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In this study, a neural network model inspired by a one-dimensional convolution U-net is developed to
automatically accelerate edge localized mode (ELM) detection from big diagnostic data of fusion devices
and increase the detection accuracy regardless of the hyperparameter setting. This model recognizes the
input signal patterns and overcomes the problems of existing detection algorithms, such as the prom-
inence algorithm and those of differential methods with high sensitivity for the threshold and signal
intensity. To train the model, 10 sets of discharge radiation data from the KSTAR are used and sliced into
11091 inputs of length 12 ms, of which 20% are used for validation. According to the receiver operating
characteristic curves, our model shows a positive prediction rate and a true prediction rate of approxi-
mately 90% each, which is comparable to the best detection performance afforded by other algorithms
using their optimized hyperparameters. The accurate and automatic ELM-burst detection methodology
used in our model can be beneficial for determining plasma properties, such as the ELM frequency from
big data measured in multiple experiments using machines from the KSTAR device and ITER. Addi-
tionally, it is applicable to feature detection in the time-series data of other engineering fields.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

To operate an advanced tokamak nuclear fusion facility, the
undesirable filamentary eruption of plasma around the edge area,
known as the edge localized mode (ELM), must be controlled [1e5].
This magnetohydrodynamic instability mode occurs when the
plasma enhanced confinement mode (H-mode) is achieved with
edge transport barrier. The accompanying ELM-burst event releases
a significant amount of energy and particles in an extremely short
duration (~1 ms), causing significant damage to the diverter tile in
future device ITER owing to the high heat flux (> 10 MW= m2) [6],
which must be addressed for the commercialization of fusion re-
actors. More specifically, not all ELM bursts involve a high heat flux.
For example, a type-I ELM with a low frequency and a large burst
peak and heat flux should be avoided in ITER-type devices,
although a type-III ELM, which has a high frequency and a small
burst peak known as grassy ELM, is desirable [6]. Therefore, the
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ELM must be detected and characterized from diagnostic signals to
understand and control the ELM for achieving high-performance
tokamaks. However, an analysis of the ELM manually using large
amount of diagnostics data is challenging. To accelerate ELM
analysis, we developed a novel technique for detecting ELM bursts
automatically from a significant amount of diagnostic signal data in
the Korea Superconducting Tokamak Advanced Research (KSTAR)
tokamak [7].

ELM-burst events can be directly identified by a kind of radia-
tion signal (D-alpha) Da, which represents the visible light of the
deuterium spectral lines of the Balmer series. When ELM-burst
events happened, the peaks of Da signals occur because the parti-
cles emitted from the plasma toward open magnetic fields at low
temperatures are preferred for electron recombination, thereby
resulting in the emission of visible light. However, because a sig-
nificant amount of temporal data (more than thousands of time
steps in each channel) is generated during the discharge of the
KSTAR tokamak, the ELM-burst peak detection method must be
automated. Several methods have been used to detect ELM-burst
events. Kim et al. [8] used a prominence selection algorithm,
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1 An analog Butterworth filter cutoff at 8 kHz was used numerically in the post-
process.
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which identifies peaks via a simple comparison of neighboring
values, to detect the ELM peak in the Da signal. Eldon et al. [9]
adopted a method of fine-tuning the difference by selecting points
that exceed the smoothed differences of theDa signal. However, the
prominence algorithm relies on the threshold for height informa-
tion; therefore, a small-intensity ELM peak cannot be detected. The
difference method can detect small-intensity ELM peaks by
adjusting the threshold for the difference value; however, it is
unlikely to be automatic because a threshold optimization process
is required for each discharge.

The automatic ELM-peak detection algorithmwas developed by
Berta et al. [10] based on a similarity comparisonwith a fitted single
distribution function of the COMPASS tokamak [11], where a single
function known as the Wald distribution was used. However, ac-
cording to the authors of [12], ELM data in a wide range of dis-
charges are unlikely to fit in a single distribution function, as
indicated by the Joint European Torus (JET) tokamak data. To in-
crease the reliability of the detection algorithm for versatile ELM
signals, we introduced a machine learning technique based on
convolutional neural networks (CNN) [13].

Recently, the field of machine learning involving CNNs for
pattern recognition has developed extensively. Since results from
the neural network model are typically more accurate than those of
some conventional methods [14], the neural network model is
widely adopted for data processing in the fusion devices [15,16]. We
developed a new machine learning model based on the U-net [17],
a type of CNN, and applied it to detect one-dimensional (1-D) ELM
signals. U-net was proposed for medical image segmentation, in
which encoding (downsampling) and decoding (upsampling)
structures are connected using data of different dimensions (e.g.,
one [18], two [17], and three dimensions [19,20]). Our model had
skip connections by simply connecting not cropping as U-net and
based on a 1-D time signal. For out model, no assumption is
required for the ELM-burst shape; therefore, the model is expected
to be applicable to various types of ELM bursts. However, for
simplicity, we do not differentiate between the ELM types (e.g.,
type-I or type-III ELMs). Because we labeled the ELM data without
assigning the type information in training, the model result only
shows the time range in which the ELM burst exists. The classifi-
cation of ELM types is to be performed in future studies.

The remainder of this paper is organized as follows: In Section 2,
the process by which the ELM data are obtained from the Da

measurement of the KSTAR experiments and the data labeling for
supervised learning are explained. In Section 3, we introduce our
CNN detection model, training method, and optimization process.
In Section 4, the model results are presented in terms of accuracy
based on a comparison with existing algorithms and their appli-
cation to ELM physics. Finally, the conclusions of this study are
presented in Section 5.

2. ELM data acquisition and labelling in KSTAR experiments

The plasma performance and heat flux in the tokamak were
significantly affected by the presence of the ELM bursts. The H-
modewith explosive ELMs is shown in Fig.1. In particular, the figure
shows the plasma current (Ip), plasma beta (b), heating power by
electron cyclotron heating (ECH) and neutral beam injection (NBI),
core and edge electron temperature via electron cyclotron emission
(ECE), magnetic field fluctuation from the Mirnov signal, and Da

signal [21] of the KSTAR discharge #29487 (Ip ¼ 600 kA, toroidal
magnetic fields Bf ¼ 1:8 T). The Da signal shows ELM-burst events
as the plasma transforms into the H-mode with enhanced plasma
beta (b), which signifies a high plasma pressure. The ELM and its
characteristics (intensity, frequency, etc.) are correlated well with
other plasma performance parameters. In this discharge, the
2

increase of the NBI beam power likely results in the increase of the
ELM intensity (see the time frames of 5e8 and 11e13 s in Fig. 1(a)).
As shown in the enlarged plot in Fig. 1, the ELM is shown in the
fluctuation of themagnetic fieldmeasurement by theMirnov signal
[22]. This causes an abrupt decrease in the edge electron temper-
ature (purple line in Fig. 1(b)) measured in the ECE if the ELM in-
tensity is large, as highlighted in green. A small ELM does not
significantly affect the edge electron temperature, as highlighted in
gray.

For supervised learning in our approach, a sufficiently high
amount of high-quality labeled data is preferred. To ensure the
versatility of our model, which can be applied to various plasma
environments, we selected and labeled training data from 10 KSTAR
discharges with different normalized plasma beta (bN), poloidal
current (Ip), and total neutral beam power (PNBI) values, as shown in
Fig. 2. Additionally, the fraction of the ECH power to the total
heating power of each discharge is indicated by color. It is impor-
tant to consider the shape of the plasma for finding ELM charac-
teristics such as the ELM frequency. One of the important shape
parameters is triangularity (d), which is a factor in how close the
plasma poloidal cross section is formed to the D-shape. The range of
d included in the training set is shown in Fig. 2. The datawere sliced
into 11091 inputs of length 12ms to train the model. These selected
discharge samples included large parameter spaces of similar
weights. A well-distributed sample over the parameter space can
be useful for learning the general ELM-burst shapes in our model.
Subsequently, two additional discharges, #18396 and #29487, used
for the test set data, were labeled to compare our model's accuracy
with those of other algorithms, as explained in Section 4.

The labeling of the Da signal to the ELM-burst area, was con-
ducted by confirming the additional signals based on diagnostics
using Mirnov coils [22]. The Mirnov coil measures magnetic field
fluctuations [23] based on the peeling-ballooning instability with
temporal collapse of edge density. Hence, by considering both the
Mirnov signal with a low-pass filter1 and theDa radiation signal, we
can ensure the labeling reliability for determining the existence of
the ELM in the ELM-burst area. Fig. 3(a) shows the ELM-burst re-
gion labeled from the Da signal, which is comparedwith the filtered
Mirnov measurement of KSTAR #21228 in Fig. 3(b). The Da peak
was labeled when a large fluctuation in Mirnov occurred simulta-
neously. For example, the small peak of the Da signal of about 5.62 s
in Fig. 3 was not labeled.

Additionally, among the discharge data, some outliers were
eliminated from the sampling. We exclude the signal peak
appeared during the disruption and the dithering peaks during the
LeH transition. Therefore, the initial time data prior to the LeH
transition (e.g., at approximately 2 s in Fig. 1) were eliminated
because the ELM is supposed to be absent. The labeled data were
selected only in the period (e.g., from 2 to 14 s in Fig. 1) slightly
before the first ELM burst occurred until the current flat-top control
ended.

3. Development of neural network model

3.1. Architecture of the ELM-burst detection model

Our neural network model is suitable for automatic ELM-burst
detection because its ELM-burst intensities and frequencies
change significantly in many KSTAR discharges, and the peak
shapes are non-uniform. The key feature of automation is that after
training model with specific hyperparameter once, no adjustment



Fig. 1. Time history of several plasma parameters in KSTAR discharge #29487 (left) and expanded view around t ¼ 4.06 s (right). Y-axes show plasma current (Ip), normalized
plasma beta (bN), total neutral beam power, electron cyclotron heating power (PNBI ; PECH), electron temperature (Te) at plasma core and edge, magnetic field fluctuation, and Da

signal. H-mode is obtained at approximately 2.0 s with explosive edge localized modes (ELMs).
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is required between several discharge samples. A model that
accurately learns and classifies burst features is required to perform
classification without changing hyperparameters. An autoencoder
[24] based on a CNN model has been reported to be effective for
feature extraction from data because of its bottleneck structure,
which compresses the signal. Therefore, the autoencoder model is
suitable for classifying ELM peaks. Furthermore, the input infor-
mation before encoding should be preserved to determinewhether
each data point is an ELM burst based on its features. Thus, the U-
net [17] model shown in Fig. 4, which adds a layer (yellow arrow in
Fig. 4) that connects the encoding and decoding steps by adding a
crop layer to the autoencoder, was selected for ELM-burst
detection.

Fig. 4 shows the overall structure of the proposed model. Our U-
net-based model can accommodate a 1-D signal input of size 256�
1, and the interval time of each point is 5$10�5 s. The model first
reduces the length of the 256-value input to 32 through three
convolution layers with a max pooling layer and then decodes the
datawith the original length. Therefore, a 12ms signal is processed,
and the output measures 256� 2. To classify the ELM-burst area,
the output was configured using a one-hot encoding method. If the
column of each point is closely located the ELM burst (1,0) signal
than the normal (0,1) signal, then it is considered an ELM-burst
region. The general U-net [17,19] comprises a connection layer
that crops some information before downsampling and concate-
nates it with the upsampling layer in the decoding section. Simi-
larly, our model contains simplified connection layers that preserve
the information prior to encoding. The model uses an activation
function known as a rectified linear unit in the entire convolution
layer [25], except for the final layer, where the sigmoid activation
function is used. Thus, each component of the output is between
0 and 1. The model was implemented in TensorFlow2.0 framework
based on Python.
3

3.2. Training and optimization

The model was successfully trained using 11091 input data
points sliced from 10 labeled Da discharges, as shown in Fig. 2. The
labeled data were resampled to unify the sampling time to 5$10�5

s. This was conducted by simply dropping the points between the
intervals. Subsequently, each labeled data point was sliced to a
length comprising 256 points (12 ms) with a moving window
comprising 100 points to increase the amount of data. For example,
discharge data #19306 provides 1665 sliced data measuring
256� 1, and the total number of sliced data is 11091. The sliced
data were segregated into training and validation sets at a ratio of
8:2. The data classified as validation data were not used for training
because the number of sliced datawas sufficient to train our model.
The validation set was entirely different from the test set described
in Section 2. In this model, the data were normalized by the largest
value in each slice to prevent the incorrect overweighting of some
input data. This is a key advantage of our model compared to other
algorithms because our model can differentiate not the intensity
but the shape of the peaks. Data normalization is important to
ensure the insensitivity of the signal intensity. An ELM detection
model can be implemented without changing hyperparameter
setting between KSTAR discharges with different intensity values of
Da. We also found that our model can differentiate well the small
peaks in ELM-free data from the small ELM peaks because the small
peaks (or noise) in the ELM-free data do not have enough time
duration (time width) on the x axis to form a shape to be detected.

Our model was trained using the cross-entropy function for a
loss function; meanwhile, adaptive moment estimation (Adam)
was used as the L2 optimizer. The model was trained up to 1500
epochs at a learning rate of 0.00001. The training was performed in
an environment involving Intel Xeon Gold 6240R CPU with three
numbers of NVIDIA 3090 RTX 24GB, and the total training timewas



Fig. 2. Scattered plots of 10 KSTAR discharges parameters selected for our training in terms of NBI total power, colloidal current (Ip) and normalized plasma beta (bN), and plasma
shape triangularity parameter (d). The ECH power ratio to the total heating power were indicated by color. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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less than 1 h. Fig. 5 shows the training results for the loss and ac-
curacy. Accuracy refers to the matching rate between the label and
output. As the learning progressed, the accuracy increased for both
the training and validation datasets until 1000 epochs. Subse-
quently, unlike the training data, the validation data indicated a
decrease in accuracy. This clearly shows that the model overfitted
after 1000 epochs.

To select the optimized epoch number, analysis was conducted
using the true positive (TP) and positive prediction (PP) rates. The
TP rate represents the proportion of peaks predicted by the model
among the labeled peaks. The peak implies a point with the largest
Da signal in the ELM-burst area, and a point with a size of less than
0.1 ms is disregarded. The PP rate represents the proportion of
peaks that match the labeled data among the peaks predicted by
the model. Fig. 6 shows the change in the TP and PP rates for each
discharge number as the epoch number increases for all the sliced
data. As the learning progressed, the model learned more peaks,
and the TP values increased. By contrast, the PP values decreased
gradually, except in the early phases of training. The point at which
both the TP and PP values are maximized would be the ideal
optimized epoch number. Thus, we selected the model parameters
based on an epoch number of 660, where the sum of the TP and PP
is the highest for the training and validation data. After 660 epochs,
the model determines the ELM-burst area for an excessively large
number of peaks.
4

4. Detection results and analysis

4.1. Comparison of accuracy with other algorithms

In this section, we compare the detection results of our model
with those of several existing ELM detection algorithms, such as the
methods of prominence [8], simplified difference [26], and fine-
tuned difference [9]. Fig. 7 shows the procedures of the different
peak detection algorithms ((a) prominence, (b) fine-tuned differ-
ence method, and (c) our model) for the KSTAR discharge. For
methods (a) and (b), the ELM peak was well-classified by selecting
an appropriate threshold.

The prominence method estimates the ground level of each
peak and is typically used to classify peaks in topography [27]. As
shown in Fig. 7(a), the ground level indicated by the red line for
each section is obtained from nearby local minimum points. If the
height of the peak point from the ground level is greater than a
predetermined threshold value, it is regarded as a peak. To achieve
the best detection, if a smaller peak point exists within 0.5 ms, then
the local peak is disregarded. The threshold of prominence is set as
1:1$1020, as shown in Fig. 7(a). The effects of different thresholds
are shown in Figs. 8e10. Notably, the prominence method failed to
detect a small peak at 2.782 s.

The simplified difference method [26] uses the distribution of
signal differences without any filter. Among the distribution of



Fig. 3. An example of labeled data for supervised learning. (a) Da signal with labeled
ELM-burst area, (b) label data (0:none, 1:ELM-burst area) (c) low-pass filtered (8 kHz)
Mirnov signal of KSTAR experiment #21228. The ELM-burst showing the clear mag-
netic perturbations in (c) was labeled as (b) and highlighted as blue in (a). (For
interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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differences, the points farther than the threshold from themean are
regarded as peaks when a threshold (¼ h*sÞ of value proportional

to the standard deviation is used (s ¼ R ðD� DÞ2dt; Dxdy
dt is the

time derivative of data), where h is a predetermined
Fig. 4. Architecture of U-net convolutional model in this study. The number of length and
encoding layers and decoding layers are connected by simply copying the entire layer, not

5

hyperparameter. For this method, additional points assessed as
peaks within 1 ms of the forward peak are disregarded.

Eldon et al. [9] used a method using fine-tuned differences of
smoothed Da signals for ELM detection, which is similar to the
Gaussian edge detection method [28]. Specifically, Da signals were
smoothed using a low-pass Butterworth filter at two different cut-
off frequencies of 103 and 200 rad s�1. By applying the height

threshold of each smoothed difference (SD1x
dS1ðyÞ
dt , SD2x

dS2ðyÞ
dt ), the

points exceeding the threshold are classified as ELM areas. As
shown in Fig. 7(b), the highest Da signal among the areas without
considering the small gap (>0:5 ms) between the areas is the peak
point. Fig. 7(b) shows two smoothed differences (SD1 and SD2) and
their respective thresholds, i.e., SD1;th ¼ 4:3$1018 and SD2;th ¼
1:6$1018.

The performance of each algorithm can be compared by
adjusting its threshold in the PP and TP domains to draw a line
known as the ROC curve, as shown in Figs. 8e10. In the TP and PP
domains, as the results approach the upper right corner, the ac-
curacy of the detection model increases. A comparison was per-
formed using the discharge #18296 data, which were used for
training. Fig. 8 shows the ROC curves of the other algorithms with
different hyperparameters and our CNN model results. To draw the
ROC curves, the threshold of the prominence algorithm was set
between 4:3$1020 and 1019. For the algorithm using fine-tuned
differences, SD1;th was set between 2$1018 and 5$1019, and SD2;th
was assumed to be SD1;th. The threshold for the simplified differ-
ence method is shown in Fig. 8. In the ROC curves, the optimized
threshold value for the prominence, simplified difference, and fine-
tuned differences were 1:6$1020, 14.5, and SD1;th ¼ 1:7$1019,
respectively. Meanwhile, ourmodel found PP and TP values of 0.924
and 0.935, respectively, which indicates similar levels of high ac-
curacy without hyperparameter adjustment.

For an accurate comparison, the same analysis was performed
using the test dataset of KSTAR discharges #18396 and #29487,
mentioned in Section 2. The ROC curves along with the model
performance of the test data, and the detection results of the model
are shown in Figs. 9 and 10, respectively. To draw the ROC curve for
the method using fine-tuned differences, the relation of thresholds
was set as SD1;th=3 ¼ SD2;th at #18396 and SD1;th ¼ SD2;th at
#29487, which were adjusted for the optimization of ELM-burst
detection of each signal. As shown in Figs. 9(b) and 10(b), the in-
tensity and frequency of the ELM burst were different in the two
channel of data is denoted on each box. The 1D input data is Da signal of 12 ms. The
cropping like the conventional U-net [17,19].



Fig. 5. The training result (solid lines) of the loss function (left y) and the accuracy
(right y) in terms of epoch number for our model. The dashed lines are the result using
the validation data.

Fig. 6. True positive (TP) and positive prediction (PP) rates in terms of epoch number
for the same case of Fig. 5.

Fig. 7. ELM peak detections from Da signal based on different algorithms: (a) promi-
nence (threshold ¼ 1:1·1020 case), (b) fine-tuned by smoothed differences, and (c) our
model for time slice of KSTAR discharge #18396. Thresholds of methods (a) and (b) are
indicated by dotted lines, respectively.
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experimental Da signals. Accordingly, the optimal threshold value
for each existing method was changed. In #18396, the optimized
threshold value for the prominence difference was 1:9$ 1020,
simplified difference 12.5, and fine-tuned difference SD1;th ¼ 1:4$
1019. In #29487, the optimized threshold value for the prominence
difference was 1:6$1019, simplified difference 10.5, and fine-tuned
difference SD1;th ¼ 1:3$1019. Because the optimized thresholds of
the other algorithms were different for each discharge, a good
performance position in the upper right corner was difficult to
achieve for multiple discharge data. However, our model was
located on the upper right, which yielded good accuracy without
setting any parameters, whereas it was located slightly above the
ROC curve of other methods.

4.2. ELM frequency calculation

Our model's ELM automatic detection results can be applied to
determine the related physics, such as the ELM frequency. Using
our model, the ELM frequency can be calculated easily as the
number of peaks captured automatically. By comparing the
6

frequency between multiple discharges in KSTAR, we can obtain
the characteristics of the ELM in different plasma environments.
The shape of the plasma poloidal cross section is known to be
important when determining the ELM frequency. One of the
important shape parameters is the triangularity, as indicated in the
previous study [29]. In our training data set, the triangularity varies
from 0.45 to 0.7, and the peaks are successfully detected in the
range of the triangularity. Fig. 11 shows the correlation of the ELM
frequency obtained from our model output for discharge #29487
with the heating power and ion toroidal rotation velocity (Vtor). The
frequency was calculated for 0.4 s of the moving window at 0.2 s
intervals of Da. Vtor was obtained from the charge exchange spec-
troscopy channel, which was located at the top of the edge pedestal
region. As ECH power was additionally applied to the plasma at 3 s,
the ELM frequency from our calculation changed significantly,
which is consistent with the measurements of Vtor .



Fig. 8. Receiver operating characteristic (ROC) curves of several ELM detection algo-
rithms from Da signal of KSTAR experiment #18296, which was used as a training set.
The simplified difference deviation method [26] (black square dashed), prominence
method [8] (green dot) threshold, and tuned difference method [9] (red pentagon)
have optimized thresholds of 14.5, 1:6� 1020, and SD1;th ¼ SD2;th ¼ 1:7� 1019,
respectively. The numbers on the graphs represent the thresholds of the simplified
difference method. Our trained model’s result is shown in a blue triangle point. (For
interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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For type-I or II ELM, the frequency increases as the heating
power [30] or edge collisionality [31] increases, and the frequency
decreases when co-current direction Vtor increases [32]. A reduc-
tion in Vtor in the co-current direction strengthens the radial elec-
tric field (Er) toward the negative direction at the edge, which
affects the plasma confinement and stabilization of the ELM trigger
[33,34]. However, ELM physics is still not clearly understood. Con-
trary to the aforementioned trend, the frequency of type-III ELM
decreases as the heating power increases [35] and the ELM energy
loss of type-III slightly decreases with decreasing collisionality [36].
Therefore, further analysis of ELM characteristics is required. Our
model can automatically classify ELM-peak detections between
several discharges with a relatively constant performance, which
Fig. 9. (a) ROC curve of several ELM detection algorithms from Da signal of KSTAR experim
simplified difference deviation method [26] (black square dashed), prominence method [8]
thresholds of 12.5, 1:9� 1020, and SD1;th ¼ SD2;th ¼ 1:4� 1019, respectively. Our trained mo
in this figure legend, the reader is referred to the Web version of this article.)
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would facilitate ELM investigations pertaining to the big data of
KSTAR and other tokamaks.
5. Conclusions

In this study, an automatic ELM-burst detection model using the
Da signal in a fusion reactor was developed using a 1-D U-net
model.We directly labeled 10 KSTAR experiments involvingDa data
for training and two additional experiments for testing based on a
comparison with the Mirnov signal. The epoch number of training
was selected where the detection performance for ELM-peak is
maximize and the trained model showed high performance with a
more than 90 percent of positive prediction rate (PP). We compared
the learning results yielded by the proposed model with those of
other existing algorithms. As shown by the training and test dataset
results in Figs. 8e10, our trained model demonstrated a similar
level of accuracy as the optimized results of other algorithms
without requiring any hyperparameter adjustment in the experi-
mental data. To illustrate a simple example of the usage of our
model, the ELM frequency was calculated using the model, and its
correlation with the plasma parameters was presented.

Our model offers the following two advantages in terms of
hyperparameter-independent characteristics. First, our model is
independent of the signal intensity. Because CNN methods depend
primarily on the signal pattern and not the signal magnitude, they
are more suitable for signal normalization. The Da input in our
model can be less dependent on the sample intensity by normal-
izing it with the highest value within each input slice, whereas the
other algorithms are not suitable for normalization because they
depend on the global threshold of the magnitude in the entire
input.

Second, we can avoid the sensitivity problem arising from
manually setting thresholds among different experimental data,
which is important because KSTAR has quite different wall condi-
tion each year which comes up with a different Da base level. The
other methods have different threshold values optimized for
capturing the peaks in each discharge, as shown in Section 4.1. This
implies that multiple discharges are difficult to compare using a
uniform standard. By contrast, our model does not involve such
thresholds, and it can classify peaks via the shape and pattern with
consistently good accuracy in different environments. Therefore,
accurate and automatic ELM-burst detection using our model can
ent #18396, which was used as a test set, and (b) peak detections by our model. The
(green dot) threshold, and tuned difference method [9] (red pentagon) have optimized
del’s result is shown in blue triangle point. (For interpretation of the references to color



Fig. 10. (a) ROC curve of several ELM detection algorithms from Da signal of KSTAR experiment #29487, which was used as a test set, and (b) peak detections by our model. The
simplified difference deviation method [26] (black square dashed), prominence method [8] (green dot) threshold, and tuned difference method [9] (red pentagon) have optimized
thresholds of 10.5, 1:6� 1019, and SD1;th ¼ SD2;th=3 ¼ 4:3� 1018, respectively. Our trained model’s result is shown in blue triangle point. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 11. Time history of (a) heating power, (b) measured toroidal rotation, (c) our ELM
detection from the measured Da signal, and (d) ELM frequency calculated from ELM
detection results of (c) KSTAR experiment #29487, which is the same case as that
shown in Fig. 1.

J. Song, S. Joung, Y.-C. Ghim et al. Nuclear Engineering and Technology xxx (xxxx) xxx
be useful for ELM analysis between multiple experiments in the
KSTAR and other tokamaks, such as the ITER. The machine learning
techniques can be used to detect the precursor signal of the
disruption, which is one of the critical issues for the success of ITER.
We expect this methodology to be applicable to other engineering
fields involving a significant amount of time-series data and the
identification of some features.
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