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In this study, an NF3 plasma etching reaction with a cobalt oxide (Co304) films grown on the surface of
inorganic compounds using granite was investigated. Experimental results showed that the etching rate
can be up to 1.604 pm/min at 380 °C under 150 W of RF power. EDS and XPS analysis showed that main
reaction product is CoF,, which is generated by fluorination in NF3; plasma. The etching rate of cobalt
oxide films grown on inorganic compounds in this study was affected by surface roughness and etch

selectivity. This study demonstrates that the plasma surface decontamination can effectively and effi-

Keywords:
Decontamination
Radioactive waste
Cobalt oxide
Plasma etching
Cobalt fluoride

ciently remove contaminated nuclides such as cobalt attached to aggregate in concrete generated when
decommissioning of nuclear power plants.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Although nuclear power is an effective energy source, the per-
manent shutdown of NPPs (nuclear power plants) has been
occurring steadily around the world due to the accident of
Fukushima NPPs and the appearance of new renewable energy.
Especially, generation of radioactive waste is the most sensitive
issue after permanent shutdown of NPPs. Hence, technologies to
recycle/reuse of the radioactive waste have been developed and
researched, since a large volume of radioactive waste is likely to be
generated during decommissioning of NPPs.

It is well known that concrete is basically used a structure in
NPPs due to its reasonable cost and neutron shielding. As shown in
Table 1, IAEA predicted that a huge amount of radioactive concrete
would be generated from decommissioning of nuclear facilities [1].
Specifically, the EC (European Commission) expected that about
500 million tons of concrete waste will be generated in Europe by
2060 due to decommissioning of NPPs [2]. It is known that the
radioactive concrete waste consists of surface contaminated con-
cretes and activated concretes. Surface contaminated concretes are
generated by imbibition of radioactive liquids from system to
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concrete, and most activated concretes are produced in biological
shields located around the reactor by fast neutrons generated
during NPP operation [3]. Therefore, radionuclides are mainly
present in cement paste or mortar and are attached to the surface of
aggregates in concrete (Fig. 1) [4]. So, if radionuclides from surface
of aggregates in concrete can be removed completely using specific
techniques, aggregates can be reused or recycled, which can reduce
the volume of radioactive concrete.

Decontamination technologies of concrete include chemical
methods, thermal methods, and mechanical methods. Chemical
methods are wet technologies separating contaminants from con-
crete using an oxidizing agent/reducing agent, acid/base, gel, and
foam [5—22]. In thermal methods, contaminants are removed by
explosive fracture in concrete, which is caused by irradiation with
high energy using lasers, microwaves, and pulsed power discharge
[23—28]. Mechanical methods are most commonly used technol-
ogies that physically separate contaminants on the surface of the
concrete using milling, scabbling, blasting, vacuum cleaning, and
brushing [29—35]. This technology is mainly used in the field,
however, caution is needed to prevent workers from inhaling
mixture of dusts and radionuclides. Chemical methods and thermal
methods still have lack of practical use cases, requiring further
research on issue of expensive decontamination costs and gener-
ation of secondary waste.

Plasma surface decontamination is an outstanding technology
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Table 1
Typical radioactive waste generated from decommissioned nuclear power plants [1].
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Radioactive waste generation 250 MW(e) GCR (t)

900—1300 MW(e) PWR (t) Reprocessing plant

5 t/d throughput (t)

Irradiated carbon steel 3000 - -
Activated steel - 650 -
Graphite 2500 - -
Activated concrete 600 300 -
Contaminated ferrite steel 6000 2400 -
Steel likely to be contaminated - 1100 3400
Contaminated concrete 150 600 1850
Contaminated lagging 150 150 400
Contaminated technological wastes - 1000 300
Porous
cement stone Mortar

: | Coarse
aggegate

?Radionuclides

(cement + sand)

Radionuclide

Fig. 1. Schematics of contaminated concrete, aggregate after recycling process of concrete and cross section of aggregate after recycling process of concrete.

using plasma etching that effectively removes surface contami-
nants and produces less secondary waste than other chemical
methods. Many researchers have demonstrated the removal of
contaminants from the metal surface, and it is a critical technology
for reducing volume of radioactive waste generated when decom-
missioning of NPPs [36—48]. However, studies on plasma surface
decontamination of concrete, which occupy the largest amount of
radioactive waste generated when decommissioning of NPPs, have
not been sufficient.

In fact, cobalt is the most common contaminated nuclides in
radioactive concrete generated when decommissioning of NPPs [3].
Cobalt exists in various chemical forms (Co®*, Co®*, CoCOs,
Co(OH)3, Co304), which is attached to the surface of aggregates in
concrete [49], however, it is predicted to be converted into cobalt
oxide (Co304) through mixed technologies using heating and
milling, which is a conventional recycling process of separating
mortar and aggregate in concrete [50,51]. However, it is necessary
to remove specific contaminants on the aggregate through plasma
surface decontamination since this technology increases the
amount of secondary waste by polishing the aggregate.

To demonstrate a high etching rate for radioactive cobalt iso-
topes on the surface of aggregates after conventional recycling
processes, the etching reaction of cobalt oxide films grown on
inorganic compound was investigated in this study using NF;
plasma. In parallel, surface analysis was performed to understand
mechanism between cobalt oxide and NF3 plasma with two
experimental parameters: temperature, and power.

2. Experimental
2.1. Growth of cobalt oxide films on inorganic compounds

The actual specimen is presumed to have a nuclide attached to
the surface of the aggregate to which the mortar is bound.

However, in this experiment, assuming that the mortar was almost
removed after the concrete decontamination including milling and
heating, a specimen with a nuclide attached to the surface of the
aggregate was manufactured.

It is well known that aggregate is composed of inorganic com-
pounds. First, the cobalt oxide films were prepared on inorganic
compounds using granite (31 mm in length, 31 mm in width, and
5 mm in thickness). Specimens were polished with sandpaper with
320, 600, and 1200 grit and then were cleaned using distilled water
in an ultrasonic cleaner. Samples were dried using an air gun after
polishing, and then a cobalt nitrate (II) hexahydrate (Co(N-
03),-6H,0) solution with concentration of 300 mg/mL was applied
on their surfaces. Next, these samples were baked in an electrical
furnace at 500 °C for 3 h to grow cobalt oxide films on the surface of
the inorganic compounds using granite.

2.2. Design of plasma etching equipment

A diagram of the plasma etching equipment used in this
experiment is shown in Fig. 2. The vacuum chamber with a volume
of 8 L was made of stainless steel, and the inner surface was elec-
tropolished to prevent corrosion. Etching gas was continuously and
accurately supplied to the showerhead in the vacuum chamber
through a MFC (mass flow controller). The sample on the cover was
heated using a heater that can go up to 1000 °C, and a thermo-
couple was placed on the surface of the sample to measure the
surface temperature in the vacuum chamber. To prevent corrosion
of the vacuum chamber at high temperature, a cooling water was
continuously circulated in the upper part and lower part of the
vacuum chamber. To generate plasma, the plasma source used RF
(radio frequency) power up to 600 W at 13.56 MHz. The distance
between the showerhead attached to the top of the chamber and
the sample on the cover can be adjusted up to 150 mm. The plasma
state was visually observed during the experiment through a
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Fig. 2. Schematics of plasma etching machine.

viewpoint in the vacuum chamber, and the plasma environment
was analyzed using OES (optical emission spectroscopy). A cold
trap was installed in the vacuum chamber to collect and identify
the reaction product. To minimize the exposure to the external
environment, the cold trap was transferred for XPS analysis using a
desiccator and a VTM (vacuum transfer module) (Fig. 3).

2.3. Plasma etching experiments

To remove impurities and moisture residue on the wall of the
vacuum chamber, the vacuum chamber was baked prior to the
plasma etching experiment. Total pressure in the vacuum chamber
was maintained at 0.3 Torr, and the flow rate of NF3 gas was fixed at
15 sccm (standard cubic centimeters per minute) using MFC. The
distance between the showerhead and cover was fixed at 40 mm.
The total reaction time was 3 min, and specimen weights were
measured every 0.5 min.

Plasma etching experiments were conducted at two RF powers
(150 W and 220 W) at various temperature (300 °C, 330 °C, 350 °C,

and 380 °C). Etching rate was determined using the weight loss of
the specimen during the plasma reaction to evaluate of thickness
change on the surface of the specimen. The weight change of the
specimen was measured using an electronic micro balance (model
BP210D, Sartorius) with readability of 107> g.

Surface analysis of specimens was carried out using OM (optical
microscopy), SEM (scanning electron microscopy), EDS (energy
dispersive x-ray spectroscopy), XRD (x-ray diffraction), and XPS (x-
ray photoelectron spectroscopy).

3. Results and discussion
3.1. Analysis of optical plasma diagnostics

Vacuum baking was conducted prior to the experiment at
temperature of 300 °C to remove moisture and particles inside the
vacuum chamber. The diagnostic using OES showed F peaks (685,
703 nm) [45] and N, peaks (337, 357, 400 nm) [52] without the
presence of OH™ peak (309 nm) [53—55] which are generated due

Fig. 3. Images of VTM (vacuum transfer module), parts of VTM, and desiccator.
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to dissociation of moisture during the plasma reaction (Fig. 4).
Therefore, the results confirmed that F radicals were sufficiently
produced due to effective dissociation of NF; in the plasma.

3.2. Surface analysis before and after plasma reaction

XRD analysis showed that the peaks of cobalt oxide films on the
surface of the inorganic compounds were in the same position as
the peaks of Co304 manufactured by Aldrich (Fig. 5). This results
confirm that Co304 films were grown on the inorganic compounds.
Also, as shown in Fig. 6, the Coyp binding energy peak at 780.1 eV
was clearly observed in the XPS analysis, demonstrating Co30g4
films formed on the surface of the inorganic compounds. This result
is consistent with thermodynamic predictions that the formation of
Co304, which has the properties listed in Table 2, is advantageous at
temperatures below 900 °C [50,56].

OM and SEM were conducted to observe the change in the
surface of Co304 films grown on the inorganic compounds before
and after the reaction. As shown in Fig. 7, micrograph shows that
Co304 films were removed from the surface, resulting in a change in
the surface of inorganic compounds. Also, SEM results demon-
strated that Co304 films were removed because the surface of
inorganic compounds was only observed when the plasma reaction
was completed (Fig. 8).

3.3. Analysis of reaction product

According to studies on reaction between cobalt and plasma
using CF4—0;, and SFg—0,, it is expected that the overall etching
reaction involved that carbonylation and fluoro-carbonylation
[41,44,45] would occur due to the low melting point of cobalt
carbonyl and the high melting point of cobalt fluoride. However,
recent findings showed that the fluorination is the principal reac-
tion between cobalt and plasma using CF4—0;, SFs—0,, and NF;
[46—48].

As shown in Fig. 9, EDS results for the specimen mean that the
surface of base material is revealed after plasma reaction. The result
shows that Co304 films were completely removed after the plasma
reaction, and a small amount of cobalt fluoride remained on the
surface of inorganic compounds.

XPS analysis was conducted to identify reaction products
generated by reacting with NF3 plasma and Co304 films on the
inorganic compounds. To confirm the chemical form of the reaction
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Fig. 4. OES peak during NF; plasma reaction.
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product, condensed reaction products were collected using the cold
trap made of copper.

Cobalt fluoride can exist in two forms, CoF,, CoF; [45,57,58],
which easily bond to water in normal environments. Therefore,
since the polarity of cobalt fluoride and water was similar, it was
confirmed that the specimen and moisture were easily combined,
and then the peak was moved in the XPS analysis. It was difficult to
confirm the reaction product in previous studies because cobalt
fluoride showed a chemical form of CoF,-nH0 with a Copp binding
energy at 782.6 eV [48]. Therefore, to minimize moisture adsorp-
tion of the specimen, the specimen was transported to the XPS
analysis laboratory in various ways. The cold trap was transferred
using a petri plate, a vial with silica gel, a vial with argon gas
(Fig. 10), and a VIM in the desiccator (Fig. 3).

As shown in Fig. 11, the XPS results confirmed that the Copp
binding energy of CoF,-nH,0 at 782.6 eV when a specimen was
transported using a petri plate, a vial with silica gel, and a vial with
argon gas. This result means that the specimen was exposed to air
during transportation after plasma reaction.

However, the Coyp binding energy was 782.9 eV (Fig. 12) when
the specimen was moved using VTM. Since the binding energies of
CoF, and CoF3 are known at 783.0 eV and 782.4 eV, respectively, it is
estimated to be CoF, because it is a difference in energy of the
tolerance of Coyp binding energy in this XPS analysis [59,60]. Even if
CoF; formed, the reactivity is high enough to be decomposed
immediately after exposure to moisture, and pure CoF; is not
significantly produced in the fluorination reaction [61]. Therefore,
the principal reaction product of Co304 films on inorganic com-
pounds using NF3 plasma is likely CoF5.

3.4. Plasma etching rate of cobalt oxide

3.4.1. Effect of temperature

In our experiment on cobalt oxide films on inorganic com-
pounds exposed to plasma etching, the weight of the specimen
decreased in proportion to etching time. Unlike previous studies
[38,40,48], it seems that continued removal of cobalt-fluorine in-
termediates was affected by the limited amount of cobalt atoms in
thin films and the characteristics of the base material.

Removal of the adsorbed cobalt-fluorine intermediates in the
plasma etching reaction between cobalt atom and NF; plasma may
be expressed by an exponential function as in previous studies [48].
Since it follows a linear kinetics law, the etching rate of cobalt oxide,
R(t), can be expressed:

R(t) =kqlA"] = kq[A"ge " — B

Here, k4 is the desorption reaction rate constant, [A*] is the
concentration of adsorbed intermediate species on surface of ma-
terials, [A*]p is the initial concentration of [A*], t is reaction time in
plasma, and 2 is the reciprocal of characteristic time. Therefore, the
initial etching rate, R = k4[A*]p is constant, and can be calculated
using the linear slope (characteristic time) from an exponential
graph. It is reasonable that same initial etching rates were observed
for cobalt oxide films on inorganic compounds and cobalt oxide
films on Inconel (Table 3) [48] because the same reaction product
(CoFy) is generated for reactions between cobalt oxide and NF3
plasma. Therefore, it is estimated that the etching rate of cobalt
oxide films on inorganic compounds is decreased by external effect
factor B, which is the factor related to the base material, and is
described in Sections 3.3.3 and 3.3.4.

To investigate the effect of temperature on the etching rate of
cobalt oxide on inorganic compounds, plasma etching experiments
were conducted at 300 °C, 330 °C, 350 °C, and 380 °C with the RF
power fixed to 150 W. The etching rates were 0.734 pm/min,
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Fig. 5. Comparison of XRD peaks between cobalt oxide (sigma aldrich) and cobalt oxide films on inorganic compounds.
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Table 2

Properties of cobalt (II, III) oxides.
Properties
Chemical formula Co304

Co0-Co,03

Molar mass 240.80 g/mol
Appearance black solid
Density 6.11 g/cm?
Melting point 895 °C
Boiling point 900 °C (decomposes)
Solubility in water insoluble

1.129 um/min, 1.202 pm/min, and 1.604 pm/min for temperature of
300°C, 330°C, 350 °C, and 380 °C (Fig. 13). The results differed from

3.4.2. Effect of RF power

When RF power increased from 150 W to 220 W at a tempera-
ture of 350 °C, the etching rate changed from 1.202 um/min to
1.570 um/min, and increased by approximately 76% (Fig. 14). In the
analysis using OES (Fig. 15), the etching rate is expected to increase
because the density of fluorine radical increases with increasing RF
power [62,63]. Since the electron density and average electron
energy associated with the density of fluorine radicals depends on
RF power as the source of plasma generation, fluorine radicals were
significantly increased by ionization, excitation, and dissociation of
gas molecules. In addition, the etching rate can be further improved
if the kinetic energy of reactive ions is increased.

3.4.3. Effect on surface roughness of base material

The difference in etching rate of cobalt oxide between the
Inconel [48] and inorganic compounds is likely due to the differ-
ence in the surface shape of the base material. Because in XPS
analysis after each plasma reaction, the reaction products were
confirmed in the same chemical form. Unlike the surface of Inconel,
thickness of cobalt oxide films is not uniform since the surface of
the inorganic compounds is mostly composed of trenches or valleys
(Fig. 16). As shown in the SEM image (Fig. 17), by-products are re-
deposited in trenches or valleys of inorganic compounds after the
plasma reaction in this experiment. The re-deposition of by-
products increased in trenches or valleys during the plasma reac-
tion [64,65], which affects the etching rate of the cobalt oxide films
as shown in Fig. 18.

3.4.4. Effect on etch selectivity of base material

Since inorganic compounds are granite mostly composed of SiO,
and Al,Os3, the difference in etching rates is likely because the etch
selectivity of the Inconel and the inorganic compounds was
different [66].

Etch selectivity = Etching rate of the etch target/Etching rate of the base material

plasma etching rate of the metallic cobalt and cobalt oxide films on
Inconel based metal.

Since etch selectivity implies a non-selective etching phenom-
enon, there were the differences in the etching rate of Co3z04 films
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Fig. 7. OM images of inorganic compounds, cobalt nitrate on inorganic compounds, and cobalt oxide films on inorganic compounds before and after reaction.
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Fig. 8. SEM images of cobalt oxide films on inorganic compounds before and after reaction.
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Fig. 10. The images of a petri plate, a vial with silica gel, and a vial with argon gas.

Table 3
160000 - Initial plasma etching rates of cobalt oxide on Inconel [48].
782.6 eV, Co 2p3/2
1 Temperature (°C) RF power (W) DC Bias (V) Initial etching rate (um/min)
140000 + 300 150 No 09171
E 330 150 No 1.0622
350 150 No 1.3977
1 i .
2 20000 350 220 No 2.6340
0 1 350 220 -300 3.3620
S 100000 380 150 No 5.0967
o] 410 150 No 6.8444
o B
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Fig. 11. The Co,p binding energy of cold trap after plasma reaction using petri plate, 8
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g 100000 Fig. 13. Thickness decrease of cobalt oxide on inorganic compounds at various tem-
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1 based on the difference in the base material. The reaction product
60000 was generated in some components of the inorganic compounds by
1 the expected fluorination reaction as follows:
40000
T T T T T T T T T T T 5102<5) + F(g) - SIF4(g>
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Fig.‘ 12. The Co,p binding energy of cold trap after plasma reaction using VTM and Very little spontaneous reaction between SiO, and fluorine oc-
desiccator. curs without ion bombardment at room temperature [67].
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Furthermore, etching of Al,Os is difficult due to the production of
AlF3, which remains on the surface as a non-volatile material [68].
XPS results of the cold trap after the plasma reaction showed that
the cobalt and fluorine were mostly involve in the fluorination
reaction (Fig. 19).

As shown in Fig. 20, it was confirmed that Al did not become a
volatile product through a difference between the Si peak (104.1 eV,
SiOy) of cold trap after the experiment and the Si peak (102.6 eV,
Si0,&Al,03) of the surface of the inorganic compound before the
experiment. It is estimated that the Si peak of cold trap is generated
by decomposition of SiFs. The SiF4 has high reactivity that it
decomposed as soon as it bonded to water [59,60]. It is estimated
that SiO;, the main component of the inorganic compounds, was
partially etched through a spontaneous reaction. However, the
etching of the inorganic compounds was disturbed by the genera-
tion of non-volatile product such as AlFs. Therefore, the main re-
action in this experiment was cobalt-fluorination.

3.5. Proposed plasma-surface interaction of the cobalt oxide films

In this study, the Co304 films on the inorganic compounds were
removed by forming CoF,, which is a volatile product generated by
plasma-surface interactions. The OES peak shows that only fluorine
radicals are generated as reactive radicals in the NF3 plasma.
Therefore, the etching of Co304 films using NF3 plasma is proposed
as a fluorination reaction having the following overall reaction:

Cos 04(5) +6F(g) d 3COF2<g) +40(g)

Previous studies on the fluorination mechanism using NFs
plasma have demonstrated that [CoFenO(q)]* is formed on the
surface and is in balance with the surface atoms. When the fluorine
radical in NF3 plasma successfully interacted with the intermediate
species (e.g., cobalt-fluorine-oxygen compounds), the reaction
products (e.g., CoF,) formed and desorbed from the surface.
Therefore, the kinetic scheme of the plasma reaction can be
expressed as follows:

kd « K
[C0304] ;<—: [COF(ad) nO] —>COF2<g)

When k* > kg, the desorption rate becomes constant, and then
R4 = kg[CoF(3q).n0]* is explained. Therefore, this overall reaction
can be described by the following basic reactions:

Fig. 16. Comparison of cross section between cobalt oxide films on Inconel and cobalt oxide films on inorganic compounds.
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According to the predicted volume of IAEA, 900 tons of radio-
active concrete wastes will be generated during the decom-
missioning of PWR (pressurized water reactor) with 900—1300
MWe. Radioactive concretes largely consist of surface-
contaminated concretes generated by imbibition of radioactive
liquids in the system and activated concretes generated by fast
neutrons in the biological shields surrounding the reactor. In fact,
Fig. 18. Roughness effect of cobalt oxide films on inorganic compounds. most contaminated isotopes are present in cement paste or mortar
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Fig. 19. Total peak of inorganic compounds and cold trap after reaction using XPS.
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Fig. 20. Si2p binding energy of inorganic compounds and cold trap after reaction using XPS.

in concrete. Especially, *8Co and ®°Co are representative radionu-
clides that attach to the surfaces of aggregate in the concrete.
Therefore, it is necessary to develop effective surface decontami-
nation technologies to remove surface-contaminated nuclides and
to generate less secondary waste.

Plasma surface decontamination is a removal technology that
uses plasma etching to remove effectively surface contaminants,
generating less secondary waste than other chemical methods. In
this study, the NF3; plasma etching reaction with cobalt oxide
(Co304) films grown on the inorganic compounds was investigated
to demonstrate the etching of cobalt attached on aggregate in
concrete for practical application.

This experiments demonstrated that etching rate can be up to
1.604 um/min at 380 °C under 150 W of RF power. Therefore, if
power and temperature in the vacuum chamber are sufficient
increased, the practical available etching rates may reach 3.0 um/
min. Also, the result of cobalt oxide films on inorganic compounds
confirmed that the etching rate of cobalt oxide is affected by surface
roughness and etch selectivity of the base material.

Although the etching rate of cobalt oxide was influenced by the
base material, XPS analysis demonstrated that the main reaction
product is CoF, through the fluorination reaction. Therefore, the
surface etching reaction of Co304 using NF3 plasma is proposed as a
fluorination reaction having the following overall reaction:

C03045) +6F(g) = 3CoF(g)+40 )

Desorption of cobalt-fluorine-oxygen compounds such as in-
termediate species occurs when interacting with fluorine radicals
produced in NF3 plasma. Therefore, the desorption rate becomes
constant, and Ry = kg[CoF(3q).n0]*, following the linear kinetic law.
Also, the surface coverage of intermediate species can be limited by
the continuous reaction of thin cobalt oxide films. Therefore,
despite the desorption of cobalt fluorides follows a linear kinetic
law, the weight of the specimen should decrease without being
proportional to the reaction time. However, the weight of specimen
decreased according to the reaction time due to the influence of the
base material in this experiment.

In conclusion, the result of this study demonstrated that plasma
surface decontamination effectively and efficiently removes
contaminated nuclides such as cobalt attached to aggregate exist-
ing in radioactive concrete generated when decommissioning of
NPPs.
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