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Abstract
Recent studies have indicated that facial electromyogram (fEMG)-based facial-expression recognition (FER) systems are 
promising alternatives to the conventional camera-based FER systems for virtual reality (VR) environments because they are 
economical, do not depend on the ambient lighting, and can be readily incorporated into existing VR headsets. In our previous 
study, we applied a Riemannian manifold-based feature extraction approach to fEMG signals recorded around the eyes and 
demonstrated that 11 facial expressions could be classified with a high accuracy of 85.01%, with only a single training ses-
sion. However, the performance of the conventional fEMG-based FER system was not high enough to be applied in practical 
scenarios. In this study, we developed a new method for improving the FER performance by employing linear discriminant 
analysis (LDA) adaptation with labeled datasets of other users. Our results indicated that the mean classification accuracy 
could be increased to 89.40% by using the LDA adaptation method (p < .001, Wilcoxon signed-rank test). Additionally, we 
demonstrated the potential of a user-independent FER system that could classify 11 facial expressions with a classification 
accuracy of 82.02% without any training sessions. To the best of our knowledge, this was the first study in which the LDA 
adaptation approach was employed in a cross-subject manner. It is expected that the proposed LDA adaptation approach 
would be used as an important method to increase the usability of fEMG-based FER systems for social VR applications.

Keywords Facial-expression recognition · Facial electromyogram · Riemannian manifolds · Social virtual reality · Linear 
discriminant analysis adaptation

1 Introduction

With the rapid developments of virtual reality (VR) tech-
nology, the traditional social network service (SNS) has 
evolved into VR-based SNS (Wakeford et al. 2002; Patel 
et al. 2018). Various social VR applications such as Face-
book Horizon,1 vTime,2 AltSpaceVR,3 VRChat,4 and Big-
Screen5 have been recently released to the market. Further, 
the outbreak of COVID-19 has accelerated the growth of 
VR-based communication services such as VR marketing 
(Wedel et al. 2020), VR church,6 VR conferences (Gunkel 

et al. 2018), VR festivals (Kersting et al. 2020), VR educa-
tion (Freina and Ott 2015), VR social science research (Pan 
and Hamilton 2018), and VR training (Hui and Zhang 2017).

Since humans are emotional beings, exposing human 
emotions in an appropriate way in a VR environment is one 
of the most importance factors for providing VR users with 
more immersive experiences (Riva et al. 2007; Mottelson 
and Hornbæk 2020; Rapuano et al. 2020); therefore, demand 
for recognizing emotional facial expressions of users wear-
ing a head-mounted display (HMD) has been gradually 
increased. Emotion/facial expression can be useful not only 
for entertainment but also for the collaboration in a virtual 
meeting space or for any other application where displaying 
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facial-expression is relevant. Indeed, services that provide 
spaces for social and economic activities in a metaverse are 
being actively developed (Gunkel et al. 2018; Wedel et al. 
2020).

The facial-expression recognition (FER) is generally 
based on optical cameras (Cohen et al. 2003; Agrawal et al. 
2015; Chen et al. 2018; Zhang 2018; Patel and Sakadasariya 
2018); however, the camera-based FER has difficulty detect-
ing the facial movements around the eyes, because a large 
portion of the face is occluded by the VR-HMD (Zhang 
et al. 2014; Olszewski et al. 2016). To overcome this issue, 
researchers have attempted to incorporate additional cam-
eras into the VR-HMD (Burgos-Artizzu et al. 2015; Thies 
et al. 2016; Olszewski et al. 2016). For example, Hickson 
et al. installed ultrathin strain gauges on the VR-HMD pad 
to detect the facial movements around the eyes (Hickson 
et al. 2015). However, these approaches made the VR HMD 
system bulky and increased the production cost (Hickson 
et al. 2015).

To address the above issues, facial electromyogram 
(fEMG) has been recorded around the eyes to recognize 
facial expressions (Yang and Yang 2011; Fatoorechi et al. 
2017; Hamedi et al. 2018; Phinyomark and Scheme 2018; 
Lou et al. 2020; Cha et al. 2020). An fEMG indicates the 
electrical activity generated by facial muscle movements, 
which can be easily recorded using electrodes attached to 
the face. The fEMG-based FER is a promising alternative 
to the optical camera-based FER because these systems can 
be readily implemented using the conventional VR-HMD 
devices, by simply replacing the existing HMD pad with 
a new pad containing fEMG electrodes (Fatoorechi et al. 
2017; Mavridou et al. 2017). For example, Faceteq™ devel-
oped a wearable pad7 with electrodes embedded which is 
also compatible with commercial HMDs. Additionally, the 
fEMG-based FER system could be fabricated at a lower cost 
than the optical camera-based FER system because analog 
front-end (e.g., ADS1298), which is widely utilized for 

biosignal acquisition, does not cost as much as the image 
sensor (e.g., HM01B).

Over the past decades, various fEMG-based FER sys-
tems have been proposed as shown in Table 1 (Hamedi et al. 
2011, 2013, 2018; Rezazadeh et al. 2011; Cha et al. 2020). 
It is to be noted that electrode locations reported in these 
studies were not determined considering VR applications; 
therefore, electrode locations varied from study to study. The 
highest classification accuracy reported thus far is 99.83%; 
in that study, 11 facial expressions were classified by attach-
ing fEMG electrodes to the forehead and both sides of the 
face (Hamedi et al. 2018). However, this system required 
users to make facial expression four times for the registra-
tion, which does not seem to be practical enough to be used 
in real VR environments considering that the current FER 
systems require the users to repeat the registration process 
whenever they use the system. To address this issue, we 
suggested a new fEMG-based FER system in which only a 
single trial for each facial expression was necessary to build 
the classification model (Cha et al. 2020). We also imple-
mented a real-time FER system with a processing time less 
than 0.05 s and succeeded in reflecting user’s current facial 
expressions onto a virtual avatar’s face in real time.

Nevertheless, the performance of our previous fEMG-
based FER system was still inadequate for applications in 
practical scenarios. In the present study, we developed a new 
method for improving the FER performance without increas-
ing the size of training datasets. We attempted to use labeled 
datasets acquired from other users to improve the FER per-
formance. To implement this idea, we adjusted a specific 
user’s linear discriminant analysis (LDA) classifier through 
the adaptation of additional LDA classifier constructed from 
other users’ labeled datasets, which has never been proposed 
to the best of our knowledge.

We organized the remainder of this paper as follows. 
Materials for experiments including electrode placement, 
reference photographs of emotional faces, and experimen-
tal paradigms are introduced in Sect. 2. Methods for data 
analyses including preprocessing, feature extraction, clas-
sification, and LDA adaptation technique are provided in 

Table 1  Comparison between existing fEMG-based FER systems

References Rezazadeh 
et al. (2011)

Hamedi (2011) Hamedi (2013) Chen et al. 
(2015)

Hamedi et al. 
(2018)

Cha (2020)

# of fEMG electrodes 6 6 6 2 (Bipolar) 6 8
# of facial expressions 5 8 10 5 11 11
# of participants 3 10 10 6 10 42
# of trials for each facial expression 10 5 5 20 5 20
# of trials for registering a single facial 

expression
9 4 4 14 4 1

Recognition accuracy (%) 92.60 91.80 87.10 97.10 99.31 85.01

7 https:// www. emteq labs. com/ about- us/.

https://www.emteqlabs.com/about-us/
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Sect. 3. Detailed analysis results are reported in Sect. 4. 
Finally, discussions and conclusions are presented in 
Sects. 5 and 6, respectively.

2  Materials

2.1  Electrode placement

To determine the optimal electrode placement, a prelimi-
nary experiment was conducted. First, we cut a polypro-
pylene plastic clear file in a shape of VR frame; hereafter 
we call this plastic film. Nineteen sticker electrodes were 
attached to the plastic film so that the electrodes were 
densely arranged as shown in Fig. 1a. Next, three male 
adults were asked to freely move their facial muscles with 
the plastic film attached on their faces. From this prelimi-
nary experiment, it was found that electrodes above spe-
cific facial muscles such as the temporalis and corrugator 
frequently detached from the skin, which are marked with 
nine red circles in Fig. 1a. Eventually, fEMG was recorded 
from ten remaining electrodes. Among the ten electrodes, 
only eight electrodes were selected based on the classifi-
cation performance evaluated for three different electrode 
configurations shown in Fig. 1b. According to our previous 
study (Cha et al. 2020), the highest recognition accuracy 
was achieved when employing the electrode configuration 
1; therefore, we decided to use the first configuration in 
this study.

2.2  Photographs of emotional faces

We tried to include as many emotional facial expressions as 
possible in our FER system based on the previous studies 
summarized in Table 1; therefore, we decided to employ 11 
emotional-face pictures as the reference pictures that partici-
pants mimicked during the experiments. Six emotional-face 
pictures were obtained from the Radboud database (Langner 
et al. 2010). The Radboud database contained a facial picture 
set of 67 models displaying emotional expressions based 
on a facial action coding system (Ekman 1993; Ekman and 
Rosenberg 2005; Sato and Yoshikawa 2007). The emotions 
represented in the selected pictures included anger, fear, hap-
piness, neutrality, sadness, and surprise. The six pictures 
are presented in the first row of Fig. 2. We also took facial 
pictures of the first author of this paper, while he was mak-
ing five facial expressions: clenching, half smile (left and 
right), frown, and kiss. These five pictures are presented in 
the second row of Fig. 2.

2.3  Participants

Forty-two healthy native Korean participants (17 males 
and 25 females) volunteered to participate in this study. 
Their ages ranged from 21 to 29  years (mean = 24.07, 
standard deviation = 1.89). No participants reported severe 
health problems that could have affected the experiment, 
e.g., Bell’s palsy, stroke, or Parkinson’s disease. They all 
were instructed to not to drink alcohol and sleep enough 
to avoid the psychical health problem during experiments 

Fig. 1  a The left figure of the 
panel shows a plastic film pad 
on which 19 sticker electrodes 
are densely attached. The elec-
trodes shaded in red circles are 
those frequently detached from 
the facial surface. The right 
figure of the panel shows a user 
wearing the electrode pad. b 
Three candidate electrode con-
figurations with eight electrodes 
tested in our previous study 
(Cha et al. 2020). The electrode 
configuration 1 was employed 
in this study
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before the day of the experiment. All the participants were 
provided with a detailed explanation of the experimental 
protocols and signed a written informed consent form. The 
study protocol was approved by the Institutional Review 
Board (IRB) of Hanyang University, South Korea (IRB No. 
HYI-14–167-11).

2.4  Experimental procedure

fEMG data were collected at a sampling rate of 2048 Hz 
using a Biosemi Active Two system (Biosemi, B.V., Amster-
dam, The Netherlands). The recording system included two 
additional electrodes—common mode sense (CMS) and 
driven right leg (DRL)—which were used as reference and 
ground channels, respectively. We attached the CMS and 
DRL electrodes to the left and right mastoids, respectively.

Before the main experiment, a short training period was 
provided for the participants to become accustomed to mim-
icking the 11 emotional faces shown in Fig. 2. The selected 
emotional-face pictures were presented on a computer moni-
tor using E-prime 2.0 (Psychology Software Tools, Sharps-
burg, PA, USA). During the experiment, each participant 
mimicked the 11 emotional faces presented on the monitor 
repeatedly 20 times. Note that we repeated 20 times based 
on the maximum repetitions reported in the previous stud-
ies (see Table 1). The overall experimental procedure for 
a single trial is presented in the bottom panel of Fig. 2. 
First, a reference emotional picture for the participant to 
mimic (e.g., happy face) was presented on the monitor. The 

participant pressed the space bar when he/she was ready to 
move to the next step. After the space bar was pressed, a 
short “beep” sound was generated, and the participant mim-
icked the emotional-face picture for 3 s. After the 3 s, the 
participant made a neutral facial expression and waited for 
the next trial. The 11 emotional-face pictures were randomly 
presented, to reduce the possibility of an order effect. This 
procedure would be needed to be done for every user to gen-
erate a user-customized classifier model in the application 
of the proposed FER system to practical VR applications. 
It is to be noted that only a single training trial per each 
facial expression is needed for the generation of the user-
customized classifier model in our study. Each participant 
completed a total of 220 trials (11 facial expressions × 20 
repetitions). The corresponding dataset (.bdf format) is 
available at https:// doi. org/ 10. 6084/ m9. figsh are. 96854 78. 
v1. It is expected that this dataset can be utilized to develop 
new algorithms to enhance the overall performance of the 
fEMG-based FER system in a VR-HMD environment.

3  Methods

The fEMG-based FER system is a pattern-recognition-based 
myoelectric interface, similar to a multifunction prosthe-
sis. (Asghari Oskoei and Hu 2007; Hakonen et al. 2015; 
Geethanjali 2016; Phinyomark and Scheme 2018). The mul-
tifunction prosthesis which provides multiple control options 
allows patients to manipulate prosthesis in more flexible 

Fig. 2  Eleven facial-expression 
picture stimuli and the experi-
mental procedure

https://doi.org/10.6084/m9.figshare.9685478.v1
https://doi.org/10.6084/m9.figshare.9685478.v1
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manner. To enable the multiple options, various pattern 
recognition techniques have been developed in many litera-
tures. As for other myoelectric interfaces, the data-analysis 
procedure of the fEMG-based FER system includes preproc-
essing, feature extraction, and classification (Hakonen et al. 
2015). In this section, we introduce the three data-analysis 
procedures and then describe the concept of LDA adaptation 
with labeled datasets of other users in a detailed manner.

3.1  Preprocessing

Figure 3 shows stages of the fEMG signal preprocessing. 
The fEMG signals recorded from eight electrodes were 
notch-filtered at 60 Hz and bandpass-filtered at 20–450 Hz 
using a fourth-order Butterworth filter. The filtered fEMG 
signals were split into a series of short segments using a 
sliding window. The sliding window is one of the digital 
signal processing techniques; once a virtual window is set 
with its size, the window is sled with a fixed size until the 
window reached the end of a signal. In this study, we simply 
truncated the signal before and after of the window at each 
window. We set the sliding-window length to 300 ms and 
moved the sliding window from 0 ms to the end of the signal 
with a fixed time interval of 50 ms. According to the average 
fEMG onset time of 1.02 ± 0.34 s after the presentation of 
the beep sound (Cha et al. 2020), the first 1 s of the fEMG 
signals was excluded from the analysis; only the last 2 s of 
the fEMG signals was used.

3.2  Feature extraction in Riemannian manifold

The Riemannian manifold is a real, smooth (differentiable) 
manifold in which a finite-dimensional Euclidean space is 
defined on a tangent space at a point (Förstner and Moonen 
2003; Wang et al. 2012; Morerio and Murino 2017). The 
space of a symmetric and positive-definite (SPD) matrix 
becomes a Riemannian manifold (Förstner and Moonen 
2003; Wang et al. 2012; Morerio and Murino 2017); there-
fore, an SPD matrix can be considered as a point on a Rie-
mannian manifold. This property allows a covariance matrix 
to be used in the Riemannian manifold, because the covari-
ance matrix has the properties of the SPD matrix. Unfortu-
nately, in the Riemannian manifold, mathematical operations 
defined in the Euclidean space cannot be employed. To deal 
with the SPD matrix in the Euclidean manner, Arsigny et al. 
(Arsigny et al. 2007) proposed a logarithmic map defined as

where logm(⋅ ) represents the logarithm of a matrix and C 
represents an SPD matrix. This equation allows C on a Rie-
mannian manifold to be mapped to S on a tangent space 
generated by a reference point C

r
 . A tangent space on a Rie-

mannian manifold is locally isometric to a Euclidean space. 
Barachant et al. (Barachant et al. 2010, 2013) employed this 
approach and utilized the upper triangular elements of S as 
features in an electroencephalography-based brain–computer 
interface.

For each fEMG segment D ∈ RE×S , a sample covariance 
matrix (SCM) C can be computed as 1∕(S − 1)DDT ∈ RE×E , 
where S and E represent the number of samples and fEMG 
channels, respectively. Before the SCM is projected onto a tan-
gent space, the reference point Cr for forming the tangent space 
should be determined. We followed the approach of Barachant 
et al., who employed the reference point as a geometric mean 
of the SCMs in the training dataset (Barachant et al. 2010, 
2013). The geometric mean is the mean of the SCMs in the 
Riemannian sense, and the algorithm for computing it is pre-
sented in Appendix 1. After the reference point Cr was com-
puted, an SCM C was mapped onto S in a tangent space using 
(1). Finally, the upper triangular elements of S were used as the 
features, which constituted the vector x . The number of feature 
dimensions was 36 (= 8 × 9 /2).

3.3  Classification

Our preliminary test showed that the average classification 
accuracies achieved by using LDA, support-vector machine, 
tree, and k-nearest neighbors were 85.01, 79.14, 81.06, and 
81.06%, respectively. Based on these results, we chose LDA 
as the classification algorithm. LDA is one of the most fre-
quently used algorithms for myoelectric interfaces (Hakonen 
et al. 2015). The LDA model can be statistically derived by 
assuming that the data within each class follow a multivariate 
normal distribution (Morrison 1969). Let the fEMG feature 
vector and a facial-expression class label be x and k , respec-
tively; then, the feature vector x can be predicted as follows:

(1)S = C

1

2

r logm

(
C
−

1

2

r CC
−

1

2

r

)
C

1

2

r ,

(2)ŷ = argmax
k

𝜑k(x)

Fig. 3  Signal preprocessing 
stages



 Virtual Reality

1 3

where ŷ represents the predicted label and �k(x) represents 
the decision function. The decision function �k(x) is defined 
as

where �k ∈ R36 is a mean vector of features corresponding to 
label k and � ∈ R36×36 is a pooled covariance matrix (PCM). 
The �k for every class label ( k = 1, 2, … , 11 ) and � can be 
estimated using the training dataset. The estimation of �k 
and � , as well as the derivation of the decision function, is 
presented in detail in Appendix 2.

The first trials for each facial expression were used as 
the training datasets, and the remaining 19 trials were used 
as the test datasets to evaluate the performance of our FER 
system. No samples were excluded from the original data-
set. We defined the classification accuracy as the number of 
correctly classified samples divided by the total number of 
samples.

3.4  LDA model adaptation with labeled datasets

We employed only a single trial (first trial) as the training 
dataset; thus, the user’s LDA model could easily be overfit-
ted, degrading the FER performance. To enhance the FER 
performance, we attempted to generalize the user’s LDA 
model by adapting it with another LDA model constructed 
using datasets of other users. We assumed that these data-
sets were already collected; therefore, no additional training 
datasets of the user were required. Hereinafter, the dataset 
collected from other users is denoted as DB (representing 
“database”).

Let �trk
 and � tr be the mean vector and the PCM of a 

user’s training dataset, respectively. Similarly, let �DBk
 and 

�DB be the mean vector and the PCM of the dataset of other 
users (DB), respectively. We applied two shrinkage param-
eters ( � and � ) to the two mean vectors ( �trk

 and �DBk
 ) and 

the two PCMs ( � tr and �DB ), as follows:

where 0 ≤ �, � ≤ 1 ; �, � ∈ ℝ ; and �̃k and �̃ are the newly 
adapted mean vector and PCM, respectively. This adapta-
tion strategy was adopted from previous studies (Zhang et al. 
2013; Vidovic et al. 2014, 2016); however, our approach 
differed from the previous ones in that we performed the 
LDA adaptation among different users (i.e., cross-subject 
settings), whereas in the previous studies (Zhang et al. 2013; 
Vidovic et al. 2014, 2016), LDA adaptation was performed 
for the same user and different sessions (cross-session 
settings).

(3)�k(x) = x
T�−1�k −

1

2
�T
k
�−1�k + log

(
�k
)

(4)�̃k = (1 − 𝛼)�trk
+ 𝛼�DBk

(5)�̃ = (1 − 𝛽)� tr + 𝛽�DB

To investigate the effect of the size of DB on the FER 
performance, we prepared various DBs that included dif-
ferent numbers of participants. We increased the number of 
participants from 0 to 41 ( n = 0, 1, … , 41 ). Then, we con-
ducted the LDA adaptation using (4) and (5). The maximum 
number of participants that could be included in DB was 41, 
because 42 participants were recruited for this study. Here, 
n = 0 indicates that no adaptation was performed.

Two different strategies were used for selecting n partici-
pants for constructing DB: (1) rnDB, i.e., randomly select-
ing n participants among 41 participants, and (2) riDB, 
i.e., selecting n participants in the order of closest distance 
between the user’s training dataset and other user’s data-
set. We measured the Riemannian distances. Specifically, 
we first computed the geometric mean of a user’s training 
dataset ( Ctr

r
 ) and the geometric mean for another participant 

p ( Cp
r
 ). Next, we computed all the distances in the Riemann-

ian manifold between Ctr
r
 and Cp

r
 and selected n participants 

in the ascending order of the Riemannian distances. The 
distance between C1 and C2 on a Riemannian manifold is 
defined as

where �i represents the real positive eigenvalues of C−1
1
C2.

There were two methods for selecting the reference points 
for the tangent space when the Riemannian features were 
extracted from DB: 1) using the geometric mean of a user’s 
training dataset ( Ctr

r
 ) and 2) using the geometric mean of 

DB ( CDB
r

).
With the combination of participant selection strategies 

(rnDB and riDB) and reference-point selection strategies to 
include in DB ( Ctr

r
 and CDB

r
 ), four adaptation approaches 

were available, which were denoted as rnDB-CDB
r

 , rnDB-Ctr
r
 , 

riDB-CDB
r

 , and riDB-Ctr
r
 . For each approach, the common � 

and � for all the participants were optimized with regard to 
the classification accuracy via a grid search. Specifically, we 
computed the average classification accuracies while varying 
the � and � values from 0 to 1 with a fixed step size of 0.1 
(i.e., 0, 0.1, 0.2, 0.3, …, 0.9, 1). Next, we set � and � to the 
values yielding the highest classification accuracy.

4  Results

4.1  Determination of optimal LDA adaptation 
approach

We determined the optimal LDA adaptation approach 
according to the average classification accuracy. Figure 4 
shows the classification accuracy as a function of the number 

(6)�R
(
C1,C2

)
= log

(
C
−1
1
C2

)
F
=

[
n∑

i=1

log2 �i

] 1

2
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of participants included in DB for four different LDA adap-
tation approaches. The baseline represents the condition 
where no LDA adaptation was applied. Except for the base-
line, the classification accuracy tended to increase with the 
number of participants included in DB. When CDB

r
 was used 

as the reference point, a higher accuracy could be achieved 
regardless of the DB selection strategy (rnDB or riDB). 
When the rnDB strategy was employed, a larger number 
of participants was needed to achieve a similar accuracy 
level, compared with the case where the riDB strategy was 
employed. Among the four LDA adaptation approaches, 
riDB-CDB

r
 yielded the highest accuracy (89.04%) when 24 

participants were included in DB (as indicated by the red 
star in Fig. 4).

4.2  Analysis of LDA shrinkage parameters

Figure 5 presents the classification accuracy for differ-
ent values of the parameters � and � , in the case where 
riDB-CDB

r
 was employed. As shown in Fig. 5, the classi-

fication accuracy reached 89.04% at � = 0.5 and � = 0.1 . 
This accuracy was 4.09 pp (percentage point) higher than 
that for the no-adaptation condition ( � = 0 and � = 0 ), 
which was 85.04%. A Wilcoxon signed-rank test indicated 
that the difference in classification accuracy between the 
baseline (no adaptation) and the optimal LDA adaptation 
condition was statistically significant (p < 0.001). Interest-
ingly, a high accuracy of 82.97% was achieved using an 
LDA model constructed solely with DB (i.e., � = 1 and 
� = 1 ), indicating the potential of the user-independent 

FER system. The lowest classification accuracy (78.01%) 
was observed when the mean vectors of DB and the PCM 
of the user’s training data were used ( � = 1 and � = 0).

Fig. 4  Classification accuracy 
as a function of the number of 
participants included in DB 
for the baseline and four LDA 
adaptation approaches. The 
highest accuracy is marked in 
red star

Fig. 5  Classification accuracy for the optimal LDA adaptation condi-
tion with respect to the LDA shrinkage parameter � and � . Each color 
is mapped to a specific accuracy
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4.3  Further analysis with optimal LDA adaptation 
condition

Figure 6 shows the classification accuracies for each of 
the 42 participants, relative to the baseline (no adapta-
tion) and optimal LDA adaptation conditions. The error 
bars indicate the standard deviations across 19 test trials. 
The classification accuracies for all the participants except 
four were increased by employing the LDA adaptation 
approach. The three largest accuracy increments between 
the baseline and optimal LDA adaptation conditions were 
observed for participants No. 36, 2, and 9; the incre-
ments were 14.88 pp ± 10.15 pp, 14.67 pp ± 5.60 pp, and 
11.99 pp ± 6.46 pp, respectively.

Figure 7 presents the recall, precision, and F1 score (per-
centage) for each expression, relative to the baseline and 
optimal LDA adaptation conditions. The F1 score was com-
puted using the harmonic mean of the recall and precision. 
The facial expressions on the three bar graphs were arranged 
in the order of decreasing accuracy relative to the optimal 
LDA adaptation. The recall, precision, and F1-score val-
ues were increased for all the facial expressions when the 
optimal LDA adaptation was utilized, except for the recall 
for happiness. The recall for the happiness expression was 
slightly reduced (by 0.75 pp) from 96.01% but still remained 
high (95.26%). The three facial expressions with the largest 
increases in the F1 score were fear, kiss, and anger, with 
increments of 7.58 pp, 6.67 pp, and 6.19 pp, respectively.

4.4  Confusion analysis

Figure 8 presents the confusion matrices of the classifica-
tion results for the baseline and optimal LDA adaptation 

conditions. The diagonals of the confusion matrices indi-
cate the recalls. The facial-expression labels in the two 
confusion matrices were arranged in the order of decreas-
ing recall for the facial expressions of the baseline. The 
average decrease for all the confusions was 0.41 pp. The 
top five largest decreases in the confusion were observed 
when (1) fear was misclassified as surprise, (2) surprise 
was misclassified as fear, (3) anger was misclassified as 
a frown, (4) sadness was misclassified as anger, and (5) 
clenching was misclassified as fear. The decreases in these 
five cases were 3.42 pp, 3.37 pp, 3.23 pp, 2.95 pp, and 
2.94 pp, respectively. Although the average confusions 
were reduced, confusions for angry and surprise were 
increased for some participants (participant 8 and 38), 
leading to the deterioration of overall FER performance 
of those participants. Introduction of an improved tech-
nique to further elevate the FER performance after the 
LDA adaptation might be necessary in future studies.

4.5  Online demonstration

Figure 9 shows a snapshot of the online experiment taken 
when a participant was making a happy facial expression. 
It can be seen that a virtual avatar is mimicking the facial 
expression of the participant. Note that the electrodes for 
acquiring the fEMG signals were directly attached to the 
commercial HMD pad in this online demonstration. Clas-
sification decision was made at every 0.05 s (20 frames per 
second). The demonstration video can be found at https:// 
youtu. be/9_ VFJrZ- 0Gk.

Fig. 6  Classification accuracy for each of the 42 participants for the baseline and optimal LDA adaptation conditions. The error bars indicate the 
standard deviations

https://youtu.be/9_VFJrZ-0Gk
https://youtu.be/9_VFJrZ-0Gk


Virtual Reality 

1 3

5  Discussion

We improved the performance of fEMG-based FER using 
LDA model adaptations with datasets of other users. In 
our previous study, we implemented an fEMG-based FER 
system that requires only a single training dataset, but per-
formance degradation was inevitable owing to the limited 
training dataset (Cha et al. 2020). The objective of the pre-
sent study was to enhance the FER performance without 
collecting an additional training dataset from the user. To 
this end, we adjusted the LDA shrinkage parameters of the 
user according to those of other users. To the best of our 

knowledge, this was the first study in which the LDA adapta-
tion approach was employed in a cross-subject manner. We 
believe that our technique being able to mirror the user’s 
face onto their avatars’ faces will be practically utilized in 
social VR or any other applications requiring personal vir-
tual avatar.

As shown in Fig. 4, classification accuracy was increased 
as the number of participants included in DB was increased. 
This might be explained as follows: the original LDA model, 
which was overfitted owing to the limited training dataset 
(only a single training dataset), became more generalized 
via the LDA adaptation with large datasets from other users. 

Fig. 7  Recall, precision, and F1 score for each facial expression. The F1 score was the harmonic mean of the recall and precision. The facial 
expressions on the three bar graphs were arranged in the order of decreasing accuracy for the optimal LDA adaptation condition
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However, increasing patterns of classification accuracy dif-
fered among the four LDA adaptation strategies. The rea-
son why the classification accuracy increased more rapidly 
when selecting the data in terms of the Riemannian dis-
tance (riDB) might be that the data with similar distributions 
with the user’s training dataset were chosen first. Therefore, 
this strategy would be useful when DB is not sufficiently 
collected. On the other hand, the reason why the classifi-
cation accuracies when a full DB was used were different 
depending on the selection of the reference covariances ( Ctr

r
 

and CDB
r

 ) might be explained by the generalization of LDA 
parameters. When features were extracted from the user’s 

domain ( Ctr
r

 ), features that had similar distribution with the 
user’s features could be extracted. This might lead to overfit-
ting of LDA parameters, and thus the classification accuracy 
would not be increased much. Based on this result, selection 
of CDB

r
 as the reference covariance is highly recommended 

to improve the overall FER performance.
We found the optimal LDA parameters � and � , which 

can be universally applied for all users. Our analysis results 
for the variation of the classification accuracy with respect 
to � and � indicated that mean vector � had a significantly 
larger effect on the performance than the PCM � . A similar 
effect of the mean vector in LDA adaptation was observed 

Fig. 8  Confusion matrices of the classification results for the baseline and optimal LDA adaptations. The facial-expression labels on the two 
confusion matrices were arranged in the order of decreasing recall of the baseline (the diagonals of the confusion matrices indicate the recalls)

Fig. 9  A snapshot of the online 
experiment taken when a partic-
ipant was making a happy facial 
expression (the demonstration 
video can be found at https:// 
youtu. be/9_ VFJrZ- 0Gk)

https://youtu.be/9_VFJrZ-0Gk
https://youtu.be/9_VFJrZ-0Gk
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in previous studies (Vidovic et al. 2014, 2016), although the 
LDA adaptation was conducted using datasets of the same 
participants. Nevertheless, the adaptation for the PCM was 
still necessary for enhancing the overall performance of the 
FER system. Our results indicated that the highest classifi-
cation accuracies for each value of � were always achieved 
with � ≠ 0 or � ≠ 1.

A user-independent FER system is a system that users can 
employ without a training session. Thus, the development 
of a user-independent practical FER system is an impor-
tant goal (Matsubara and Morimoto 2013; Khushaba 2014; 
Xiong et al. 2015; Kim et al. 2017). In this study, our FER 
system became user independent under a specific condi-
tion, i.e., when the rnDB-CDB

r
 approach was employed with 

� = � = 1 . To confirm the feasibility of the user-independent 
system, we computed the classification accuracy in this con-
dition. The results are presented in Fig. 10. Interestingly, the 
classification accuracy increased with the number of partici-
pants. The highest accuracy (82.88%) was achieved when 
all 41 participants’ data were employed for the training. 
Although this accuracy was lower than that of the baseline 
system (85.04%) trained with the user’s own dataset, the 
result is promising in that no training dataset from the user 
was required. The high accuracy is explained as follows: 
the geometric mean of the large DB yielded a large tangent 
space, which was helpful for making the feature distribu-
tions of the specific user and the other users similar. In the 
future study, we plan to develop an online user-independent 
FER system with a better performance, which is expected 
to increase the practicality of the FER system in many VR 
applications as the VR users can use the FER function with-
out a need for a cumbersome registration session.

Our study has the following ripple effects: (1) This study 
can accelerate and expand the metaverse world by adding 
facial-expression recognition to VR avatars. The biggest 
drawback of the avatars in current social VR services is that 
they fail to convey users' emotional expressions. This greatly 
reduces VR users' level of immersion and acts as an obsta-
cle to natural communication between users. The proposed 
method that can maximize FER performance with only a 
single training dataset can greatly contribute to building a 
huge metaverse world of the future. (2) The datasets avail-
able from this study can contribute to meaningful research 
exchanges with interested researchers on how to analyze 
data in VR environments. Unlike the data available in gen-
eral environments, the data analyzed in this study are based 
on VR environments. It can be of great value to several 
researchers and companies interested in analyzing biosig-
nal data in VR environments. (3) This study can contribute 
to the expansion of VR convergence research by increasing 
interest in applying biosignal analysis in VR environments. 
Recent advances in VR-based digital healthcare (Buettner 
et al. 2020) have made it increasingly important to monitor 
biosignals in VR environments. We hope this study help 
expand various research areas in VR environments.

6  Conclusion

In this study, we succeeded in improving the performance of 
fEMG-based FER by using LDA adaptation in the Riemann-
ian manifold without any additional training dataset of the 
user. However, for the system to be used in realistic scenar-
ios, its limitations must be considered. First, the test/retest 
reliability should be tested to determine whether the LDA 
adaptation method is still feasible in cross-session environ-
ments. It is well known that the user’s data domain can be 
affected by several factors, e.g., electrode shifts, humidity 
changes, and impedance changes (Young et al. 2012; Muceli 
et al. 2014; Li et al. 2016; Vidovic et al. 2016). Second, new 
domain adaption technique based on deep learning should be 
researched. One sample Kolmogorov–Smirnov test for the 
EMG features rejected the hypothesis that the features are 
not normally distributed, which is opposite to the assump-
tion of the LDA that data are normally distributed. This 
indicated that the LDA might not be the best option for our 
system. It will be interesting to develop new deep learning-
based domain adaption technique which is applied well with 
the EMG data. Third, our method must be validated using a 
dataset collected from a dry electrode-based EMG recording 
system. The portable biosignal acquisition system is gen-
erally susceptible to external noise and artifacts. Thus, an 
additional signal-processing method for denoising would be 
helpful for the development of a robust fEMG-based FER 
system. Fourth, our adaptation method resulted in better 

Fig. 10  Classification accuracy as a function of the number of par-
ticipants included in DB for the baseline and user-independent con-
ditions (rnDB-CDB

r
 ). The highest accuracy for the user-independent 

condition is marked in red
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performance when the stimuli were static pictures of facial 
expressions, but it has not yet been tested in more realis-
tic settings (e.g., presentation of video stimuli or natural 
interaction with others). Further investigation needs to be 
conducted under more realistic environments so that the pro-
posed method can be utilized in practical VR applications. 
Fifth, the current electrode systems need to be further devel-
oped. Further studies are needed to enhance the attachabil-
ity to the curved facial surface, increase robustness against 
temperature changes or sweats of the skin, and improve the 
recorded signal quality. Recently, ultra-thin, flexible, and 
breathable electrodes are actively developed as the substi-
tute of the current rigid electrodes (Fan et al. 2020), which 
is expected to be incorporated with the VR-HMD system 
in the near future. Lastly, directly capturing facial motions 
in a regression manner rather than a classification manner 
could be effective for developing a practical FER system. 
The pattern-classification method does not provide a solu-
tion to deal with unregistered facial expressions, which were 
not present in the training dataset. Thus, a regression-based 
FER approach should be investigated, which is an interesting 
research topic.
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Appendix 2

The LDA model can be statistically derived by assum-
ing that distribution of data within each class follows a 
multivariate normal distribution. Let the random variables 
X ∈

{
x1, x2, x3...

}
 and L ∈ {1, 2, ..., k} represent the feature 

vector and label, respectively. According to the assumption 
of LDA, the probability density function of the d-dimen-
sional feature vector x ∈ ℝ

d within the class label k can 
be given as

where �k ∈ ℝ
d is the mean vector of the features corre-

sponding to label k , and � ∈ ℝ
d×d is a PCM. �k and � can 

be estimated as follows:

where N , Nk , and K represent the total number of samples, 
the number of samples corresponding to label k , and the 
total number of labels, respectively.

The posterior probability that the label is k given X = x 
can be expressed according to Bayes’ rules:

Let p(L = k) and p(X = x|L = k) be �k and fk(x) , respec-
tively. Then, the numerator can be rewritten as �kfk(x) . 
Considering that �kfk(x) is a monotonic increment func-
tion, �kfk(x) is proportional to log

(
�kfk(x)

)
 . We can employ 

log
(
�kfk(x)

)
 as the decision function �k(x) , which is 

expressed as

Finally, a class label k is predicted in the test stage 
using the following equation:

In summary, �k and � are estimated using the training 
dataset via (2) and (3) in the training stage, and a new fea-
ture vector x is predicted via (6) in the test stage.
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