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In this paper, a new multi-group neutron-gamma transport calculation code system STRAUM-MATXST
for complicated geometrical problems is introduced and its development status including numerical
tests is presented. In this code system, the MATXST (MATXS-based Cross Section Processor for SN
Transport) code generates multi-group neutron and gamma cross sections by processing MATXS format
libraries generated using NJOY and the STRAUM (SN Transport for Radiation Analysis with Unstructured
Meshes) code performs multi-group neutron-gamma coupled transport calculation using tetrahedral
meshes. In particular, this work presents the recent implementation and its test results of the Krylov
subspace methods (i.e., Bi-CGSTAB and GMRES(m)) with preconditioners using DSA (Diffusion Synthetic
Acceleration) and TSA (Transport Synthetic Acceleration). In addition, the Krylov subspace methods for
accelerating the energy-group coupling iteration through thermal up-scatterings are implemented with
new multi-group block DSA and TSA preconditioners in STRAUM.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The accurate solutions of the Boltzmann transport equation for
neutral particles (e.g., neutron and photon) are essential for many
engineering fields such as radiation shielding and activation anal-
ysis, nuclear reactor analysis, and medical applications. Therefore,
there have been much efforts to develop the radiation transport
calculation codes using unstructuredmeshes [1,2]. The STRAUM (SN
Transport for Radiation Analysis with UnstructuredMeshes) code is
also a deterministic code which has been developed by the authors
for radiation transport calculation with SN method and unstruc-
tured tetrahedral meshes. The purpose of the STRAUM code
development is to provide the detailed forward and adjoint solu-
tion results [3] of the neutron and gamma coupled multi-group
transport equation for complicated geometrical problems. In
STRAUM, Discontinuous Finite Element (DFEM) [4] and LDEM-SCB
(Linear Discontinuous Expansion Method with Subcell Balances)
[5] spatial discretization methods were employed to solve the
transport equation with unstructured tetrahedral meshes. And the
DSA method which was derived by discretizing the continuous
ineering, Hanyang University,
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diffusion equation in a consistent way with LDEM-SCB (1) was
successfully developed and applied [6] to accelerate the scattering
source iteration. Since the 2000s, the Krylov method has become
one of the standard iterative method for effectively solving the
discrete ordinates transport equation rather than the conventional
scattering source iteration [7]. Recently, we have implemented two
Krylov subspace methods (i.e., Bi-CGSTAB and GMRES(m)) to
improve the stability and speed of convergence of thewithin-group
scattering iteration in the STRAUM code. In addition, the Krylov
space methods have been extended to effectively solve multi-group
coupling calculation through thermal up-scatterings [8]. For the
multi-group coupling iteration, the diagonal within-group and
lower triangular block Gauss-Seidel preconditioners in energy
groups have been suggested and implemented based on DSA and
TSA for the LDEM-SCB(1) discretization option. Then, the numerical
performance of eachmethod was analyzed in detail for both simple
and realistic reactor level test problems.

Currently, the STRAUM code uses unstructured tetrahedral
meshes generated by Gmsh [9] after importing a CAD file but the
Gmsh-generated mesh files are not consistent in the STRAUM code.
So, recently, we have written an in-house program to automatically
generate the mesh files for STRAUM by processing the meshes files
generated by Gmsh.

Originally, the STRAUM code used neutron-gamma coupled
cross sections of the ISOTXS files which were generated using the
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TRANSX code. However, the ISOTXS format has some limitations in
that the syntax is not extendable, so an only limited number of data
are included, and the background cross section is not included. So,
recently, we have developed the MATXST code [10] (MATXS-based
Cross Section Processor for SN Transport) for generating multi-
group cross sections for STRAUM. The MATXST code reads
MATXS-formatted cross section files and generates a multi-group
cross section for the STRAUM code using transport corrections
and the Bondarenko iteration for self-shielding effect. The coupled
calculation of STRAUM and MATXST was applied to a simplified
reactor shielding problem and the results were compared to the
MCNP calculation results for numerical validation.
2. Theory and methodology

2.1. Discrete ordinate method

The steady-state neutral particle transport equation is given by

bU$Vj
�
r!; E; bU�þ St

�
r!; E

�
j ¼ q

�
r!; E; bU�

; (1)

where j is angular flux, St is total macroscopic cross section, and q
is source term. In a fixed source problem, the source term is defined
as the sum of scattering and external source terms as follows:

q ¼ qs þ qex; (2)

where qex represents the external source term, and qs represents
the scattering source term which is given by

qs ¼
ð∞
0

dE
0
ð
4p

dbU0
Ss
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/E; bU0

$bU�
j
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r!; E

0
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: (3)

Applying the multi-group and the discrete ordinates approxi-
mations to the transport equation (i.e., Eq. (1)) with Legendre
expansion to the scattering anisotropy gives the following multi-
group discrete ordinates transport equation:

bUn$Vj
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(4)

where

jg
n≡j

gðbUnÞ;

S
g
t ¼ macroscopic total cross section for group g,

S
g0/g
s;ℓ ¼ ℓ th moment of the scattering cross section from g0 to g,

Rℓm ¼ tesseral (or real) spherical harmonics function,
fℓm ¼ flux moment corresponding to Rℓm.
In the SN method, the flux moments are calculated by numerical
integration using the quadrature rules over the angular space of
unit sphere as follows:

fℓm ¼
ð
4p

RℓmðbUÞjðbUÞdUy
XN
n¼1

wnjnRℓmðbUnÞ; (5)

where bUn is a discrete ordinate direction, wn is the corresponding
weight associated with this ordinate direction, and N is the number
of the discrete ordinate directions. In the STRAUM code, the Gauss-
Chebyshev quadrature is used with aweight normalization to 1.0 as
follows:
2

XN
n¼1

wn ¼ 1:0: (6)

The transport equation expressed in Eq. (4) can be written by an
operator form as

Lj ¼ MSfþ qex ¼ Q ; (7)

where L is the transport operator comprised of streaming and total
collision terms,M is the moment-to-discrete operator which maps
the moments into the discrete direction dependent quantities, and
S is the scattering operator which calculates the scattering source
with the moments. Explicitly defining the operators as matrix and
solving the transport equation in a matrix-vector form requires a
lot of computer memory and computation time, and so the matrix-
free manner is generally applied in transport theory. In particular,

the action of L�1 is implicitly defined as a transport sweeping
operation that updates the outgoing fluxes using the incoming
fluxes while crossing all the cells ordered in the directions. As
shown in Eq. (7), the scattering operator requires the moments
which are obtained using the discrete-to-moment operator defined
as follows:

f ¼ Dj: (8)

The sweep operation is performed based on the sorted order for
a specific direction. As shown in Fig. 1, the sweeping order in a
specific direction can be expressed as a directed acyclic graph
(DAG), and the sweeping order is derived through a topological
sorting for this graph. To parallelize sweep operation with de-
pendency between tasks, we implemented the wavefront paral-
lelism based on thread pool using the Taskflow library [11].
2.2. Implementation of the Krylov Subspace Methods

In order to apply the Krylov subspace method, it is necessary to
rearrange Eq. (7) into a suitable form of Ax ¼ b. For this purpose,

the operator L�1 is applied to Eq. (7) and taking the discrete-to-
moment operator can leads to the following equation.�
I � DL�1MS

�
f ¼ DL�1Q : (9)

By introducing T ¼ DL�1 operator, Eq. (9) can be expresses as

ðI � TMSÞf ¼ TQ : (10)

This equation can be written in the following simple form:

Af ¼ b; (11)

where

A ¼ ðI � TMSÞ;
b ¼ TQ :

(12)

Two Krylov subspace methods, i.e., Restarted GMRES(m) [12]
and BiCGSTAB [13] were implemented in the STRAUM code. As
mentioned above, the Krylov subspacemethodswere implemented
in a matrix-free manner using the operator form. The fluxmoments
are defined as one explicit vector and stored in a one-dimensional
array. The convergence and robustness of the Krylov subspace
methods for the linear system can be improved with a precondi-
tioner by reducing the spectral radius. By using the a precondi-
tionerW, the left-preconditioned system for Eq. (11) can be written
as



Fig. 1. Illustration for spatial meshes and a directed acyclic graph aligned for a specific direction.
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WAf ¼ Wb: (13)

The Richardson iteration for the linear system given by Eq. (11)
is expressed by

fðnþ1=2Þ ¼ ðI � AÞfðnÞ þ b: (14)

Actually, the Richardson iteration (i.e., Eq. (14)) represents the
standard source iteration. The subtraction of Eq. (14) from Eq. (11)
after multiplication of A to Eq. (14) gives the following error
equation:

Aεðnþ1=2Þ ¼ ðI � AÞ
�
fðnþ1=2Þ � fðnÞ

�
; (15)

where the error is defined by ε
ðnþ1=2Þ ¼ f� fðnþ1=2Þ. With the

substitution of Eq. (12) into Eq. (15), the error equation for the SN
equation can be written as

ðI � TMSÞεðnþ1=2Þ ¼ TMS
�
fðnþ1=2Þ � fðnÞ

�
: (16)

As can be seen from Eq. (16), the error equation has the same
complexity as solving the original equation, so the error vector
ε
ðnþ1=2Þ is approximately obtained in the synthetic acceleration
methods as follows:

ε
ðnþ1=2Þz ~W

�
fðnþ1=2Þ � fðnÞ

�
; (17)

where ~W is an approximate operator of ðI � TMSÞ�1TMS. Then, the
next iterate flux moments are updated for the Richardson iteration
(i.e., Eq. (14)) as follows:

fðnþ1Þ ¼ fðnþ1=2Þ þ ε
ðnþ1=2Þ: (18)

A simple algebra can show that this synthetic acceleration can
be equivalent to the preconditioned Richardson iteration and the
preconditioner W in Eq. (13) is equal to I þ ~W . The STRAUM code
has two preconditioners, Diffusion Synthetic Acceleration (DSA)
and b-Transport Synthetic Acceleration (b-TSA) for the within-
group iteration.
2.2.1. Diffusion Synthetic Acceleration (DSA)
The DSA preconditioner approximates the error equation by

using the diffusion equation as follows:
3

ε
ðnþ1=2ÞzPC�1RS

�
fðnþ1=2Þ � fðnÞ

�
; (19)

and

C≡� V$DVþ St � Ss; (20)

where the C operator represents the diffusion operator. In Eq. (20),
R is the restriction operator which extracts the isotropic compo-
nent from the scattering source, and P is the prolongation operator
which prolongates the scalar flux component of the error onto the
full moments. In the STRAUM code, the continuous diffusion
equation is discretized in a consistent way with the LDEM-SCB(1)
discretization of the transport equation [6], which gives a linear
discontinuous discretization. Originally, the discretized diffusion
equation was solved using Gauss-Seidel like iteration coupled with
the FMR (FineMesh Rebalance)method [14]. On the other hand, the
current STRAUM code explicitly sets up the whole matrix with
consideration of its sparsity for the discretized diffusion equation
and solves it using the Krylov subspace methods with the Eigen
library [15].
2.2.2. b-Transport Synthetic Acceleration (b-TSA)
The b-TSA [16] calculates the error vector by solving an

approximate transport equation in which the within group scat-
tering term is modified by a fraction of the parameter b and the
total cross section is also reduced by a b fraction of scattering cross
section as follows:

ε
ðnþ1=2Þz

�
I � DL�1

b;TSAMSb;lo
��1

TMS
�
fðnþ1=2Þ � fðnÞ

�
; (21)

where b-TSA transport operator Lb;TSA and low-order scattering
operator Sb;lo are defined as

Lb;TSAð$Þ≡ðbU$Vþ ðSt � bSsÞÞð$Þ; (22)

and

Sb;lo≡ð1� bÞSRlo: (23)

In Eq. (23), the restriction operator Rlo extracts the lowest order
moment. In general, TSA generally considers a low order (lo)
quadrature set and low order anisotropic scattering than the
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original transport equation. The STRAUM code considers the 2x2
Gauss-Legendre quadrature set and only P0 scattering, and solves
the TSA with the BiCGSTAB method in a matrix-free way.
2.3. Multi-group Krylov methods with energy block preconditioners

In the multi-group problem, the Gauss-Seidel iteration method
is commonly used to solve the energy group coupling structure,
which can be represented with the iteration index k as follows:

�
I�TgMSgg

�
f
ðkþ1Þ
g ¼TgM

0
@Xg�1

g0¼1

Sgg0f
ðkþ1Þ
g0 þ

XG
g0¼gþ1

Sgg0f
ðkÞ
g0 þqexg

1
A;

(24)

where Sgg0 represents the scattering operator from group g0 to g.
As shown in Eq. (24), the GS method solves sequentially from

high energy to low energy through energy group sweeping, but if
there exists up-scattering, the extra-iterations additional to the
single energy group sweeping are required for full convergence.
Since up-scattering iteration can take a lot of time, the multi-group
Krylovmethod can be applied to iteratively solve the energy groups
coupled through up-scatterings [8]. For this purpose, the multi-
group transport equations can be written in the following single
matrix-vector form for all the energy groups in an energy group
chunk GC comprised of several energy groups:

ðI � TGCMGCSGCÞfðkþ1Þ
GC ¼ TGCMGC

�
Sincomf

ðkþ1Þ
incom;GC þ qex

�
:

(25)

In Eq. (25), “income” refers to the energy groups that are not
included in the group chunk GC and give the scattering contribu-
tion to the group chunk GC. In Eq. (25), the multi-group operator
TGC is related to the group-wise sweeping where a single angular
sweeping is performed for each group. In STRAUM, the upper
groups having only down-scattering are sequentially calculated
with the conventional GS iteration while the other groups with
upscattering is treated as one chunk. For example, Fig. 2 illustrates
the case where each group in the down scattering range is
considered as a group chunk and the last three groups in the
upscattering range are considered a single group chunk. STRAUM
uses BiCGSTAB and GMRES(m) as the Krylov subspace methods to
solve Eq. (26).

In this work, two preconditioners for the multi-group calcula-
tion in a group chunk are suggested and implemented to accelerate
the Krylov subspace methods. To explain the multi-group pre-
conditioners, it is convenient to represent them using the block
operators of energy group in a group chunk as follows:
Fig. 2. Illustration of group chunks for multi-group Krylov method.

4

WMG ¼

0
BBBBB@

W11 W22 $ W1C

W21 W22 $ W2C

$ $ $ $

WC1 WC2 $ WCC

1
CCCCCA ; (26)

where C represents the number of energy groups in a group chunk.
As shown in Eq. (26), the multi-group preconditioner can also
include the upscattering elements, but considering the upscatter-
ing is expected to be inefficient even in the diffusion calculations.
Therefore, this work suggested two preconditioners that consider
only the within group or the down scattering term without
upscattering and implemented them in STRAUM. These multi-
group preconditioners can be expressed as Eqs. (27) and (28),
respectively, as follows:

a) Diagonal within-group block DSA (DiagDSA) and TSA (DiagTSA)
preconditioners in energy.

WDiag
gg0 ¼

8>>>><
>>>>:

dgg0Cg for DSA

dgg0
�
I � DL�1

g;b;TSAMSg;b;lo
�
for TSA

; (27)

where

Cg ¼ �V$DVþ St;g � Ss;gg ;

Lg;b;TSA ¼ �bU$Vþ �
St;g � bSs;gg

� �
;

and

Sgg;b;lo¼ð1� bÞSggRlo:

b) Lower triangular block DSA (LtriDSA) and TSA (LtriTSA) pre-
conditioners in energy.

WLtri
gg0 ¼

8>>><
>>>:

0 for g< g0

WDiag
gg for g ¼ g

0

�Sgg0 otherwise

: (28)

3. MATXS file processing code development

The MATXST code which was written using Cþþ to provide
neutron-gamma coupled multi-group cross sections for STRAUM
calculates a self-shielded cross section in an infinite medium by
performing the Bondarenko iteration on the data contained in the
MATXS file. After reading MATXS files generated using the NJOY
code [17], the MATXST code performs a balance check between the
P0 total cross section and the sum of the sub-reactions for reference
data corresponding to the infinitely diluted case at the reference
temperature. Next, the MATXST code performs the Bondarenko
iteration to calculate s0 for eachmaterials, and constructs transport
table for discrete ordinates transport calculation.

The P0 total cross section is explicitly given in MATXS file, but it
is reconstructed by summing of partial reactions. In the case of the
reference data given at a reference temperature and infinitely
dilution, there is no difference between the sum of the sub-
reactions and the P0 total cross section explicitly stored in the



Table 1
Configuration list for neutron P0 total cross section.

Symbol MT number Description Reaction Identifier

st;o 1 P0 total ntot0
sel 2 Elastic scattering nelas
sin 4 Inelastic scattering (Sum of the MT ¼ 51e91) ninel (Sum of n01, n02, n03, …, n40, ncn)
sftot 18 Total fission (Sum of MT 19,20,21 and 38) nftot
scapt 102e109

111e117
Sum of capture reactions ng, np, nd, nt, nh, na, n2a, n3a, n2p, npa, nt2a, nd2a, npd, npt, nda

smisc 5 Sum of all reactions not given explicitly in
another MT number

nx

16 (n,2n) n2n
17 (n,3n) n3n
37 (n,4n) n4n
11, 22e25, 28e30, 32e36,
41,42,44,45

Production cross section of neutrons þ various
particles

n2nd, nna, nn3a, n2na, n3na, nnp, nn2a, n2n2a, nnd, nnt, nnhe3, nnd2a, nnt2a,
n2np, n3np, nn2p, nnpa
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MATXS file. However, in the other cases, a slight discrepancy can
occur between the P0 total cross section and sum of sub-reactions
because the other cases contain differences from the reference
only in the following reactions: “nelas”, “n01”, “ng”, and “nftot”.
Although these discrepancies do not much affect the transport
calculation results, the MATXST code calculates the P0 total cross
section using the following equation:

st;o ¼ sel þ sin þ sftot þ scapt þ smisc; (29)

where st;o is the P0 total cross section, sel is the elastic scattering
cross section, sin is the inelastic scattering cross section, sftot is the
total fission cross section, scapt is the sum over all kinds of capture
cross sections, and smisc is the sum of the reactions that constitute
st;o but do not belong to the previous classification.

The types and classifiers of the reactions belonging to the P0
total cross section are summarized in Table 1.

The MATXS file does not contain the total scattering transfer
matrix, but instead contains the sub-reaction scattering transfer
matrices. Therefore, the total scattering transfer matrix for the ℓ th
Fig. 3. Transport-corrected P

5

anisotropy is calculated by considering all the given sub-reaction
scattering matrices as follows:

sg
0/g

s;ℓ ¼ sg
0/g

el;ℓ þ
X

x2misc

sg
0/g

x;ℓ þ
X
i

sg
0/g

inel;i;ℓ þ sg
0/g

inel;c;ℓ ; (30)

where

sg
0/g

el;ℓ : elastic scattering transfer matrix,

sg
0/g

x;ℓ : scattering transfer matrix for miscellaneous reaction,

sg
0/g

inel;i;ℓ: inelastic scattering transfer matrix of i th level,

sg
0/g

inel;c;ℓ: inelastic scattering transfer matrix of continuous level.

The MATXST code reconstructs the total cross section by adding
the thermal cross section instead of the elastic cross section in the
thermal energy region if the user wants to treat thermal data. The
transport correction is performed to produce multi-group cross
sections for SN transport calculations. The MATXST code provides
0 cross section of SS304.



Fig. 4. Transport-corrected P0 cross section of ZIRLO

Fig. 5. Layout of verification problem for neutron-gamma coupled cross section.
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for the transport correction options in the same way used in the
TRANSX2 code (i.e., consistent, inconsistent, diagonal, and Bell-
Hansen-Sandmeier (BHS) approximations).

Since photon has no charge, it can be treated numerically in the
same way as the neutron in the discrete ordinates method. If a
coupled table of neutron and photon is formed by placing the
neutron-to-gamma production matrix and the gamma scattering
matrix after the neutron data, then the angular flux for gamma
produced by neutrons can be evaluated through a single transport
calculation. The MATXS files do not provide the total neutron-to-
gamma production matrix, but provides each production matrix
for several neutron reactions. The MATXS file can store neutron-to-
gamma matrix as a function of the background cross section, but
the NJOY code provides only the infinitely diluted case. Therefore,
the MATXST code considers the self-shielding effect of the gamma
production matrix by using the self-shielding factor defined as
follows:

fx;gðT ;s0Þ ¼
sx;gðT; s0Þ

sx;g
�
Tref ;∞

�; (31)

where
6

fx;g : self-shielding factor for reaction x and background cross
section s0,
sx;gðT ; s0Þ : self-shielded reaction x cross section for background
cross section s0 and temperature T ,
sx;gðTref ;∞Þ : infinitely diluted cross section for reaction x and
reference temperature.

Then, the total neutron-to-gamma production matrix is calcu-
lated by

sg
0/g

ng ¼
X
x2g

fx;g0 ðT ;s0Þsg
0/g

x for all g0 and g: (32)

In this equation, x represents a specific reaction belonging to the
neutron reaction set g producing gamma.
4. Numerical analysis and results

4.1. MATXST cross section validation problem

In this section, the MATXST code was verified by comparing two
multi-group cross section sets generated with the TRANSX2 [18]
and MATXST codes and validated by comparing the neutron and
gamma fluxes obtained by the STRAUM code with multi-group



Fig. 6. Neutron source spectrum used for the verification problem for neutron-gamma coupled cross section.

Table 2
Calculation conditions for verification problem with neutron-gamma coupled cross section.

Calculation code MCNP6.2a STRAUM

Cross section library Continuous energy (ACE
format)

47n20g BUGLE-96 structure (by
MATXST)

47n20g BUGLE-96 structure (by
TRANSX)

Anisotropy order of scattering n/a P3 P3
Gauss-Chebyshev quadrature set (# of azimuthal � polar direction

per octant)
n/a 2� 2 2� 2

a Number of histories for MCNP fixed source calculation is 500,000,000.

Fig. 7. Neutron group flux distributions for the 1D reactor shielding problem. Fig. 8. Gamma group flux distributions for the 1D reactor shielding problem.
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cross sections generated with MATXST and by the MCNP6 [19] code
for a benchmark problem. TheMATXS libraries used for verification
of MATXST were generated using ENDF/B-VIII.0 library [20] and
NJOY21. The group structures of the library were applied with 27
neutron and 19 gamma groups (27n19g) [21] and the BUGLE-96
[22] structure, which are widely used in shielding calculations.
7

All the nuclides in the library were treated at 300, 500, 700, and
1100 K temperatures, and the background cross sections were set to
have 10 grid points (1 � 1010, 5 � 108, 5 � 107, 5 � 106, 5 � 105,
5 � 104, 5 � 103, 5 � 102, 50, 5 b). For the neutron flux weighting, a
typical spectrum of thermal þ 1/E þ fission þ fusion (IWT ¼ 10) in
NJOY was used while for the photon, the 1/E þ rolloffs weighting



Fig. 9. Simple box problem layout.
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function was applied using the (IWT ¼ 3) option. Thermal scat-
tering data were generated only for free gas scattering with cutoff
energy of 5.0 eV. The TRANSX2 code was used to process the
MATXS files to create ISOTXS files with consideration of transport
Table 3
Elapsed time (seconds) and number of sweep operations without preconditioner.

Quadrature Set Group chunk b
!

setup

2x2 1 ¼ {1} 0.22
2 ¼ {2} 0.16
3 ¼ {3} 0.16
4 ¼ {4,5,6,7} 0.38

3x3 1 0.40
2 0.37
3 0.47
4 0.75

4x4 1 0.64
2 0.63
3 0.65
4 1.50

5x5 1 0.94
2 0.92
3 0.99
4 1.99

Table 4
Elapsed time for 4x4 quadrature set with DSA preconditioner in seconds (DiagDSA preco

Group chunk DSA-Setupa) Number of I

Richardson. 1 ¼ {1} 0.049 5
2 ¼ {2} 0.050 7
3 ¼ {3} 0.049 6
4 ¼ {4,5,6,7} 0.189 53

GMRES(30). 1 0.057 5
2 0.051 6
3 0.048 6
4 0.194 20

BiCGSTAB. 1 0.050 2 (4b))
2 0.044 2 (4)
3 0.045 2 (4)
4 0.193 7 (14)

a) DSA-Setup is elapsed time for constructing explicit DSA matrix.
b) Number of sweep operations.
c) Etc. is composed of memory copy and simple linear algebra operations.
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correction and the Bondarenko self-shielding treatment, and they
were finally used for transport calculation using the STRAUM code.
Independently, the MATXST code generated a transport table in the
STRAUM code’s own cross section format by processing the same
MATXS files.

In order to verify the MATXST code, the cross sections created
with the MATXST and TRANSX2 codes were inter-compared. For
this purpose, the macroscopic cross sections of SS304 and ZIRLO
with BUGLE-96 group structure were generated using the MATXS
files with the TRANSX2 andMATXSTcodes. The transport-corrected
P0 total cross sections evaluated by the MATXST code for SS304 and
ZIRLO are shown in Figs. 3 and 4, respectively. These figures also
show the relative discrepancies (%) of the cross sections generated
using MATXST and TRANSX2 for each case. The anisotropic order of
scattering was considered up to P3. These figures show the results
of the Diagonal and BHS methods converged to the same value as
the anisotropic order increases. In the cases of the BHS and Diag-
onal transport corrections, the macroscopic cross sections of SS304
and ZIRLO generated by MATXST were shown to have a maximum
relative discrepancy of 0.7 % and 0.5 %, respectively, in comparison
with those obtained using TRANSX2. The tendency of these relative
discrepancies is quite similar to that of Consistent-P method that
does not modify the total cross section.

Next, a comparison with MCNP6 was performed to verify the
MATXST and STRAUM codes. For this purpose, a 1D reactor
shielding problem was considered in order to minimize the effects
of the mesh size, quadrature set, and anisotropic order of scattering
Iteration method (# of Sweeps)

Richardson GMRES(30) BiCGSTAB

1.5 (7) 1.4 (6) 0.9 (4)
3.4 (20) 1.5 (9) 1.4 (8)
2.9 (17) 1.5 (9) 1.1 (6)
108.8 (304) 15.1 (42) 12.1 (32)
2.8 (7) 2.8 (6) 1.8 (4)
7.3 (20) 4.0 (9) 3.2 (8)
6.3 (17) 4.2 (9) 2.5 (6)
231.8 (304) 34.5 (42) 25.0 (30)
4.9 (7) 3.9 (5) 3.0 (4)
14.7 (20) 6.5 (9) 5.3 (8)
13.3 (17) 6.2 (9) 4.2 (6)
422.7 (304) 65.6 (42) 44.3 (30)
7.7 (7) 5.5 (5) 4.6 (4)
19.5 (20) 9.5 (9) 8.3 (8)
16.6 (17) 9.4 (9) 6.5 (6)
620.2 (304) 90.0 (42) 62.0 (30)

nditioner for the last group chunk).

terations SweepOperations DSAPrecond. Etc.c)

3.6 0.9 0.012
4.8 0.7 0.024
4.3 0.6 0.020
74.6 12.1 0.365
4.4 0.9 0.021
4.3 0.6 0.030
4.5 0.6 0.029
29.0 5.0 0.261
3.0 0.7 0.008
3.0 0.4 0.011
3.0 0.3 0.010
20.2 3.2 0.069



Table 5
Elapsed time with the DiagTSA in seconds (4x4 and 2x2 quadrature sets for high-order transport and TSA calculations, respectively).

Group chunk b ¼ 0.0 b ¼ 0.3 b ¼ 0.5 b ¼ 1.0

Richardson 1 5.3 (a)53.8%) 5.0 (52.1%) 4.7 (50.0%) 3.7 (13.0%)
2 8.2 (63.2%) 10.0 (59.3%) 10.8 (61.4%) 8.1 (15.3%)
3 5.9 (60.0%) 7.5 (59.7%) 9.2 (61.2%) 7.2 (15.0%)
4 476.2 (84.5%) 473.5 (83.3%) 477.0 (83.2%) 363.2 (24.8%)

GMRES(30) 1 7.0 (53.7%) 6.8 (55.5%) 6.4 (51.2%) 3.5 (13.5%)
2 10.8 (64.6%) 9.6 (61.4%) 9.7 (60.9%) 5.6 (14.7%)
3 7.7 (60.8%) 7.8 (60.4%) 9.9 (61.8%) 4.9 (14.2%)
4 169.7 (82.6%) 167.0 (82.2%) 155.5 (79.2%) 52.9 (26.0%)

BiCGSTAB 1 3.8 (51.9%) 3.4 (48.1%) 3.9 (42.1%) 2.0 (12.1%)
2 3.9 (54.3%) 8.0 (61.2%) 7.4 (57.4%) 3.9 (13.2%)
3 3.9 (54.6%) 4.3 (52.2%) 7.6 (58.5%) 3.6 (13.5%)
4 117.4 (81.4%) 99.7 (78.8%) 111.8 (76.9%) 40.5 (25.6%)

a) Fraction of TSA calculation time in the total iteration time.
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for SN transport calculation. As shown in Fig. 5, in this problem, the
reactor core represented by three fuel assemblies is sequentially
surrounded by 2.0 cm thick baffle, 12 cm thick coolant, 6.0 cm thick
barrel, 20.0 cm thick down comer, 25.0 cm reactor pressure vessel
(RPV), and 75.0 cm concrete.

In order to generate the neutron source term leading to the
consistent neutron leakage to the reactor pressure vessel compared
to the eigenvalue calculation, the neutron source was defined by
using the spectrum of the baffle region obtained from the eigen-
value mode calculation using MCNP6. The neutron spectrum was
obtained to have the BUGLE-96 group structure. The comparative
calculations using STRAUM and MCNP6 were performed with fixed
source calculations which replace the fuel and moderator by ZIRLO
using the same source term both in MCNP and STRAUM. The
neutron source spectrum is given in Fig. 6.

In this verification problem, the fuel and coolant were removed
from the assembly region and the remaining space was filled with
ZIRLO. And the extracted neutron source from the eigenvalue
calculation mode using MCNP6 was uniformly distributed in this
region. The materials of baffle, barrel, and RPV were set to SS304,
and the coolant was assumed to be pure water. For SN transport
calculation, the multi-group cross sections of the BUGLE-96 energy
group structure (47 neutron and 20 gamma groups) were generated
using the MATXST code with the BHS transport correction. To
obtain the reference flux, MCNP fixed source calculation was per-
formed using the same extracted neutron source but with point-
wise cross sections. The options used in the calculation are sum-
marized in Table 2.

The scalar flux distributions obtained with STRAUM using
TRANSX2 and MATXST-generated multi-group cross sections were
compared with those obtained with MCNP6. As shown in Figs. 7
and 8 it can be seen that the results of MCNP and the STRAUM
code using the MATXST cross sections show good agreements over
the entire region. From Fig. 7 it can be seen that slight differences
from MCNP6 results occurred in the core (0e60 cm) and RPV re-
gions (100e125 cm) in groups 46 and 47 while the STRAUM results
with different multi-group cross sections give good agreements. It
is considered that the discrepancies from MCNP6 results would be
caused due to the BUGLE-96 group structure, which has a relatively
loose structure at low energy. In the case of gamma, there were
considerable statistical errors in the MCNP results in the concrete
region (125e200 cm), but the STRAUM results show good agree-
ments with the MCNP calculation in the overall region as shown in
Fig. 8
4.2. Numerical test problem 1

A simple box problemwas designed to test the Krylov subspace
9

methods implemented in the STRAUM code. Fig. 9 shows the layout
of the simple box problem. As shown in the figure, a small box is
located inside a large box. The macroscopic cross sections for the
inner and outer boxes were taken from the seven group cross
sections of the moderator and the guide tube of the C5G7 problem
[23], respectively. The cross sections consider only isotropic scat-
tering. Themacroscopic scattering cross sections for the groups 5, 6,
and 7 are coupled through up-scattering. As described above, in the
STRAUM code, multi-group coupling iteration was performed by
grouping groups 4, 5, 6, and 7 into one group chunk, and the groups
above the chunk were sequentially calculated by applying con-
ventional GS iteration in energy group. The number of tetrahedrons
in the simple box problem is 19,671, and the vacuum boundary
conditionwas applied to all external faces. the convergence criteria

was set to be 10�7 of relative L2 norm of the residual and b
!

vectors.
The calculation was performed using an Intel i5-9600KF CPU
(3.70 GHz).

First, STRAUM using the Richardson, GMRES(30), and BiCGSTAB
methods without a preconditioner were applied to this simple box
problem with the sweep operation parallelized using 4 threads
with Taskflow for each direction. The computing times for the
different quadrature sets and group chunks are listed in Table 3. The

time elapsed for the b
!

vector setup to construct Eq. (11) is all equal
regardless of the used Krylov subspace methods, and so the only
average elapsed times for the parts in which three methods are
performed are compared in Table 3. The elapsed times in Table 3 are
the time difference between the start and the end of each iteration
routine, and it includes the times for all the operations such as
sweep operations and the operations related to vector algebra and
memory copy. As a results of the calculation, it can be seen that
GMRES(30) and BiCGSTAB takes substantially less computation
times than Richardson for all the group chunks except for the first
group chunk with GMRES(30). In particular, the most significant
savings in computing time and number of sweeps for GMRES(30)
and BiCGSTAB are observed in the last group chunk having up-
scatterings, which shows that the Krylov subspace methods are
much effective than the Richardson method for the chunk having
up-scattering. Also, it is observed that the order of angular quad-
rature set does not affect the number of sweep operations and the
speedup of computing time slightly increases as the order of
angular quadrature set. For example, for 5x5 angular quadrature
set, GMRES(30) and BiCGSTAB show the speedups of 6.9 and 10.0,
respectively, compared with the Richardson iteration.

Table 4 compares the elapsed times when the DSA precondi-
tioner for the single group chunks and the DiagDSA preconditioner
for the last group chunk are applied. In the STRAUM code, the DSA
preconditioner is explicitly performed using the matrix class of the
Eigen library, so it goes through the process of setting up the DSA



Fig. 10. L2 norm of residual in the 4th group chunk according to the preconditioner;
(top) Richardson, (middle) GMRES(30), (bottom) BiCGSTAB.

Fig. 11. Comparison of the L2 norm of residuals for Krylov subspace methods with
different preconditioners in 4th group chunk.
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matrix before starting the iteration routine. The DSA setup consists
of the calculation of the matrix elements, the setup of a sparse
matrix, and the application of the preconditioner. The solution of
the discretized diffusion equation was calculated using the BiCG-
STAB solver with the diagonal preconditioner given in the Eigen
library, and the convergence criteria was set as 10�5 in the relative

L2 norm of the residual and b
!

vectors. As shown in Table 4, the DSA
setup time is relatively small compared with the ones for the sweep
operations and solving diffusion equation. The preconditioner does
10
not give the computing time savings for the first group chunk
because the first group chunk takes only small number of sweeps
while the preconditioner gives considerably computing time sav-
ings for the other group chunks. In particular, the preconditioner in
the last group chunk gives the largest reductions both in the
number of sweepings and in computing time for all the considered
methods. The computing time speedup by using preconditioner
was the largest in the Richardson method where the Richardson
method is also used in the last chunk. For example, the DiagDSA
preconditioner for the Richardson method reduces the computing
time by a factor of ~5.0 in the last group chunk. For the all group
chunks, the BiCGSTAB method with the preconditioner showed the
shortest computing time and the smallest number of sweeping. For
the last group chunk, the BiCGSTABmethod reduces the computing
time by a factor of 18.0 in comparison with the Richardson method
without a preconditioner.

Table 5 shows the elapsed times when the diagonal within-
group block TSA preconditioner is applied. The TSA calculation
was performed by the BiCGSTAB method using the 2x2 quadrature
set considering only isotropic scattering, while the high-order
transport calculation was performed using the 4x4 quadrature
set. The various b values of 0.0, 0.3, 0.5, and 1.0 were considered to
show the effects of this parameter on the computing time. Table 5
shows that the DiagTSA preconditioner gives the best perfor-
mances with b ¼ 1.0 for all the group chunks and all the methods
due to the smallest computing time in the TSA calculations. In
particular, it is noted that the DiagTSA with b ¼ 1.0 preconditioner
reduced computing time for all iterative method exccpt for the first
group chunk but its performances worse than the ones with the
DiagDSA preconditioner.

Fig. 10 shows the changes of the L2 norm of residual normalized

to b
!

2 for the 4th group chunk as iteration for the Richardson,
GMRES(30), and BiCGSTABmethods with the DiagDSA and DiagTSA
preconditioners. As expected, the DiagTSA preconditioner shows
better convergences for lower b values but the computing time was
the shortest for b ¼ 1.0. The DiagTSA method with b ¼ 0.0 and 0.3
showed very similar convergence to the DiagDSA one for the
Richardson and GMRES(30) methods. From Fig. 10, it can be
observed that the BiCGSTAB method reduced the L2 norm of re-
sidual with some fluctuations.

Fig. 11 compares the changes of the L2 norm of residuals for the
different iteration methods having the DiagDSA and LtriDSA pre-
conditioners for the last group chunk. In the figure, “Full(4)DSA”
refers to a multi-group DSA preconditioner in which 4 outer



Table 6
Elapsed time (seconds) of multi-group coupling iteration of 4th group chunk with different preconditioners using a 4x4 quadrature set.

Richardson GMRES(30) BiCGSTAB

Time for
Sweeps

Time for
Precond.

Number of
Iterations

Time for
Sweeps

Time for
Precond.

Number of
Iterations

Time for
Sweeps

Time for
Precond.

Number of
Iterations

DiagDSA 74.6 12.1 53 29.0 5.0 20 20.2 3.2 7 (14a))
LtriDSA 58.7 9.1 39 21.6 3.3 16 17.9 2.5 6 (12)
DiagTSA (b ¼

1:0)
272.4 89.9 188 38.8 13.8 29 30.1 10.4 11 (22)

a) Number of sweep operations.

Table 7
Comparison of total elapsed times (seconds) for the Krylov subspace methods using different preconditioners (4x4 angular quadrature set).

Iteration Method Total Elapsed Time Number of Iterations Speedup to the Richardson method without preconditioner

Richardson None 459.2 352 1.0
DiagDSA 106.7 75 4.3
LtriDSA 85.8 61 5.3
DiagTSA (b ¼0.0) 498.7 67 0.9
DiagTSA (b ¼0.3) 499.3 72 0.9
DiagTSA (b ¼1.0) 385.4 215 1.2

GMRES(30) None 85.7 70 5.4
DiagDSA 48.4 41 9.5
LtriDSA 43.4 37 10.6
DiagTSA (b ¼0.0) 198.7 37 2.3
DiagTSA (b ¼0.3) 194.3 38 2.4
DiagTSA (b ¼1.0) 70.0 50 6.6

BiCGSTAB None 60.0 26 (52a)) 7.7
DiagDSA 38.8 15 (30) 11.8
LtriDSA 34.1 14 (28) 13.5
DiagTSA (b ¼0.0) 132.0 13 (26) 3.5
DiagTSA (b ¼0.3) 118.6 13 (26) 3.9
DiagTSA (b ¼1.0) 53.2 18 (36) 8.6

a) Number of sweep operations.
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iterations are applied to the DSA operations over the last group
chunk. Fig. 11 shows that the Richardson method with the DiagDSA
preconditioner gives some fluctuations in the residual change
while the Richardson method with LtriDSA does not give the fluc-
tuations and faster convergence than the DiagDSA one. Also, it is
noted that the Full(4)DSA preconditioner shows similar conver-
gence to the LtriDSA one even if it takes more number of energy
group sweepings. Fig. 11 also shows that the GMRES(30) and
Fig. 12. Kobayashi-like problem layout.

11
BiCGSTAB method with the DiagDSA and LtriDSA preconditioners
give much better convergences than the Richardson method. From
this analysis, it was considered that the LtriDSA preconditioner was
better than the DiagDSA one regardless of the iteration method in
terms of computing time and convergence. The computing times
taken for the 4th group chunk are compared in Table 6. The com-
parison of null 3 and 6 shows that the GMRES(30) and BiCGSTAB
methods with the LtriDSA preconditioner and 4x4 quadrature
reduce the computing time by factors of 16.9 and 20.8, respectively,
in comparison with the Richardson method without a precondi-
tioner for the last group chunk. Also, it is noted that the Richardson,
GMRES(30), and BiCGSTAB methods with the LtriDSA precondi-
tioner reduce the computing time by factors of 6.2, 2.6, and 2.2,
respectively, in comparison with their unpreconditioned methods.

Table 7 shows the total elapsed times for the considered three
Krylov subspace methods using different preconditioners and 4x4
angular quadrature set. The last column of the table shows the ratio
of the total elapsed time of each method to that of the Richardson
method without a preconditioner. Table 7 shows that the BiCGSTAB
method had shorter computing times than the Richardson and
GMRES(30) methods regardless of the preconditioner type. It is
noted that the Richardson method with DiagTSA using b ¼ 0.0 and
0.3 reduces the number of sweeps but does not reduce the
computing time due to the long computing time in solving the TSA
equations. BiCGSTAB with LtriDSA preconditioner took the shortest
computation time and showed the speedup of 13.5 compared to the
Richardson method without preconditioner.

4.3. Numerical test problem 2

The next problem for numerical test was devised by modifying



Fig. 13. Neutron flux distributions for group 1 (left) and group 10 (right) for the Kobayashi-like problem.

Table 8
Calculation conditions for the Kobayashi-like problem.

Parameter Contents

# of Tetrahedrons 33,750
Quadrature Set 4 polar x 4 azimuthal Gauss-Chebyshev Quadrature per Octant
Cross Section Neutron-gamma coupled cross section with 27n19g structure processed by MATXST based on ENDF/B-VIII.0
Anisotropic Order P3
Thermal Upscattering Not considered
Convergence Criteria Ratio of L2 norm of residual to b

!
2 < 10�7

DSA & TSA Convergence Criteria Ratio of L2 norm of residual to b
!

2 < 10�5

Fig. 14. Groupwise elapsed time for Kobayashi-like problem without preconditioner
using a 4x4 quadrature set.
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the Kobayashi’s benchmark problem, which was designed for
verifying transport codes with one-group cross sections [24]. The
test problem is defined as a 30 cm � 50 cm x 30 cm hexahedron
divided into 3 regions. The reflective condition was applied to the
bottom surface (i.e., Z-surface), and the vacuum condition was
applied to the remaining boundary surfaces. This Kobayashi-like
problem uses the cross sections of realistic materials considering
the scattering anisotropy up to the P3 order. The cross sections of
the MATXS format having a 27n19g structure were processed with
MATXSTand they have no up-scatterings. The first region (region 1)
of SS304 representing a zigzagged pipe has an isotropic and uni-
form neutron source of 1.0 neutrons/cm3sec only for the first ten
12
energy groups (groups 1e10). The second region (region 2) occu-
pying most of the problem is filled with concrete. The third region
(region 3) is defined as a 4 cm � 4 cm x 4 cm cube of SS304. Fig. 12
shows the layout of the problem and Fig. 13 shows the neutron flux
distributions for the groups 1 and 10. The parameters for this
problem are described in Table 8. The calculation was performed
using an Intel i5-9600KF CPU (3.70 GHz) with 4 threads for parallel
computing for sweeping.

Fig. 14 shows the groupwise elapsed time of the Richardson,
GMRES(30), and BiCGSTABmethodswithout preconditioner. As can
be seen from the figure, BiCGSTAB had the shortest elapsed time
and GMRES(30) took slightly longer computing time than BiCG-
STAB, but the computing time of GMRES(30) significantly shorter
than the Richardson method. However, in the high-energy groups
of neutrons and most of the gamma groups, the speedups by the
Krylov method are not significant because the Richardson method
also shows the effective convergence. Fig. 15 shows the groupwise
speedups in computing time for the Richardson, GMRES(30), and
BiCGSTAB methods having different preconditioners relative to the
corresponding methods without preconditioner. From the figures,
it is shown that DSA was the most effective preconditioner, fol-
lowed by TSA with b ¼ 1.0, irrespective of the Krylov subspace
methods. The TSA preconditioners with b ¼ 0.0 and b ¼ 0.3 take
longer times in all energy groups, so it is expected that there will be
some improvements in speedup if a higher quadrature set than 4x4
quadrature set is used. The high energy neutron groups andmost of
the gamma groups were converged rather quickly even without
preconditioner.

Table 9 shows the total elapsed times for the considered Krylov
subspace methods with different preconditioners. The fastest
method was the BiCGSTAB method with the DSA preconditioner,
followed by the BiCGSTAB without preconditioner and the next
efficient method was the Richardson method with the DSA



Fig. 15. Groupwise speedups for different preconditioners; (top) Richardson, (middle)
GMRES(30), and (bottom) BiCGSTAB.
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preconditioner. They reduce computing time by factors of 3.5, 2.9,
and 2.8, respectively. The GMRES(30) with the DSA preconditioner
showed a comparable speedup to the Richardson method with the
DSA preconditioner.
4.4. Numerical test problem 3

The last test problem is a reactor pressure vessel (RPV) problem
which was designed to test the convergence of the Krylov subspace
methods in a more practical problem of reactor scale. The fuel
13
assembly regionwas filled with ZIRLO, while the structural regions
of the baffle, barrel, and vessel were defined as SS304. The neutron
source of 1.0 cm�3sec�1 was assigned in the highest 10 groups
among 47 groups. Fig. 16 shows the layout of the RPV problem, and
Fig. 17 shows the tetrahedral meshes comprised of total 177,575
elements. The reflective condition was applied to three internal
sides of the reactor while the vacuum condition was applied to the
rest of the boundary surfaces. The neutron cross sections consid-
ering scattering anisotropy up to P3 were prepared with BUGLE-96
group structure where the neutron energy groups span the first 47
groups and the last six groups (i.e., 42, -43, -44, -45, -46, and -47
groups) are coupled through upscattering. The last six groups are
considered in a single group chunk. The parameters represent the
calculation conditions are described in Table 10. The calculation
was performed using an Intel i7-11700K CPU (3.60 GHz) with 5
threads for parallel computing for sweeping.

Fig. 18 shows the neutron flux distribution of group-1 of the RPV
problem. Fig. 19 compares the changes of the L2 norm of residual as
iteration for the Krylov subspace methods with the DiagDSA and
LtriDSA preconditioners for the last group chunk having upscat-
tering. For this problem, the Richardson iterations with the Dia-
gDSA and LtriDSA for the last group chunk did not converge. Fig. 19
shows the convergence of the Richardson method was particularly
slow in the last group chunk and it took more than 1000 iterations
to converge. On the other hand, it was observed that the residuals
were efficiently reduced by the GMRES(30) and BiCGSTAB methods
both with and without preconditioners. Although BiCGSTAB
showed some fluctuations in residuals, its convergence was faster
than that of GMRES(30). For both the GMRES(30) and BiCGSTAB
methods, LtriDSA was more effective in computing time than Dia-
gDSA for this problem.

Table 11 shows the elapsed times for the last group chunk
having upscattering for the Krylov subspace methods with the
DiagDSA and LtriDSA preconditioners. When the DiagDSA and
LtriDSA preconditioners were applied, the time required for pre-
conditioner was less than 5% of the time required for sweeping
operation. The BiCGSTAB methods with the DiaDSA and LtriDSA
preconditioners reduced the computing time for the last group
chunk by factors of 16.4 and 21.3, respectively.

Table 12 shows the total elapsed times to solve the RPV problem.
The last column of the table represents the ratio of the total elapsed
time of each method to that of the Richardson method without
preconditioner. For each Krylov subspace method, the DSA pre-
conditioner were applied for all the group chunks except for the last
group chunk where the specified precondition was applied. The
results show that BiCGSTAB was more efficient in the RPV problem
than GMRES(30), irrespective of the preconditioner type and the
LtriDSA preconditioner showed slightly better performance than
the DiagDSA one. The BiCGSTAB methods with DiagDSA and
LtriDSA preconditioners gave the speedups of 10.2 and 11.5,
respectively while the GMRES(30) ones gave slightly smaller
speedups of 7.7 and 8.0 for the DiagDSA and LtriDSA precondi-
tioners, respectively.

5. Summary and conclusion

In this work, a new multi-group discrete ordinates transport
code system STRAUM-MATXST for complicated geometrical prob-
lems was introduced and its development status was reported.
Currently, the STRAUM code uses tetrahedral meshes which are
generated using Gmsh after the geometrical modeling with CAD
softwares followed by a post processing the mesh files using an in-
house program to use them in STRAUM. STRAUM uses the LDEM-
SCB(1) discretization as the main transport solution option in
which the coupling equations are derived using four sub-cell



Table 9
Total elapsed time (seconds) according to iteration method of Kobayashi-like problem using a 4x4 quadrature set.

Iteration Method b
!

setup (A) Sweeping (B) Number of Iterations Precond. (C) Etc. (D) Total ¼ A þ B þ C þ D

Richardson 68.7 1,957.4 1332 - 6.0 2,032.0
Richardson þ DSA 69.5 592.1 403 60.7 2.0 724.3
Richardson þ TSA(b ¼ 0.0) 69.2 592.6 403 924.6 1.8 1,588.2
Richardson þ TSA(b ¼ 0.3) 69.8 604.1 407 903.1 1.8 1,578.8
Richardson þ TSA(b ¼ 1.0) 68.1 1,081.9 744 126.3 2.8 1,279.1
GMRES(30) 69.7 929.7 622 - 26.7 1,026.1
GMRES(30)þDSA 69.4 601.5 410 61.8 14.0 746.7
GMRES(30)þTSA(b ¼ 0.0) 70.1 608.7 408 905.4 13.8 1,597.9
GMRES(30)þTSA(b ¼ 0.3) 76.8 668.2 412 976.7 15.8 1,737.5
GMRES(30)þTSA(b ¼ 1.0) 71.4 757.7 503 84.1 19.8 932.9
BiCGSTAB 68.7 631.2 216 (432a)) - 5.5 705.4
BiCGSTAB þ DSA 69.7 458.1 156 (312) 45.7 3.8 577.3
BiCGSTAB þ TSA(b ¼ 0.0) 69.1 463.2 159 (318) 607.5 3.7 1,143.5
BiCGSTAB þ TSA(b ¼ 0.3) 70.8 459.5 155 (310) 571.4 3.7 1,105.3
BiCGSTAB þ TSA(b ¼ 1.0) 70.7 531.5 179 (358) 55.5 4.2 661.8

a) Number of sweep operations.

Fig. 16. Reactor pressure vessel problem layout.
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balance equations and discontinuous flux expansion in each
tetrahedral mesh. The MATXST code prepares the neutron-gamma
coupled multi-group cross sections for STRAUM transport calcula-
tions after processing the MATXS format library generated with
NJOY for considering transport corrections and resonance self-
shielding effect with the Bondarenko iteration. In particular, the
gamma production matrices are processed using the self-shielding
factors to consider their self-shielding effect in MATXST code.

The special emphasis was given on the application of the Krylov
subspace methods (i.e., BiCGSTAB and GMRES(m)) with DSA and
b-TSA preconditioners for the within-group source iteration.
STRAUM used the DSA equations for LDEM-SCB(1) transport dis-
cretization were derived in a consistent way from the continuous
diffusion equation to the LDEM-SCB(1) discretization and the DSA
equations were solved using BiCGSTAB method with the Eigen li-
brary after setting up the whole matrix considering its sparsity. . In
addition, the Krylov subspace methods were extended to effec-
tively solve multi-group coupled iterations having up-scattering
with new multi-group block DSA and b-TSA preconditioners. Spe-
cifically, the multi-group block tri-diagonal DSA preconditioners as
well as the simple block diagonal DSA and b-TSA ones were sug-
gested and tested coupled with the Krylov subspace methods for
several problems.

The verification of theMATXSTcode was done by comparing the
multi-group cross sections generated with MATXST and TRANSX2
and by checking if the multi-group cross sections using different
transport correction methods converge as the scattering anisotropy
increases for a simple 1D shielding problem. Then, the validation of
Fig. 17. Tetrahedron mesh for RPV problem generated using Gmsh.
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Table 10
Calculation conditions for reactor pressure vessel problem.

Parameter Contents

Number of
Tetrahedrons

177,575

Quadrature Set 4 polar x 4 azimuthal Gauss-Chebyshev
Quadrature per Octant

Cross Section 47 group cross section with BUGLE-96
structure processed by MATXST based on
ENDF/B-VIII.0

Anisotropic Order P3
Thermal

Upscattering
From 42 to 47

Convergence Criteria Ratio of L2 norm of residual to b
!

2 < 10�9

DSA & TSA
Convergence
Criteria

Ratio of L2 norm of residual to b
!

2 < 10�5

Fig. 19. L2 norm of residual in multi-group coupling group chunk according to iteration
method of the RPV problem.
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the STRAUM and MATXST codes was done by comparing the multi-
group flux distributions obtained with the STRAUM and MATXST
codes and the continuous MCNP transport calculations for the 1D
shielding problem. To check the performances of the Krylov sub-
space methods in STRAUM, the detailed numerical tests were
performed to one simple 3D shielding problem and to one realistic
3D reactor shielding problem containing the pressure vessel and
concrete shield. From the numerical tests, it was shown that the
BiCGSTAB and GMRES(m) methods were very effective for most
groups and the DSA preconditioning both for the Richardson,
BiCGSTAB, and GMRES(m) methods improves the convergences
and reduces computing time in comparison with the conventional
Richardson method for the within-group source iteration. In
particular, BiCGSTAB showed the better speedups than GMRES(m)
irrespective of the preconditioners and TSA preconditioner was
much less effective than the DSA one for all the cases. It was noted
Fig. 18. Neutron flux distribution in
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that the TSA preconditioner does not give any computing time
saving for the within-group source iteration for the cases taking
large computing time portion in TSA calculation. For the energy
group chunk having up-scattering, the GMRES(30) and BiCGSTAB
methods with the suggested block preconditioners were very
effective both in reducing the number of iterations and computing
time in comparisonwith the Richardson iteration. For example, the
BiCGSTAB and GMRES(30) methods with LtriDSA preconditioner
for the last group chunk having up-scattering reduced the
computing time by the factors of 21.3 and 16.4, respectively in
comparison with the Richardson iteration for the realistic 3D
reactor shielding problem. In the future, the parallel computing
capability will be upgraded and the code systemwill be extended to
include the activation calculation capability with an in-house
depletion code.
the first group of RPV problem.



Table 11
Elapsed times in the last group chunk for different Krylov subspace methods using preconditioners of RPV problem using a 4x4 quadrature set (in seconds).

Iteration Method b
!

setup (A) Sweeping (B) Number of Iterations Precond. (C) Etc. (D) Total ¼ A þ B þ C þ D

Richardson 48.4 47312.7 1001 - 6683.4 54044.5
Richardson þ DiagDSA Not Converged
Richardson þ LtriDSA Not Converged
GMRES(30) 48.0 4888.4 108 - 170.8 5107.2
GMRES(30)þDiagDSA 47.0 3921.4 87 148.3 132.6 4249.3
GMRES(30)þLtriDSA 47.8 3533.8 77 124.8 109.4 3815.8
BiCGSTAB 51.3 3671.7 38 (76a)) - 24.4 3747.4
BiCGSTAB þ DiagDSA 55.3 3143.1 29 (59) 88.7 14.9 3302.0
BiCGSTAB þ LtriDSA 55.3 2399.5 22 (44) 65.6 13.5 2533.9

a) Number of sweep operations.

Table 12
Comparison of total elapsed time (seconds) of RPV problem according to iteration method when using a 4x4 quadrature set.

Iteration Method Total Elapsed Time Number of Iterations Speedup to the Richardson method without preconditioner

Richardson without Precond. 77254.7 3092 1.0
GMRES(30) without Precond. 15753.3 947 4.9

DiagDSA 10071.4 564 7.7
LtriDSA 9670.1 554 8.0

BiCGSTAB without Precond. 9846.9 290 (580a)) 7.8
DiagDSA 7562.9 174 (348) 10.2
LtriDSA 6724.1 167 (334) 11.5

a) Number of sweep operations.
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