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M-ary stepped θ-QAM (θ-QAM) for M = 22l, l≥ 3 based on square
QAM is proposed. The signal constellation of stepped θ-QAM and
the coordinates of the symbols generalised for modulation order M
are presented. Then analyse the symbol error rate (SER) performance,
and the optimum value of θ in terms of minimum SER for stepped
θ-QAM in additive white Gaussian noise and fading channels.
Through computer simulations, the theoretical results are validated
and show that stepped θ-QAM offers better error performance than
θ-QAM.
Introduction: It is well known that cross QAM (CQAM) based on rec-
tangular QAM (RQAM) has lower peak-to-average power ratio and
better symbol error performance than RQAM [1]. Recently, θ-QAM
based on CQAM was proposed, and the error performance and the
optimum constellation for θ-QAM were analysed in additive white
Gaussian noise (AWGN) and fading channels [2, 3]. It was shown
that the symbol error rate (SER) of θ-QAM, when θ is 60°, is lower
than that of CQAM. These results imply that the construction process
of signal constellation, i.e. RQAM→ CQAM→ θ-QAM, can guarantee
better transmission power efficiency in a communication system.

In this Letter, we turn our attention to the construction of signal con-
stellation based on SQAM and propose stepped θ-QAM. We first apply
the signal constellation construction method of CQAM from RQAM
presented in [1], moving the last columns of the signal points at each
far left and far right to the top and bottom rows, to SQAM. The con-
structed signal constellation has a step shape rather than a cross
shape; hence, it is called stepped QAM [4]. We then construct the
signal constellation, hereafter, we call it stepped θ-QAM, with a triangu-
lar lattice structure, by applying angle θ as in [2] to stepped QAM. We
analyse the exact SER, and the optimum θ in terms of minimum SER of
stepped QAM in AWGN and fading channels, and through computer
simulations, we validate the theoretical results.

Stepped θ-QAM: M-ary stepped θ-QAM for M = 22l , l ≥ 3 is
constructed by applying a parameter θ to a step-shaped signal constella-
tion, stepped QAM, constructed by moving the upper 22l/32 signal
points and lower 22l/32 signal points of 2l/8 columns on the far left
and far right, to the top and bottom rows in M-ary SQAM. Fig. 1
shows the signal constellation construction method of M-ary stepped
θ-QAM when M = 64, as an example. First, signal points in the far
left and far right columns are moved: the two topmost signal points
and the two lowest signal points (shown as blank circles in Fig. 1a)
of each end column are moved to the top and bottom rows such that
the signal constellation becomes step-shaped as shown in Fig. 1a.
Subsequently, by applying a parameter θ to the step-shaped signal con-
stellation, stepped θ-QAM is constructed as shown in Fig. 1b.
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Fig. 1 Construction of 64-ary stepped θ-QAM signal constellation

a Stepped QAM
b Stepped θ-QAM

Extending this construction method to a higher-order modulation,
the signal constellations of 256- and 1024-ary stepped θ-QAM can be
formed as shown in Fig. 2.

The nth signal point on the mth row, sm,n, in the signal constellation is
denoted by a coordinate pair (xm,n, ym), as shown in Fig. 1b, to represent
each signal point of stepped θ-QAM, where xm,n is an in-phase value of
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the nth signal point on the mth row and ym is a quadrature value of the
mth row. By generalising the coordinate according to modulation order
M, (xm,n, ym) for M = 22l , l ≥ 3 can be expressed as
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a = 2d cos u; b = 2d sin u; mod(·) denotes the modulo operator;
sgn(a) denotes the signum function, and 2d is the Euclidean distance
between two adjacent signal points.
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Fig. 2 M-ary stepped θ-QAM signal constellations

a M = 256
b M = 1024

By using (1), the average energy per symbol Es of stepped θ-QAM
can straightforwardly be calculated as follows:
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Table 1 shows the average energy per symbol of SQAM, θ-QAM and
stepped θ-QAM when θ = 60°. From Table 1, we can see that stepped
θ-QAM has lower average symbol energy than SQAM and θ-QAM.

Table 1: Comparison of average symbol energy
Modulation type
3 No. 25 pp. 1676
Modulation order
64
–167
256
8

1024
 4096
SQAM
 42 d2
 170 d2
 682 d2
 2730 d2
θ-QAM (when θ = 60°)
 37 d2
 149 d2
 597 d2
 2389 d2
Stepped θ-QAM (when θ = 60°)
 35.6 d2
 143.5 d2
 575 d2
 2301 d2
Numerical and simulation results: A closed-form expression of the
SER for M-ary stepped θ-QAM can be obtained for a given M, but
unfortunately a generalised closed-form expression of the SER for M
cannot be derived. This is because as M increases, the decision
regions with new polygonal shapes appear. In this section, we analyse
the SER of M-ary stepped θ-QAM using the method presented in [3],
where the exact SER is calculated by the error probability of each
decision region of the closed region (eq. (6) in [3]) and the open
region (eq. (7) in [3]). As an example, for M = 64, the SER of 64-ary
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and gs = Es/N0 denotes the symbol energy-

to-noise spectral density ratio; the coefficients are a1 = 15/16,
a2 = 9/16, a3 = 99/32, a4 = 1/8, and a5 = 1/16. Analogously, the
SER of M-ary stepped θ-QAM can be obtained for other values of M.

Fig. 3 shows the SER ofM-ary SQAM, θ-QAM, and stepped θ-QAM
for M = 22l l = 3, 4, 5, 6 when θ = 60° in AWGN channel. As shown
in Fig. 3, stepped θ-QAM has a lower SER than SQAM and θ-QAM.
This is because stepped θ-QAM has lower average energy per symbol
than SQAM and θ-QAM, as can be seen in Table 1.

SQAM; theory
θ -QAM(θ=60°); theory
stepped θ -QAM(θ=60°); theory

M  = 64; simulation
M  = 256; simulation

M  = 1024; simulation
M  = 4096; simulation
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Fig. 3 SER of SQAM, -QAM and stepped -QAM in AWGN channel
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Fig. 4 SER of stepped θ-QAM in Nakagami-m fading channel when θ = 60°

The SER expression for M-ary stepped θ-QAM, e.g. the SER
expression of (3) for 64-ary stepped θ-QAM, in AWGN channel, can
be straightforwardly extended to Nakagami-m fading channels [3].
Fig. 4 shows the SER of M-ary stepped θ-QAM in a Nakagami-m
fading channel when m = 1, 3, and 10, where there is a perfect match
between the theoretical and simulation results.

We depict the optimum angles of stepped θ-QAM in terms of
minimum SER for various values of Es/N0 in Fig. 5. Fig. 5a shows
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the optimum angles of M-ary stepped θ-QAM in AWGN channel.
From Fig. 5a we see that as Es/N0 increases, the optimum angle
increases and converges to 60° regardless of the modulation order M.
This is because, when the optimum angle is 60° (θ = 60°), the average
energy per symbol, for a fixed Euclidean distance 2d between two adja-
cent signal points, is the minimum. Fig. 5b depicts the optimum angles
of 64-ary stepped θ-QAM in terms of minimum SER according to Es/N0

and fading severitym in Nakagami-m fading channels. From Fig. 5b, we
can see that, in Nakagami-m fading channels (except for m = 1) the
optimum angle is 60° (θ = 60°) for low Es/N0, whereas it varies with
fading severity m for high Es/N0. Notably, the optimum angle tends
to gradually converge to 60° regardless of m as Es/N0 increases.
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Fig. 5 Optimum angles

a M-ary stepped θ-QAM in AWGN channel
b 64-ary stepped θ-QAM in various fading channels

Conclusion: We proposed M-ary stepped θ-QAM based on M-ary
SQAM for M = 22l , l ≥ 3, and presented the signal constellation and
the coordinates of the symbols generalised for the modulation order
M. We then analysed SER and the optimum values of θ in terms of
minimum SER in AWGN and fading channels.

The optimum angle varies with SNR. For AWGN channel, as SNR
increases, the optimum angle converges to 60°. In Nakagami-m fading
channels (except for m = 1) the optimum angle is 60° for low SNR,
whereas it varies with fading severity m for high SNR and tends to
gradually converge to 60° regardless of m as SNR ever increases.

The proposed M-ary stepped θ-QAM is a most promising high-order
modulation scheme to transmit very large amounts of data in wireless
communication and broadcasting systems. Future work is required to
analyse the optimum bit mapping and bit error performance of
stepped θ-QAM.
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