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Abstract: This study presents a new concept for a deck plate and an accompanying application for
a slab system that is easy to fix and separate during construction, while ensuring safe construction
loads and optimal flexural performance. Finite element analysis (FEA) was used to determine the
load on the fixing device’s contact surface and the specimen’s shape. A direct tensile test was then
performed using a universal testing machine to evaluate the anchorage performance of the fixing
device. The results of this test were used to optimize the details of the fixing device, which were
then evaluated for safety against construction loads. The installation interval and method of the
fixing device were varied to determine the maximum installation interval, which was within 300 mm.
Finally, flexural performance was evaluated based on the details and spacing of the fixing device
installation. The results showed that the details and spacing of the fixing device did not have a
significant effect on flexural performance, provided that safety against construction loads was secured.
This study describes a promising solution for a slab system that is easy to install and separate during
construction, while ensuring safety and flexural performance.

Keywords: construction safety; construction load; deck plate; deflection; flexural performance;
removable fixing device

1. Introduction

The growing demand for high-rise buildings has resulted in the widespread use of
steel and composite structures that combine steel and reinforced concrete. Such structures
offer reduced cross sections, light member weight, and long spans, making them suitable
for large buildings. As the size of buildings increases, the use of deck plates is also on the
rise, as they help improve economic feasibility and shorten construction periods [1–3].

Unlike the conventional reinforced concrete (RC) structure, deck plates are manu-
factured by truss girder integration and serve as concrete formwork and load-bearing
elements during construction, eliminating the need for temporary construction, such as
supports [4–6]. However, despite their numerous benefits, several challenges remain to
be addressed, such as the need to ensure the safety of the developed product during
construction and use.

A conventional deck plate design consists of a truss girder with one upper reinforcing
bar and two lower reinforcing bars connected by a lattice, with the truss girder and spacer
contact welded to fix the position of the spacer. A spacer is used to separate the upper
truss girder and the lower floor plate from each other, and a support member is used to
support the truss girder. Deflection evaluation was performed according to the details of
the truss girder to ensure safety during the construction of the conventional deck plate. The
deflection of the deck plate varied depending on the lattice bar and deck height [7].

However, the fixing details of the lower floor and truss girder were not addressed, and
this design presents a risk of corrosion due to the integration of the deck plate and truss
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girder, with the bottom plate made primarily of galvanized steel. Moreover, if there is a leak
in the hardened concrete floor plate, it is difficult to locate and repair the damage or replace
the deck plate. These issues prompted the development of alternative deck plate designs.

Several studies [8–10] have been conducted to address the issue of the inability to
replace the lower plate of the truss girder integrated deck plate. A promising solution is
a separable deck plate between the truss and the deck plate. This allows for the removal
of the steel plate and plywood from the mold assembling the deck plate, eliminating the
disadvantage of integrated deck plates. Research and development efforts are ongoing to
optimize the performance of detachable deck plates and ensure their practical application
in the construction industry.

Removable deck plates have attracted attention as a potential solution to the disadvan-
tages of integrated truss girder deck plates. However, concerns have been raised regarding
the concentrated stress at the junction between the bottom plate and the truss during
construction load application, which may lead to collapse or deformation due to excessive
deflection. Excessive coupling of the truss girder and the steel plate may also result in the
deformation of the tensile reinforcing bar before concrete placement or weak coupling to the
spacer or nut for demolding. As a result, research has focused on improving the structural
safety of removable deck plates. Lee et al. [8] conducted a load test on a reusable deck to
demonstrate structural safety during construction. However, their study did not consider
the impact of the fixing device connecting the truss wire and the galvanized steel sheet on
safety during construction, highlighting the need for further research on optimizing the
fixing device.

A previous study [9] evaluated the safety of deck plates in which the lattice reinforcing
bar and the steel deck were integrated during construction without the use of a fixing device.
The experiment involved loading at four locations to simulate a uniformly distributed
load. The results confirmed that the lattice reinforcing bar in the support section received a
compressive force, resulting in buckling. However, the load in this study was only applied
to the upper rebar. During actual construction, concrete is poured into the formwork
installed on the lower floor to resist the load. It is necessary to consider this factor when
applying the load to the deck plate system.

A recent study [10] described the development of a removable deck system in which a
deck plate and fixing device were connected with bolts, and an experiment and numerical
investigation were conducted to evaluate the safety of construction loading. The results
indicated that the fixing device exhibited elastic behavior against the construction load.
However, only the shape and load of the deck were considered main variables, and the
study used two bolts to fix one lattice bar. Further research on the optimal installation
plan, taking into account the shape, spacing, and installation method of the fixing device, is
necessary to ensure the safety and reliability of the deck system during construction.

In this study, the procedure shown in Figure 1 was conducted to develop a new type
of removable deck plate. First, the details of the fixing device were proposed, and the weak
part of the fixing device was first analyzed by FEA to verify its safety. Based on the analysis
results, anchorage tests were performed to find the optimal fixing device shape. Factors
affecting deflection during construction were analyzed through the construction load test,
and finally, the flexural performance was evaluated.
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Figure 1. Schematic diagram of the research procedures.

2. Research Significance

In this study, a slab system applying a new deck plate concept that is easy to fix
and separate was developed. Details of an optimized fixing device that can be separated
during construction were presented. The developed detail has the advantage of facilitating
concrete floor repair as it is easy to demold the deck plate. In addition, it is easy to separate
and assemble the lower plate of the deck plate and the truss girder; therefore, it can be easily
assembled on-site in accordance with various construction situations compared with the
existing deck plate. Through the results of this study, it is intended to secure the structural
safety of the deck plate system developed during construction and use.

3. Fixing Device of a Removable Deck Plate
3.1. Details of Fixing Device

The composition of a removable deck plate is illustrated in Figure 2. This study
proposes a removable deck plate that differs from existing ones in that it has a structure
connecting spacers, truss girders, and the lower plate without welding points. The tension
reinforcing bar at the lower part of the truss girder is fixed by bolts for the fixing hardware
and the formwork. In addition, the lower part of the fixing hardware acts as a spacer and
securely fixes the truss girder.
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3.2. Finite Element Analysis for Fixing Device

Finite element analysis was conducted to investigate the load acting on the contact
surface between the fixing device and the reinforcing bar, as well as to identify the fix-
ture’s most vulnerable component. The shape of the fixture was determined using MIDAS
FEA [11], a nonlinear analysis program developed exclusively for bridges and civil struc-
tures as part of the MIDAS family of programs, in collaboration with TNO DIANA. MIDAS
FEA can conduct linear static analysis and material nonlinearity, heat of hydration, fatigue,
crack, and contact analysis.

The analysis model shown in Figure 3 was created with the upper part of the fixing
device being biaxially symmetrical at the center. To reduce the analysis time, 3D analysis
was conducted by modeling only one-quarter of the structure. Solid 3D elements were
modeled to enable both linear and nonlinear analyses that incorporated surface conditions,
material nonlinearity, and deformation. The yield strength specified in KS D 3861 [12]
was used to verify the safety of the design strength. SS275 steel was chosen for the finite
element analysis, using a nominal yield strength of 275 MPa, and a bilinear model was
applied. The elastic modulus of the material is 205,000 MPa, and the corresponding yield
strain is 0.001341.
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According to a prior study by Park [13] of various types of meshes, hexahedral
elements can increase the convergence of analysis and accuracy of results when steel
materials with complex shapes are involved. However, another study [14] reported no
significant difference between the results of analyses of hexahedral and tetrahedral shapes.
Given the curved surfaces of the fixing device in this study, hexahedral elements could
result in longer analysis times. Therefore, to shorten the analysis time, tetrahedral elements
were modeled.

Figure 3a depicts the point condition. In a previous study [15] that analyzed symmetric
models, only a part of the model was used to reduce the analysis time, and point conditions
were set appropriately on the contact surface. Because the fixed hardware was biaxially
symmetrical, only the one-quarter part was modeled, and the support condition was set as
a hinge for the Y direction only. This not only shortened the analysis time, but also allowed
for the generation of rotational deformation only in the Y-axis direction as the fixing device
was simply placed on the steel in the actual connector.

When concrete is poured during construction, a load is transmitted in the Z direction
through the bolts used for fixing the formwork (Figure 2). In this study, the load was
applied in consideration of the applied area of the bolts, as shown in Figure 3b.

The results of the finite element analysis are presented in Figure 4, with von Mises
stress used to evaluate stress distribution with respect to yield. The stress was concentrated
in the curved part at the starting point of the load control. The variables affecting the shape
of the fixing device were determined by the results of the finite element analysis.
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3.3. Anchoring Performance Evaluation of Fixing Device
3.3.1. Test Plan and Specimen Detail

The anchoring performance of the fixing device was assessed by a tensile test using
a universal testing machine with a 1000 kN capacity, based on the outcomes of the finite
element analysis. Measurements of displacement during the anchoring performance test
were taken by installing a linear variable displacement transducer (LVDT) at each end of
the lattice girder, and a strain gauge measured the strain of the fixing hardware (Figure 5).
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Table 1 lists the experimental design elements of the fixing device anchoring perfor-
mance test specimens; the main variables comprised the type and thickness of the fixing
device. Figure 6 shows the three fixing device types (R, RP, and IR) evaluated in the
experiment. The R type shown in Figure 6a introduced two ribs on the bending surface
to enhance the steel’s bending resistance. For the RP type shown in Figure 6b, a rib was
added to the center of the bending surface from the R type. The IR type in Figure 6c was a
test specimen in which two ribs were merged into one thick rib, which exhibited superior
bending performance compared with the other two types. The SS275 steel utilized in the
experiment had a yield strength of 361 MPa, a tensile strength of 546 MPa, and a yield strain
of 0.00172. Figure 7 shows the test setup details. Since it is important for the anchoring
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performance of the fixing device to maintain its elasticity until the point of maximum
strength, the experiment was conducted only up to the maximum strength.
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Table 1. Specifications of fixing device for anchoring performance test.

Specimens Thickness
(mm) Type

R-1.0T-1
1.0

R
(rib)

R-1.0T-2
R-1.0T-3

R-1.6T-1
1.6R-1.6T-2

R-1.6T-3

R-2.3T-1
2.3R-2.3T-2

R-2.3T-3

RP-1.2T-1 1.2

RP
(rib plus)

RP-1.6T-1
1.6RP-1.6T-2

RP-2.0T-1
2.0RP-2.0T-2

IR-1.6T-1 1.6 IR
(integrated rib)IR-2.0T-1 2.0
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3.3.2. Test Results of Anchorage Performance of the Fixing Device

Table 2 presents the experimental results of the fixing device, while Figure 8 displays
the load–displacement curve of the test specimen. The fracture shape corresponding to the
fixing device details is illustrated in Figures 9–11. The boundary conditions are different
from the previous studies [9,10] because the floor panel is made of plywood, so welding is
not performed on the hinges, and there is no negative moment at the ends. Accordingly,
the truss girder buckling at the end shown in previous studies [9,10] was not found, and
the positive moment acted throughout the entire length.

Table 2. Experimental results of the fixing device anchorage test.

Specimen
Yield Load Peak Load

Load
(kN)

Displacement
(mm)

Yield
Position

Load
(kN)

Displacement
(mm)

R-1.0T-1 0.48 12.35 C 0.78 20.18
R-1.0T-2 0.35 7.95

W
0.78 22.8

R-1.0T-3 0.32 8.51 0.78 22.5

R-1.6T-1 0.65 11.79
C

1.63 –
R-1.6T-2 0.58 6.73 1.73 34.82
R-1.6T-3 0.6 8.54 1.72 34.8

R-2.3T-1 1.3 10.42
C

3.55 62.23
R-2.3T-2 1.18 16.44 3.3 43.01
R-2.3T-3 1.25 11.8 3.32 45.39

RP-1.2T-1 0.59 12.15

C

0.86 27.44
RP-1.6T-1 0.82 13.14 2.01 41.76
RP-1.6T-2 0.51 – 1.46 –
RP-2.0T-1 0.93 10.36 2.52 42.04
RP-2.0T-2 0.7 – 1.98 –

IR-1.6T-1 1.05 –
C

2.15 –
IR-2.0T-1 1.54 – 3.84 –
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to the fixing hardware. The results of the fixture test indicate that enhancement of the 
cross-sectional shape had a positive effect on the anchoring performance of the fixing de-
vice, making thickness reduction feasible. 

4. Safety Evaluation of Removable Deck Plates during Construction 
4.1. Construction Load Test Plan 

This section evaluated the structural safety of the local destruction of the fixing de-
vice for the construction load, which may occur when developing a removable deck plate. 

Figure 11. IR series failure shape: (a) IR-1.6T; (b) IR-2.0T.

For the R-type fixing device, the maximum load increased with thickness. However,
the failure shape and the location of the load concentration differed depending on the
thickness (Figure 9). Thinner thicknesses exhibited severe bending at the end portion (W),
while both the center and end portions underwent 1.6T deformation. In the thickest 2.3T
specimen, the bending was concentrated in the center. Compared with the 1.6T and 2.3T
specimens, the strain at the end (W) progressed faster than at the center (C), and the center
and end were destroyed almost equally at the same strain in the 1.6T and 2.3T specimens,
as depicted in Figure 12a.
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When comparing the RP and R types, the maximum load increased, and the stress
on the end (W) was reduced, as illustrated in Figure 11b, due to the improved moment of
inertia of area resulting from the added end ribs. However, when comparing the R-2.3T
and RP-2.0T specimens, the maximum strength did not increase and, in fact, decreased.
This suggests that, while the added rib may have prevented stress concentration at the end,
it did reduce the thickness.

The IR type demonstrated the highest maximum load, and the yield strength at the
center increased to greater than 1 kN. For the 2.0T specimen, the maximum load reached
3.84 kN due to damage to the truss girder caused by the reaction steel rather than damage
to the fixing hardware. The results of the fixture test indicate that enhancement of the
cross-sectional shape had a positive effect on the anchoring performance of the fixing
device, making thickness reduction feasible.

4. Safety Evaluation of Removable Deck Plates during Construction
4.1. Construction Load Test Plan

This section evaluated the structural safety of the local destruction of the fixing device
for the construction load, which may occur when developing a removable deck plate. To
examine the workload during construction and the deflection during slab placement, the
installation spacing and installation method of the fixing device were varied. Specimen
details are presented in Figure 13, and the experimental variables are listed in Table 3.
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Table 3. Specification of specimens.

Specimen Spacing of Fixing Device
(mm)

Fixing Device
Installation Type

D200-ST 200 ST
(straight)D300-ST 300

D400-ST 400

D400-CR 400 CR
(cross)

Bricks were used to simulate the uniformly distributed load during concrete placement
at an actual construction site (Figure 14). The thickness of the deck was set to 250 mm, and
the weight of the total deck volume was calculated using a concrete density of 23 kN/m3,
as suggested by KDS 21 50 00:2022 [16]. A concentrated load of 1.5 kN was applied to the
maintenance workers. The point-to-point distance was set to 3000 mm by installing hinges
150 mm inside both sides of the specimen. To measure the amount of deflection according
to the load, an LVDT was installed at the fourth place from the distance between the points,
and strain gauges were attached to the upper and lower reinforcing bars and the fixing
device, as detailed in Table 3.
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4.2. Construction Load Test Results
4.2.1. Load–Displacement Relationship

Table 4 depicts the test results, and Figure 15 displays the load–displacement curve
for each specimen. The construction load was determined by adding a concrete dead
weight, a working load of 2.5 kN/m2, and a concentrated load of 1.5 kN on the worker, as
suggested in the formwork and shore design standard (KDS 21 50 00) [16]. The load during
construction was estimated as a coefficient load, considering the safety factor, with the
concrete dead load treated as a dead load and the working load, calculated as 1.2D + 1.6L,
as a live load. The total load amounted to 23.98 kN when computing the coefficient load,
and up to 24.2 kN was applied to examine the brick’s weight and its behavior after reaching
the maximum load.

Table 4. Construction load test results.

Specimen Peak Load
(kN)

∆c
(mm) L/∆c

D200-ST

24.2

8.8 341
D300-ST 8.4 357
D400-ST 11.9 252
D400-CR 10.4 288

L: Clear span, ∆c: midspan displacement at maximum load.
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The maximum strength of the member and the displacement at that time can be
derived through the load–displacement relationship, and the stiffness of the member can
be evaluated using the slope. As shown in Figure 15, the stiffness decreased as the spacing
of the fixing device increased, but the difference was not large. Unlike the other three
specimens, the D400-ST specimen had significantly reduced stiffness, and the staggered
arrangement of D400-CR showed the same level of stiffness as D200-ST and D300-ST.
Accordingly, by changing the installation pattern of the fixing device, it will be possible to
improve the bending performance of the detachable deck plate during construction.

The experimental results revealed that the D200-ST specimen, with the fixing device
interval arranged in a straight line at 200 mm, exhibited stable behavior due to the adequate
number of fixing devices. The maximum displacement was 8.8 mm. Furthermore, the
slope of the load–strain curve remained constant until the construction load was applied,
indicating that the specimen behaved within the elastic region. This indicates that sufficient
safety was ensured, as the specimen did not exhibit a rapid decrease in stiffness due to the
failure of the fixing device.

Although it is possible to compare the difference in stiffness of each specimen based
on the test results, there is a limit to quantitatively evaluating the stiffness of the specimen
because an accurate uniformly distributed load is not applied due to the nature of the
experiment. Therefore, in future studies, a method that can accurately simulate uniformly
distributed loads is needed.

4.2.2. Load–Strain Relationship

To evaluate structural safety during construction, it is necessary for all elements of a
removable deck plate to remain in an elastic state while the construction load is applied.
Serviceability, such as deflection, assumes that the member is within the elastic region.
KDS 14 20 00 [17] limits L/∆c to 240 for floor supporting nonstructural elements that are
not likely to be damaged by excessive deflection. As shown in the experimental results
presented in Table 4, there is no abnormality in structural safety because all specimens are
within the deflection limit. In this section, for a more detailed analysis, the yield of the
fixing device is evaluated using the load–strain relationship presented in Figure 16.

The strains of the tensile and compressive reinforcing bars in the D200-ST specimen
were within 16% of the yield strain and changed linearly. For the fixing device, a rapid
increase in strain occurred due to the concentrated load at the 21.6 kN point after the
applied load exceeded 10 kN, but all strains corresponded to the initial section of the elastic
range, which was less than 20% of the yield strain. These results indicate that all elements
remained in an elastic state during construction, confirming the structural safety of the
removable deck plate (Figure 16).
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In the case of the D300-ST specimen, the upper and lower reinforcing bars were in the
initial section of the elastic range, similar to the D200-ST specimen. Although the strain
of the fixing device increased compared with the D200-ST specimen, it was within the
initial section of the elastic range. The maximum strain of the fixing device was observed
at 0.0009 when a concentrated load was applied, which was 44% of the yield strain. This
indicates that the structural safety of the specimen was not compromised.

The D400-ST specimen showed a high displacement at maximum loads due to a
smaller number of fixing devices, which resulted in a higher strain of the fixing device
compared with other specimens. Although the tension and compression rebars were in
the initial section of the elastic range at maximum load, the strain in the central part of the
fixed steel was approximately 0.0013, which was 65.9% of the yield strain. Similarly, in the
D400-CR specimen, the strain of the fixing device was the greatest, at 0.0017 (see Table 5).

Table 5. Strain of specimens.

Specimen
At Maximum Load

Tensile Rebar Fixing Device

D200-ST 0.00032 0.0004
D300-ST 0.00030 0.0009
D400-ST 0.0003 0.0013
D400-CR 0.00025 0.0017

5. Flexural Performance of Reinforced Concrete Deck Slab
5.1. Construction Load Test Plan

A slab specimen was fabricated using a truss girder and fixed hardware to evaluate
the flexural performance after placement. A four-point load was applied using an actuator
with a capacity of 1000 kN, as shown in Figures 17 and 18, using the fixed hardware
installation interval as a variable. The slab specimens were divided into 200, 300, and
400 mm installation intervals for the fixed hardware (Table 6). The arrangement was



Appl. Sci. 2023, 13, 4903 13 of 17

divided into straight and staggered types, as in the casting deflection test, with a point
distance of 3000 mm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 17 
 

Table 5. Strain of specimens. 

Specimen 
At Maximum Load 

Tensile Rebar Fixing Device 
D200-ST 0.00032 0.0004 
D300-ST 0.00030 0.0009 
D400-ST 0.0003 0.0013 
D400-CR 0.00025 0.0017 

5. Flexural Performance of Reinforced Concrete Deck Slab 
5.1. Construction Load Test Plan 

A slab specimen was fabricated using a truss girder and fixed hardware to evaluate 
the flexural performance after placement. A four-point load was applied using an actuator 
with a capacity of 1000 kN, as shown in Figures 17 and 18, using the fixed hardware in-
stallation interval as a variable. The slab specimens were divided into 200, 300, and 400 
mm installation intervals for the fixed hardware (Table 6). The arrangement was divided 
into straight and staggered types, as in the casting deflection test, with a point distance of 
3000 mm. 

A bending test was used to investigate the effects of fixed hardware spacing and in-
stallation type on flexural performance. The bending specimen plan is detailed in Table 6, 
where “B” represents the bending test of the developed product, “D” represents the inter-
val of the fixed hardware, and “ST” and “CR” represent the type of fixed hardware instal-
lation. The typical bending test status is depicted in Figure 18. The results of this study 
provide insight into the relationship between fixed hardware spacing and installation 
type on the flexural performance of products. 

 
(a) 

 
(b) 

Figure 17. Flexural performance test specimen details: (a) plan view; (b) section view (unit: mm). Figure 17. Flexural performance test specimen details: (a) plan view; (b) section view (unit: mm).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 17 
 

 
Figure 18. Flexural test specimen setup (unit: mm). 

Table 6. Flexural performance specimen details. 

Specimen ID 
Length Width Thickness Shear Span 

Ratio 

Spacing of 
Fixing Device Fixing Device 

Installation Type 
Deck Plate 

Type * 
(mm) (mm) (mm) (mm) 

B-D200-ST 

3300 600 250 4.4 

200 
ST 

(straight) 

D200-ST 
B-D300-ST 300 D300-ST 
B-D400-ST 

400 
D400-ST 

B-D400-CR 
CR 

(cross) 
D400-CR 

*: Specimen ID used in the construction load test. 

5.2. Material Test Results 
A compressive strength test was conducted on a concrete specimen manufactured 

according to KS F 2403 [18] with a size of Ф100 × 200 and cured for 28 days. Tests per-
formed on three specimens found that the average compressive strength was 37.06 MPa, 
which exceeded the planned design standard compressive strength of 24 MPa. 

Reinforcing bars made of D10 SD500 and D13 SD500 were used for the bottom and 
upper sections, respectively. When reinforcing bars were tested according to KS B 0802 
[19], their yields and tensile strengths exceeded the nominal values. The yield strength of 
the D10 rebar was 532 MPa, with a tensile strength of 620 MPa, while the yield strength 
of the D13 rebar was 483 MPa, with a tensile strength of 572 MPa. 

5.3. Flexural Performance Test Results 
5.3.1. Load–Displacement Relationship and Crack Pattern 

Table 7 presents the results of the test, with the load shown excluding the weight of 
the specimen. Figure 19 depicts the load–displacement curve of the specimen. The nomi-
nal flexural strength in the graph was calculated by subtracting the value of the dead 
weight. 

As a result of conducting four-point loading experiments to compare and examine 
the difference in bending behavior of the deck slab specimens due to the difference be-
tween the fixing device installation interval and the specimen point distance, all speci-
mens showed typical bending failure patterns due to bending cracks in the center and 
crushing of the upper part. As shown in Figure 20, the fixing device installation interval 
did not significantly affect the change in the load–displacement curve. In the flexural be-
havior, the reinforcing bar is subjected to tensile force due to the bond between the con-
crete and the reinforcing bar. During the flexural behavior, the reinforcing bar seems to 
receive sufficient tensile force regardless of the details of the fixing device. 
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Table 6. Flexural performance specimen details.

Specimen ID
Length Width Thickness Shear Span

Ratio

Spacing of
Fixing Device Fixing Device

Installation Type
Deck Plate

Type *(mm) (mm) (mm) (mm)

B-D200-ST

3300 600 250 4.4

200
ST

(straight)

D200-ST

B-D300-ST 300 D300-ST

B-D400-ST

400

D400-ST

B-D400-CR CR
(cross) D400-CR

*: Specimen ID used in the construction load test.

A bending test was used to investigate the effects of fixed hardware spacing and
installation type on flexural performance. The bending specimen plan is detailed in Table 6,
where “B” represents the bending test of the developed product, “D” represents the interval
of the fixed hardware, and “ST” and “CR” represent the type of fixed hardware installation.
The typical bending test status is depicted in Figure 18. The results of this study provide
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insight into the relationship between fixed hardware spacing and installation type on the
flexural performance of products.

5.2. Material Test Results

A compressive strength test was conducted on a concrete specimen manufactured
according to KS F 2403 [18] with a size of Φ100 × 200 and cured for 28 days. Tests performed
on three specimens found that the average compressive strength was 37.06 MPa, which
exceeded the planned design standard compressive strength of 24 MPa.

Reinforcing bars made of D10 SD500 and D13 SD500 were used for the bottom and
upper sections, respectively. When reinforcing bars were tested according to KS B 0802 [19],
their yields and tensile strengths exceeded the nominal values. The yield strength of the
D10 rebar was 532 MPa, with a tensile strength of 620 MPa, while the yield strength of the
D13 rebar was 483 MPa, with a tensile strength of 572 MPa.

5.3. Flexural Performance Test Results
5.3.1. Load–Displacement Relationship and Crack Pattern

Table 7 presents the results of the test, with the load shown excluding the weight of
the specimen. Figure 19 depicts the load–displacement curve of the specimen. The nominal
flexural strength in the graph was calculated by subtracting the value of the dead weight.

Table 7. Flexural performance test results.

Specimen ID
Yield Point Peak Load

Load
(kN)

Disp.
(mm)

Moment
(kN-m)

Rotation
(×10−2 rad)

Load
(kN)

Disp.
(mm)

Moment
(kN-m)

Rotation
(×10−2 rad)

B-D200-ST 89.4 14.8 49.2 1.34 108.4 30.7 59.6 2.79
B-D300-ST 81.6 11.9 44.9 1.08 107.6 29.4 59.2 2.67
B-D400-ST 84.4 13.2 46.4 1.20 109.7 30.2 60.3 2.75
B-D400-CR 92.8 16.8 51.1 1.53 107.4 32.6 59.0 2.96
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As a result of conducting four-point loading experiments to compare and examine the
difference in bending behavior of the deck slab specimens due to the difference between
the fixing device installation interval and the specimen point distance, all specimens
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showed typical bending failure patterns due to bending cracks in the center and crushing
of the upper part. As shown in Figure 20, the fixing device installation interval did not
significantly affect the change in the load–displacement curve. In the flexural behavior, the
reinforcing bar is subjected to tensile force due to the bond between the concrete and the
reinforcing bar. During the flexural behavior, the reinforcing bar seems to receive sufficient
tensile force regardless of the details of the fixing device.
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5.3.2. Load-Strain Relationship

The behavior of the reinforcing bars and fixings under load is illustrated in Figure 21.
The reinforcing bar was deformed beyond yields until failure after reaching maximum
strength. The fixing device, being bound to the inside of the concrete, experienced almost
no deformation, and there was no discernible difference in flexural behavior due to the
spacing of the fixed hardware or the distance between the support points. Moreover, there
was minimal variation in the flexural behavior of all specimens, with both groups exhibiting
elastic behavior within the service load.
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6. Conclusions

A variable removable deck plate was developed to improve product quality and
construction efficiency and to evaluate the safety of the product during construction and use.
Tensile tests, deflection tests for deck plate construction loads, and bending performance
evaluations produced the following conclusions:
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(1) The anchorage performance test of the fixing device showed that the IR test specimen
exhibited 7% to 25% greater ultimate strength compared with the R and RP types,
making it the most effective shape. The improvement of the cross-sectional shape
enabled structural performance improvement and steel thickness reduction.

(2) A deflection test for construction determined that the maximum spacing of the fix-
ing device should be less than 300 mm when considering design safety. Staggered
placement at 300 mm intervals is recommended as the deflection during construction
can be reduced if staggered arrangement is performed rather than in line arrange-
ment. This suggests a need to secure a sufficient safety factor for detailed devices
in the entire deck plate in case of sagging, particularly in places where there is a
concern about concentrated loads by casting load and equipment in future design and
on-site construction.

(3) The strain of the fixing device in the flexural performance test was found to be in an
elastic state, while all reinforcing bars yielded before maximum strength were reached
and exhibited sufficient deformation. The installation method and spacing of the
fixing device, therefore, have little to do with bending performance.

(4) The FEA performed in this study was used only as a tool to set the experimental
parameters. Although the most effective shape was found through the experimental
results, finite element analysis under various conditions, such as thickness, width,
and curvature, for shape optimization was not performed. Therefore, future studies
should apply finite element analysis to various variables based on the experimental
results to identify the optimal height and width of IR-type ribs so that the experimental
results can be generalized.
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