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Abstract

eXplainable Artificial Intelligence (XAI) is a new trend of machine learning. Machine learning

models are used to predict or decide something, and they derive output based on a large

volume of data set. Here, the problem is that it is hard to know why such prediction was

derived, especially when using deep learning models. It makes the models unreliable in the

case of reliability-critical applications. So, it is required to explain how they derived such out-

put. It is a reliability-critical application for self-driving cars because the mistakes made by

the computers inside them can lead to critical accidents. So, it is necessary to adopt XAI

models in this field. In this paper, we propose an XAI method based on computing and

explaining the difference of the output values of the neurons in the last hidden layer of con-

volutional neural networks. First, we input the original image and some modified images of

it. Then we derive output values for each image and compare these values. Then, we intro-

duce the Sensitivity Analysis technique to explain which parts of the original image are

needed to distinguish the category. In detail, we divide the image into several parts and fill

these parts with shades. First, we compute the influence value on the vector indicating the

last hidden layer of the model for each of these parts. Then we draw shades whose dark-

ness is in proportion to the influence values. The experimental results show that our

approach for XAI in self-driving cars finds the parts needed to distinguish the category of

these images accurately.

Introduction

eXplainable Artificial Intelligence (XAI) [1] is a field of machine learning. Its goal is to explain

how the machine learning models derive outputs. When using XAI to a machine learning

model, the model can be more reliable because we can track the process of inference of the

model. It is crucial to adopt XAI to self-driving cars because a misunderstanding of the image

recognization model adopted for them can lead to deaths. Suppose that we input a picture

with the blue sky on the top and the road on the bottom. Then the model can explain that the

picture shows a straight road because of the blue sky on the top, not the road on the bottom.

Because we need computer vision techniques, we can use Convolutional Neural Networks

(CNN) technique for object detection. In short, we need XAI methods for the convolutional

neural network of the model used for self-driving cars.
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We can classify XAI methods into three major categories. One of them is Sensitivity Analy-

sis (SA) [2], another is Layer-wise Relevance Propagation (LRP) [3], and the other is Feature

Importance [4]. We focus on the Sensitivity Analysis method for explaining our convolutional

neural network model. It is a method that estimates the influence of each input variable. First,

we modify each input variable as a specific value and input the modified input vector to the

model. Then we can measure how much the output vector is different from the output vector

of the model when the input is the original input vector. So, we can see which elements of the

input vector influence the output vector hugely, and so we can see which part of the input

makes the model decided rightly or wrongly.

[5] describes five terms about XAI, understandability, comprehensibility, interpretability,

explainability and transparency. Applying this study, We need transparency for our model

because one major goal of our study is to prevent accidents that potentially can be made by

self-driving cars. Because we use the Sensitivity Analysis method that simulates the layer

output of our CNN model, the category of transparency of our XAI model is simulatability.

Because our model is a CNN model which is not readily interpretable, we should use post-hoc

explainability [5]. Our model visualizes the influence of the change of inputs, and we run our

XAI model using car-related images such as vehicle and non-vehicle images, the categories

that fit the post-hoc explainability of the model are visual explanation and explanations by
example. In addition, [5] describes some goals of XAI, such as trustworthiess, causality and

transferability. According to this, the major goal of our XAI model is trustworthiness because

our goal is to make a CNN model more trustworthy so that we can prevent potential accidents.

Consequently, our XAI model gives transparency to the CNN model by using simulatability,

with some example images and visualized explanations about them, to increase the trustwor-

thiness of the CNN model.

There are some previous researches about XAI methods for CNN models. SHAP [6] uses

feature importance values for each feature and computes these values by comparing images

including and not including this feature. LIME [7] uses an interpretable model which learns

with sampled instances from a local area. Grad-CAM [8] uses some counterfactual explana-

tions to change the prediction of CNN, and it can explain any layer, including the last hidden

layer. eXplainable CNN (XCNN) [9] uses the network with a heatmap generator of encoder-

decoder architecture and creates explanations using the output of this architecture. [10] gener-

ates visual explanations using the weighted sum of the feature masks. Two metrics (insertion

and deletion) are used for weight computation, using both similarity difference and unique-

ness values. [11] make the DCNN (Deep convolutional neural networks) learn from relevant

and irrelevant features. It also uses a denoising algorithm and gradient attribution. [12] tries

to find the reasons for classification errors using multiple methods and visualizes the last con-

volutional layer. [13] uses LIME [7] for radar images, with a CNN including various kinds of

Keras layers such as ReLU, Batch Normalization, and Flatten. [14] uses a multi-leveled Layer-

wise Relevance Propagation (LRP) called Deep Taylor Method for medical images. It experi-

ments on two popular image detection models, Resnet-50 and VGG-16. [15] uses an attribu-

tion mask derived from input images, and derives layer visualization map and attribution

mask scoring based on the point-wise multiplication between the image and the mask. [16]

compares and evaluates LRP with some relevance maps. It compares the average relevance

maps and the topo-plots for binary masks for various methods, including LRP-based methods.

[17] uses saliency mapping by adding Gaussian noise to the input images. Its data set contains

many kinds of galaxy images, and it uses some data augmentation techniques such as random

rotations and flips. [18] discovers that natural images are more helpful for providing informa-

tion about the feature map of CNN than synthetic images. [19] uses a CNN model including

Grad-CAM [8] and Gated Recurrent Unit (GRU) for traffic accident anticipation. [20]
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evaluates how much each type of explanation provides reliable information to people for three

different conditions. [21] uses SLRP (a modified version of Layer-wise Relevance Propagation)

to find the propagate relevances for each layer of the deep learning models to detect the cate-

gory of the things in the images, for CNN and RNN. [22] applies Class activation mapping

(CAM) to CNN, which uses the weighted sum of image filters of the same size. It uses F-mea-

sure and AUC as evaluation metrics. [23] uses some XAI methods such as Grad-CAM and

GuidedBP, and its data set contains many mathematical symbols and their combinations. [24]

introduces an XAI software, TorchPRISM, and uses the methods such as PCA (principal com-

ponent analysis) and bilinear interpolation. [25] uses the selected templates corresponding to

the feature maps, and represents each category using the set of positive templates.

Some methods [6, 8] use the changes or differences of the input values of a neural network.

(refer to the comparison table, Table 1) But our method directly uses these changes and does

not include any complex formulas or algorithms. So our method is the most simple compared

to these methods among the methods using these changes.

Nowadays, Many electronic things we meet in our life contain machine learning algo-

rithms. There are some kinds of such things that can lead to a critical accident if the decision

made by these algorithms are wrong. One of them is self-driving cars. The deep learning

models for making decisions usually do not make “explanations” about why they made the

decisions, and we do not know the exact value for each neuron from these models. So, the

problem is that we cannot know ‘why’ the models made these decisions. In other words, we

cannot know which parts of the input image made the model predict like now without XAI

techniques. For example, the decision-making model of the self-driving car classified an image

as a ‘straight road’ by using the upper part of this image with the blue sky, not using the lower

part with the road. In this situation, we can think that the model accuracy is high because it

classified the image as a straight road. But when the input image contains only the blue sky,

the model can classify it wrongly as ‘straight road’ even if it does not include the road. The

solution for this situation is eXplainable Artificial Intelligence (XAI).

Our approach has the four stages below:

• modifying each part of the original input image

• inputting each modified image to the model

• deriving the output

• comparing the output with the output when the input is the original image

In detail, we divide the entire image into many rectangular sub-images with the same width

and height. We call each divided sub-image a part, and then we make each modified image by

Table 1. Method comparison of each related paper.

category of the main method papers

difference of the input values of neural network [6, 8]

LIME based methods [7, 13]

feature (or feature masks) [10, 11, 15, 22, 25]

LRP-based methods [14, 16, 21]

others [9, 12, 17–20, 23, 24]

Table 1 compares each paper from the related works by the category of the method used. Among [6–25], [6, 8] use

the difference of the input values of a neural network to generate explanations. We can compare them with our

method.

https://doi.org/10.1371/journal.pone.0267282.t001
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filling each part from the original input images black (RGB 0,0,0). By doing this, We can mea-

sure the influence of the change of each part of the input images on the final output.

The main contribution of our method is that we can make meaningfully accurate explana-

tions for the result in a relatively simple way. In the Related Works section, there are so many

complex methods that try to make an explanation for an image. [6, 8] also generate explana-

tions accurately, but they use Kernel SHAP and complex mathematical operations, and these

are not simpler than our method.

Methods

Overview

A brief description of our methodology is in the flow chart Fig 1. First, we perform gray-scal-

ing stage of the images and pre-training stage of the CNN model before the main XAI algo-

rithm. Because the pre-training stage is not directly related to XAI, we will explain this later

than the main XAI algorithm, in Experiments and Discussion section. Next, we go to the

main XAI algorithm. Our main XAI algorithm includes four stages(steps). First, modifying

image is making changes from the original image to explain the changed parts. The algorithm

performs it for each part of the image. Second, finding vector is inputting the original image

and modified images into the network and getting the output vectors of the last hidden layer

for each image. Third, computing difference is comparing the output vectors of the last hid-

den layer, when inputting the original image (original output vector) and each modified image

(modified output vectors), and then computing the difference between the original output vec-

tor and each modified output vector using Euclidean distance. Last, making explanations is

filling each part of the copied original image in proportion to the difference of the original out-

put vector and each modified output vector, computed in computing difference. In practice,

inputting and getting the output vector for the original image from finding vector earlier than

performing modifying image has no problem, and in this paper, we performed in this way.

Fig 1. Describes the overall algorithm of our methodology. First, gray-scale images (Gray-scaling), and then pre-

train the CNN model (Pre-training), then perform the main XAI algorithm. It contains four stages(steps), that is,

modifying image, finding vector, computing difference, and making explanations.

https://doi.org/10.1371/journal.pone.0267282.g001
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For pre-training stage, we used the CNN model described in Fig 2. We used Tensorflow

[26] for model training.

Main XAI algorithm

We define each terms as following. IO means the original image. W and H means the width

and height of IO, respectively. sub-image means each divided image from IO. N and M means

the number of sub-image in a column and a row, respectively. w and h means the width and

height of each sub-image, so N = H/h and M = W/w. VO means the vector of the last hidden

layer of CNN when we input IO into the CNN. In,m, n = 0, . . ., N − 1, m = 0, . . ., M − 1 means

an image whose background is original image, and the area corresponding to (n, m)-th sub-

image is filled with black (RGB 0,0,0). Vn,m, n = 0, . . ., N − 1, m = 0, . . ., M − 1 means the vector

of the last hidden layer of the CNN when we input In,m, n = 0, . . ., N − 1, m = 0, . . ., M − 1. VO

can be represented as fV0
O;V

1
O; . . . ;VK� 1

O g, where K is the number of elements in VO. Like this,

Vn,m can be represented as fV0
n;m;V

1
n;m; . . . ;VK� 1

n;m g, where K is the number of elements in Vn,m,

n = 0, . . ., N − 1, m = 0, . . ., M − 1. Let’s look at Fig 3. First, we convert IO into gray-scaled

image. Then we input IO to the pre-trained CNN and compute VO ((A), step finding vector

for the original image). and then divide IO into N ×M sub-images, with the height and the

width of each image is h and w, respectively ((B), step modifying image). Then, we create and

input each In,m, n = 0, . . ., N − 1, m = 0, . . ., M − 1 and compute Vn,m, n = 0, . . ., N − 1, m = 0,

. . ., M − 1 in the same way ((C), step finding vector for the modified images). From now on,

let’s look at Fig 4. We define the difference between VO and each Vn,m, n = 0, . . ., N − 1, m = 0,

. . ., M − 1 as dif(VO, Vn,m), n = 0, . . ., N − 1, m = 0, . . ., M − 1, as (1) ((A), step computing dif-

ference).

difðVO;Vn;mÞ ¼ SkðV
k
O � Vk

n;mÞ
2
; k ¼ 0; 1; . . . ;K � 1 ð1Þ

Fig 2. Describes our CNN model. We use the output of the last hidden layer (marked as [LHL]) for estimating the

influence of the difference of the input between IO and each In,m, n = 0, . . ., N − 1, m = 0, . . ., M − 1.

https://doi.org/10.1371/journal.pone.0267282.g002
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K means the number of elements in the output vector of the last hidden layer of the CNN.

Then we copy IO and call it IC ((B), preparing the copied original image for step making expla-

nations). Then we fill each area of IC corresponding to In,m, n = 0, . . ., N − 1, m = 0, . . ., M − 1

with purple (RGB 153,0,255), where the opacity is in the proportion of the value of dif(VO, Vn,

m) ((C), step making explanations). Now, we can use IC to estimate which part of the image

influenced the final prediction of the model. We are using the last hidden layer output of CNN

instead of the final prediction. There are some reasons for this. First, there are more parame-

ters in the last hidden layer than the final output layer. Second, when the output value of the

last hidden layer is influenced more by the difference between the input, the final prediction is

also largely influenced (refer to Experimental Results). And when the number of neurons in

the final output layer is small, the output of this layer can be influenced less. It means that the

Fig 3. Describes the vector-finding process (step modifying image and finding vector stage) of our method. In (A),

we input the original image IO (VehicleImage/vehicles/Left/image0275.png of [27]) into CNN and get the vector of the

last hidden layer, VO. In (B), we divide the original image into n ×m sub-images. In (C), we input each sub-image I0,0,

. . ., I(N − 1), (M − 1) into the CNN and get the vector of the last hidden layer in the same way. In (D), we compute the

difference dif(VO, Vn,m) between VO and each vector Vn,m using Euclidean distance. In the right area of (D), the lengths

of horizontal bars mean the values of Vn,m.

https://doi.org/10.1371/journal.pone.0267282.g003
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change of the input values influenced the entire model largely because the output values of the

last hidden layer were influenced more.

Our XAI method can be described with Figs 3 and 4 and function GenerateExplanation of

Algorithm 1. In Algorithm 1, function grayscale(img) receives an image img, then performs

gray-scaling to img, and returns the gray-scaled image. In addition, function predict(img,

model, i) receives an input image img, a convolutional neural network model model, and the

layer index i = 0, . . ., layers − 1 where layers is the number of layers in model, including the

input layer whose index i is 0 and output layer whose index i is layers − 1. For the layer index i,
when the output of a layer whose index is iout and the output is used for the input of the next

layer whose index is iin, it is always true that iout< iin. function Fill(img, y0, y1, x0, x1, opacity,

explan) receives original image img and integer values y0, y1, x0, x1, then copies img and fills

the square area of copied image with black (RGB 0,0,0) (when explan = False) or purple (RGB

153,0,255) (when explan = True) with opacity opacity whose range is 0.0 to 1.0 (when explan =

False) or 0.75 (when explan = True), where the horizontal and vertical range of the area are

from x0 to x1 (x0 < x1) and from y0 to y1 (y0 < y1), respectively.

Algorithm 1 Generating an explanation image (like (C) in Fig 4) for an image
function Fill(img, y0, y1, x0, x1, opacity, explan)
newImg  copy(img)
for each y = y0, . . ., y1 − 1 do
for each x = x0, . . ., x1 − 1 do
pixelR, pixelG, pixelB  R, G, B value of the (y, x)-th pixel,

respectively
if explan = True do
newPixelR  0.6�opacity + pixelR × (1.0 − opacity)
newPixelG  pixelG × (1.0 − opacity)
newPixelB  1.0�opacity + pixelB × (1.0 − opacity)

else do
newPixelR  pixelR × (1.0 − opacity)

Fig 4. Describes the explanation-deriving process (step computting difference and making explanations) of our

method. In (A), we compute the difference dif(VO, Vn,m) of VO and each vector Vn,m, n = 0, . . ., N − 1, m = 0, . . ., M
− 1. In (B), we copy IO and call it IC. In (C), we fill the resulting image initialized as IO, with gray for each area

corresponding to (n, m)-th sub-image, and the larger the value of dif(VO, Vn,m), the more clear the purple color for the

area. For example, in the figure above, one can see dif(VO, V2,0) is larger than dif(VO, V2,1) because, in (C), the purple

color of the cell corresponding to the former is more clear than one corresponding to the latter.

https://doi.org/10.1371/journal.pone.0267282.g004

PLOS ONE An XAI method for convolutional neural networks in self-driving cars

PLOS ONE | https://doi.org/10.1371/journal.pone.0267282 August 16, 2022 7 / 17

https://doi.org/10.1371/journal.pone.0267282.g004
https://doi.org/10.1371/journal.pone.0267282


newPixelG  pixelG × (1.0 − opacity)
newPixelB  pixelB × (1.0 − opacity)

end if
R, G, B value of the (y, x)-th pixel of newImg  newPixelR, new-

PixelG, newPixelB, respectively
end for

end for
return newImg
end function
function GenerateExplanation(IO, W, H, N, M, model)
IO  grayscale(IO)
explanation  copy(IO)
layers  the number of layers in model, including input and output

layers
VO  predict(IO, model, layers-2)
w  W/M, h  H/N
for each n = 0, . . ., N − 1 do
for each m = 0, . . ., M − 1 do
In,m  Fill(IO, nh, (n + 1)h, mw, (m + 1)w, 1.0, False)
Vn,m  predict(In,m, model, layers-2)
Dn,m  dif(VO, Vn,m)

end for
end for
maxD  max(Dn,m, n = 0, . . ., N − 1, m = 0, . . ., M − 1)
for each n = 0, . . ., N − 1 do
for each m = 0, . . ., M − 1 do
D  0.75�Dn,m/maxD
explanation Fill(explanation, nh, (n + 1)h, mw, (m + 1)w, D,

True)
end for

end for
return explanation

end function

Experiments and discussion

The name of the steps of our method (pre-training, modifying image, finding vector, com-

puting difference and making explanations) can be referred in this section including subsec-

tions, and these names are from section Overview.

We used the test images and pre-trained CNN model of the step Pre-training for the exper-

iment. It means we input the test images into the pre-trained CNN and got the result. We set

W = 64, H = 64, M = 8 and N = 8 for our experiment, and so the value of w and h is both 8.

The programming language we used is Python 3.7, and Operating System is Windows 10. You

can download the dataset used for this experiment from [27, 28], and Python code used for

this experiment from https://github.com/WannaBeSuperteur/2020/tree/master/AI/CAR_test_

202102 (Vehicle vs. Non-vehicle [27]), https://github.com/WannaBeSuperteur/2020/tree/

master/AI/SIGN_test_202109 (traffic signs [28]), https://github.com/WannaBeSuperteur/

2020/tree/master/AI/SIGN_fewclasses_test_202109 (traffic signs [28] with few classes) and

https://github.com/WannaBeSuperteur/2020/tree/master/AI/SIGN_speedlimit_test_202110

(traffic signs [28] (only speed limit signs).

Pre-training

We pre-trained the CNN with four image datasets downloaded from [27, 28]. Table 2 describes

detailed dataset information. For example, The dataset named “Vehicle vs. Non-vehicle” [27]
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https://doi.org/10.1371/journal.pone.0267282


contains 7,325 images in total (3,900 non-vehicle images and 3,425 vehicle images). We split

these images into training images and test images, where the proportion of images for training

and test is 0.8 and 0.2, respectively. So we have 3,120 training images and 780 test images for

the non-vehicle category. Also, we have 2,740 training images and 685 test images for the vehi-

cle category.

For each dataset, we trained the CNN model with all the images for training and then evalu-

ated with Mean Square Error (MSE) and accuracy. (stage pre-training) The final output con-

tains N elements which indicate each category, where N is the number of categories in the

dataset. We measured the accuracy using (correct count) / (total number of images). correct

count is defined as the number of images whose index of the largest element in the final output

vector for the prediction is the same as for the ground truth.

The dataset “traffic signs with few classes” used the traffic signs dataset [28], but we reduced

the number of classes. We marked each image as below. “A: B” means that we marked the

image as A if whose original class is one of B.

• “class 0”: 0, 1, 2, . . ., or 8

• “class 1”: 9, 10, 16, 41 or 42

• “class 2”: 11, 19, 20 or 21

• “class 3”: 12, 13, 15 or 32

• “class 4”: 14, 17 or 18

• “class 5”: 22, 23, 24, . . ., or 31

• “class 6”: 33, 34, 35, . . ., or 40

The dataset “traffic signs [28] (only speed limit signs)” also used the traffic signs dataset

[28], but we only used ‘speed limit’ sign images whose original classes are 0, 1, 2, 3, 4, 5, 7, and

8. We marked each image as class 0, 1, 2, 3, 4, 5, 6, and 7 to the images whose original class is 0,

1, 2, 3, 4, 5, 7, and 8, respectively.

Experiment for XAI algorithm

We created the image explaining our experimental result using matplotlib [29]. Fig 5 describes

our experimental results for a test image, related to the step computing difference and making

explanations. We can see the larger the difference

difðVk
O;V

k
n;mÞ;m ¼ 0; 1; . . . ;M � 1; n ¼ 0; 1; . . . ;N � 1, the larger the difference of the final

output vector. For this image, when (n, m) is (6, 3), (6, 4), (6, 5) or (7, 4), the final output is

Table 2. Information of each dataset used.

dataset name images (for train, for test) catgs MSE ACC

Vehicle vs. Non-vehicle [27] 7,325 (5,860, 1,465) 2 0.0257 0.9700

traffic signs [28] 39,209 (31,367, 7,842) 43 0.0036 0.9086

traffic signs [28] with few classes 39,209 (31,367, 7,842) 7 0.0013 0.9945

traffic signs [28] (only speed limit signs) 12,780 (10,224, 2,556) 8 0.0164 0.9198

Table 2 shows the number of images for training and test, the number of categories of the images (catgs), MSE(mean-

squared error), and the accuracy of each pre-trained CNN model in Fig 2, using the dataset (MSE and ACC,

respectively).

https://doi.org/10.1371/journal.pone.0267282.t002
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different from the final output for IO, and the differences difðVk
O;V

k
6;3
Þ, difðVk

O;V
k
6;4
Þ,

difðVk
O;V

k
6;5
Þ and difðVk

O;V
k
7;4
Þ are very large. Fig 6 describes the distribution and average value

of lh_o_corr for each dataset. Table 3 describes the correlation coefficients between each pair

of two variables we think meaningful. The description of each variable is as Table 4. Fig 6 and

Table 3 are related to the step computing difference.

Discussion

First, we show the examples of our result based on the dataset named “Vehicle vs. Non-vehi-

cle”. From Fig 5, we can see that for the non-vehicle image (left image of (A) and (B)), the

lower parts of the image influence much more than the upper ones. Because we distinguish

vehicle images from non-vehicle images using whether there are wheels at the bottom of the

object, our model can use the bottom part of the image to decide whether it is a vehicle or not.

Fig 5. Describes an example of our CNN-explaining for an image. (A) and (B) describes the result of step making

explanations and (C)-(F) describes the result of step computing difference. (A) is the original images IO and (B) is

IC’s. In (B), when the final output predictions of In,m’s are different from IO’s, we marked the corresponding area as

upward-right lines. (C) is the visualization of jVk
O � Vk

n;mj; k ¼ 0; 1; . . . ;K � 1;m ¼ 0; 1; . . . ;M � 1;n ¼
0; 1; . . . ;N � 1 with K = 40. Each row of (C) means jVk

O � Vk
n;mj; k ¼ 0; 1; . . . ;K � 1 for each fixed n and m. (D) is dif

(VO, Vn,m) for each fixed n and m. (E) is the visualization of the final output for each fixed n and m, and (F) is the

binary-ized values for (E). For all the images (C)-(F), the lighter the color of each cell, the larger the corresponding

value. The left (non-vehicle, from VehicleImage/non-vehicles/Right/image0825.png of [27]) and right (vehicle, from

VehicleImage/vehicles/Left/image0275.png of [27]) images in (A) and (B) is corresponding to the upper and lower

images in (C)-(F), respectively.

https://doi.org/10.1371/journal.pone.0267282.g005
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So, the result in the left image of (B) says our XAI model can bring meaningful results. For the

vehicle image (right image of (A) and (B)), we can see that the middle and lower parts of the

image influence more than the other parts, because the model we designed usually filled upper

parts as less clear purple and lower parts as more clear purple. Specifically, the background

parts in the top and left of the image influenced much less than the middle and lower parts.

Unlike the non-vehicle images, the center part largely influenced the final prediction and the

last hidden layer output for the vehicle images. The reason is that we usually distinguish vehi-

cles from non-vehicles using the shape and color of their body. That is, we can recognize it as

an object other than a vehicle if the shape and color do not match the image of vehicles.

From Fig 6, we can see that for most of the images, the correlation between the average

changes of the final output vector (O_dif) and the last hidden layer output vector (difn,m) is

positive enough. There is no image that they have a negative correlation. Among the four data-

sets we used, the maximum value of the correlation coefficient is between 0.95 and 1.0, from

“Vehicle vs. Non-vehicle” and “traffic signs (only speed limit signs)”. The minimum value is

between 0.3 and 0.35, from “traffic signs with few classes”. The dataset with the highest lh_o_-

corr is “traffic signs” (0.7668), and the lowest is “traffic signs with few classes” (0.5901).

From Table 3, we can see that there are positive correlations among difCells, avgRank, max-
Rank, smax − dmin and Odif/difn,m (group 1), and between difMin and max − 2nd (group 2),

and negative ones among the two groups. For the dataset “Vehicle vs. Non-vehicle”, because

there are only 2 classes(non-vehicle and vehicle) so Rank can have only 2 values (1 or 2), dif-
Cells have a linear correlation with avgRank. It is trivial that avgRank and maxRank have posi-

tive correlations. Odif/difn,m have positive correlation with difCells, because when dif(OO, On,m)

is larger, the final prediction can change easier, it indicates larger difCells. We define the two

cases of images here: Case 1 is the images whose final prediction of CNN can be changed by

small changes on it, and Case 2 is the opposite. Because smax − dmin is large when samMax is

large and difMin is small, and the value of difMin for Case 2 is larger than Case 1, and the

value of Rank is higher than Case 2 than Case 1, maxRank and smax − dmin have positive cor-

relations, and they have negative ones with difMin. Because for Case 1 images with larger dif-
Min values, the two elements of the final prediction vector of them have larger difference, and

it indicates they have larger max − 2nd values, difMin and max − 2nd have positive correlation.

lh_o_corr have a weak positive correlation with the variables from group 1, because the images

Fig 6. Describes the distribution of lh_o_corr (the result of step computing difference) for all the test images. the

number in the column lh_o_corr means the number of cases with lh_o_corr value between lbound and hbound. (A),

(B), (C), (D) means the lh_o_corr values of the dataset “Vehicle vs. Non-vehicle”, “traffic signs”, “traffic signs with few

classes” and “traffic signs (only speed limit signs)”, respectively. There is no case that lh_o_corr is less than 0 for any

dataset, and the average of lh_o_corr is about 0.7.

https://doi.org/10.1371/journal.pone.0267282.g006
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Table 3. Correlation coefficient for each pair of two variables.

(A) difCells avgRank maxRank samMax difMin sm − dm O/d m − 2n lhocr

difCells 0.678 -0.484 0.729 0.523 0.920 -0.908 0.073

avgRank 0.678 -0.484 0.729 0.523 0.920 -0.908 0.073

maxRank 0.678 0.678 -0.632 0.635 -0.635 -0.079

samMax -0.484 -0.484 -0.632 -0.189 0.589 -0.390 0.401 0.223

difMin -0.729 -0.729 -0.189 -0.905 -0.870 0.870 -0.285

sm − dm 0.523 0.523 0.589 -0.905 0.714 -0.730 0.306

O/d 0.920 0.920 0.635 -0.390 -0.870 0.714 -0.984 0.135

m − 2n -0.908 -0.908 -0.635 0.401 0.870 -0.730 -0.984 -0.082

lhocr 0.073 0.073 -0.079 0.223 -0.285 0.306 0.135 -0.082

(B) difCells avgRank maxRank samMax difMin sm − dm O/d m − 2n lhocr

difCells 0.861 0.470 -0.318 -0.454 0.104 0.699 -0.815 0.356

avgRank 0.861 0.538 -0.278 -0.324 0.024 0.499 -0.606 0.274

maxRank 0.470 0.538 -0.081 -0.222 0.096 0.465 -0.345 0.493

samMax -0.318 -0.278 -0.081 0.495 0.497 -0.269 0.253 -0.128

difMin -0.454 -0.324 -0.222 0.495 -0.507 -0.528 0.432 -0.369

sm − dm 0.104 0.024 0.096 0.497 -0.507 0.218 -0.158 0.153

O/d 0.699 0.499 0.465 -0.269 -0.528 0.218 -0.784 0.599

m − 2n -0.815 -0.606 -0.345 0.253 0.432 -0.158 -0.784 -0.337

lhocr 0.356 0.274 0.493 -0.128 -0.369 0.153 0.599 -0.337

(C) difCells avgRank maxRank samMax difMin sm − dm O/d m − 2n lhocr

difCells 0.955 0.578 -0.162 -0.397 0.144 0.890 -0.826 0.377

avgRank 0.955 0.677 -0.227 -0.362 0.062 0.811 -0.740 0.389

maxRank 0.578 0.677 -0.211 -0.195 -0.088 0.574 -0.457 0.664

samMax -0.162 -0.227 -0.211 0.038 0.700 -0.135 0.113 -0.003

difMin -0.397 -0.362 -0.195 0.038 -0.687 -0.477 0.343 -0.307

sm − dm 0.144 0.062 -0.088 0.700 -0.687 0.222 -0.150 0.179

O/d 0.890 0.811 0.574 -0.135 -0.477 0.222 -0.925 0.487

m − 2n -0.826 -0.740 -0.457 0.113 0.343 -0.150 -0.925 -0.307

lhocr 0.377 0.389 0.664 -0.003 -0.307 0.179 0.487 -0.307

(D) difCells avgRank maxRank samMax difMin sm − dm O/d m − 2n lhocr

difCells 0.936 0.374 -0.069 -0.497 0.149 0.865 -0.820 0.247

avgRank 0.936 0.617 0.032 -0.531 0.270 0.795 -0.732 0.357

maxRank 0.374 0.617 0.245 -0.412 0.512 0.295 -0.165 0.550

samMax -0.069 0.032 0.245 -0.185 0.933 -0.015 0.074 0.008

difMin -0.497 -0.531 -0.412 -0.185 -0.527 -0.479 0.383 -0.226

sm − dm 0.149 0.270 0.512 0.933 -0.527 0.198 -0.087 0.133

O/d 0.865 0.795 0.295 -0.015 -0.479 0.198 -0.900 0.302

m − 2n -0.820 -0.732 -0.165 0.074 0.383 -0.087 -0.900 -0.174

lhocr 0.247 0.357 0.550 0.008 -0.226 0.133 0.302 -0.174

Table 3 describes the correlation coefficient between each pair of two variables, according to Oargmax, derived using the step computing difference. The definition of

each variable is from Table 2. Like Fig 6(A)–6(D) means the lh_o_corr values of the dataset “Vehicle vs. Non-vehicle”, “traffic signs”, “traffic signs with few classes” and

“traffic signs (only speed limit signs)”, respectively. For (difMin, maxRank) and (difMin, smax − dmin) of (A), we cannot compute the correlation coefficients because of

the records whose difMin and smax − dmin value is available always have the maxRank value as 2. sm − dm, O/d, m − 2n and lhocr means smax − dmin, O_dif/difn,m,

max − 2nd and lh_o_corr, respectively.

https://doi.org/10.1371/journal.pone.0267282.t003
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with meaningful (just enough, not means large) dif(VO, Vn,m) makes lh_o_corr larger, and

Case 1 images have large dif(VO, Vn,m). The appearance of the correlation coefficients between

every two variables, as mentioned above, has consistency among all the datasets used for this

experiment.

Fig 7 describes the comparison of our method with SHAP [6], LIME [7], Grad-CAM [8]

and eXplainable CNN (XCNN) [9]. The methodologies used in these papers are described in

Related Works section. We implemented and executed each algorithm with Python, and the

codes for them include some code snippets from [30–33], respectively. One can see our code

for this comparison in [34]. The core point of our model, which any of these methods to com-

pare don’t have, is that one can see which part of the image influences the final prediction and

the output of LHL directly, with the fill color for each part of the image. The highlighted parts

in the resulting images of SHAP, LIME, Grad-CAM, XCNN, and our method are all different

for most cases. Another core point of our model is that except for the cases where any modifi-

cation cannot influence the final output prediction, our model does not fail for any image,

likely SHAP and unlikely LIME and Grad-CAM. We can make the final explanation visually

better by applying other colors to fill for the explanation made by the model. Also, by increas-

ing the value of M and N, we can describe more detailed explanations.

SHAP, image mask of LIME, Grad-CAM, and our method show the original images with

explanations so that one can find which part of the image influenced the final prediction easily.

Among these methods, SHAP explains in detail and shows the parts which have positive influ-

ences increasing the probability for a class, and negative influences decreasing it, with different

colors. But it fails for some images such as 6th and 7th left images whose SHAP results are

‘completely blue’. LIME seems to be failed for both image mask and heatmap because the size

of the original image is quite small (64x64). Because LIME uses segmentation for pixels, it is

Table 4. Meanings of variables for experimental results.

term description

Oargmax the index (starts with 0) of the largest value from VO

n, margmax the index (starts with 0) of the largest value from Vn,m

difCells the number of (n, m)’s that Oargmax is different from n, margmax

Rank the rank of the value VOargmax
n;m , among all the values from Vn,m

avgRank the average value of Rank for all the (n, m)’s

maxRank the maximum value of Rank for all the (n, m)’s

difn,m the average value of dif(VO, Vn,m)

OO the final output vector when we input IO to the CNN

On,m the final output vector when we input In,m to the CNN

O_dif the average value of dif(OO, On,m)

samMax the maximum value of difn,m when Rank = 1, among all the n’s and m’s

difMin the minimum value of difn,m when Rank > 1, among all the n’s and m’s

smax − dmin the value of samMax − difMin
O_dif/difn,m the ratio between O_dif and difn,m

maxn,m the maximum value among all the values from On,m

2ndn,m the second maximum value among all the values from On,m

max − 2nd average value of maxn,m − 2ndn,m, for all the n’s and m’s

lh_o_corr correlation coefficient of O_dif and difn,m

Table 4 shows the meaning of each variable. The range of n and m is always n = 0, . . ., N − 1 and m = 0, . . ., M − 1

respectively.

https://doi.org/10.1371/journal.pone.0267282.t004
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not good for small-size images, so the result is quite bad. In addition, there are some images

(2nd and 8th left image) that LIME failed to make explanations. Grad-CAM highlights the

area more smoothly than other methods and seems successful, but in the 3rd left image, it

shows a failure. In this image, it highlights not the circular sign with ‘30’, but the triangle sign

above it. XCNN seems to just show the ‘texture’ of the images, and it is not enough explanation

for the images.

For the images whose Dataset No. is 4 (dataset name: traffic signs (only speed limit signs),

the rightmost three images), the classification result is decided by the number(s) on the left of

the rightmost ‘0’. That is because it is decided by the number inside the sign, and the rightmost

number is always ‘0’. So, these number(s) are the most important things to decide the class of

images, and XAI methods should highlight these number(s). For example, if the image con-

tains the speed limit sign with ‘80’, XAI methods should highlight ‘8’ on the left of ‘0’. Consid-

ering these images, only the two methods (SHAP and our method) are successful. Grad-CAM

is successful for only one image (the 3rd right image) among these three images. Consequently,

because SHAP fails for some images as mentioned above, our method shows meaningful XAI

performance for car-related things images.

Conclusion

We created an XAI model to see how the CNN model predicts the class of image and which

part of the image influences the final prediction of the CNN model more than other parts.

Also, we designed the model to explain the influence of each part on the final prediction. Also,

we defined, measured, and analyzed the variables about the details of the XAI model. As from

Fig 7. Describes the comparison of our method with some other methods. They include SHAP [6], LIME [7], Grad-

CAM [8] and eXplainable CNN (XCNN) [9]. “Dataset No.” is 1, 2, 3, and 4 for “Vehicle vs. Non-vehicle”, “traffic

signs”, “traffic signs with few classes” and “traffic signs (only speed limit signs)”, respectively, “Class No.” is the ground

truth of the class of each image, and “Image No.” is the index of each image among all the images-for-test from the

dataset which includes this image.

https://doi.org/10.1371/journal.pone.0267282.g007
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Discussion section, the XAI model works well for vehicle images, non-vehicle images, and

other car-related datasets.

Our research can contribute to the CNNs used for self-driving cars by providing a simple

and intuitive XAI system. The main contribution is that we proposed a simplified method for

the XAI process for these two main contributions below, for self-driving cars, and it is also the

main difference between our method and the previous methods.

• First, our research can detect and help analyze the prediction pattern of the CNN model so it

can measure and ensure the credibility of the CNN model. So we can help to improve the

CNN model. For example, we can run our model with images with both an object and the

background. In this experiment, if the influence of the part corresponding to the object is

much more than the part corresponding to the background, we can see that the CNN model

is credible.

• Second, when the self-driving car causes an accident, we can analyze how and why the CNN

model failed to predict correctly. For example, suppose that the model predicted an object in

an image as the “non-vehicle” class, but it is a vehicle. When this situation caused the acci-

dent, we can see it from the detailed result of running the image into the XAI model.
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