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Abstract Non-ideal sampling has nourished as one of the most attractive alternatives to classical

sampling, which relies on shift-invariant spaces. The present study focuses on investigating the non-

ideal sampling in shift-invariant spaces associated with the quadratic-phase Fourier transforms. The

primary aim is to formulate novel convolution structures in quadratic-phase Fourier domains and

invoke such structures to develop the generalized shift-invariant spaces. Moreover, we present the

non-ideal sampling procedure via generalised shift-invariant spaces in the quadratic-phase Fourier

domains by employing the proposed generalised convolutions.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

While working on the solution of the heat equation, Saitoh [1]
obtained an extreme generalization of the classical Fourier
transform coined as quadratic-phase Fourier transform

(QPFT). Inspired by the work of Saitoh, Castro et al.[2] stud-
ied further possibilities for the QPFT by employing a general
quadratic function in the exponent of the novel integral trans-

form. The QPFT of f 2 L2 Rð Þ with respect to real parameters

K ¼ A;B;C;D;Eð Þ; B – 0, is given by
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QK f½ � xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f tð Þ exp i At2 þ Btxþ Cx2 þDtþ Ex
� �� �

dt: ð1:1Þ

It is worth noticing that (1.1) circumscribes several integral

transforms ranging from the classical Fourier to the much
recent special affine Fourier transforms [3]. Due to the exitence
of free real parameters K ¼ A;B;C;D;Eð Þ, the QPFT is envis-

aged as a promising tool for investigating the signals whose
energy is not well-concentrated within the Fourier domain,
for instance, chirp-like signals, which are prevalent in nature.

As a generalization of the celebrated Fourier transform, the
QPFT gained its ground intermittently and profoundly influ-
enced several disciplines of science and engineering, including

harmonic analysis, quantum theory, differential equations,
optics, pattern recognition, and so on [4,5].

Shift-invariant spaces (SISs) are regarded as one of the
most attractive concepts in digital signal processing and they

play a significant role in the framework of harmonic analysis
[6]. Shift invariant spaces can be considered as the closed sub-

spaces of L2 Rð Þ such that both the function f and the integer
translates of f belong to the same space. Mathematically, the

shift-invariant spaces are defined by:

V fð Þ ¼ f tð Þ ¼
X
n2Z

x nð Þ f t� nð Þ : f 2 L2 Rð Þ; x nð Þf g 2 ‘2 Zð Þ
( )

;

ð1:2Þ
where f 2 L2 Rð Þ is called the generator of the space. Sampling

in shift-invariant spaces could be considered as representing
the bandlimited signal using known generators or bases. The
pioneering work on sampling in the framework of shift-

invariant spaces is attributed to Bhandari et al.[7], whereas
Zhao and his collaborators subsequently extended SISs to
the generalized sampling in the fractional Fourier domains

[8]. Xiao et al. [9] proposed a procedure for uniform and
non-uniform sampling and the reconstruction of finite energy
signals in function spaces. Aldroubi et al.[10] introduced the
notion of dynamical sampling, which takes into account both

the initial signal f and its multiple states at different times.
Recently, we introduced an analogue of dynamical sampling
in the realm of QPFT and demonstrated that the proposed

method offers an effective signal reconstruction from dynami-
cal sampling measures [11]. The aforementioned models follow
the classical Shannon sampling theorem, in which an ideal

band-limited signal is projected in the space. However, the
majority of signals are not truly band-limited. Therefore, our
goal is to utilize the generalized SISs to demonstrate the
non-ideal sampling for the bandlimited signals whose energy

is well concentrated in the QPFT domain.
Keeping recent trends of signal processing in the hindsight,

it is both theoretically intriguing and practically beneficial to

study the non-ideal sampling in the generalized SISs in the
QPFT domain. The strategy adopted for the accomplishment
of the objective includes the formulation of novel and elegant

convolution structures which are both simple one-dimensional
integral expressions and can be easily implemented for non-
ideal sampling in the QPFT domain. The primary content of

the present study are as under:

� To construct a practically reliable and efficient convolution
structure for the QPFT.

� To establish a pair of discrete and semi-discrete convolution
structures in the framework of QPFT domains.
� To present a novel generalized SISs in the realm of QPFT

domain.
� To study the computationally efficient non-ideal sampling
associated with the QPFT.

The main content of the paper is divided into two sections,
viz; Section 2 and Section 3. Section 2 presents the formulation
of novel convolution structures in the context of the QPFT

domains. Section 3 is dedicated to present a generalized
shift-invariant spaces for the band-limited signals followed
by a thorough study of the non-ideal sampling in the QPFT

domains. The article ends with an epilogue in Section 4.

2. Novel Convolution Structures in the Quadratic-Phase Fourier

Domain

The sole aim of this section is to gain deeper insights into the
notion of convolution structures in the QPFT domain. Primar-

ily, we provide a stimulus to the notion of QPFT, and then for-
mulate the novel convolution structures in the context of
QPFT. With minor modifications to (1.1), the QPFT of f is

defined as follows:

Definition 2.1. The quadratic-phase Fourier transform
QK f½ � xð Þ of any square integrable function f with respect to a
collection K ¼ A;B;C;D;Eð Þ; B > 0, is defined by

QK f½ � xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f tð ÞKK t;xð Þdt; ð2:1Þ
where K t;xð Þ represents the QPFT kernel and is given as

KK t;xð Þ ¼ exp �i At2 þ Btxþ Cx2 þDtþ Ex
� �� �

: ð2:2Þ
The inversion formula corresponding to the QPFT defined

in (2.1) is given by

f tð Þ ¼ Bffiffiffiffiffiffi
2p

p
Z
R

QK f½ � xð ÞKK t;xð Þdx: ð2:3Þ

Moreover, the Plancheral theorem corresponding to QPFT
reads:

f1; f2h i2 ¼ B QK f1½ �;QK f2½ �h i2; 8f1; f2 2 L2 Rð Þ: ð2:4Þ

Remark 2.2. By appropriately choosing the parameters
K ¼ A;B;C;D;Eð Þ, Definition 2.1 can be transformed to
Fourier, fractional Fourier, Fresnal transform and linear
canonical transforms.

The notion of convolution is one of the most extensively
used concepts in mathematics with applications across diverse

fields of signal and image processing, including quantum phy-
sics, operator theory, optics, denoising and filter designing [12].
Here, we shall introduce the notion of chirp-free convolution

associated with the QPFT, which uphold the classical convolu-
tion and product theorems in the ordinary Fourier domain in
the sense that, the quadratic-phase Fourier convolution of two

functions is equal to the product of their respective quadratic-
phase Fourier transforms. However, as we shall demonstrate
in the sequel, such a convolution does not satisfy the commu-

tativity and associative properties. Nevertheless, the distribu-
tive property holds good and hence, this convolution plays a
significant role in the realm of generalized sampling and recon-
struction procedures.
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Definition 2.3. For any f1; f2 2 L2 Rð Þ, the convolution opera-

tor IK pertaining to QPFT is defined by

f1IKf2ð Þ zð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f1 tð Þ f2 z� tð ÞeiA z2�t2ð Þdt: ð2:5Þ

Some important characteristics of the quadratic-phase con-

volution operation (2.5) are presented in the following
theorem.

Theorem 2.4. For any trio f1; f2; f3 2 L2 Rð Þ and the scalars
k 2 R; k 2 R n 0f g, the quadratic-phase convolution operation

IK has the following properties:(i). Non-commutative:
f1IKf2ð Þ zð Þ – f2IKf1ð Þ zð Þ, (ii). Non-Associative: f1IKf2ð Þð
IKf3Þ zð Þ – f1IK f2IKf3ð Þð Þ zð Þ, (iii). Distributive: f1IK f2þðð
f3ÞÞ zð Þ ¼ f1IKf3ð Þ zð Þ þ f1IKf3ð Þ zð Þ (iv). Translation: f1IKf2ð Þ
z� kð Þ ¼ f1 t� kð ÞIKG tð Þð Þ zð Þ; G tð Þ ¼ e�2iAktf2 tð Þ, (v). Scal-
ing: f1IKf2ð Þ kzð Þ ¼ jkj f1 ktð ÞIK0 f2 ktð Þð Þ zð Þ; K0 ¼ k2A;B;C;

�
D;EÞ, (vi). Parity: f1IKf2ð Þ �zð Þ ¼ f1 �tð ÞIKf2 �tð Þð Þ zð Þ.

Proof. (i) In order to demonstrate that the quadratic-
phase convolution operation IK is non-commutative, we

proceed as

f2IKf1ð Þ zð Þ ¼ R
R
f2 tð Þ f1 z� tð ÞeiA z2�t2ð Þ dt

¼ R
R
f2 z� xð Þ f1 xð ÞeiA z2� z�xð Þ2ð Þ dx

¼ R
R
f2 z� xð Þ f1 xð ÞeiA x2�2xzð Þ dx

– f1IKf2ð Þ zð Þ:
(ii) By a straightforward computation, we can show that the
quadrtic-phase convolution operation IK is also non-

associative.(iii) To examine the distributive property of the
quadrtic-phase convolution operation IK, we consider a trio

of functions f; g; h 2 L2 Rð Þ and proceed as

f1 þ f2ð ÞIKf3ð Þ zð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f1 þ f2ð Þ tð Þ f3 z� tð ÞeiA z2�t2ð Þdt

¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f1 tð Þ f3 z� tð ÞeiA z2�t2ð Þdt

þ 1ffiffiffiffiffiffi
2p

p
Z
R

f2 tð Þ f3 z� tð ÞeiA z2�t2ð Þdt
¼ f1IKf3ð Þ zð Þ þ f2IKf3ð Þ zð Þ:

Similarly, we can show that

f1IK f2 þ f3ð Þð Þ zð Þ ¼ f1IKf2ð Þ zð Þ þ f1IKf3ð Þ zð Þ:
Fig. 1 (a) Gaussian function f1 tð Þ, (b) Gaussian fu
That is, both addition as well as convolution operations are
distribute over each other.(iv) For any k 2 R, we have

f1IKf2ð Þ z� kð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f1 tð Þ f2 z� k� tð ÞeiA z�kð Þ2�t2ð Þdt

¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f1 tð Þ f2 z� tþ kð Þð ÞeiA z2þk2�2zk�t2ð Þdt

¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f1 x� kð Þ f2 z� xð ÞeiA z2þk2�2zk�x2�k2þ2xkð Þdx

¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f1 x� kð Þ f2 z� xð ÞeiA z2�x2ð Þ e2iAk x�zð Þ dx

¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f1 x� kð Þ e�2iAk z�xð Þ f2 z� xð Þ� �
eiA z2�x2ð Þ dx

¼ f1 x� kð ÞIKGð Þ zð Þ; G xð Þ ¼ e�2iAkx g xð Þ:
(v) For k 2 R n 0f g, we observe that

f1IKf2ð Þ kzð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f1 tð Þ f2 kz� tð ÞeiA k2z2�t2ð Þdt

¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f1 tð Þ f2 k z� t

k

� �� �
eiA k2z2�t2ð Þdt

¼ jkjffiffiffiffiffiffi
2p

p
Z
R

f1 kxð Þ f2 k z� xð Þð ÞeiAk2 z2�x2ð Þ dx

¼ jkj f1 kxð ÞIK0 f2 kxð Þð Þ zð Þ; K0 ¼ k2A;B;C;D;E
� �

:

(vi) For k ¼ �1, the scaling property (v) yields

f1IKf2ð Þ �zð Þ ¼ f1 �xð ÞIKf2 �xð Þð Þ zð Þ:
That is, the axis reversal of the convolution corresponds

directly to an axis-reversal of the individual functions.

We now illustrate the notion of convolution structure (2.5)

via a lucid example.

Example 2.5. Consider the following pair of Gaussian
functions:

f1 tð Þ ¼ 1

r1

ffiffiffiffiffiffi
2p

p e�t2=2r2
1 and

f2 tð Þ ¼ 1

r2

ffiffiffiffiffiffi
2p

p e�t2=2r2
2 ; r1; r2 > 0: ð2:6Þ

Using Definition 2.3 and invoking the standard Gaussian inte-
gral, we can compute the convolution of the pair of functions

defined in (2.6) as
nction f2 tð Þ, (c) Convolution of f1 tð Þ and f2 tð Þ.
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f1IKf2ð Þ zð Þ ¼ 1

2pr1r2

ffiffiffiffiffiffi
2p

p
Z
R

e�t2=2r2
1 e� z�tð Þ2=2r2

2 eiA z2�t2ð Þdt

¼
exp � 1

2r2
2

þ iA
� �

z2
n o
2pr1r2

ffiffiffiffiffiffi
2p

p
Z
R

exp � 1

2r2
1

þ 1

2r2
2

þ iA

	 

t2

�

þ z

r2
2

	 

t

�
dt ¼

exp � 1
2r2

2

þ iA
� �

z2
n o
2pr1r2

ffiffiffiffiffiffi
2p

p

�
ffiffiffi
p

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2r2
1

þ 1
2r2

2

þ iA
q exp

z
r2
2

� �2

4 1
2r2

1

þ 1
2r2

2

þ iA
� �

8><
>:

9>=
>;

0
B@

1
CA

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
1 þ r2

2 þ 2iAr1r2

p
exp � z2

2

1

r2
2

� r2
1

r2
1 þ r2

2 þ 2iAr1r2

� 2iA

	 
� �
; ð2:7Þ

which is again a Gaussian function. For r1 ¼ 1; r2 ¼ 2 and
K ¼ 1=2; 4; 2=3; 0; 5=7ð Þ; f1 tð Þ; f2 tð Þ and f1 tð ÞIKf2 tð Þ are plotted
in Fig. 1.

Next, we examine the nature of convolution theorem asso-
ciated with the convolution operation IK as defined in (2.5).

Theorem 2.6. For any pair of functions f1; f2 2 L2 Rð Þ, we have
QK f1IKf2ð Þ zð Þ½ � xð Þ ¼ QK f1½ � xð ÞF G½ � Bxð Þ; ð2:8Þ
where F G½ � represents the Fourier transform of

G tð Þ ¼ e�iDt f2 tð Þ.

Proof. Using Definition 2.1, the QPFT corresponding to (2.5)

is computed as follows:

QK f1IKf2ð Þ zð Þ½ � xð Þ
¼ 1ffiffiffiffiffiffi

2p
p

Z
R

f1IKf2ð Þ zð ÞKK z;xð Þdz

¼ 1

2p

Z
R

Z
R

f1 tð Þ f2 z� tð ÞeiA z2�t2ð Þ dt
� �

KK z;xð Þdz

¼ 1

2p

Z
R

f1 tð Þ
Z
R

f2 z� tð ÞeiA z2�t2ð Þ
�

� e�i Az2þBzxþCx2þDzþExð Þ dz
o
dt

¼ 1

2p

Z
R

f1 tð Þ
Z
R

f2 xð ÞeiAx xþ2tð Þ e�i A tþxð Þ2þB tþxð ÞxþCx2þD tþxð ÞþExð Þ dx
� �

dt

¼ 1

2p

Z
R

f1 tð Þe�i At2þBtxþcx2þDtþExð Þ
Z
R

e�iDx f2 xð Þe�iBxx dx

� �
dt

¼ 1

2p

Z
R

f1 tð Þ
Z
R

G xð Þe�iBxx dx

� �
e�i At2þBtxþCx2þDtþExð Þ dt

¼ 1ffiffiffiffiffiffi
2p

p F G½ � xð Þ
Z
R

f1 tð ÞKK t;xð Þdt

¼ QK f1½ � xð ÞF G½ � Bxð Þ; G tð Þ ¼ e�iDt f2 tð Þ;
which is the desired result.

Remark 2.7. For the case K ¼ 0; 1; 0; 0; 0ð Þ, Definition 2.3
yields the traditional convolution operator � as

f1 � f2ð Þ zð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R

f1 tð Þ f2 z� tð Þdt ð2:9Þ

and the corresponding convolution theorem is obtained from
(2.8).
Abreast to the notion of quadratic-phase convolution oper-
ation (2.5), we introduce the notion of discrete and semi-
discrete quadratic-phase convolution structures and then pre-

sent the corresponding convolution theorems, respectively.
Prior to that, we shall first revisit the formal definition of the
discrete-time QPFT.

Definition 2.8. [11] Given a sequence x nð Þ 2 ‘2 Zð Þ, the

discrete-time QPFT of x nð Þ corresponding to a parametric
set K ¼ A;B;C;D;Eð Þ; B > 0 is defined as

DK x nð Þ½ � xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
X
n2Z

x nð Þ exp �i An2 þ Bnxþ Cx2 þDnþ Ex
� �� �

:

ð2:10Þ
Moreover, any signal can be retracted from the correspond-

ing discrete-time QPFT (2.10) via the following relation:

u nð Þ ¼
Z 2p=B

0

DK u nð Þ½ � xð ÞKK n;xð Þdx; ð2:11Þ

where KK n;xð Þ is given by (2.2).
We are now in a position to introduce the convolution

structure of two sequences u nð Þ; v nð Þ 2 ‘2 Zð Þ associated with
the QPFT.

Definition 2.9. Given a parameteric set K ¼ A;B;C;D;Eð Þ;
B > 0 and a pair of sequences x nð Þ; y nð Þ 2 ‘2 Zð Þ, the chirp free

convolution operation ID associated with the discrete-time
QPFT is defined by

x nð ÞIDy nð Þ ¼ 1ffiffiffiffiffiffi
2p

p
X
n2Z

x nð Þy k� nð ÞeiA k2�n2ð Þ: ð2:12Þ

The following theorem assembles the fundamnetal proper-

ties pertaining to the convolution operation ID as defined by
(2.12).

Theorem 2.10. Let the scalars m 2 R; k 2 R n 0f g and the

sequences w nð Þ; x nð Þ; y nð Þ 2 ‘2 Zð Þ. Then, the convolution

operation ID as defined in (2.12) satisfies:(i).
Non-commutative: x nð ÞIDy nð Þ– y nð ÞIDx nð Þ,(ii). Non-
associative: w nð ÞIDx nð Þð ÞIDy nð Þ – w nð ÞID x nð ÞIDy nð Þð Þ,
(iii). Distributive: w nð ÞID x nð Þ þ y nð Þð Þ ¼ w nð ÞIDx nð Þþ
w nð ÞIDy nð Þ,(iv). Translation: x nð ÞIDy nð Þð Þ k�mð Þ ¼
x n�mð ÞIDyK nð Þð Þ kð Þ; yK nð Þ ¼ e�2iAkny nð Þ,(v). Scaling:

x nð ÞIDy nð Þð Þ kkð Þ ¼ jkj x knð ÞIK0
D y knð Þ

� �
kð Þ; K0 ¼ k2A;B;C;

�
D;EÞ,(vi). Parity: x nð ÞIDy nð Þð Þ �kð Þ ¼ x �nð ÞIDy �nð Þð Þ kð Þ.

Proof. The proof can be obtained similarly as Theorem 2.4

and is thus omitted.

In the sequel, we demonstrate that indeed the convolution
theorem pertaining to the discret convolution operation ID

defined in (2.12) is chirp-free.

Theorem 2.11. For any pair of sequences u nð Þ; v nð Þ 2 ‘2 Zð Þ, we
have

DK x nð ÞIDy nð Þ½ � xð Þ ¼ DK x nð Þ½ � xð ÞF yK nð Þ½ � Bxð Þ; ð2:13Þ
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where F y nð Þ½ � represents the discrete-time Fourier transform

of yK nð Þ ¼ e�iDny nð Þ.

Proof. Invoking the definition of discrete-time QPFT (2.10),
we have

DK x nð ÞIDy nð Þ½ � xð Þ
¼ 1ffiffiffiffiffiffi

2p
p

X
k2Z

x nð ÞIDy nð Þð Þ kð Þe�i Ak2þBkxþCx2þDkþExð Þ

¼ 1

2p

X
k2Z

X
n2Z

x nð Þy k� nð ÞeiA k2�n2ð Þ e�i Ak2þBkxþCx2þDkþExð Þ

¼ 1

2p

X
m2Z

X
n2Z

x nð Þy mð ÞeiA nþmð Þ2�n2ð Þ e�i A nþmð Þ2þB nþmð ÞxþCx2þD nþmð ÞþExð Þ

¼ 1

2p

X
n2Z

x nð Þe�i An2þBnxþCx2þDnþExð ÞX
m2Z

e�iDmy mð Þe�iBmx

¼ DK x nð Þ½ � xð ÞF yK nð Þ½ � Bxð Þ;
where F y nð Þ½ � is the discrete-time Fourier transform of

yK nð Þ ¼ e�iDny nð Þ.
Towards the culmination, we formulate the semi-discrete

quadratic-phase convolution structure for a sequence

x nð Þ 2 ‘2 Zð Þ and a function f 2 L2 Rð Þ, and then obtain the cor-

responding convolution theorem.

Definition 2.12. The semi-discrete convolution IS of a

sequence x nð Þ 2 ‘2 Zð Þ and a function / 2 L2 Rð Þ with respect
to a parametric set K ¼ A;B;C;D;Eð Þ; B > 0 is defined by

x nð ÞIS/ tð Þ ¼ 1ffiffiffiffiffiffi
2p

p
X
n2Z

x nð Þ/ t� nð ÞeiA t2�n2ð Þ: ð2:14Þ

The convolution theorem corresponding to the semi-
discrete convolution defined by (2.14) is given below:

Theorem 2.13. For a pair x nð Þ 2 ‘2 Zð Þ and / tð Þ 2 L2 Rð Þ, we
have

QK x nð ÞIS/½ � xð Þ ¼ DK x nð Þ½ � xð ÞF U½ � Bxð Þ; ð2:15Þ
where F U½ � represents the Fourier transform of

U tð Þ ¼ e�iDt/ tð Þ.

Proof. The proof is analogous to Theorem 2.4 and is therefore
omitted.
3. Non-ideal Sampling in Shift-invariant Spaces Associated with

Quadratic-phase Fourier Transforms

This section is dedicated to demonstrate the application of the
novel convolution structures defined in Section 2 to the gener-
alized SISs and non-ideal sampling in the framework of QPFT.

3.1. Generalized shift-invariant spaces associated with quadratic-

phase Fourier transform

A shift-invariant space is a closed subspace V of the space of

square intergable functions L2 Rð Þ, which is invariant under all
integer translates of the constituent functions. A function

/ 2 L2 Rð Þ is said to be a generator of a given SIS if the integer
tranlates of / span the entire closed subspace V. With the aim
to introduce the notion of generalized shift-invariant spaces,
we formulate the shift-invariant system VK /1; . . . ;/Mð Þ asso-
ciated the QPFT. Nevertheless, our main concern is to find a

necessary and sufficient condition for a square integrable func-
tion /‘; 1 6 ‘ 6 M to act as a generator for the generalized
shift-invariant space.

Definition 3.1. For any sequence u nð Þ 2 ‘2 Zð Þ and a collection

of functions /‘ tð Þ 2 L2 Rð Þ; 1 6 ‘ 6 M, the generalized SISs of

L2 Rð Þ with respect to a parametric set
K ¼ A;B;C;D;Eð Þ; B > 0 is denoted as VK /1; . . . ;/Mð Þ and
is defined by

VK /1; . . . ;/Mð Þ ¼ closure f 2 L2 Rð Þ : f tð Þ ¼
XM
‘¼1

X
n2Z

u‘ nð ÞIS/‘ tð Þ
( )

;

ð3:1Þ
where IS denoted the semi-discrete convolution as defined by
(2.14).

Theorem 3.2. Let VK /1; . . . ;/Mð Þ � L2 Rð Þ be the generalized
SISs associated with the QPFT. Then, the family

eAn t2�n2ð Þ/‘ t� nð Þ : 1 6 ‘ 6 M
n o

forms a Riesz basis for

VK /1; . . . ;/Mð Þ if and only if there exists a pair of constants
C1;C2 > 0 such that

C1 6
XM
‘¼1

X
n2Z

F U‘½ � Bxþ nð Þj j2 6 C2; 1 6 ‘ 6 M; 8x 2 0; 2p=B½ �;

ð3:2Þ
where F U‘½ � is the Fourier transform of U‘ tð Þ ¼ e�iDt/‘ tð Þ.

Proof. For any function f tð Þ 2 VK /1; . . . ;/Mð Þ, we have

f tð Þ ¼
XM
‘¼1

u‘ nð ÞIS/‘ tð Þ:

Then by implementing QPFT 2.1, we obtain

QK f½ � xð Þ

¼ 1

2p

Z
R

XM
‘¼1

X
n2Z

u‘ nð Þ/‘ t� nð ÞeiA t2�n2ð Þ e�i At2þBtxþCx2þDtþExð Þdt

¼ 1

2p

XM
‘¼1

X
n2Z

u‘ nð Þ
Z
R

/‘ t� nð ÞeiA t2�n2ð Þ e�i At2þBtxþCx2þDtþExð Þdt

¼ 1

2p

XM
‘¼1

X
n2Z

u‘ nð Þ
Z
R

/‘ zð ÞeiA zþnð Þ2�n2ð Þ e�i A zþnð Þ2þB zþnð ÞxþCx2þD zþnð ÞþExð Þdz

¼ 1

2p

XM
‘¼1

X
n2Z

u‘ nð Þe�i An2þBnxþCxþDnþExð Þ
Z
R

e�iDz/ zð Þe�iBzxdz

¼
XM
‘¼1

DK u‘ nð Þ½ � xð ÞF U‘½ � Bxð Þ;

where F U‘½ � denotes the Fourier transform of U‘ tð Þ ¼
e�iDt/‘ tð Þ. Since e�2npi ¼ 1, we have

DK u nð Þ½ � xþ 2p=Bð Þ ¼ 1ffiffiffiffi
2p

p umn2Zu nð Þe�i An2þBn xþ2p=Bð ÞþC xþ2p=Bð Þ2þDnþE xþ2p=Bð Þð Þ

¼ 1ffiffiffiffi
2p

p
X
n2Z

u nð Þe�i An2þBnxþCxþDnþExð Þ e�i 4p2C=B2þ4pCx=Bþ2pE=Bð Þ

¼ e�i 4p2C=B2þ4pCx=Bþ2pE=Bð Þ 1ffiffiffiffi
2p

p
X
n2Z

u nð Þe�i An2þBnxþCxþDnþExð Þ

¼ e�i 4p2C=B2þ4pCx=Bþ2pE=Bð ÞDK u nð Þ½ � xð Þ;
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which yields

DK u nð Þ½ � xþ 2p=Bð Þj j ¼ DK u nð Þ½ � xð Þj j:
Invoking Parseval’s formula for the QPFT as given by (2.5),

we have

f tð Þk k2 ¼ jBj QK f½ � Bxð Þk k2

¼ jBj
XM
‘¼1

Z
R

DK u‘ nð Þ½ � xð Þj j2 F U‘½ � Bxð Þj j2dx

¼ jBj
XM
‘¼1

X
n2Z

Z 2p nþ1ð Þ=B

2np=B
DK u‘ nð Þ½ � xð Þj j2 F U½ � Bxð Þj j2dx

¼ jBj
XM
‘¼1

X
n2Z

Z 2p=B

0

DK u‘ nð Þ½ � xþ 2np=Bð Þj j2 F U½ � Bxþ 2npð Þj j2dx

¼ jBj
XM
‘¼1

X
n2Z

Z 2p=B

0

DK u‘ nð Þ½ � xð Þj j2 F U‘½ � xþ 2npð Þj j2dx

¼ jBj
XM
‘¼1

Z 2p=B

0

DK u‘ nð Þ½ � xð Þj j2
X
n2Z

F U½ � xþ 2npð Þj j2dx: ð3:3Þ

Moreover, we haveR 2p=B
0

DK u‘ nð Þ½ � xð Þj j2dx
¼ 1

2p

X
m2Z

X
n2Z

u‘ mð Þu‘ nð Þe�i A m2�n2ð ÞþD m�nð Þð Þ R 2p=B
0

e�iB m�nð Þxdx

¼ 1ffiffiffiffi
2p

p
jBj
X
m2Z

X
n2Z

u‘ mð Þu‘ nð Þe�i A m2�n2ð ÞþD m�nð Þð Þdm;n

¼ 1ffiffiffiffi
2p

p jBj
X
n2Z

u‘ nð Þj j2

¼ 1
jBj u‘ nð Þk k2:

Using the fact 0 < C1 6
PM

‘¼1

P
n2Z F U‘½ � Bxþ nð Þj j2 6

C2 < 1, relation (3.3) gives

C1

XM
‘¼1

DK u‘ nð Þ½ � xð Þk k2 ¼ C1

jBj u‘ nð Þk k2

6 F U½ � Bxþ nð Þk k2

6 C2

jBj u‘ nð Þk k2

¼ C2

XM
‘¼1

DK u‘ nð Þ½ � xð Þk k2;

which yields the desired result.
Fig. 2 Non-ideal sampling in the
3.2. Non-ideal sampling associated with quadratic-phase Fourier
transform

Sampling theory pertaining to QPFT is particularly interesting
as many chirp-like signals arising in different phenomena are

not bandlimited in usual Fourier domain but turn to be ban-
dlimited in the generalized Fourier domains, in particular in
the QPFT domain. Among various sampling procedures,
non-ideal sampling method is the most exclusively applied con-

cepts in signal processing, which wash out the unwanted com-
ponents and then returns the desired output signal [8]. In this
subsection, we shall demonstrate that the proposed convolu-

tion structures associated with the QPFT can be employed to
design a computationally efficient non-ideal sampling method
in the QPFT domain.

Non-ideal sampling in the chirp modulated SISs

VK /1; . . . ;/Mð Þ � L2 Rð Þ associated with the QPFT is demon-

strated in Fig. 2. For any f tð Þ 2 VK /1; . . . ;/Mð Þ, we have

f tð Þ ¼
XM
‘¼1

u‘ nð ÞIS/‘ tð Þ:

Application of QPFT yields

QK f½ � xð Þ ¼
XM
‘¼1

DK u‘ nð Þ½ � xð ÞF U‘½ � Bxð Þ; ð3:4Þ

where F U‘½ � represents the Fourier transform of

U‘ tð Þ ¼ e�iDt/‘ tð Þ; 1 6 ‘ 6 M.
By virtue of Fig. 2, d‘ nð Þ is demonstrated by

d‘ zð Þ ¼ f tð ÞIK
��h‘ tð Þ

� �
zð Þ; �h tð Þ ¼ h �tð Þ: ð3:5Þ

Implementing QPFT QK f½ � as given by (2.1) on both sides of
(3.5), we obtain

QK d‘ zð Þ½ � xð Þ ¼ QK f tð ÞIK
��h‘ tð Þ

� �
zð Þ

h i
xð Þ;

which can be recast as

1ffiffiffiffiffiffi
2p

p
Z
R

d‘ zð Þ exp �i Az2 þ Bzxþ Cx2 þDzþ Ex
� �� �

dz

¼ QK f tð ÞIK
��h‘ tð Þ

� �
zð Þ

h i
xð Þ:

Or equivalently,
SISs associated with the QPFT.
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e�i Dx2þExð Þffiffiffiffiffiffi
2p

p
Z
R

e�i Az2þDzð Þ d‘ zð Þe�iBxzdz

¼ QK f tð ÞIK
��h‘ tð Þ

� �
zð Þ

h i
xð Þ:

Then, employing Theorem 2.6 yields

e�i Dx2þExð ÞF D‘ tð Þ½ � Bxð Þ ¼ QK f½ � xð ÞF ��H‘ tð Þ
h i

Bxð Þ:

Equivalently,

F D‘ tð Þ½ � Bxð Þ ¼ W xð ÞQK f½ � xð ÞF ��H‘ tð Þ
h i

Bxð Þ;
W xð Þ ¼ ei Dx2þExð Þ; ð3:6Þ

where F D‘½ � xð Þ and F ��H‘

h i
xð Þ are the Fourier transforms of

D‘ tð Þ ¼ e�i At2þDtð Þ d‘ tð Þ and ��H‘ tð Þ ¼ e�iDt ��h‘ tð Þ, respectively.
Plugging (3.4) in (3.6), we obtain

F D‘ tð Þ½ � Bxð Þ ¼
X
k2Z

W x� xkð ÞQK f½ � x� xkð ÞF ��H‘ tð Þ
h i

B x� xkð Þð

¼
XM
‘¼1

DK u‘ nð Þ½ � xð Þ
X
k2Z

W x� xkð ÞF ��H‘ tð Þ
h i

B x� xkð ÞF U‘½ � B x� xkð Þð Þ:ð ð3:7Þ

Moreover, setting

DHU Bxð Þ ¼

nH1U1
nH1U2

. . . nH1UM

nH2U1
nH2U2

. . . nH2UM

..

. ..
. . .

. ..
.

nHMU1
nHMU2

. . . nHMUM

0
BBBB@

1
CCCCA; ð3:8Þ

where nH‘Ui
¼ F ��H‘ tð Þ

h i
Bxð ÞF Ui½ � Bxð Þ.

Thus (3.7) can be written more explicitly as follows:

F D½ � Bxð Þ ¼ W xð ÞDHU Bxð ÞDK u½ � xð Þ; ð3:9Þ
where F D½ � Bxð Þ ¼ F D1½ � Bxð Þ; . . . ;F DM½ � Bxð Þ½ �T and

DK u½ � xð Þ ¼ DK u1½ � xð Þ; . . . ;DK uM½ � xð Þ½ �T.
Therefore from (3.9), we infer that

DK u½ � xð Þ ¼ W�1 xð ÞD�1
HU Bxð ÞF D½ � Bxð Þ: ð3:10Þ

By virtue of (3.6) and (3.10), x tð Þ and F ��H‘ tð Þ
h i

Bxð Þ shares

the follwing relationship:

DK u½ � xð Þ ¼ F ��H
h i

Bxð ÞD�1
HU Bxð ÞQK f½ � xð Þ

¼ QK f½ � xð ÞV Bxð Þ;
ð3:11Þ

where V Bxð Þ ¼ F ��H
h i

Bxð ÞD�1
HU Bxð Þ. Here V Bxð Þ and

F ��H
h i

Bxð Þ are vectors with ‘ elements given by V‘ Bxð Þ and

F ��H‘ tð Þ
h i

Bxð Þ, respectively.
Moreover, relation (3.11) can be represented in time

domain as:

DK u½ � xð Þ ¼ f tð ÞIK
��v‘ tð Þ; 1 6 ‘ 6 M; ð3:12Þ

where IK represents the quadratic-phase convolution given by
(2.5).

Theorem 3.3. The pair of collections v‘ t� nð Þ : 1 6f
‘ 6 M; n 2 Zg and /‘ : 1 6 ‘ 6 Mf g are orthogonal to each
other.
Proof. The proof is quite straight forward and is therefore

omitted,
4. Conclusion

In the present study, we accomplished two objectives: first, we
formulated a novel convolution structures associated with the

QPFT; second, we introduced the generalized SISs in the QPFT
domains. We implemented both the proposed convolution
structures and generalized shift-invariant spaces to present a

practically reliable and computationally efficient non-ideal sam-
pling procedure in the realm of QPFT domain.
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