case when ¢ between (0, )

= [ C)"*‘dc—/'* (1

0 0

:/U" <r7§)“’1dg,/0r (r *C)\-—ldCJr/; (tfg)“"dg,/’:’ (-0 de
- /0" (t*C)vile*/or. (r — C)"’]d@f/rl ([,Qv—ldgjL/"" (-

-/ RO /0 (u

= /O.z* [(t—C)"fldC— (r _C)"fl}d(jt/ﬁ (t — zeta)dt

by putting the above value in the Eq. (3.9)we get

[/0 I R / v OH&] ‘U(r)

o[-y

[1Si(2)

Si(1)]] < ‘W)ro)

15:4e) = Sie )”\‘W /0 (=0 = (¢ - 0|
+ [e-o o
(3.12)
clearly f(r) = (t — {)'"" satisfying mean value theorem

S ==
is continuous in [¢, ] and
) =(-9""

is differentiable in (¢, ¢*) then 3 d € (¢, 1)
=

-0 -9
(rr=1)

G BV (B
applying norm on both sides
=" = (= 0" || < Il = )] = e

let L= (v—1)(t—d)" > Now

4’)\'71 _ (t* _ g)\’*l”

=f(d)

—d)"”|

< |t =1L

now by putting value in Eq. (3.12), we get

v

[/ s = ddc+ [ 1= o] v

[15:(2) = Sl <

A BV)I(v)
150 =50 < | [ = [ e+ - or ]
« v . Pl .
[1Si(2) = Si(r)]] < PZI0N0) Lt — t— |V (r)

[1Si(2) = Si(r)]] < ‘m‘ [th* — 1 +|t+[|} U*(r)

1S:(6) = Si(e)|| < LM(V)F()W Lt +/|;*B(‘)[1:(VI)U*(,-)} 1
clearly as |r* — t| — 0 then ||S;(r) — S;(¢)|| = 0
il =1 < OlSi(1) = S|l < Dio =€

where D0 = ¢

then||S:(t) — Si(1")]| < € (3.13)
where

' ="

b= \Zamrm VO e

U (r)

in both cases (3.11, 3.13) we have the same result so, S;(7) is
equicontinuous family then by Arzela-Ascoli Theorem [19]
there exist a subsequence S;(¢)of S;(¢f)which is uniformly con-
vergent. Hence S(7)is relatively compact. Similarly in the same
line, one can show the equicontinuity for the remaining fixed
point operator E, I, V.

as — Othen ||E;(1) — Ei(t")|] — 0
so, if |* — 1| < dwhere D,0 = ¢, then
1E() = EAC)]| < € (3.14)
where
Y I VoY VP et YT

o B(v)T(v) A B(v)T(v)
clearly as | —¢| — 0 then |[|[;(¢) — L;(t*)|| — O
iflt —1 <o
where D30 = ¢, then
(1) = L()]| < e (3.15)
where

v . =t

D; = WN (r)Lt" +WN (r)
clearly as
|t* — t| — Othen||Vi(t) — Vi(t")|| — 0
so, if
|t —1 <o
where D46 = ethen
Vi) = Vi)l < e (3.16)

where
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v e =o'

b=\ gmrm X OF + amrm R )

Theorem 3.2. Hence in all four cases (((3.13)-(3.16)) Arzela-
Ascoli theorem applicable. So, the following result is true for
four operator (S, E, I, V).

Theorem 3.3. In view of above (3.1) and (3.2) the existence of
fixed vectors (S, E, I, V) is guaranteed.

3.3. Positivity and Boundedness

Lemma 3.4. The solution associated to the model (2.5)-(2.8) is
non-negative and bounded for all (S(z), E(1),1(z), V(1)) € R,
for t > 0.

Proof. To prove the non-negativity of the solution to the
model (2.5)—(2.8), it is required that on each hyper-plane
bounding the positive orthant, there is the vector field point
4

R*.

According to the model (2.5)-(2.8),

DIS(t)]sp =4 >0

APDIE(1)] gy = BST = 0

D),y = (PE+Vv))E = 0
DYV (t)])g = vS = 0.

The solution is:

N(l) < N(O)E\x] (Vlv) + AZVE‘.‘\‘JFI (—v["),

Since, for all ¢ > 0, Mittag—Leffler function is bounded. so,

Iim <

1—00 v

So one can conclude that the solution of the system (2.5)(2.8)
will remain in Ri and this biologically invariant region is
established as:

4 A
O =4 (S ELV)eR] :Ng; .

Since, all the terms are non-negative, hence solution of system
(2.5)—(2.8) is bounded. I

4. Equilibrium Points

Following are two equilibrium states of the Polio virus system:

4.1. Disease-Free Equilibrium point

It is represented by &y(So, Eo, lo, Vo)and in this case disease-
free equilibrium will be

A v(A)
Eoy(So, Eo, 1y, Vo) = E 0,0
0( 0y, £205 L0, 0) O(Iu_"_vv ) 7‘u(’u+v)>

where

So= A B =01 =0,vp =24

p+v p(p+v)
We can easily find disease-free equilibrium &, by taking all the
fractal fractional derivatives of the system zero. The benefit of
disease-free equilibrium gives us the solution converges to that
equilibrium point. If there is no infected and exposed popula-
tion then the susceptible population will be ﬁ and the immu-
v(A)
u(ptv)

nized population will be ¥, =
4.2. Endemic Equilibrium point:

It is represented by &°(S™, E°, I', V*)and in this case endemic
equilibrium will be

. _ 4 1 A SN () Ly
5(y’”’f’w>*g<<u+v>R’<h+u+vl><l R>’<u+a>E’uy>
(4.1)

with

AP A v +r(u+ )
R rrrmE+a (42)

The value of equilibrium of various variables may be written as
SLELT, V. Eq. (4.1) clearly expresses these equilibrium
values.

Remark: It is observed that E* and I’ exist if R > 1, where

AB(b+ vy +r(n+ o))
(+v) b+ p+v)(uta)

is called the basic reproduction ratio.

4.3. Stability Analysis of Equilibrium Points

The different matrices estimated at a given equilibrium are set
on by using the symbols of the real part of the eigenvalues. The
differentiating of the r.h.s of the system w.r.t S, E, I, Vgives the
entries of the general variational matrix i.e.,

—BI—rPE — (u+v) —rpS —pS 0

VS, E.LV) = pI+ rBE rBS—(b+p+v) pS 0
e 0 b+ —(u+a) O

v 0 0 —u

We represent the variational matrix corresponding to E,by
mean of V(Ep)and similar to E*by V(ET).

4.4. Global Stability

Theorem 4.1. The disease free equilibrium for the model (2.5)—
(2.8) is globally asymptotically stable (GAS), if reproductive
number R < 1.

Proof. Consider  the function
H1: B — R defined as:

following  Lyapunov

f] = (S*SQ*SOIH%>+E+I+ (V* V()* V()ll’l%),
forall(S, E, 1, V) € %,
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We have
ABD\‘ A, (1 _ Sn) AED;‘SJr
AEpary < (552) 4EDIS+

APDVE +
AED)‘E +

DI (1) Dy,
DIy (5 Dy,

ABDY Ay < (322)(A — BST— rBSE — (u+v)S)
+(BSI+rBSE — (b+ p+v)E) + (b +v)E— (u+ o)D)+
(EL) (vS — ub),

DY < (S — So) (4 — BSI— rBSE — (u+v)S) + (BSI+ rBSE)
—pE — I — I+ (V= Vo) (B - p),

B A < (S—So)( )A uE(l ) ul(l )—:x,1+
= VO)(AW%)vS
B A< =S pE(1=2) - (1) -

ol — ((V;VV;’)Z)VS'
From the above calculations, it can be observed that
ABD A <0,if R< 1.
Hence, & is globally asymptotically stable. []

Theorem 4.2. The endemic equilibrium &” for the system (2.5)—
(2.8) is globally asymptotically stable (GAS), if R > 1.

Proof. Considering the Volterra Lyapunov function

Sy B — R, where

Hy=(S—8 —S'hg)+(E—E —Eln)+(I-TI-Tint)+
(V—=V = Vink),forall(S, E 1, V) € #*
We have
wpi, <375 s B2 E g
I-r -
+—— AEDT+ r-r ABpry,
DA, <55 (A — BSI— rBSE — (u+v)S)+
EE (BSI—rpSE — (v+ p+ v )E)+
(b +v)E = (u+o)I) + 555 (vS — ub),
AED A, < (S —S°)(4— BI—rBE — (u+v)S)+
(E-E)E+rpS— (b+p+w))+

(=17 +29) - (u+a|))+(V—V“)((%—ﬂ))7

ABDIAy < (S—S) (& =4 — BT+ I — rBE+ rBE* — v+ v)+
(E—E) (BB rBS —rBS — b+ b —vi + i)+
(I=T) (O =5+ = — o o) + (V= V) (S,

T

O A = s U b

rig <V— -

r

ABDY A, <

It can be concluded from the above equation that “2D!#, < 0
for R > 1.
Hence &° is globally asymptotically stable (GAS). [J

5. Analysis of the Model with Mittag—Leffler Kernel

We consider the following problem with the Atangana-
Baleanu derivative as:

SID'S(1) = A — BSI — rpSE — (1 +)S,
ZPDVE(t) = BSI+ rpSE — (b+ u+v)E, Vi >0,
SIDI(1) = (b+v)E — (u+ )],

DIDV(t) =vS —pV, Vi =0

For simplicity, we define
K(t,S,E,I,V)=A— BSI—rBSE — (u+v)S, V=0,
K(t,S,E,LLV)=BSI+rBSE— (b+u+v)E, Vt=
K(t,S,E,LLV)=(b+w)E— (u+a)l, Vt=0,
Ki(t,S,E,I,LV)=vS—uV, Vi=D0.

Then, we get
1 v dt fo (C)Ei(ﬁ(l - C)v)dé = K(tS,ELYV)
’iﬂ G EQE(S (1= 0")dl = K(1,S,ELV)
LA 4 [ UOE(2 (1= 0')d = Ks(t,S,E, L V)
S FVOE (= 0)d = Ky(1,S,E L V)
Applying the AB integral gives,
S(0)=S0) = 55K (LS ELY) + 75 Jo (= 07 K S E L V)L
E(r) — E(0) = v} K1 S ELV) + Wfo (="K (LS B L V)
1) = 100) = 55K (0 SE L V) + s Jo (1= 0" K (0 S E 1L V)de

V(1) = V(0) = 55 Ka(t, S, E L V) + s fy (1= O Ka(C S E, L V)dC

We discretize these equations at 7, as:

S = S s K, ST V)
o Jo ! (e = O KU S EL L V)L
En+l = EO + ] v Kz( )I+17S En In V”)

+sa/% ; r'(v) fOrHl (["'H - C)‘P KZ(C7 S7 E7 [7 V)di:

= P Ka(le, S BT V)
ftH n+l ‘ 1K3(C7S7E7[7 V)dg
i = VO+Q/‘/; Ka(tyr, S" BT V")

f[/’ﬂ t_ ‘ 1K4(C7S>E717 V)dC

Then, we obtain
sH= 8"+ ,;;(‘ Ki(tysr, S E T V)

y K (1,87 BV v .
+ Tmm Z [% (n+1=))"(n—j+2+v)
=

—(n—=j)' (n—j+2+2))
R Ky s" 'U’ ‘r' A 1 — !
7w 2o [ (1))
—(n—=j) (n—j+1+v))
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Ka(tysr, 8" B I, V")

+ Z["“‘Sff;" (n+1-)'(n—j+2+7)
=0
—(n f')"(n—i+2+2v))}
. Z W K (118" l‘inz)l =yt ((n—i—l )\+|
Jj=0
—(n=))(n=j+1+))
r= P4 ,,,,() Ks(tui1, " E", ', V™)
+ i [P 1 24

=0

—(n— ) (n—j+2+2v))

Z[h Ks(ty1,8" 1‘5,21,/, 1yl ((n+1 )v+l
=0

—(n—j)"(n —j+1+v)]

n+l __ 0 1—v
R™ = R+ 55

Y Ky (18" B " V")
T Z[ Tt (1
/=0
—(n=j)'(n—j+2+2v))]

n
o y Z 7 Ky(t; g 8" L E L ]
A B(v) T(v+2)

K4(tn+l7Sn7 valna Vn)

1—)'(n—j+2+v)

<(n+ 1— )Hrl
=0

—(n=))"'(n—j+14v))]

by the method using in [16].

6. Numerical simulations

The values of parameters involved in this model are, 4 =
0.5,0=0.5,y=10.6,0 = 0.0001,v1 =0.001,5 =0.9,r =0.5.
For Disease Free, f = 1.002, For EE, § =2.002. The initial
conditions are, S(0) = 0.5, E(0) = 0.2,1(0) = 0.1, V(0) = 0.1.
All the curve patterns in Fig. 1 represent the convergence
behavior of the susceptible populace at a disease-free equilib-
rium state (DFES). The behavior of the graphs are investigated
for different values of v, which is the order of the fractional

Proposed Method
0.5 T T T T T T T
— 1=1.000
—1=0.915
0.48 — 10,845 |
¥=0.800
0.46
& 0.44
0.42
041
0.38 L L \ \ . . L
0 10 20 30 40 50 60 70 80

t

Fig. 1  Graphical behavior of susceptible population at disease
free equilibrium of fractional order v for different values.

derivative. Each graph adopts a non-linear path to reach the
DFES. It is noticeable that each path follows a slightly differ-
ent route to reach the same fixed point i.e. the equilibrium
point for the disease-free state. Moreover, each graph shows
the dynamics against the specific value of v (fractional order
of the derivative). The role of fractional order v is evident from
each of the graphs. The rate of convergence is higher for the
larger value of v. Fig. 2 is the simulation of the exposed pop-
ulation for the poliovirus. All the curved lines follow different
trajectories to reach the DFES. But it is important that each
curve goes to the same point, which is the DFE point. Also,
this point coincides with the point which is already calculated
analytically in Section 6. Moreover, the curve with a greater
value of v attains the fixed point fast. The graphical patterns
in Fig. 3 express the behavior and dynamics of the phe-
nomenon to gain the disease-free stable state. All the curve
lines move towards the true steady- state against the different
values of v, but the pathes and rate of convergence varies for
the different values of the fractional-order v. This shows that
the fractional-order of the derivative plays an important role
in describing the path that the event adopts to attain the stable
state. Fig. 4 expresses the graphical situation of the vaccinated

Proposed Method

L n
0 10 20 30 40 50 60 70 80
t

Fig. 2 Graphical behavior of exposed population at disease free
equilibrium of fractional order v for different values.

Proposed Method
0.16 T T T

0.14

0.1
Eo0.08
0.06
0.04

0.02

L s !
0 10 20 30 40 50 60 70 80
t

Fig. 3  Graphical behavior of infected population at disease free
equilibrium of fractional order v for different values.
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populace at DFES. The different curves in the figure also point
out towards the fractional-order v, of the derivative. It is clear
from the curved graphs that each graph follows some specific
path depending upon the value of v. All the simulations in
the figure reveal that every graph attains the steady-state of
the system by following the different routes of convergence.
Figs. 5-8 show the behavior of the state variables involved in
the model. Fig. 5 shows, how the susceptible portion of the
population converges towards the endemic equilibrium, for
the various values of v. It is evident that each graph converges
towards the exact equilibrium point that is the endemic equi-
libria point. The graphical sketches in Fig. 6 depict the behav-
ior of the state variable E. Every graph is sketched for a
specific value of v, but each graph attains the endemic equilib-
rium point irrespective of the value of v. Also, the converging
value of each of the curved graphs is the same as computed
analytically. Fig. 7 is the face of the graphical behavior of
the infected population for different values of v. Every graph
in the figure adopts a particular route and reaches the steady
state of the model. Similarly, the last figure provides the same
result as obtained analytically. Furthermore, each sketch
describes the role of the fractional-order v. Each graph follows

Proposed Method

0.55

05

— = () 845

045 / v=0.800
04 1

035 b
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0.1 L s L L L L L
0 10 20 30 40 50 60 70 80

t

Fig. 4 Graphical behavior of vaccinated population at disease
free equilibrium of fractional order v for different values.
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Fig. 5 Graphical behavior of susceptible population at endemic
equilibrium of fractional order v for different values.
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Fig. 6 Graphical behavior of exposed population at endemic
equilibrium of fractional order v for different values.
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Fig. 7 Graphical behavior of infected population at endemic
equilibrium of fractional order v for different values.
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Fig. 8 Graphical behavior of vaccinated population at endemic
equilibrium of fractional order v for different values.
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a slightly different path, but ultimately, all the graph converges
at the true steady state.

7. Conclusion and Future Perspectives

In this study, a fractal fractional-order mathematical model of
Polio-virus is studied. The existence of the solution for the
underlying model is guaranteed by applying the fixed point
theory. Two results for the existence of the solution are pre-
sented. It is observed that this model possesses the two steady
states namely, the disease-free and endemic steady states. The
global stability of the model is studied and a benchmark result
is established to ensure the global stability. The model is ana-
lyzed with the help of Mittag Leffler Kernel. The basic repro-
duction number for the model of Polio-virus is presented and
its key role is elaborated. The disease transmission is predicted
on the basis of the value of R, (the basic reproduction num-
ber). Moreover, it is Ry used for describing the stability of
the model. The numerical graphs are drawn and it is ascer-
tained that the graphs are in line with the exact results. That
is, the graphs of each state variable converge towards the true
steady state. Numerical simulations are elaborated to reach a
fruitful conclusion. For a future perspective, the current work
may be applied to solve the stochastic fractal fractional models
and delay the fractal fractional infection disease model.
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