
  
Abstract—Over the past decades, brain-computer interfaces 

(BCIs) have been developed to provide individuals with an 
alternative communication channel toward external environment. 
Although the primary target users of BCI technologies include the 
disabled or the elderly, most newly developed BCI applications 
have been tested with young, healthy people. In the present study, 
we developed an online home appliance control system using a 
steady-state visual evoked potential (SSVEP)-based BCI with 
visual stimulation presented in an augmented reality (AR) 
environment and electrooculogram (EOG)-based eye tracker. The 
performance and usability of the system were evaluated for 
individuals aged over 65. The participants turned on the AR-based 
home automation system using an eye-blink-based switch, and 
selected devices to control with three different methods depending 
on the user’s preference. In the online experiment, all 13 
participants successfully completed the designated tasks to control 
five home appliances using the proposed system, and the system 
usability scale exceeded 70. Furthermore, the BCI performance of 
the proposed online home appliance control system surpassed the 
best results of previously reported BCI systems for the elderly. 
 

Index Terms—augmented reality, brain-computer interface, 
electroencephalography, electrooculography, steady-state visual 
evoked potential  
 

I. INTRODUCTION 
rain-computer interface (BCI) technology facilitates 
communication between users and external environments 

without involving any physical body movements [1, 2]. Various 
non-invasive techniques have been employed to measure brain 
activity, including magnetoencephalography (MEG), 
functional near-infrared spectroscopy (fNIRS), and 
electroencephalography (EEG). Among these, EEG has been 
most widely used owing to its affordability, portability, and 
ease of use. Over the past decades, various EEG-based BCIs 
have been developed and used in a range of applications, such 
as games [3], communication applications [4, 5], wheelchair 
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control [6], and smart home automation [7, 8]. 
Although the target users of BCI systems primarily comprise 

the elderly and people with physical disabilities, most BCI 
systems developed to date have been tested with the healthy, 
young population [9]. There are several reasons why BCI 
systems have not been applied to target users. First, most BCI 
studies are conducted in universities where participants in their 
twenties are readily available. Second, it is difficult to recruit 
elderly subjects or patients compared to healthy young subjects 
[10, 11]. 

The participation of young, healthy subjects may lead to the 
overestimation of the performance of a developed BCI system. 
Consequently, the “true performance” of the system may 
remain unknown. In previous studies, it has been frequently 
reported that compared to the older population, the participation 
of the younger population exhibited significantly higher BCI 
performance, particularly in terms of classification accuracy. 
For instance, Chen et al. [12] reported their vibro-tactile BCI 
system showed lower classification accuracy for an older 
population, compared to a younger population. Moreover, 
Gembler et al. [9] also reported that a group of elderly 
participants exhibited lower classification accuracy than a 
group of young participants in a BCI speller application based 
on steady-state visual evoked potential (SSVEP)-based BCI. 
Furthermore, in a study that investigated the variations of 
performance in sensorimotor-rhythm (SMR)-based BCIs, the 
authors stated that a negative correlation between age and BCI 
performance was conceivable [13]. Similarly, a succession of 
studies has reported evoked potentials with higher amplitude 
and shorter latency in younger participants than in older 
participants [14-16], which most likely resulted in higher 
performance of BCI systems based on evoked potentials. 

In the present study, we developed a home automation (HA) 
system by combining SSVEP-based BCI, augmented reality 
(AR), electrooculogram (EOG)-based eye tracker, and internet-
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of-things (IoT) technologies. Subsequently, we evaluated the 
performance and usability of the system for people aged over 
65 years. Accordingly, the participants were asked to control 
home appliances through the SSVEP-based BCI, an eyeblink-
based asynchronous switch, and an EOG-based eye-tracker, 
without any external assistance. During the experiment, all the 
user interfaces were presented in an AR environment via a 
commercially available head-mounted display (HMD). 
Depending on whether a device was compatible with IoT, the 
home appliances were controlled either wirelessly in an IoT-
based network or using infrared (IR) signals. The performance 
of the proposed system was evaluated in online experiments 
involving participants aged over 65 years, where five types of 
home appliances were controlled in real-time. Furthermore, the 
usability of the proposed system was also assessed with a 
questionnaire called system usability scale (SUS) that has been 
widely employed to quantitatively evaluate the practical 
usability of a system [17]. 

This study is sectioned as follows: The methods used in the 
offline experiments to determine the optimal visual stimulation 
time and electrode configurations are described in Section 2A. 
Detailed descriptions of the proposed home appliance control 
system and the online experimental paradigms are presented in 
section 2B. The experimental results from the offline and online 
experiments are presented in Section 3A and 3B, respectively. 
Lastly, some issues associated with the proposed system are 
discussed in Section 4.  

II. METHODS 

A. Experiment I – Offline Experiment to Determine Optimal 
Duration of Visual Stimulation and Individualized Electrode 
Configuration 

1) Subjects: In total, 21 healthy individuals aged over 65 
years (10 females and 11 males, average age 67.5 ± 3.0 years, 
ranging between 65 and 75) participated in the offline 
experiment that aimed to determine optimal window size and 
individualized electrode configuration. All participants had a 
normal or corrected-to-normal vision and none of them had a 
history of neurological, psychiatric, or ocular diseases. The data 
of two participants were excluded from further analyses 
because there were no observable spectral peaks at any SSVEP 
stimulation frequencies in the amplitude spectrum of the 
recorded EEG data. Therefore, the EEG data of 19 participants 
were analyzed. Generally, “BCI illiteracy” is a well-known 
issue in all types of EEG-based BCIs [18].  

All participants were informed about the details of the 
experiments, and gave written consent before the experiment 
began. The study and the experimental paradigm were approved 
by the institutional review board of Hanyang University, South 
Korea (IRB No. HYI-14-167-13). 

 
2) Experimental Paradigm: The offline experiment comprised 
three sessions, each consisting of 25 trials. In each trial, five 
visual stimuli flickering at 6.6, 7.5, 8.57, 10, and 12 Hz were 
presented to a see-through display of an AR headset, MS 
HololensTM (Microsoft Corp., Redmond, WA, USA). The 

visual stimuli flickered for 7 s with 7 s inter-stimulus interval 
(ISI). Meanwhile, the participant was instructed to keep 
focusing on one of the visual stimuli without blinking and 
making body movements. In the experiment, we employed a 
star-shaped stimulus called grow/shrink stimulus (GSS) which 
flickers and varies its size simultaneously to evoke SSVEP 
responses, due to its superiority in comparison with the 
conventional visual stimuli in AR environment in terms of 
classification accuracy [7]. The visual stimuli for the offline 
experiment are shown in Fig. 1(a), with the corresponding 
visual angle set to 6.4°. Note that the visual stimuli were 
designed to be fixed in designated positions in AR environment 
to make the users feel more comfortable with the stimuli.  

3) Data Recording and Analysis: The EEG data were 
recorded from 12 electrode locations (Cz, Pz, P3, P4, P7, P8, 
POz, PO3, PO4, Oz, O1, and O2) at a sampling rate of 2,048 
Hz from 12 electrode locations using a Biosemi ActiveTwo 
system (Biosemi, Amsterdam, The Netherlands). Subsequently, 
the data were down-sampled at a sampling rate of 512 Hz to 
reduce the computational cost before being bandpass filtered 
with cutoff frequencies of 2 and 54 Hz to remove low-frequency 
baseline drift and power line noise (60 Hz) using a Butterworth 
filter in MATLAB (MathWorks Inc., Natick, MA, USA). 

We employed an algorithm called extension of multivariate 
synchronization index (EMSI) [19] to classify the SSVEP 
responses. The algorithm recognizes the target frequency by 
evaluating the synchronization index between given EEG data 
and reference signal with each stimulation frequency, and then 
finding the stimulation frequency that maximizes the index. 
More details on the EMSI algorithm can be found in [19].  

To evaluate the feasibility of the proposed system with the 
universal electrode set, we first computed the classification 
accuracy with the widely adopted electrodes in SSVEP-based 
BCIs, O1, Oz, and O2. Subsequently, we calculated the 
classification accuracies for all possible combinations of three 
electrodes out of the eleven electrodes attached above the 
parietal and occipital cortices (Pz, P3, P4, P7, P8, POz, PO3, 
PO4, Oz, O1, and O2), then selected a set of three electrodes 
that exhibited the highest performance for each participant.  

Moreover, we computed information transfer rate (ITR) [20] 
with varying window sizes to determine the optimal window 
size, which was based on the following equation: 

𝐼𝑇𝑅 = !"
#
%log$𝑁 + 𝑃 log$ 𝑃 + (1 − 𝑃) log$

(&'()
(*'&)

0 , (1) 
where T denotes the window size in seconds, N represents the 
number of possible targets, and P indicates the classification 
accuracy. Since the testing dataset did not follow a normal 
distribution (Kolmogorov-Smirnov test), the Bonferroni-
corrected Wilcoxon signed rank test was applied to test the 
statistical significance of the difference between performances 
for universal and individualized electrode configurations.  

 

B.  Experiment II – Online Home Appliance Control 
Experiment 

1) Subjects: We attempted to enroll all participants from the 
offline experiment for the online experiment as well. Six of 
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nineteen participants refused to participate in the online 
experiment, primarily due to the prevalence of the COVID-19 
pandemic during the online experiment. Consequently, thirteen 
participants participated in the online experiment. 
 

2) Data Recording: The EEG data were recorded from the 
three electrode locations that were individually determined in 
the offline experiment. The recording device and sampling rate 
was the same with offline experiment. Additionally, the EOG 
signals for eye-tracking were measured from four electrodes 
attached around the eyes as shown in Fig. 1(b).  

 
3) Hierarchical Constitution of the Proposed System: As 

illustrated in Fig. 2, the proposed system was designed to have 
multiple stages comprising the following four stages:  

(i) Idle state. To allow the participants to switch on/off 
the proposed HA system on their own, an 
asynchronous switch based on eye blink was 
employed using multiple-window summation of first 
derivatives in a sliding window (MSDW) [21]. The 
MSDW algorithm computes a vertical EOG 
component to detect an eyeblink by  

𝐸𝑂𝐺+ =	𝑉, 	−	𝑉- , (2) 
where VU and VD correspond to the potential values 
recorded above and below the right eye, 
respectively, as shown in Fig. 1(b). Accordingly, the 
system was turned on or off each time four 
successive eyeblinks were detected within 3 s. 
Unless the user turns on the switch by successively 
blinking the eyes, the system remained in an idle 
state. The user could also turn off the system by 
using the eyeblink switch and return to the idle state 
at any time during the system operation. 

(ii) Determination of device selection methods. The 
proposed HA system provided three options that the 
user can take to select a device to control (image 
recognition, SSVEP, and eye writing). Accordingly, 
the user could select the device using a method they 
prefer. Once a user turned on the system via the 
eyeblink switch, the user could select the target 
device to control using one of the three methods. The 
control method was determined based on the number 
of executions of the eyeblink switch. Image 
Reconstruction method was automatically selected 
when the user did not blink their eyes within 3 s after 
turning on the system. The SSVEP method was 

selected if the user started to execute the eyeblink 
switch again within 3 s after turning on the system. 
The Eye Writing method was selected if the user 
executed the eyeblink switch twice. Fig. 2 illustrates 
the flowchart of this process.  

(iii) Device selection methods. The methods employed to 
select the target device to control are as follows: 
(a) Image Recognition method. Maintaining a gaze 

at an image card attached to each device for 2 s 
allowed the participants to select the device. The 
image recognition on Hololens was realized 
with a toolbox called Vuforia in Unity 3D (Unity 
Technologies ApS, San Francisco, CA, USA), 
with the image received through a built-in 
camera of Hololens. Fig. 3(a) illustrates the 
image cards attached to each device. In our 
experiment, a total of five home appliances (TV, 
air purifier, humidifier, heater, and audio) were 
prepared. 

(b) SSVEP method. The user could select the device 
to control by staring at one of the five visual 
stimuli flickering at different frequencies, each 
having an icon representing the device to be 
controlled, as depicted in Fig. 3(b). Accordingly, 
the device could be selected based on the 
SSVEP detection algorithm (EMSI) as 
described previously. Based on the optimal 
window size determined in the offline 
experiment, the duration of stimulus 
presentation was set to 3 s. 

(c) Eye Writing method. The user could select the 
device by writing a pattern of a number 
designated for each device, using their ocular 
movement. Consequently, the eye-writing 
patterns could be identified based on the EOG-
based eye-tracking introduced in [22], which 
provides a detailed description on the method. 
Accordingly, five number patterns were 

 
Fig. 1. Flow-chart of the proposed online home appliance control system. 

 
Fig. 2. (a) Visual stimuli presented in Experiment I. The stimulus to gaze 
in next trial was guided by an arrow. (b) Configuration of four electrodes 
to compute vertical and horizontal EOG components. 
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employed in the present experiment. Moreover, 
the user could also write an eye-writing pattern 
corresponding to ‘0’ to show a ‘help’ window 
which will remind all the number patterns (see 
Fig. 3(c)). The ‘help’ display was visualized for 
5 s before it disappeared. During the eye-writing 
recognition session, nine guide dots were 
visualized on the AR display lasting for 5 s (see 
Fig. 3(d)). The movement of the eyes was 
reconstructed from the horizontal and vertical 
EOG components and the pattern that best 
matches the predefined symbolic patterns was 
selected [22]. 

(iv) Command selection. Once the user selected a device 
to control using one of the three device selection 
methods, the user could then execute the control 
commands of the device by staring at the visual 
stimuli, as described in the ‘(iii) Device selection 
methods – (b) SSVEP method’ section. In total, five 
visual stimuli were presented, which comprised four 
control commands and one ‘back’ command to 
directly return to the device selection stage (see Fig. 
4), except for the TV control. However, the ‘back’ 
command was not provided with in the command 
selection stage in TV control which required five 
control commands; the user needed to turn off and 
turn on the system by serially executing the eyeblink 
switch to select other devices during TV control. In 
each trial, the visual stimuli were presented for 3 s 
with an ISI of 7 s. The command selection trials were 
repeated until the user turned off the system by 
executing the eyeblink switch, thereby allowing the 
user to control the selected device as intended. Once 
the command selection session was completed, the 
participants could turn off the entire system by 

executing the eyeblink switch and returning to the 
idle state. Fig. 2 presents the overall structure of the 
system operation. In our experiments, the control 
commands were transmitted to the devices using one 
of the following two methods: i) Internet of things 
(IoT) and ii) Infrared (IR) remote controller. Because 
the humidifier and air purifier were devices 
embedded with IoT function, they were controlled 
wirelessly via a custom software developed using 
Samsung IoT device control application 
programming interface (API) (Samsung Electronics, 
Co. Ltd., Seoul, South Korea). Devices that were 
incompatible with IoT were controlled using an IR 
transmitter embedded in an Arduino microcontroller. 
The control commands for each device control are 
presented in Table I. 

4) Online Experimental Paradigm: The online experiment 
comprised three sessions, each with two blocks. For each 
session, the participants were instructed to use one of the three 

 
 
Fig. 3. Three different device selection methods implemented in the online 
home appliance control system. (a) Image cards corresponding to each 
device. (b) Five SSVEP stimuli corresponding to each device. Each stimulus 
flickered at different frequencies and had an icon of the corresponding device. 
(c) Six eye movement patterns corresponding to each device, and a ‘help’ 
command to remind the eye movement patterns. (d) Nine dots presented in 
the eye writing stage to assist the eye movement. 

TABLE I 
PRESENTED COMMANDS OF EACH HOME APPLIANCE IN ‘COMMAND 

SELECTION’ STAGE 

Home  
Appliance Commands 

TV On/Off 
(Toggle*) 

Volume 
Up 

Volume 
Down 

Channel  
Up 

Channel 
Down 

Air Purifier On/Off 
(Toggle*) 

Wind-auto 
Mode 

Wind-turbo 
Mode 

Sleep  
Mode Back 

Humidifier On/Off 
(Toggle*) 

Wind-auto 
Mode 

Wind-turbo 
Mode 

Sleep  
Mode Back 

Audio On/Off 
(Toggle*) Play/Pause Volume  

Up 
Volume 
Down Back 

Heater On/Off 
(Toggle*) 

Temperature 
Up 

Temperature 
Down 

Wind 
Mode 

Change 
Back 

* The on/off command functioned as a toggle switch, according to the 
device status. 

 

 
Fig. 4. The visual stimuli presented in the command selection stage. The 
visual stimuli corresponding to the selected device was presented in the 
AR display. Each stimulus was represented by intuitive icons representing 
different control commands. 
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device selection methods to select the device to control, and to 
select and control a device for each block. Consequently, each 
participant used all three device selection methods throughout 
the experiment and controlled all five devices by performing 
total six blocks. In each block, participants were instructed to i) 
switch on the HA system, ii) select the given device selection 
method, iii) select the designated device to control, iv) execute 
control commands according to the pre-instructed order, and v) 
turn off the system. If the device exhibited malfunctions due to 
an unintended command mistakenly selected by a participant or 
a mis-classification of SSVEP responses, then the participant 
had to correct the false operation and complete the remaining 
tasks. For example, assume that the given task was to select 
heater and execute “temperature up” command. If the heater 
was turned off by participant mistakenly or due to a 
misclassification, then the participant had to turn the heater 
back on by staring at the stimulus with “on/off” icon and then 
stare at the “temperature up” stimulus again to complete the task. 
In another example, if the given task was to select the air 
purifier but TV was selected, then the participant could go back 
to the previous stage (device selection stage) by staring at the 
stimulus with “back” icon and select the air purifier again. 
Alternatively, the participant could simply turn off the system 
and turn it on again using eyeblink switch, and then select the 
air purifier in the device selection stage. The participants 
managed to tackle the problematic situation according to their 
own preferences. The minimal number of trials required to 
complete each block in the command selection stage was six for 
TV, and five for the other four devices. Each participant was 
given approximately 10 min to familiarize themselves with the 
device determination methods and the proposed HA system 
before the experiment, and then instructed on the designated 

device selection method, device, and commands prior to each 
session.  

After finishing each session, the participants watched a 
YouTube video for approximately 4 min to investigate the time 
needed to operate the eyeblink switch and the possible false 
positive rate (FPR) of the eyeblink switch. To measure the time 
needed to operate the eyeblink switch, the participants were 
asked to operate the switch whenever the video paused by the 
experimenter at three random time points. Once four eyeblinks 
were successfully detected for switch operation, the 
experimenter played the video again. The operation of the 
switch while watching the video was counted as a false 
operation of the switch.  

Once the entire experiment concluded, the participants were 
asked to fill a questionnaire called system usability scale (SUS) 
to evaluate usability of the proposed system. In the experiment, 
the Korean version of the questionnaire [23] were provided, 
since all participants were native Koreans. A demonstration 
video clip of the proposed HA system can be found in the 
following link: https://youtu.be/qJkPxU-0m38. 

III. RESULTS 
A. Experiment I – Offline Experiment to Determine Optimal 
Duration of Visual Stimulation and Individualized Electrode 
Configuration 

To determine the optimal duration of visual stimulation, the 
classification accuracy and ITR were evaluated using different 
window sizes with the universal and individually selected 
electrodes (see Fig. 5). First, we tested the statistical 
significance of the performance difference between the 
universal and individualized electrode configurations, using a 
Bonferroni-corrected Wilcoxon signed rank test. The 
individually selected electrodes showed significantly improved 
performance compared to the universal electrodes set for many 
window sizes, in terms of both the classification accuracy and 
ITR. The list of the individually selected electrodes sets for each 
participant and the grand averaged SSVEP response are 
presented in the Table V and Fig. 8 of Appendix section, 
respectively. 
 In this study, we selected 3 s as the optimal duration 
of stimulus presentation, which was primarily based on the 
following two observations. First, a higher ITR can be achieved 
with a shorter window size since ITR is in inverse proportion to 
window size. Second, although the ITR was higher with a 
shorter window size, the classification accuracy with the 
shortest window size, i.e., 1.5 s, was only 80.2%. In contrast, 
the classification accuracy for a window size of 3 s was 91.6%, 
which was considered to be sufficiently high with a 
classification accuracy comparable to that with the window size 
of 4 s (93.6%). It should be noted that the classification 
accuracy was almost saturated for window sizes larger than 3 s.  

 
B. Experiment II – Online Home Appliance Control 

 
Fig. 5. Comparison of the mean classification accuracy and ITR 
calculated with universal and individualized electrode configurations, 
with respect to different window sizes. (*p<0.05, ***p<0.005, 
****p<0.001, Bonferroni-corrected Wilcoxon signed rank test) 
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The classification accuracy and ITR achieved in the online 
home appliance control experiments are listed in Table II. All 
participants successfully completed the experiment. In the table, 
the parameter ‘Total Trials’ represents the number of trials each 
participant performed to complete the experiment. Meanwhile, 
‘Correct Trials’ represents the number of the trials in which the 
pre-instructed devices or commands were selected correctly by 
the participant, while ‘Incorrect Trials’ corresponds to the 
number of misclassified trials. The number of trials differed 
across participants because each participant had different 
numbers of errors and adopted their own strategy to correct the 
wrong operation. The classification accuracy was evaluated by 
dividing the number of correct trials by the number of total trials 
(correct trials) / (total trials). The classification accuracy and 
ITR were 88.8% and 34.0 bits/min on average, respectively. 

Table III lists the overall performance of the eyeblink switch. 
Evidently, the time of 4.1 s was required to operate the eyeblink 
switch on average, although the switch was designed to operate 
by the detection of four eyeblinks within 3 s. It should be noted 
that this result does not imply that the participants failed to 
operate the switch, instead, it infers that the participants 
occasionally had difficulty blinking rapidly for the first 3 s, and 
thus they had to keep blinking a few more times. Consequently, 
the first time point where the four eyeblinks were detected 
within recent 3 s was 4.1 s on average. The FPR of the eyeblink 
switch was 0.08 times per minute, or 4.98 times per hour on 
average. During the online experiment, if the status of the 
system was changed by a false operation of the eyeblink switch, 

the participants had to return to the designated stage by 
executing the eyeblink switch again by repeatedly blinking their 
eyes.  
 Figure 6 illustrates the accuracy of device selection 
through the EOG-based eye writing recognition for each 
participant. Reportedly, the classification accuracy was 89.3% 
on average, with most participants managing to select a device 
with 100% accuracy, three participants exhibited 75% accuracy 
and only one participant exhibited 36.4% accuracy. Importantly, 
the accuracy of device selection through image recognition was 
100% for all participants. 

The usability of the proposed system investigated using SUS 
is presented in Table IV. The SUS score ranges between 0 and 
100, with 0 representing the poorest usability and 100 reflecting 
the best usability. The investigated SUS score for the proposed 
HA system was 71.2, ranging between 45 and 92.5. Even 
though an absolute criterion does not exist for evaluating the 
SUS scores, the SUS score of 70 on average was proposed as 
an acceptable minimum according to the original literature 
related to SUS [24]. 

IV. DISCUSSION 
With the recent advances in medicine, healthcare, and 

therapeutics, the general life expectancy of the population is 
gradually increasing. Consequently, the social burden of caring 
for the elderly is becoming a serious problem [25]. Admittedly, 
various assistive technologies have been proposed to aid the 
elderly accomplish their daily life activities, e.g., an exercise 

TABLE III 
PERFORMANCE OF EYEBLINK-BASED SWITCH IN EXPERIMENT II 

Subject Time elapsed to 
switch on/off (s)  

FPR 
(times/min) 

FPR 
(times/hour) 

P1 2.3 0.19 11.50 

P2 3.9 0 0 

P3 8.7 0.14 8.65 

P4 6.5 0.28 16.76 

P5 4.3 0.08 4.78 

P6 5.6 0 0 

P7 5.5 0.03 2.07 

P8 2.4 0 0 

P9 2.5 0.11 6.71 

P10 4.3 0.04 2.40 

P11 2.4 0.11 6.86 

P12 2.2 0 0 

P13 2.3 0.08 5.05 

Mean 4.1±1.0 0.08±0.02 4.98±1.42 

 

TABLE II 
SSVEP CLASSIFICATION PERFORMANCE IN EXPERIMENT II 

Subject Total 
Trials 

Correct 
Trials 

Incorrect 
Trials 

Accuracy 
(%) 

ITR 
(bits/min) 

P1 60 42 18 70.0 16.8 

P2 55 39 16 70.9 17.4 

P3 38 36 2 94.7 38.4 

P4 36 35 1 97.2 41.7 

P5 34 34 0 100 46.4 

P6 34 34 0 100 46.4 

P7 50 38 12 76.0 20.9 

P8 34 34 0 100 46.4 

P9 43 37 6 86.0 29.2 

P10 34 34 0 100 46.4 

P11 45 34 11 75.6 20.6 

P12 40 36 4 90.0 33.1 

P13 36 34 2 94.4 38.0 

Mean    88.8±3.3 34.0±3.3 
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monitoring system using user’s physiological signals [26]. 
However, there has been no such system to control home 
appliances in a hands-free manner with reliable performance, 
which can assist the elderly to live without a caregiver at home. 
Moreover, it has been also reported that using such smart home 
systems for the elderly can improve their health conditions and 
their independence [27]. However, despite recent advances in 
neural engineering and signal processing fields, no BCI study 
controlling external devices has demonstrated a practical 
performance level and usability with the elderly. In the present 
study, the authors strived to overcome the shortcomings of the 
previous BCIs by combining AR-HMD with SSVEP-based 
BCI and EOG-based eye-tracking and by designing a system 
architecture that allows these end users to select devices with a 
preferred method. Furthermore, the employment of AR-HMD 
has given mobility and flexibility to the proposed HA system 
by ensuring that the users no longer have to stay in front of the 
screen to present visual stimulus in conventional BCI systems. 

In the present study, AR, BCI, and IoT technologies were 
combined to develop a real-time home appliance control system 
for the elderly. Subsequently, we evaluated the performance 
and usability of the proposed system involving people aged 
over 65 years. In the offline experiment, the optimal duration of 
visual stimulation and individualized electrode configurations 
were determined. Subsequently, we developed an online 
SSVEP-based BCI system using the experimental conditions 
determined in the offline experiment. The implemented online 

home appliance control system provided users with various 
interfacing options by combining image recognition, EOG-
based eye writing, and the eyeblink-based switch with the 
conventional SSVEP-BCI system. The experimental results 
revealed that all elderly participants successfully controlled five 
home appliances with the proposed HA system, suggesting that 
the proposed system has potential to be utilized in practical 
scenarios.  

The performance of the proposed HA system was compared 
with those of previous BCI-based external environment control 
systems targeted to the older adults, as presented in Table IV. 
To the best of our knowledge, the performance of the device 
control system in this study surpassed the best results reported 
in the literature on BCIs for external device control for the 
elderly, in terms of both accuracy and ITR. Although the system 
proposed by Schettini et al. showed higher accuracy than the 
proposed HA system, the ITR of their system was significantly 
lower than that of our system. Most importantly, the proposed 
system does not require any calibration session, whereas most 
of the BCIs reported in previous literature required a calibration 
session to train a classifier. Although the authors used 
individualized electrode configurations to enhance the overall 
performance of the system, the performance with the universal 
electrode configuration (O1, Oz, and O2) was also sufficiently 
high to be employed in practical home appliance control 
applications (Fig. 5). Although some previous studies reported 
higher SUS than ours, it is expected that the usability of the 
proposed system may be further enhanced by employing 
control functions based on the pre-experimental survey with the 
participants or by incorporating additional functions into the 
HA system such as communication and PC applications [38]. 

Although the average SSVEP classification accuracy was 
higher than 90% for a 3 s window size in the offline experiment, 
the average accuracy was only 88.8% in the online experiment 
even when the same window size was used. It has been 
frequently reported that the BCI performance in online sessions 
was higher than that in offline or calibration sessions for various 
reasons, including the training effect [28-30]. However, unlike 
previous literature that compared the performances in offline 
and online BCI experiments, the experimental paradigm 
employed in the online experiments in this study was even more 
complex than that for the offline experiment. Indeed, many 
additive functions including image recognition, eye writing, 
and eyeblink switch were employed during online experiments, 
all of which the participants had not experienced in the previous 

 
Fig. 6. Classification accuracy of device selection using the eye writing. 

TABLE IV 
COMPARISON OF PERFORMANCE WITH PREVIOUSLY REPORTED BCIS TO CONTROL EXTERNAL DEVICE FOR THE ELDERLY 

Study BCI paradigm Age of 
participants SUS score Accuracy (%) ITR (bits/min) Necessity of 

calibration 
Simon et al. 

[40] Auditory P300 66 82.5 47 6.1 Y 

Schettini et al. 
[38] Visual P300 60 80.3 91 <10 Y 

Pasqualotto et al. 
[39] Visual P300 56.5 71.2 N/A 8.7 Y 

Proposed system SSVEP 67.5 71.2 88.8 34.0 N 
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offline experiment. Moreover, the BCI performance might be 
affected by the circumstance of the online experiment because 
the participants had to complete the pre-instructed task based 
on their own decision when a false operation occurred. Indeed, 
the degradation of BCI performance due to an increased 
cognitive workload has been frequently reported [31]. 

In the online experiment, on average, the eyeblink switch 
required 4.1 s to operate the switch, and the averaged FPR of 
the switch was 4.98 times per hour. Compared to our previous 
study [7], in which younger people participated and an average 
FPR of 0.89 times/h was achieved with the same eyeblink 
switch, this result revealed considerably degraded performance. 
Indeed, the participants in this study occasionally struggled to 
repeatedly blink their eyes within such a short period, although 
they had no problem in their ordinary blink. This phenomenon 
is presumably attributed to the age, which is primarily based on 
the reports that the functionality of eyelids of older population 
is reduced compared to younger population [32, 33]. Moreover, 
it has been reported that older population takes longer in 
spontaneous eye blinking as well as in intentional eyeblinks 
[32-34]. Nevertheless, in the online experiment of this study, all 
the participants successfully determined the device selection 
method using the eyeblink switch, and could complete the 
designated task by switching on and off the HA system using 
the eyeblink switch even when unexpected false operations 
occurred. In this study, the main target subjects were the elderly, 
not the patients with locked-in syndrome, but it is expected that 
our hybrid EEG and EOG system can also be applied to some 
patients with amyotrophic lateral sclerosis (ALS) because the 
oculomotor function is generally the last motor-related function 
remaining in those with severe ALS.  

The individually selected electrode sets for each participant 
and the topographical distribution for the number of selections 
of each electrode are presented in Table V and Fig. 7 in the 
Appendix section, respectively. Although O1, Oz, and O2, the 
traditional electrode set widely employed for SSVEP-based 
BCIs were most frequently selected, it is noteworthy that P7 
showed remarkable number of selections while P8 was rarely 
selected. This result might be in line with a previous report that 
showed motion-evoked P300 amplitude was significantly larger 
in the left hemisphere than in the right hemisphere [35], 
although further investigations are still needed.  

The average SUS score for the proposed HA system was 
shown to be approximately 71. It is a score that satisfies the 
minimum acceptance level suggested by the original literature 
proposing SUS [24]. Based on the studies by Kortum et al. [36, 
37], in which the usability of various daily products and mobile 
applications were investigated using SUS, the score of the 
proposed HA system is higher than Excel (SUS score: 56.5; 
Microsoft, Corp., Redmond, WA, USA), lower than 
Microwaves (SUS score: 86.9), and similar to Skype (SUS 
score: 71; Microsoft Corp., Redmond, WA, USA). In addition, 
a study reported that the conventional control interfaces such as 
mouse and buttons scored SUS of 84 on average with elderly 
participants [38]. Given that most of the BCI studies focus on 
methodological aspects while neglecting usability aspects [39], 
enhancing the usability of the proposed HA system could be an 

interesting research topic that has to be pursued in the future 
study. The usability of the proposed system may be enhanced 
by i) employing control functions preferred by participants via 
a pre-experimental survey, or ii) adding functions such as 
communication as in [38]. 

Although presentation of visual stimulus is inevitable in 
SSVEP-based BCI systems, the usability of the visual 
stimulation method in the proposed system was not evaluated, 
which includes fatigue caused by visual stimulation. Reportedly, 
a motion-reversal stimulus caused less fatigue and mental 
workload compared to a flickering stimulus in a previous study 
[41]. The comfortability of the visual stimulus adopted in the 
present study and GSS that changes its size and luminance 
concurrently has not yet been investigated, the usability of this 
relatively new type of stimulus should be evaluated in a future 
study. Furthermore, as AR and IoT are cutting-edge 
technologies, their usability and user acceptance are also crucial 
aspects. Indeed, various applications for the elderly using AR 
and IoT have been recently developed and the usability of the 
applications, such as friendliness and comfort, has also been 
investigated and has received positive responses [42-45]. For 
example, Aruanno et al. developed a cognitive training program 
in AR environment using Hololens before evaluating its 
usability for people with 64–67 years old, reporting that the task 
achievement was independent of their familiarity to the 
technology or technological knowledge. Relatively, even 
people who never used a computer could correctly accomplish 
all the given tasks, owing to the intuitive interaction methods 
provided by Hololens [44]. As an another example, Lera et al. 
[42] developed a software to instruct drug dose in AR 
environment and evaluated its usability with people aged 59–
90, and the averaged ‘AR usefulness’ and ‘AR friendliness’ 
scores were 4.4 and 3.8 out of 5, respectively. Reportedly, the 
elderly accommodated the necessity of IoT technology and 
presented a high level of willingness, after acquiring sufficient 
awareness about the benefits of IoT [45]. Moreover, as the 
technologies are still in early stages of development, the 
usability is expected to be further enhanced in the future. 

APPENDIX 
Table V and Figs. 7 and 8 are included in this Appendix section. 

 
Fig. 7. Topographical distribution of the number of employments for 
individually selected electrode set in Experiment I. 
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TABLE V 

INDIVIDUALLY SELECTED ELECTRODE SETS FOR EACH PARTICIPANT 

Subject Channels  Participated 
Experiments 

P1 Pz, O1, Oz I, II 

P2 P7, Oz, O2 I, II 

P3 P7, P3, Oz I, II 

P4 P7, P8, Oz I 

P5 P7, O1, Oz I, II 

P6 O1, Oz, O2 I, II 

P7 O1, Oz, O2 I 

P8 Pz, P8, Oz I 

P9 P3, Oz, O2 I, II 

P10 P7, P3, PO4 I, II 

P11 P7, POz, O1 I 

P12 P7, Pz, Oz I, II 

P13 O1, Oz, O2 I, II 

P14 P7, P4, O1 I, II 

P15 Pz, Oz, O2 I 

P16 P7, P4, O1 I, II 

P17 P8, O1, Oz I, II 

P18 O1, Oz, O2 I, II 

P19 P3, P8, POz I 
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