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Abstract This work attempts to study the numerical solution of nonlinear delayed Immunized

Susceptible Latent Infected and Recovered (MSLIR) epidemic model of HBV disease. Reproduc-

tion number, equilibria and stability are discussed. Three different numerical techniques, Euler,

RK-4 and the non-standard finite difference (NSFD) techniques are used for the numerical solution

of the model. The proposed technique is independent of the size of the time step, while forward

Euler and RK-4 depend on the size of a time step and retains all essential characteristics of the con-

tinuous MSLIR epidemic model like positivity and stability of equilibrium, while well-known for-

ward Euler and RK-4 cannot sustain these characteristics. Therefore, the proposed (NSFD)
itute for

ith delay
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technique becomes a more efficient and reliable numerical technique than the forward Euler and

RK-4 scheme. Numerical simulations are presented for the validation of the obtained results.

� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Table 1 Parameters of the model.

Parameters Representation

/ Rate of vaccine efficacy

k Rate of transformation from S towards L

l Rate of conversion from L towards I

w Rate of conversion from I towards R

p Rate of conversion from R towards S

q Rate of change from L towards R

g H.B. induced death

b Natural death

cP Immunized newborns

N Total number of population

Table 2 Table of parameter values.

parameters DF EE

b 0.5 0.5

/ 0.01 0.01

l 10.5 10.5

g 0.05 0.05

p 1 1

s 5 3

P 0.1 0.1

w 0.5 0.5

q 1.5 1.5

C 0.01 0.01
1. Introduction

The word ‘‘hepatitis” is known as ‘‘inflammation or burning”
of the bile duct. So, ‘‘hepatitis B”mentioned the burning of the

bile duct that leads to the hepatitis B virus. People suffering
from hepatitis-B infection can be assumed to enjoy a hygienic
life with appropriate follow-up medical care. HBV is propa-
gated once blood or seminal fluid is infected from a person that

is infected with virus when enters into the body of any individ-
ual that is not infected. Such infections can come off through
sexual relations, splitting needles and narcotize injection, also

transfer from mother to her baby during birth. Hepatitis B is
a short-term ailment for immunized individuals. But for other
individuals, it can be recommended as a chronic infection.

Probably, 90 per cent of newborns that HBV infects become
chronically infected, which is compared with (2–6) per cent
of young ones. Vaccination is the best way the prevention this

infectious disease. This active infection can lead to contamina-
tion of the bile duct. A person having HBV can transmit the
virus to other individuals unaware of it. Some people are
asymptomatic. Some individuals have an initial infection,

which then recovers. For other individuals, the condition
becomes chronic. In chronic cases, the virus continues to
assault the liver over time without diagnosis [1,2]. The popula-

tion infected with hepatitis B worldwide is in the millions.
According to WHO, the hepatitis B patients were estimated
about 296 million in 2019 with 1.5 million new infections each

year. Moreover, it was causative of about 0.82 million deaths
in 2019 [3].Fig. 1Table 1Table 2.

Delay differential equations allow previous activities to be
added to numerical models, bringing the model closer to the

actual occurrence [4]. For most transmittable sicknesses, there
is a time interval between disease and the event of side effects
(the incubation period); during this time, pathogens grow or

develop. Even if they can transmit the disease, some affected
people may never exhibit symptoms (in apparent infection).
For example, Measles has a certain incubation period (10 to
Fig. 1 Flow char
14 days) and classified duration of infectivity for a taken
patient (4 to 7 days). The time delay differential models are

much more realistic because they account for time dynamics
from infection to infectiousness. There are numerous models
accessible in the literary study, which show the elements of this

illness by arranging nonlinear differential equations without
any delay, albeit the delay incorporation makes the model
t of the model.
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more sensible. The demographic model’s dynamical behavior
delay is now becoming an important research area. In [5], a
stochastic delayed model is developed to explain chronic

hepatitis-B infection with HBV-DNA containing virions. In
[6], Wang et al. explored a SEICRV scourge model with a time
delay to investigate the transmission elements of Hepatitis B

illness. Hu et al. considered cell and animal models to describe
HBV [7]. Khan et al. studied an integer and fractional order
hepatitis B model [8]. Existence, uniqueness and reproduction

number are discussed and stability analysis are performed.
Khan et al. analyzed a Hepatitis B fractional model under
Caputo- Fabrizio derivative [9]. Existence and uniqueness are
discussed with the help of fixed point theory. Adomian decom-

position method coupled with the integral transform of
Laplace is used for the semi analytical solutions. Khan et al.
presented a model of hepatitis B virus by taking into account

media coverage and the basic properties like reproductive
number and stability of the model are discussed [9]. Zhong
et al. presented integer-order and fractal-fractional model

describing the Hepatitis B virus incorporating the well known
Atangana-Baleanu derivative [10]. Moreover, Bashforth
method is used for solving the model numerically. Hong stud-

ied an improved model of HBV and proposed an NSFD
scheme for its solution [11]. The properties like stability, posi-
tivity and boundedness are discussed. Convergence analysis
and error analysis are also included. Fatehi et al. proposed

an age-structured HBV model [12]. Din and Li presented a
delayed stochastic HBV model with noises and vaccination
effect [13]. Din et al. presented a non integer order HBV model

using Caputo derivative [14]. Laplace transformation and
Adomian decompositions are being used for the semi analyti-
cal solution of the model. Khan et al. studied an HBV model

using Caputo- Fabrizio derivative [15]. Zarin presented an
HBV model using ABC (Atangana Baleanu Capotu) derivative
[16]. Din and Li studied the transmission dynamics of HBV

using AB derivative [17]. Fixed point theory was used in order
to study the existence and uniqueness. Omame et al. presented
a COVID-19 and HBV co-interaction model using AB deriva-
tive [18]. The Laypunov function is used for finding the stabil-

ity of the model. Fractional and integer order derivatives are
used for approximation of the solution.

Sometimes it is impossible or complicated to find the exact

solution of many physical systems. Numerical techniques
become essential tools to find the solutions to differential equa-
tions. Several dynamical systems depict some essential features

like positivity, boundedness etc. These physical features should
preserve by the numerical method. Various authors used dif-
ferent techniques to solve dynamical systems. Macı́as-Dı́az
and Szafrańska studied an NSFD based scheme preserving

positivity, boundedness and spatio temporal monotonicity
[19]. Ahmed et al. considered the Brusselator reactiondiffusion
model and presented a finite difference method for its numer-

ical solution [20]. The stability and consistency of the presented
scheme also discussed using Neumann criteria and Taylor ser-
ies respectively. Euler and Crank-Nicolson approaches are

used for the comparison purposes. Asamoah et al. studied
rabies transmission [21]. Shah et al. studied a fractional order
HIV model with source term to give a better understanding of

the disease [22].
In this article, a competitive mathematical approach is

given to analyze a system of nonlinear coupled differential
equations with the influence of time delay. The numerical
scheme’s unrestricted convergence and logical correctness with
dynamical models are demonstrated through analysis. The
novelty of the current work is the development, accomplish-

ment and mathmatical analysis of the numerical technique in
NSFD settings with delay factor. To our knowledge, the model
under study has not been analyzed before in NSFD with delay

in the literature and this is the first study of this model in this
sense.

2. Mathematical model

This section gives rise to the model of HBV using the MSLIR
model in [23] with a time delay factor. In MSLIR Model, the

total population is categorized into five sections, Immu-

nizedM
_

tð Þ, SusceptibleS
_

tð Þ, LatentL
_

tð Þ, Infected I
_

tð Þ and

RecoveredR
_

tð Þ. We accept the whole human population as a

constant population that we haveN ¼ M
_

þ S
_

þL
_

þ I
_

þR
_

.
The flow chart of the MSLIR model and parameter table
[23] are:

2.1. System of differential equation with delay factors

To draw up the HBV transference, MSLIR model is given
below:

dM
_

tð Þ
dt

¼ cP� /M
_

tð Þ � bM
_

tð Þ; ð1Þ

d S
_

tð Þ
dt

¼ 1� cð ÞPþ /M
_

tð Þ þ pR
_

ðtÞ � k I
_

ðtÞ þ b
� �

S
_

ðtÞ; ð2Þ

dL
_

tð Þ
dt

¼ k I
_

ðt� sÞ S
_

ðt� sÞe�bs � qL
_

ðtÞ � lL
_

ðtÞ � bL
_

ðtÞ;
ð3Þ

d I
_

tð Þ
dt

¼ lL
_

ðtÞ � w I
_

ðtÞ � g I
_

ðtÞ � b I
_

ðtÞ; ð4Þ

dR
_

tð Þ
dt

¼ qL
_

ðtÞ þ w I
_

ðtÞ � pR
_

ðtÞ � bR
_

ðtÞ: ð5Þ
2.2. Equilibrium analysis

At equilibrium states we have,

dM
_

tð Þ
dt

¼ d S
_

tð Þ
dt

¼ dL
_

tð Þ
dt

¼ d I
_

tð Þ
dt

¼ dR
_

tð Þ
dt

¼ 0

Therefore:

cP� /þ bð ÞM
_

tð Þ ¼ 0; ð6Þ

1� cð ÞPþ /M
_

tð Þ þ pR
_

ðtÞ � k I
_

ðtÞ þ b
� �

S
_

ðtÞ ¼ 0; ð7Þ

k I
_

ðt� sÞ S
_

ðt� sÞe�bs � qþ lþ bð ÞL
_

ðtÞ ¼ 0; ð8Þ

lL
_

ðtÞ � wþ gþ bð Þ I
_

ðtÞ ¼ 0; ð9Þ
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qL
_

ðtÞ þ w I
_

ðtÞ � pþ bð ÞR
_

ðtÞ ¼ 0: ð10Þ
2.2.1. Existence of a trivial equilibrium state (T.E.S.)

Assume that E0 M
_

0; S
_

0;L
_

0; I
_

0;R
_

o

� �
be T.E.S. of (6) to (10) of

the model, there exist no T.E.S. after all the individuals cannot

be disappeared, then in a long time, newborn enter into a total
number of individuals (i.e.cP–0 and 1� cð ÞP–0).

That is,

E0 M
_

0; S
_

0;L
_

0; I
_

0;R
_

o

� �
–0 ð11Þ
2.2.2. Disease-Free equilibrium (DFE) point

DFE condition is the total elimination of the disease. Let

E0 M
_

0; S
_

0;L
_

0; I
_

0;R
_

0
� �

become a D.F.E. state. Consider I
_

0,L
_

0,

and both are equal to zero so, for DFE state:L
_

0 ¼ I
_

0 ¼ 0.
On putting these terms in Eqs. (6) to (10) and on solving simul-
taneously, we get the DFE state of the model:

E0 M
_

0; S
_

0;L
_

0; I
_

0;R
_

0
� �

¼ cP

/þ b
;
/þ b� cbð ÞP

/þ bð Þb ; 0; 0; 0

� �
ð12Þ
2.2.3. Endemic equilibrium (EE) point

This is the stage when the disease will persist into the popula-

tion, i.e.L0 ¼ I0–0, Let E� M
_ �; S

_�;L
_�; I

_�;R
_�

� �
be the EE state.

E� M
_ �; S

_�;L
_�; I

_�;R
_�

� �
¼

cP
/þb ;

ðqþlþbÞ wþgþbð Þebs
lk ;

b qþlþbð Þ wþgþbð Þebsð ÞþlkP �/�b�cbð Þ½ � pþbð Þ wþgþbð Þ
lk /þbð Þ p q wþgþbð Þþlwð Þ� pþbð Þ qþlþbð Þ wþgþbð Þe�bs½ � ;

b qþlþbð Þ wþgþbð Þebsð ÞþlkP �/�b�cbð Þ½ � pþbð Þ
k /þbð Þ p q wþgþbð Þþlwð Þ� pþbð Þ qþlþbð Þ wþgþbð Þe�bs½ � ;
b qþlþbð Þ wþgþbð Þebsð ÞþlkP �/�b�cbð Þ½ � q wþgþbð Þþlw½ �
l2k /þbð Þ p q wþgþbð Þþlwð Þ� pþbð Þ qþlþbð Þ wþgþbð Þe�bs½ �

0
BBBBBBBBB@

1
CCCCCCCCCA
:

2.3. Basic reproduction number

The disease will exist in the population if an infected individual

appears in it. So to analyze the transmission of dynamics of ill-
ness, we find out the basic reproductive number using next-
generation matrix approach [24]. For this, we considered the

two disease Eqs. (3) and (4) as follows:

k I
_

ðt� sÞ S
_

ðt� sÞe�bs � qþ lþ bð ÞL
_

ðtÞ ¼ 0; ð13Þ

lL
_

ðtÞ � wþ gþ bð Þ I
_

ðtÞ ¼ 0: ð14Þ
We obtained the transmission matrix F, as well as the tran-

sition matrix V as given below,

F ¼ 0 K /þb�cbð ÞP
/þbð Þb e�bs

0 0

� �

andV ¼ qþ lþ b 0
�l wþ gþ b

� �
.

We get therefore the basic reproductive number as:

R0 ¼ lkP /þ b� cbð Þe�bs

b qþ lþ bð Þ wþ gþ bð Þ /þ bð Þ ð15Þ

If R 0 < 1; then disease dies as well as infection dies and if
R 0 > 1; then the spread of the disease will continue in the
population.

2.3.1. Stability analysis of DFE state

We now calculate the Jacobian matrix corresponding to the
linear system of Eqs. (1)–(5) as.

J¼
� /þbð Þ 0 0 0 0

/ � kI
_

0þb
� �

0 �kS
_

0 p

0 kI
_

0 � qþlþbð Þ kS
_

0e�bs 0

0 0 l � wþgþbð Þ 0

0 0 q w � pþbð Þ

2
66666664

3
77777775

At DFE point Eo M
_

o; S
_

o;L
_

o; I
_
o;R

_
o

� �
the Jacobian matrix

becomes:

J ¼

w1 0 0 0 0

/ �b 0 w2 p

0 0 w3 w4 0

0 0 l w5 0

0 0 q w w6

2
6666664

3
7777775

ð16Þ

where w1 ¼ � /þ bð Þ,w2 ¼ �k /þb�cbð ÞPe�bs

/þbð Þb ,w3 ¼ � qþ lþ bð Þ;
w4 ¼ k /þb�cbð ÞPe�bs

/þbð Þb ;w5 ¼ � wþ gþ bð Þ andw6 ¼ � pþ bð Þ.
The characteristic equation of the matrix J is.

/þ bþ kð Þ bþ kð Þ �ðpþ bÞ � kð Þ A½ � ¼ 0 ð17Þ

/þ bþ kð Þ bþ kð Þ �ðpþ bÞ � kð Þ ¼ 0

Or.

A½ � ¼ � qþ lþ bð Þ � k �k /þb�cbð ÞPe�bs

/þbð Þb
l � wþ gþ bð Þ � k

" #
¼ 0

We get the eigen valuesk1 ¼ � /þ bð Þ,k2 ¼ �b
andk3 ¼ �ðpþ bÞ. The DFE is asymptotically stable, if trace
of the matrix A is less than 0 and determinant of the matrix
A is greater than 0.

Here trace Að Þ ¼ � qþ lþ bþ kð Þ � wþ bþ gþ kð Þ and.
We can see thatTraceðAÞ < 0. To show that Aj j > 0, we

must have,

qþ lþ bþ kð Þ wþ bþ gþ kð Þ � lk
/þ b� cbð ÞPe�bs

/þ bð Þb > 0;

qþ lþ bþ kð Þ wþ bþ gþ kð Þ > lk
/þ b� cbð ÞPe�bs

/þ bð Þb :

qþ lþ bþ kð Þ > lk
/þ b� cbð ÞPe�bs

b /þ bð Þ wþ bþ gþ kð Þ : ð18Þ
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2.3.2. Local stability of EE point

To analyze the local stability at EEP, E� M
_ �; S

_�;L
_�; I

_�;R
_�

� �
:

we considered.

J¼
� /þbð Þ 0 0 0 0

/ � kI0þb
� 	

0 �kS0 p

0 kI0 � qþlþbð Þ kS0e�bs 0

0 0 l � wþgþbð Þ 0

0 0 q w � pþbð Þ

2
66666664

3
77777775

J0�kIj j ¼
� /þbð Þ�k 0 0 0 0

/ � kI0þb
� 	�k 0 �kS0 p

0 kI0 � qþlþbð Þ�k kS0e�bs 0

0 0 l � wþgþbð Þ�k 0

0 0 q w � pþbð Þ�k

2
6666664

3
7777775

J0�kIj j ¼

�a�k 0 0 0 0

/ �b�k 0 c p

0 d �e�k f 0

0 0 l �g�k 0

0 0 q w �h�k

2
6666664

3
7777775

k ¼ �a < 0

J0 � kIj j ¼

�b� k 0 c p

d �e� k f 0

0 l �g� k o

0 q w �h� k

2
6664

3
7775;

J0 � kIj j ¼ � bþ kð Þ
�e� k f 0

l �g� k 0

q w �h� k


















� d

0 c p

l �g� k 0

q w �h� k
















;

J0 � kIj j ¼ bþ kð Þ hþ kð Þ eþ kð Þ gþ kð Þ � lf bþ kð Þ hþ kð Þ
� dl chþ ckþ wpf g � dqpg� dqpk;

J0 � kIj j ¼ k4 þ k3 bþ hþ eþ gð Þ
þk2 bhþ beþ bgþ heþ hgþ eg� lfð Þ
þk bheþ bhgþ begþ heg� lfb� lfh� dlc� dqpð Þ
þ bheg� lfbh� dlch� dlpw� dqpgð Þ:
J0 � kIj j ¼ 0;

a4k
4 þ a3k

3 þ a2k
2 þ a1kþ a0 ¼ 0;

a4 ¼ 1; a3 ¼ bþ hþ eþ gð Þ;
a2 ¼ bhþ beþ bgþ heþ hgþ eg� lfð Þ;
a1 ¼ bheþ bhgþ begþ heg� lfb� lfh� dlc� dqpð Þ;
a0 ¼ bheg� lfbh� dlch� dlpw� dqpgð Þ:
2.3.3. Global stability at DFE point

We considered the Eqs. (1) to (5) of the MSLIR model for glo-
bal stability at the DFE point. Let Lyapunov function of a
given system at DFE E0 M
_

0; S
_
0;L

_
0; I

_
0;R

_
0

� �
¼

cP
/þb ;

/þb�cbð ÞP
/þbð Þb ; 0; 0; 0

� �
be:

N
_

¼ M
_

�M
_

0 �M
_

0 log
M
_

M
_

0

 !
þ S

_

�S
_

0 � S
_

0 log
S
_

S
_

0

 !

þ L
_

þ I
_

þR
_

;

dN
_

dt
¼ M

_

�M
_

M
_

0
0
@

1
AM0_

þ S
_

� S
_

S
_

0
0
@

1
AS0_

þL0_

þ I0
_

þR0_

;

dN
_

dt
¼ M

_

�M
_

0
� �

cP

M
_ �/�b
� �

þ S
_

�S
_
0

� �
1�cð ÞP
S
_ þ/M

_

S
_ þpR

_

S
_� k I

_

þb
� �� �

þ k I
_

S
_

e�bs�qL
_

�lL
_

�bL
_� �

þ lL
_�w I

_�g I
_�b I

_� �
þ qL

_þw I
_�pR

_�bR
_� �

;

dN
_

dt
¼

�cP M
_

�M
_

0
� �2
M
_

M
_

0

�
S
_

�S
_

0
� �2

S
_

S
_

0

1� cð ÞPþ /M
_

þpR
_� �

þ 0þ 0þ 0:

It is clear from above that dN
_

dt
6 0 for R 0 < 1; and dN

_

dt
¼ 0;

only if M
_

¼ M
_

0; S
_

¼ S
_

0; L
_

¼ 0; I
_

¼ 0 and R
_

¼ 0:

2.3.4. Global stability at EE point

We again considered the Eqs. (1) to (5) of the MSLIR model.
Let Lyapunov function of the given system at EE point

E� M
_ �; S

_�;L
_�; I

_�;R
_�

� �
be:

N
_

¼ M
_

�M
_ � �M

_ � log M
_

M
_�

� �
þ S

_

�S
_� � S

_� log S
_

S
_�

� �
þ L

_

�L
_� � L

_� log L
_

L
_�

� �
þ I

_

� I
_� � I

_� log I
_

I
_�

� �
þ R

_

�R
_� � R

_� log R
_

R
_�

� �
;

dN
_

dt
¼ M

_

�M
_

M
_

� !
M0_

þ S
_

� S
_

S
_

�0
@

1
AS0_

þ L
_

�L
_

L
_

� !
L0_

þ I
_

� I
_�

I
_

 !
I0
_

þ R
_

�R
_�

R
_

 !
R0_

;

d N
_

dt
¼ M

_

�M
_ �

� �
cP

M
_ � / � b
� �

þ S
_

�S
_�

� �
1�cð ÞP
S
_ þ / M

_

S
_ þ

�
p R

_

S
_ � k I

_

þb
� �

Þ þ L
_

�L
_�

� �
k I
_

S
_
e�bs

L
_ � q� l� b

� �
þ I

_

� I
_�

� �
lL

I
_ � w � g � b
� �

þ R
_

�R
_�

� �
q L

_

R
_ þ w I

_

R
_ � p � b

� �
; d N

_

dt
¼

�cP M
_

�M
_�

� 	2
M
_

M
_�

� S
_

�S
_�

� 	2
S
_

S
_�

1 � cð ÞP þ / M
_

þp R
_� �

þ L
_

�L
_�

� 	2
L
_

L
_� L

_

I
_

S
_

e�bs
� �

þ I
_

� I
_�

� 	
l L

_

I
_

I
_�

þ R
_

�R
_�

� 	2
R
_

R
_�

q L
_

�w I
_� �

;d N
_

dt
6 0,

Obviously, for R 0 < 1; and d N
_

dt
¼ 0; only if

M
_

¼ M
_ �; S

_

¼ S
_�; L

_

¼ L
_�; I

_

¼ I
_� and R

_

¼ R
_�: It is con-

cluded that the assumed system is globally asymptotically

stable via Lasalle’s invariance principle.
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3. Numerical modelling of delayed MSLIR on HBV

For the last few decades, great interest has been observed in
treating the delay differential equation numerically. This inter-

est is the flexibility in the procedure of mathematical modelling
and its application in various fields [25–27]. Some numerical
methods are Picard’s method, the Predictor-corrector method,

Taylor series, forward Euler method, Runge Kutta method,
NSFD, etc. In this research, we will only compare our results
obtained by using NSFD scheme with forward Euler and RK-
4 schemes respectively.

The discretization of the variable t � 0 at point
tn ¼ nhðn ¼ 0; 1; 2; 3; � � � ; Þ and h > 0 with constant step size.
M tnð Þ, S tnð Þ, L tnð Þ, I tnð Þ and R tnð Þ are the solutions of the

Eqs. (1)–(5) at t ¼ tn: Solutions at tn of the numerical methods
are denoted by Mn, Sn, Ln, In and Rn respectively. The con-
struction of the following methods are based on first order

approximations.
dM tð Þ
dt

¼ M tþhð Þ�M tð Þ
h

þOðhÞ as.h ! 0
dS tð Þ
dt

¼ S tþhð Þ�S tð Þ
h

þOðhÞ as.h ! 0
dL tð Þ
dt

¼ L tþhð Þ�L tð Þ
h

þOðhÞ as.h ! 0
dI tð Þ
dt

¼ I tþhð Þ�I tð Þ
h

þOðhÞ as.h ! 0
dR tð Þ
dt

¼ R tþhð Þ�R tð Þ
h

þOðhÞ as h ! 0.

3.1. Forward Euler’s scheme

To develop an explicit Euler technique, it is enough to consider
the Eqs. (2) and (3) of the MSLIR model.

S
_

nþ1 � S
_
n

h
¼ 1� cð Þ Pþ /M

_
n tð Þ þ pR

_
nðtÞ

� k I
_

ðtÞ þ b
� �

S
_

nðtÞ; ð19Þ

L
_

nþ1 � L
_

n

h
¼ kI

_
nðt� sÞS

_
nðt� sÞe�bs � qþ lþ bð ÞL

_
nðtÞ; ð20Þ

After some simplification, we obtain.

S
_

nþ1 ¼ S
_

n

þ h 1� cð ÞPþ /M
_

n tð Þ þ pR
_

nðtÞ � k I
_

ðtÞ þ b
� �

S
_

nðtÞ
h i

;

ð21Þ

L
_

nþ1 ¼ L
_

n

þ h kI
_

nðt� sÞS
_

nðt� sÞe�bs � qþ lþ bð ÞL
_

nðtÞ
h i

; ð22Þ
3.2. Runga Kutta (RK-4) scheme

To develop an explicit RK-4 technique we need to consider the
all equations of MSLIR model.

M
_

nþ1 �M
_

n ¼ h cP� /þ bð ÞM
_

n tð Þ
� �

; ð23Þ

S
_

nþ1 � S
_

n ¼ h 1� cð ÞPþ /M
_

n tð Þ þ pR
_

nðtÞ
�

� k I
_ðtÞ þ b

� �
S
_

nðtÞ
�
;

ð24Þ
L
_

nþ1 � L
_

n ¼ h kI
_
nðt� sÞS

_
nðt� sÞe�bs � qþ lþ bð ÞL

_
nðtÞ

� �
;

ð25Þ

I
_
nþ1 � I

_
n ¼ h lL

_
nðtÞ � wþ gþ bð Þ I_nðtÞ

� �
; ð26Þ

R
_

nþ1 � R
_

n ¼ h qL
_

nðtÞ þ w I
_
nðtÞ � pþ bð ÞR

_
nðtÞ

� �
: ð27Þ

We can write it as,

k1 ¼ h cP� /þ bð ÞM
_

n tð Þ
� �

; ð28Þ

m1 ¼ h 1� cð ÞPþ /M
_

n tð Þ þ pR
_

nðtÞ � k I
_

ðtÞ þ b
� �

S
_

nðtÞ
� �

;

ð29Þ

n1 ¼ h kI
_
nðt� sÞS

_
nðt� sÞe�bs � qþ lþ bð ÞL

_
nðtÞ

� �
; ð30Þ

p1 ¼ h lL
_

nðtÞ � wþ gþ bð Þ I
_

nðtÞ
� �

; ð31Þ

q1 ¼ h qL
_

nðtÞ þ w I
_

nðtÞ � pþ bð ÞR
_

nðtÞ
� �

: ð32Þ

k2 ¼ h cP� /þ bð ÞM
_

n þ k1
2

� �
; ð33Þ

m2 ¼ h 1� cð ÞPþ / M
_

n þ k1
2

� �
þ pðR

_
n þ q1

2
Þ

�

� k I
_

þ p1
2

� �
þ b

� �
S
_

n þm1

2

� � �
;

ð34Þ

n2 ¼ h k I
_

n þ p1
2

� �
S
_
n þm1

2

� �
e�bs � qþ lþ bð Þ L

_
n þ n1

2

� �� �
;

ð35Þ

p2 ¼ h l L
_

n þ n1
2

� �
� wþ gþ bð Þ I

_
n þ p1

2

� �� �
; ð36Þ

q2 ¼ h q L
_

n þ n1
2

� �
þ w I

_
n þ p1

2

� �
� pþ bð Þ R

_
n þ q1

2

� �� �
: ð37Þ

k3 ¼ h cP� /þ bð ÞM
_

n þ k2
2

� �
; ð38Þ

m3 ¼ h 1� cð ÞPþ / M
_

n þ k2
2

� �
þ pðR

_
n þ q2

2
Þ

�

� k I
_

þ p2
2

� �
þ b

� �
S
_

n þm2

2

� � �
;

ð39Þ

n3 ¼ h k I
_

n þ p2
2

� �
S
_
n þm2

2

� �
e�bs � qþ lþ bð Þ L

_
n þ n2

2

� �� �
;

ð40Þ

p3 ¼ h l L
_

n þ n2
2

� �
� wþ gþ bð Þ I

_
n þ p2

2

� �� �
; ð41Þ

q3 ¼ h q L
_

n þ n2
2

� �
þ w I

_
n þ p2

2

� �
� pþ bð Þ R

_
n þ q2

2

� �� �
: ð42Þ

k4 ¼ h cP� /þ bð ÞM
_

n þ k3

� �
; ð43Þ



Fig. 2 Spectral radius of the matrix A.
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m4 ¼ h 1� cð ÞPþ / M
_

n þ k3

� �
þ pðR

_
n þ q3Þ

�
� k I

_

þp3

� �
þ b

� �
S
_

n þm2

� � �
;

ð44Þ

n4 ¼ h k I
_
n þ p3

� �
S
_

n þm3

� �
e�bs � qþ lþ bð Þ L

_
n þ n3

� �� �
;

ð45Þ

p4 ¼ h l L
_

n þ n3

� �
� wþ gþ bð Þ I

_
n þ p3

� �� �
; ð46Þ

q4 ¼ h q L
_

n þ n3

� �
þ w I

_
n þ p3

� �
� pþ bð Þ R

_
n þ q3

� �� �
: ð47Þ

M
_

nþ1 ¼ M
_

n þ 1

6
k1 þ 2k2 þ 2k3 þ k4½ �; ð48Þ

S
_

nþ1 ¼ S
_

n þ 1

6
m1 þ 2m2 þ 2m3 þm4½ �; ð49Þ

L
_

nþ1 ¼ L
_

n þ 1

6
n1 þ 2n2 þ 2n3 þ n4½ �; ð50Þ
ing Euler at h = 0.001.
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I
_

nþ1 ¼ I
_

n þ 1

6
p1 þ 2p2 þ 2p3 þ p4½ �; ð51Þ

R
_

nþ1 ¼ R
_

n þ 1

6
q1 þ 2q2 þ 2q3 þ q4½ �; ð52Þ
3.3. NSFD scheme

In numerical analysis, NSFD scheme is used to produce a gen-
eral set of methods to find the numerical solution of ODE’s by
constructing a brief model [28]. To develop an explicit NSFD

method we just need to consider the Eqs. (2) and (3) of MSLIR
model.

M
_

nþ1 ¼ M
_

n þ h cP� /þ bð ÞM
_

nþ1
� �

;

M
_

nþ1 ¼ M
_

nþhcP
1þh /þbð Þ ;

ð53Þ

S
_

nþ1 ¼ S
_

n þ h 1� cð ÞPþ /M
_

n tð Þ þ pR
_

nðtÞ
h

� k I
_

ðtÞ þ b
� �

S
_

nþ1ðtÞ
i
; S
_

nþ1 ¼ S
_
nþh 1�cð ÞPþ/M

_
nþpR

_
n

� �
1þh k I

_
nþb

� 	 ;

ð54Þ
Fig. 4 Subpopulations usi
L
_

nþ1 ¼ L
_

n þ h kI
_

nS
_

ne�bs � qþ lþ bð ÞL
_

nþ1
h i

;

L
_

nþ1 ¼ L
_
nþhk I

_
n S
_
ne�bs

1þh qþlþbð Þ :

ð55Þ

I
_

nþ1 ¼ I
_
n þ h lL

_
nðtÞ � wþ gþ bð Þ I

_
nþ1

� �
;

I
_
nþ1 ¼ I

_
nþhlL

_
n

1þh wþgþbð Þ ;
ð56Þ

R
_

nþ1 ¼ R
_

n þ h qL
_

nðtÞ þ w I
_

nðtÞ � pþ bð ÞR
_

nþ1
� �

:

R
_

nþ1 ¼ R
_
nþh qL

_
nðtÞþw I

_
nðtÞ

� 	
1þh pþbð Þ :

ð57Þ
3.4. Convergence analysis of NSFD

Convergence analysis of proposed NSFD scheme of delayed
MSLIR model is performed at a DFE

pointE0 M
_

0; S
_

0;L
_

0; I
_

0;R
_

0
� �

¼ cP
/þb ;

/þb�cbð ÞP
/þbð Þb ; 0; 0; 0

� �
.

By using Eqs. (52) to (57), the Jacobian matrix is:
ng RK-4 at h = 0.001.
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j ¼

@E

@M
_

@E

@ S
_

@E

@ L
_

@E

@ I
_

@E

@ R
_

@F

@M
_

@F

@ S
_

@F

@ L
_

@F

@ I
_

@F

@ R
_

@G

@M
_

@G

@ S
_

@G

@ L
_

@G

@ I
_

@G

@ R
_

@H

@M
_

@H

@ S
_

@H

@ L
_

@H

@ I
_

@H

@ R
_

@J

@M
_

@J

@ S
_

@J

@ L
_

@J

@ I
_

@J

@ R
_

0
BBBBBBBBB@

1
CCCCCCCCCA

At DFE points, it becomes,

j ¼

1
1þh ð/þbÞ 0 0 0 0

h /
1þhb

1
1þhb 0 Pð1þhÞð/þb�cbÞ

ð/þbÞð1þhbÞ2
h p

1þhb

0 0 1
1þhðqþlþbÞ

hkPð/þb�cbÞe�bs

bð/þbÞð1þhðqþlþbÞÞ 0

0 0 1
1þhðwþgþbÞ

1
1þh ðwþgþbÞ 0

0 0 hq
1þh ðpþbÞ

�hw
1þh ðpþbÞ

1
1þh ðpþbÞ

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ 1

1þ h ð/þ bÞ � k

� �
1

1þ hb
� k

� �
1

1þ h ðpþ bÞ � k

� �
1

1þhðqþlþbÞ � k hkPð/þb�cbÞe�bs

bð/þbÞ ð1þhðqþlþbÞÞ
1

1þh ðwþgþbÞ
1

1þh ðwþgþbÞ � k















Fig. 5 Subpopulations usin
LetA ¼
1

1þh ðqþlþbÞ � k hkPð/þb�cbÞe�bs

bð/þbÞð1þh ðqþlþbÞÞ
1

1þh ðwþgþbÞ
1

1þh ðwþgþbÞ � k












.

The proposed NSFD method will be unconditionally con-
vergent if all eigenvalues of the Jacobian matrix A are not

greater or equal to 1. We demonstrate this graphically by plot-
ting the spectral radius with the help of MATLAB in Fig. 2.

4. Results and discussions

Numerical investigations are achieved by using the values
given in the table below.

Figs. 3, 4, and 5 are plotted for susceptible and latently
infected populations by forward Euler, RK-4 and the pro-
posed NSFD schemes at both DFE and endemic EE points.

At h ¼ 0:001, it can be clearly seen that all of above numerical
methods are converging towards steady states. It can also be
seen from Fig. 6 that the forward Euler and RK-4 are failed
to give accurate solution even at very small step sizes, i.e.

h = 0.2. On the other hand, the proposed NSFD method gives
the convergent solution even at a very large step size i.e.
h = 500 which is shown in Fig. 7. Conventional standard dif-

ference methods in the literature can cause chaos and mislead-
g NSFD at h = 0.001.



Fig. 6 Susceptible compartment at h ¼ 0:2 using RK-4 and Euler schemes.

Fig. 7 Susceptible compartment at h ¼ 0:2 using NSFD scheme

h = 500.
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ing hesitations for some passions of discretization constraints.
Many classical methods such as Euler, Stochastic Euler, RK-4

and Stochastic RK-4 etc. do not keep it at comparatively large
time step values [29,30]. The NSFD method remains conver-
gent and it is independent to the increase in the value of the
step size.

5. Conclusions

In this research work, a reliable numerical solution of an HBV

model is presented with the help of NSFD method. It is found
that the delay factor has a significant impact on the transmis-
sion of hepatitis B virus. Equilibrium analysis are performed

for the studied model.
Local and global stability of the DFE and EE points are

also discussed. Euler, RK-4 and NSFD schemes are con-

structed for the numerical solution of the model. The conver-
gence of the NSFD at DFE point is also examined. The NSFD
method retains all important characteristics possessed by the
HBV epidemic model, which shows its efficacy. The relation

of the proposed method is made with the forward Euler
method and RK-4 method. From stability analysis, it is con-
cluded that if R0 < 1 then disease dies as well as infection dies

and if R0 > 1 then the spread of the disease will continue in the
population. From the simulations, it is concluded that the two
well-known classical techniques do not provide an accurate

solution even for small steps, while our proposed method gives
reliable solutions at all step sizes and it is independent of the
step size. Hence the proposed scheme becomes one of the best
choices of all other classical finite difference schemes. Delayed,

stochastic, fractional and fuzzy extension of the current work
are some of the future directions.
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