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Simple Summary: In this work, an improved pipeline for Leukocytes subtype classification is pro-
posed which uses transfer learning for deep feature extraction and a quantum inspired evolutionary
algorithm for feature selection. The proposed system achieves a high accuracy with smaller number
of features as compared to the classical methods.

Abstract: Leukocytes, also referred to as white blood cells (WBCs), are a crucial component of the
human immune system. Abnormal proliferation of leukocytes in the bone marrow leads to leukemia,
a fatal blood cancer. Classification of various subtypes of WBCs is an important step in the diagnosis
of leukemia. The method of automated classification of WBCs using deep convolutional neural
networks is promising to achieve a significant level of accuracy, but suffers from high computational
costs due to very large feature sets. Dimensionality reduction through intelligent feature selection
is essential to improve the model performance with reduced computational complexity. This work
proposed an improved pipeline for subtype classification of WBCs that relies on transfer learning for
feature extraction using deep neural networks, followed by a wrapper feature selection approach
based on a customized quantum-inspired evolutionary algorithm (QIEA). This algorithm, inspired by
the principles of quantum physics, outperforms classical evolutionary algorithms in the exploration
of search space. The reduced feature vector obtained from QIEA was then classified with multiple
baseline classifiers. In order to validate the proposed methodology, a public dataset of 5000 images of
five subtypes of WBCs was used. The proposed system achieves a classification accuracy of about
99% with a reduction of 90% in the size of the feature vector. The proposed feature selection method
also shows a better convergence performance as compared to the classical genetic algorithm and a
comparable performance to several existing works.

Keywords: deep learning; feature selection; evolutionary algorithms; quantum-inspired; white blood
cell classification; convolutional neural network (CNN)

1. Introduction

White blood cells (WBCs), or leukocytes, are an essential part of the human im-
mune system. They play a critical role in defending the body against infectious diseases
and foreign substances by identifying and neutralizing pathogens, such as bacteria and
viruses [1,2]. Leukocytes are of two types, i.e., agranulocytes and granulocytes. Granulo-
cytes are so named because they contain granules in their cytoplasm. They are produced in
the bone marrow and are involved in the immune response to various types of infections.
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There are three main types of granulocytes: neutrophils, eosinophils, and basophils. Agran-
ulocytes, which are cytoplasmically granule-free cells, are further divided into two types,
i.e., monocytes and lymphocytes [3]. Each type of cell plays a distinct role in the body’s
immune system. For instance, neutrophils and lymphocytes combat viruses, bacteria, fungi,
and other cells that endanger the body’s ability to function. Eosinophils play a role in
the body’s normal immunological and inflammatory reactions. Monocytes fight against
infections, kill the cancerous cells, and remove the dead or damaged tissues [4]. WBC
analysis, classification, and counting are critical steps in the diagnosis of many diseases,
particularly leukemia, a type of blood cancer caused by abnormal growth of malignant
WBCs in the bone marrow. The conventional method for leukemia diagnosis is based on a
series of blood tests, the majority of which involve visual examination of blood images by
hematologists. Automated blood analysis has drawn a lot of research attention recently
thanks to advancements in machine learning. Nevertheless, morphological overlap be-
tween several subclasses and their structural abnormalities makes machine learning-based
categorization and localization of WBCs challenging. Among the modern approaches, deep
learning with convolutional neural networks has shown significant promise [5,6]. Although
deep neural networks have the ability to obtain a rich collection of features from images,
their training requires a very large dataset, which is typically not available in medical
imaging. In such a case, transfer learning is the preferred approach in which a pre-trained
CNN is fine tuned for a specific task [7]. A number of well-performing CNNs have been
made publicly available by the research community, including VGGNet [8], Resnet [9],
Darknet [10], Mobilenet [11], Inception [12], and Xception [13] etc. Deep models have the
potential to extract a wide variety of information from the images because of their aptitude
for self-learning. As a result, a high level of accuracy is achieved for a range of image
classification scenarios. In many applications based on deep transfer learning, feature
selection is a crucial step, as it helps to reduce the dimensionality of the feature space and
select the most informative and relevant features for accurate and efficient classification.

The state-of-the-art for leukocyte classification using machine learning can be broadly
divided into two categories of works based on the type of classifier used. The first category
includes classical methods of feature extraction and classification. Some notable contribu-
tions in this category are discussed as follows. In [14], a method for WBC classification was
proposed which selects the color images’ eigen vectors and classifies them using a Bayesian
classifier. In [15], a clustering approach was proposed that separates the cytoplasm and
nucleus of leukocytes. The morphological, statistical, and geometric features were then
classified using support vector machine (SVM). A mean-shift clustering based image seg-
mentation method was proposed in [16], followed by the extraction of ensemble features of
shape, texture, color, and geometry, and their classification using random forest classifier.
In [17], a decision tree learning-based method was proposed for the detection of blood
cancer. The proposed pipeline is based on image pre-processing and clustering steps with
a random forest classifier. In [18], a segmentation approach was proposed based on finding
a selective region of WBCs in the HSI color space. The nucleus and cytoplasmic granules of
white blood cells were identified as colored pixels in the elliptical discriminating zone. To
identify various kinds of WBCs, geometrical characteristics, color features, and LDP-based
data were also retrieved and fed into several neural networks.

The second category includes the methods that use deep neural networks for feature
extraction and classification. Due to the unavailability of very large datasets of WBC slides
or images, the majority of the works are concentrated on using deep transfer learning.
A few significant contributions are discussed here as follows. In [19], a deep learning
model based on DenseNet121 CNN was proposed to classify subtypes of WBCs. The
model augmentation and normalization was performed using the Kaggle dataset. In [20],
dataset augmentation was performed using generative adversarial networks followed by
transfer learning for WBC classification using the DenseNet169 network. The authors of [21]
investigated the efficacy of pre-processing images with Gaussian and median filtering,
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prior to training with multiple CNN architectures such as Alexnet, ResNet50, DenseNet201,
and GoogleNet20. The YOLO algorithm for WBC classification was proposed in [22].

Modern approaches utilizing transfer learning on deep CNNs are characterized by the
fact that they extract a rich set of features from the images. This results in an exorbitant mem-
ory and processing power. Most often, many of these extracted deep features are redundant
and do not contribute much to the classification task. Feature selection is an important
step that performs dimensionality reduction of feature vectors by choosing only powerful,
discriminating features. This not only reduces the processing time but also increases the
accuracy of the classification task. A number of works have proposed feature selection in
WBC classification, which mainly includes two types of methods, namely the filter method
and the wrapper method. The filter method achieves a quick convergence to the important
features; however, it does not consider the relevance between the feature subset and the
classification algorithm. A wrapper approach using population-based meta-heuristics for
feature selection has attracted significant research interest in recent years. This includes
several evolutionary algorithms such as the genetic algorithm [23] and others [24–26]. A
better accuracy is achieved by these methods as compared to filter-based feature selection.
However, due to their iterative nature, these methods often require increased processing
time. Quantum-inspired evolutionary algorithms (QIEA) [27], a class of metaheuristic
algorithms inspired by the principles of quantum mechanics, provide a better exploration
and exploitation of search space and hence can be an interesting solution to select powerful
features while achieving a comparable or even better classification accuracy.

Contributions

In this work, an improved WBCs classification framework was proposed, which ex-
tracts a rich set of deep features from WBC images using transfer learning on multiple deep
CNNs, and performs feature selection using a customized quantum-inspired evolutionary
algorithm. The contributions of this work are as follows:

1. Transfer learning was carried out utilizing two deep CNNs, namely Darknet53 and
Densenet201, using a large-scale synthetic dataset of five WBC subtypes;

2. Feature vector fusion was performed to create an ensemble of extracted deep features
from both networks;

3. The core contribution of this work was to model the feature selection as an optimiza-
tion problem and solve it using population-based metaheuristics i.e., a quantum-
inspired evolutionary algorithm (QIEA). Further, this work proposed a customized
version of QIEA by performing distinct quantum rotation of individual variables of
candidate solutions. The proposed algorithm effectively excludes correlated and noisy
features, selecting only the most relevant features;

4. Several baseline classifiers with different kernel values were used to categorize the
reduced feature set;

5. The simulation results demonstrate that the proposed method achieves a higher
accuracy and a better convergence performance with a significant reduction of feature
vectors as compared to several existing methods.

The remaining part of this paper is organized as follows. In Section 2, all computation
steps of proposed pipeline are discussed including the dataset and customized QIEA-based
feature selection. The performance results are discussed in Section 3 and, finally, Section 4
concludes the paper.

2. Materials and Methods
2.1. Dataset

In this study, a publicly available dataset of [28] was used, which has been generated
synthetically from a real-world dataset [29], consisting of 6562 images representing five sub-
types of WBCs, namely, monocytes, neutrophils, basophils, lymphocytes, and eosinophils.

The original dataset of [29] was used to train the convolutional generative adversarial
network (DCGAN), which then produced the dataset. The generated dataset was comprised
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of 5000 images with dimensions 128× 128× 3, with each class consisting of 1000. Few
samples from all WBC classes of the dataset [28] are demonstrated in Figure 1.

CMC, 202x, vol.xx, no.xxxxxx

the paper.

3 Materials and Methods

This section provides a description of all steps of the proposed WBC classification system which are
discussed in the following subsections.

3.1 Dataset Description

This work uses a synthetic dataset made publicly available by the authors in [33]. The dataset was
generated synthetically from a real-world dataset [34] of images that belong to five WBC subtypes
namely, neutrophil, eosinophil, basophil, lymphocyte and monocyte. The synthetic dataset was generated
by training the convolutional generative adversarial network (DCGAN) on the original dataset of [34].
The synthetic dataset is composed of 5000 images each of size 128x128x3, with 1000 images belonging
for each class. Figure 2, shows samples belonging to all classes of dataset of [34] used in this work.

.
Figure 2. Samples of  WBC images of dataset [34] used in this work.

3.2 WBCs Classification Pipeline
Figure 3 shows the proposed WBCs classification pipeline, whose main computation steps are discussed
as follows..

Figure 1. Samples of WBC images of dataset used in this work.

2.2. WBC’s Classification Pipeline

The main computation steps of the proposed pipeline are shown in Figure 2 and are
discussed as follows.

Figure 2. Pipeline of proposed WBCs classification system.

2.2.1. Preprocessing

The preprocessing step consisted of input image contrast enhancement by color his-
togram equalization. Normally, grayscale images are subjected to the traditional histogram
equalization method, which redistributes the intensity of the images. Color histogram
equalization was achieved by the conversion of RGB image space to HSV/HSI space fol-
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lowed by intensity enhancement, whereas hue and saturation components were preserved.
The color histogram equalization was performed in the following steps.

1. Conversion of image from Red Green Blue (RGB) channels space into Hue Saturation
and Intensity (HSI) space;

2. Intensity matrix calculation from HSI image;
3. Histogram equalization on the intensity matrix;
4. Replacement of HSI image intensity with histogram equalized intensity matrix;
5. HSI image conversion to RGB image.

2.2.2. Feature Extraction

In this work, transfer learning for feature extraction was used with the help of two deep
CNNs, i.e., DenseNet201 and DarkNet53. Both these networks are discussed as follows.

DarkNet53 is a deep CNN originally proposed in a YOLO3 image detection frame-
work [10]. The pretraining of this network was performed on the ImageNet [30] database.
The pretrained network has the ability to classify about 1000 different image classes. Table 1
shows the layerwise details of DarkNet53 architecture. The input layer received an im-
age of size 256× 256× 3. The network was composed of repeated convolution layers
with filter sizes 1× 1 and 3× 3. The output of the convolutional layers was connected to
batch normalization [31] and LeakyReLU [9] layers. Further, a residual layer was added to
address the gradient disappearance problem.

Table 1. Layerwise details of DarkNet53.

Layer Type Filters Filter Size Stride Size Repeat Output Size

Input - - - - 224× 256

Convolutional 32 3× 3 1 1 256× 256

Convolutional 64 3× 3 2 1 128× 128

Convolutional 32 1× 1 1
1Convolutional 64 3× 3 1

Residual 128× 128

Convolutional 128 3× 3 2 1 64× 64

Convolutional 64 1× 1 1
2Convolutional 128 3× 3 1

Residual 64× 64

Convolutional 256 3× 3 2 1 32× 32

Convolutional 128 1× 1 1
8Convolutional 256 3× 3 1

Residual 32× 32

Convolutional 512 3× 3 2 1 16× 16

Convolutional 256 1× 1 1
8Convolutional 512 3× 3 1

Residual 16× 16

Convolutional 1024 3× 3 2 1 8× 8

Convolutional 512 1× 1 1
4Convolutional 1024 3× 3 1

Residual 8× 8

GlobalAvgPool

Fully Connected 1000

Softmax

In order to re-train the Darknet53 CNN, a fully connected layer (FCL) was inserted
in the network in place of the “Conv53” layer. The number of outputs of FCL were kept
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equal to the number of WBC classes in the dataset (i.e., five classes). Further, the softmax
and classification layers of the networks were also replaced by new layers. To match the
network’s input layer, the dataset images were resized to 256× 256× 3, followed by specific
augmentation operations such as random rotation and flipping. The deep feature extraction
was performed from the “GlobalAvgPool” layer. A feature vector of size 1024 was obtained
from Darknet53 for each image of the training as well as the testing datasets.

DenseNet201 The dense convolutional network (DenseNet [32]) was composed of
201 layers and also trained on the Imagenet [30] dataset. The network was designed to
minimize the problem of the vanishing gradient in neural networks. In DenseNet, layer
concatenation was performed in such a way that each layer receives “collective knowledge”
from all preceding levels. The resulting network was compact and highly efficient in terms
of computational complexity and memory requirements. Table 2 shows layer details of
DenseNet201.

Table 2. Layerwise details of DenseNet201 network.

Type of Layer Composition Repeat Factor Output Size

Input – – 224× 224

Convolution Conv(7× 7), stride 2 112× 112

MaxPool (3× 3), stride 2 56× 56

Dense Block 1 Conv(1× 1) 6Conv(3× 3 ) 56× 56

Transition Layer 1 Conv(1× 1) 1 56× 56
Avg Pool(2× 2), Stride 2 28× 28

Dense Block 2 Conv(1× 1) 12Conv(3× 3 ) 28× 28

Transition Layer 2 Conv(1× 1) 1 28× 28
Avg Pool(2× 2), Stride 2 14× 14

Dense Block 3 Conv(1× 1) 48Conv(3× 3 ) 14× 14

Transition Layer 3 Conv(1× 1) 1 14× 14
Avg Pool(2× 2), Stride 2 7× 7

Dense Block 4 Conv(1× 1) 32Conv(3× 3 ) 7× 7

Classification Layer 7× 7 Global Avg. Pool
1000D fully Connected, softmax 1× 1

To perform network training on our dataset, the “fc1000” layer was replaced with an
FCL with five classes. A new softmax layer was also inserted along with the classification
layer without class labels. In a similar fashion, the images were resized to 224× 224 and
augmented (rotated, flipped etc.) prior to training. The global average pooling layer
was used to extract features from the trained network. A feature vector of size 1920 was
obtained for each training and testing image.

2.2.3. Feature Fusion

In this step, the feature vectors extracted from both networks were concatenated
together to form an ensemble of features. This work adopted a serial concatenation of
feature vectors. Let X and Y denote the feature vectors of size 1×m and 1× n, respectively,
produced from the two deep CNNs, the fused feature vector Z is of dimensions 1× (m + n)
and can be expressed as

Z = [X, Y]. (1)
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2.2.4. Feature Selection Using Quantum Inspired Evolutionary Algorithm

The considerably large size of the fused feature vector extracted from above steps
requires an intelligent selection of the most important features to reduce the computational
complexity of the classification model while ensuring a high accuracy. As discussed earlier,
in the classical filter based approach, a predefined criterion is used to select the features
without consideration of the learning model. On the other hand, in the wrapper approach,
the main feature selection criterion is the learning model accuracy. The main contribution
of this work was to model the feature selection as an optimization problem and propose a
meta-heuristic for its solution. The objective of the optimization problem was to minimize
the number of selected features while maximizing the accuracy of the learning model.

Quantum Inspired Evolutionary Algorithm. The QIEA is a class of population-based
algorithms inspired by the concepts of quantum mechanics and evolutionary comput-
ing [27]. In binary QIEA, the candidate solutions to an optimization problem, i.e., chromo-
somes are represented as vectors of qubits. A qubit is a vector [α β]T such that α and β are
the probabilities of observing the qubit state as |0 > or |1 >, respectively, complying with
the condition |α|2 + |β|2 = 1. AqQubit state is represented as

|Φ >= α|0 > +β|1 > . (2)

A qubit individual (chromosome) qj is represented as a string of m Qubits as

qj =

[
α1 α2 · · · αm
β1 β2 · · · βm.

]
(3)

Each qubit of the chromosome represents a linear superposition of quantum states
|0 > and |1 >. For example, consider the following three qubit system:

qj =

[ 1√
2

1√
2

1√
2

1√
2
− 1√

2
1√
2

.

]
(4)

Here, a linear superposition of 23 = 8 states, i.e., |000 > · · · |111 > is represented.
A greater population diversity is achieved by QIEA as compared to classical evolutionary
algorithms. A quantum population Q(t) consists of n individual chromosomes of m
qubits each. From the quantum population Q(t), a binary population P(t) is generated
by performing the observation of the quantum state of each qubit. The evaluation phase
involves the calculation of the fitness value of each individual from P(t). The recombination
is performed using uniform crossover. The quantum population is then updated by
applying the quantum rotation operation on each qubit as:[

αi+1
j

βi+1
j

]
=

[
Cos(θ) −Sin(θ)
Sin(θ) Cos(θ)

][
αi

j
βi

j,

]
(5)

where θ is the rotation angle and i is the generation counter. The termination criterion is
the maximum number of generations.

Feature selection using QIEA. In this study, we proposed a customized QIEA for the
selection of the most powerful features from the fused feature vector. The main computation
steps of the proposed QIEA are listed in Algorithm 1.

Notations: In Algorithm 1, double struck characters (e.g., F) are used to represent
matrices and vectors, whereas normal characters denote the scalar quantities.

The inputs to the algorithm include fused feature matrix F, the label vector L, total
number of generations G, population size N, and the number of variables in each solution,
i.e., M. The matrix F has dimensions nt ×M, where nt denotes the number of training
images and M is the number of features in the fused feature vector. In Phase 1 of the
algorithm, the main parameters are initialized, which include ρs, i.e., the probability of the
best selected individuals in a population, the number of best selected features Nb, the angle
of quantum rotation θ, iteration of best individual solution Xl , and global best individual
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Xgb. In step 4 (Phase 2), all qubits of the quantum population are initialized to equal
probability 1√

2
. In steps 5–12, a binary population matrix P is generated by performing an

observation procedure on the qubits.
Steps 13–39 constitute the execution phase of the algorithm. The while loop runs

for G number of iterations (generations); during each iteration, all individuals of the
population P are evaluated for their fitness value in steps 16–17. The fitness values are
computed using the CostFunction routine, which receives as inputs the matrix F, label
vector L, and binary vector A, which contains one individual of the population. Step 49 of
the CostFunction first extracts all the features of F, whose indexes correspond to non-zero
values of A, and then splits the updated feature matrix F2 into training and testing sets. In
steps 52–58 of the CostFunction, model training and prediction is performed using the K
nearest neighbors (KNN) classifier with k = 5 nearest neighbors to consider. The fitness
value (cost) is computed using the classification error metric. The fitness values of all
individuals returned by CostFunction are stored in vector Γ of the main function. In step
19 of the main function, the sort() function arranges the fitness values in ascending order
along with their indexes and stores them in vectors Γs and I, respectively. The individuals
with minimum cost are the fittest individuals of a population. In steps 20–25, from the
sorted fitness values, the iteration best and global best individuals are updated along
with their fitness scores. In step 27, all probabilities of qubits are modified by applying a
QIEA_Rotation function of (5).

Algorithm 1 QIEA for feature selection.

1: Inputs: F,L, G, N, M
2: Phase 1: Parameter Initialization

M← size(F, 2), i← 1, ρs ← 0.4, Nb ← dρs × Ne
θ ← π

4 × rand(1), Xgb(1, 1 : M)← 0,
Xl(1, 1 : M)← 0, fg ← ∞, fl ← ∞

3: Phase 2: Generate Initial Quantum Population
4: A(1 : N, 1 : M)← 1√

2
,B(1 : N, 1 : M)← 1√

2
5: R← random(1 : N, 1 : M)
6: for x = 1 : N do
7: for y = 1 : M do
8: if R(x, y) ≥ B(x, y) then
9: P(x, y)← 1

10: else
11: P(x, y)← 0
12: end if
13: end for
14: end for
15: Phase 3: Execution
16: while i < G do
17: for j = 1 : N do
18: A← P(j, 1 : M)
19: Γ(j)← CostFunction(F,L,A)
20: end for
21: [I, Γs ]← sort(Γ)
22: Ps ← P(I(1 : Nb , 1 : M))
23: Xl ← Ps(1, 1 : M)
24: if Γs(1) < fg then
25: fg ← Γs(1)
26: Xgb ← Ps(1, 1 : M)

27: end if
28: Perform Quantum Rotation Gate Operation
29: B← QIEA_Rotation(Xl ,Xgb ,B, θ)

30: Population Update
31: R← random(1 : N, 1 : M)
32: for x=1:N do
33: for y=1:M do
34: if R(x, y) ≥ B(x, y) then
35: P(x, y)← 1
36: else
37: P(x, y)← 0
38: end if
39: end for
40: end for
41: end while
42: Extract Index of Best Features
43: I← 1 : M

44: SF ← I(Xgb == 1))
OUTPUT: SF
——————————————————————————-

45: Function: CostFunction
46: Inputs: F,L,A
47: Parameters: α1 = 0.99, α2 = 0.01, k = 5, ho = 0.2
48: if (sum(A == 1) == 0) then
49: cost = 1
50: else
51: F2 ← F(:, (A == 1))
52: Ftrain ,Ltrain ,Ftest ,Ltest ← partition(F2,L, ho)
53: A2 ← (A == 1)
54: Model ← trainKNN(Ftrain ,Ltrain , k)
55: Lpred ← predict(Model,Ftest)

56: acc← sum(Lpred == Ltest)/length(Ltest)

57: err ← 1− acc
58: fs ← sum(A == 1)
59: ft ← length(A)
60: cost← α1 × err + α2 × ( fs

ft
)

61: end if
62: Return: cost

——————————————————————————-

63: Function: QIEA_Rotation
64: Inputs: Xl ,Xgb ,B, θ

65: Initialize Parameters:
66: a← 0, b← 0, a′ ← 0, b′ ← 0

T(1 : N, 1 : M)← 0, B′ (1 : N, 1 : M)← 0, Φ← 0
67: for x = 1 : N do
68: for y = 1 : M do
69: if (Xgb(y)&Xl(y) == 1)) then
70: Φ← θ
71: else
72: Φ← −θ
73: end if
74: b← B(x, y)
75: a←

√
1− b2

76:
[

a′

b′

]
=

[
Cos(Φ) −Sin(Φ)
Sin(Φ) Cos(Φ)

][
a
b

]
77: T(x, y)← b′
78: end for
79: end for
80: Return: T
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The classical QIEA uses the first individual solution of the current population to
compute the rotation angle. This angle is applied to all other individuals of the population.
In this work, we proposed a customized version of QIEA, which uses the qubit probabilities
of all individuals of the population, performing rotation on each of them with a separate
rotation angle. This random rotation at the individual solution as well as at the qubit level
helps the algorithm to avoid being stuck in local optima. In steps 29–39 of the main routine,
a new population is generated from the updated qubit probability values. In steps 41–42,
the indexes of non zero entities of global best individual Xgb correspond to the indexes
of selected features from the fused feature vector. The reduced feature vector SF of these
selected features is returned by the algorithm.

2.2.5. Classification

The reduced feature set SF extracted above from QIEA along with the label L are used
to train multiple baseline classifiers. In this work, we used several kernels of KNN, SVM,
decision tree (DT) and neural network (NN) classifiers.

3. Performance Results

The proposed leukocyte classification pipeline was implemented on a Core i5 CPU
with 8 GB of RAM and the Windows 10 64-bit system. The synthetic dataset of 5000 WBC im-
ages was used with a splitting ratio of 80% for training and testing, respectively. The training
images were used to perform transfer learning of DenseNet201 and DarkNet53 deep models.
In Table 3, important parameters of model training for deep transfer learning are listed.
The training images were then applied to trained deep models, and layer activations were
extracted as features. The combined feature vector of size 2944 was then subjected to the
proposed QIEA feature selection method. Figure 3 demonstrates a set of reduced features
extracted from the QIEA feature selection step.

CMC, 202x, vol.xx, no.xxxxxx

Table 3: Model training parameters for transfer learning of  DenseNet201 and DarkNet53 models

Parameter Value Parameter Value

Kernel sdgm Initial Learning Rate 1e-4

Execution
Environment

Auto MiniBatch size 20

MaxEpochs 5 Validation Frequency 30

The reduced set of features are then used to train the KNN and SVM classifiers with multiple kernel
settings. In order to perform the classification task, testing images are applied to the trained deep models
and a fused feature vector is obtained. The reduced feature vector is generated by using the indexes
obtained by the ECMPA. This is then classified using the trained KNN and SVM classifiers. Figure 4
demonstrates a set of reduced features extracted from the ECMPA step.

Figure 4: Extracted deep features from proposed ECMPA

Figure 5 demonstrates the results of the proposed WBCs classification system with various kernels of
SVM and KNN classifiers. The SVM classifier achieves a 99.9% accuracy with 70 features. The
confusion matrix of SVM with the quadratic kernel is also demonstrated. The high value of true positive
rate (TPR) and low value of false negative rate (FNR) are achieved for all image classes.

Figure 3. Extracted deep features from proposed QIEA feature selection method.
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Table 3. Main model training parameters for DenseNet201 and DarkNet53 transfer learning.

Parameter Value Parameter Value

Kernel sdgm Learning Rate 1× 10−4

Execution Environment Auto MiniBatch Size 20

MaxEpochs 5 Validation Frequency 30

Dropout rate 0.1 Stride Size 1

The reduced set of selected features by QIEA was then used to train several outer
classifiers such as KNN, NN, DT and SVM with multiple kernel settings. The classification
results of the proposed leukocyte classification pipeline are demonstrated in Table 4 with a
reduced feature vector of size 70 and various kernel settings. As evident from the Table,
a maximum of 99.8% accuracy is achieved by the wide neural network classifier with
70 features extracted by QIEA out of 2944 fused features. On the other hand, the highest
testing accuracy values achieved by other classifiers, i.e., SVM, KNN, and DT are 80.2%,
99.7%, and 72.4%, respectively. Figure 4 demonstrates the region of convergence (ROC)
curve for the best performing classifier, i.e., the wide neural network on the reduced
feature set.

Table 5 displays the testing accuracy values obtained by different classifiers using a
full feature set that includes all 2944 fused features as well as reduced feature sets that
were obtained through dimensionality reduction using principal component analysis (PCA)
and feature selection using the proposed QIEA approach. A reduced feature vector of
size 520 was obtained after PCA using a component reduction criterion of 95% explained
variance. The QIEA-derived reduced feature vector outperforms the other two feature
vectors, in terms of accuracy, for all classifiers examined in this work, highlighting the
proposed approach’s strong feature selection capabilities.

Table 4. Classification test results of proposed WBCs classification system with different classifiers.

Classifier
Feature
Vector
Size

Accuracy
% Precision Recal F1 Score Sensitivity

KNN Coarse

70

99.7 0.997 0.997 0.996 0.994
KNN Cosine 99.1 0.99 0.997 0.997 0.991

NN Wide 99.8 0.997 0.998 0.998 0.995
Decision Tree (Medium) 72.4 0.73 0.726 0.725 0.742

SVM (Gaussian) 72.2 0.882 0.72 0.741 0.734
SVM (Regression) 80.2 0.890 0.80 0.842 0.887

Table 5. Accuracy comparison of WBC classification using full feature set, reduced feature set using
PCA based dimensionality reduction, and reduced feature set using QIEA-based feature selection.

Classifier

Dimensionality Feature Selection Using
Reduction Using Full Feature
Using PCA QIEA Set

Feature
Vector
Size

Accuracy
%

Feature
Vector
Size

Accuracy
%

Feature
Vector
Size

Accuracy
%

KNN Coarse

520

97.1

70

99.7

2944

98

KNN Cosine 97 99.1 98.1

NN Wide 99.2 99.8 99.1

Decision Tree (Medium) 71 72.4 70.1

SVM (Gaussian) 70.8 72.2 60.1

SVM (Regression) 81 80.2 79
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Figure 5 shows the achieved error rate of the proposed QIEA and genetic algorithm
(GA) with population size N = 20, and Nb = 10 best selected candidates per population.
The simulation for 2000 iterations shows a better error rate performance achieved by QIEA
as compared to the classical GA.

Figure 4. Region of convergence (test) plot of the best performing classifier, i.e., wide neural network
for the proposed WBC classification pipeline.

Figure 5. Error rate performance of proposed QIEA and genetic algorithm.
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In Figure 6, the error rate of the proposed QIEA and genetic algorithm is plotted for
various values of population size N, with a constant value of 20 iterations. The graph first
reveals that the error rate decreases with an increase in population size. Moreover, the QIEA
achieves a better error rate for all values of N, which clearly demonstrates the effectiveness
of the proposed approach. Figure 7 shows the comparison of computation time (seconds)
of the classical GA and proposed QIEA for 200 iterations and different population sizes
from N = 5 to 20. The QIEA achieves a low computation time as compared to GA.

Figure 6. Error rate performance of QIEA and genetic algorithm with respect to population size at
20 iterations.

Figure 7. Computation time (seconds) of GA and QIEA with 200 Iterations and different
population sizes.
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Table 6 presents WBC classification accuracy achieved by using a non iterative entropy-
based feature selection approach and iterative feature selection using GA and QIEA meth-
ods. The entropy-based feature selection was performed using the following sequence
of steps:

1. Calculate Shannon’s entropy of target variable which consists of encoded class labels
of the training dataset;

2. Calculate information gain for each feature. This is carried out by calculating the
conditional entropy of each feature in the feature set with respect to the target variable,
using the unique values of the feature and their corresponding probabilities;

3. Subtract the calculated entropy from the target entropy to obtain the information gain
for each feature;

4. Sort features by information gain in descending order;
5. Select top k features based on their information gain value;
6. Return the indices of selected k features and used these indices to extract features

from the original feature set.

Table 6. Comparison of the accuracy of three feature selection methods used in WBC classification
pipelines: non-iterative entropy-based feature selection and wrapper feature selection using GA
and QIEA.

Classifier

Feature Selection Feature Selection Entropy Based
Using Using Feature

GA QIEA Selection

Feature
Vector
Size

Accuracy
%

Feature
Vector
Size

Accuracy
%

Feature
Vector
Size

Accuracy
%

KNN Coarse

289

98

70

99.7

1472

94.3

KNN Cosine 96.9 99.1 92.5

NN Wide 98.6 99.8 92.8

Decision Tree (Medium) 72 72.4 70

SVM (Gaussian) 71.4 72.2 71.1

SVM (Regression) 78 80.2 78.2

In this work, we selected k = 1472, which corresponds to top 50% features with respect
to information gain. The comparison of Table 6 clearly demonstrates that the proposed
QIEA based feature selector outperforms the other two selection methods by achieving a
high accuracy with a smaller feature set.

A comparison of the proposed method’s accuracy with some existing works on WBC
classification that used deep learning networks and similar datasets is shown in Table 7.
In comparison to prior works, the suggested technique exhibits a comparable or even
superior accuracy performance with fewer features. This supports the viability of the
proposed approach.

3.1. Discussion

In this work, we tested the WBC classification accuracy of five different feature se-
lection approaches. In Table 5, we compared the accuracy of using a full feature set,
a dimensionality reduced feature set using PCA and a QIEA-selected feature set. Similarly,
in Table 6, the accuracy of iterative feature selection using GA and QIEA is compared with
an entropy-based non iterative approach. A full feature set utilizes all available features for
classification, potentially capturing all relevant information. However, it often includes
redundant or irrelevant features which can add noise to the classification model and reduce
its performance. It also causes overfitting, especially when the number of features is large
as compared to the number of observations. On the other hand, PCA is an unsupervised
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dimensionality reduction technique which assumes that the data points have a linear struc-
ture. As shown in Figure 3, the fused features are mostly non-linearly spaced in the xy
plane; therefore, PCA is poorly able to capture their relationships even with a high number
of components. Evolutionary algorithms such as GA and QIEA are the supervised feature
selection approaches often suited for classification tasks such as biological cell classification.
A comparable accuracy is achieved by an entropy-based, non iterative feature selection.
Among the approaches discussed above, QIEA achieves the best classification accuracy on
the dataset used in this work, thanks to its faster convergence rate and better search space
exploration capabilities.

Table 7. Performance comparison of proposed method with some existing works. ×: Not done, N.A:
Information not available.

Work
Deep

Learning
Model

Feature
Selection

Feature
Vector Size Classifier Accuracy %

[33] GoogleNet,
ResNet-50

Maximal
Information
Coefficient,

Ridge
Regression

Model

755
Quadratic

Discriminant
Analysis

97.95

[34] AlexNet × 1000 CNN 98.4

[35]

PatternNet
fused

ensemble of
CNNs

× N.A CNN 99.90

[36] ResNet and
Inception

Hierarchical
Approach N.A ResNet and

Inception 99.84

This Work
DenseNet201

and
DartkNet53

QIEA 76 SVM, KNN,
NN, DT 99.8

3.2. Statistical Significance

In order to validate the statistical significance of our results, we used the analysis of
variance (ANOVA) [37] strategy. The means of several distributions were compared in order
to assess the statistical significance of our results. The classification accuracy was selected
as the performance metric in the proposed framework. In order to perform ANOVA,
the Shapiro–Wilk test [38] was conducted to validate the assumption of normality. The
homogeneity of variance was validated using Bartlett’s test [37]. A 1% level of significance
corresponding to α = 0.01 was used in these tests. The means of accuracies of SVM,
KNN, NNN are µ1, µ2 and µ3, respectively. The null hypothesis was considered true if
the Shapiro–Wilk p-values were less than or equal to α; the alternative hypothesis was
affirmed true otherwise. The computed p-values of SVM, KNN, and NN classifiers were
p1 = 0.684, p2 = 0.723, and p3 = 0.7123, respectively. The Chi-squared probability of
Bartlett’s test was pch = 0.823. For the obtained p-values, we can ascertain that our accuracy
values are normally distributed and have homogeneous variances.

In Table 8, the ANOVA statistical results are shown, which include the sum of squared
deviation (SS), degree of freedom (df), F-statistics, mean squared error (MSE), and p-value.
The obtained p-value was 0.685, which is greater than α and leads to the conclusion that
the means of the three classifiers are identical.
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Table 8. Statistical test results based on ANOVA using accuracy metric.

V-Source SS df MSE F-Statistics p-Value

Between 6.815 × 10−5 2 2.6258 × 10−5 0.34 0.685
Within 6.2136 × 10−4 6 8.8614 × 10−5 - -
Total 6.1259 × 10−4 8 - - -

In Figure 8, the confidence interval plots of accuracy values of the three selected
classifiers are demonstrated. The red bars present the average accuracy, whereas the black
bars present the 99% confidence limits of each classifier. Moreover, the blue bars show the
lower and upper quantile points obtained by performing the above-mentioned statistical
tests. The figure demonstrates that the KNN and wide-NN classifiers achieve a higher
average accuracy with a relatively smaller confidence interval size as compared to the
other classifiers. The quantile points of each classifier lie within their respective confidence
limits. The higher p-values resulting from these quantile points lead to the acceptance
of null hypotheses, which means significant differences in the accuracy distribution of
the classifiers.

KNN KNN-C NN-W DTree SVM-G SVM-LR

Classifiers

0.7

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u
ra

c
y

Confidence Interval

Figure 8. Confidence interval for selected classifiers.

4. Conclusions

The classification of WBCs is crucial in the diagnosis of certain blood disorders, par-
ticularly leukemia. In modern approaches for leukemia detection using transfer learning
on deep neural networks, feature extraction is a crucial task to reduce the ‘curse of di-
mensionality’ while achieving a high accuracy. This work proposed an improved WBCs
classification pipeline in which deep transfer learning was first applied as a feature extrac-
tor followed by an efficient quantum-inspired feature selection algorithm. The proposed
customized version of a quantum-inspired evolutionary algorithm avoids the local optima
and achieved an accuracy of 99.8% with a reduction of more than 95% in the size of the
feature vector. The error rate performance of the proposed algorithm demonstrates its
effectiveness as compared to classical population based meta-heuristics for feature selection.
The proposed WBC classification pipeline can be integrated as a sub-system of a clinical
grade setup such as automated image flow cytometry.
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