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ABSTRACT

Under the time-variable Dirichlet condition, the time-fractional diffusion equation with heat absorption
in a sphere is taken into consideration. The time-fractional derivative with the power-law kernel is used
in the generalized Cattaneo constitutive equation of the thermal flux. The Laplace transform and a suit-
able transformation of the independent variable and function are used to determine the analytical solu-
tion of the problem in the Laplace domain. To obtain the temperature distribution in the real domain, the
inverse Laplace transforms of two functions of exponential type are obtained. These formulae are new in
the literature. The particular cases of the classical Cattaneo law of heat conduction and of the classical
Fourier's law are obtained from the solutions corresponding to the time-fractional generalized
Cattaneo law.

© 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

1. Introduction

Even though the Fourier’s law-based mathematical model of
heat conduction assumes an impractical property—namely, that
thermal disturbances can spread at an infinite rate—it is nonethe-
less effective for many engineering applications. Also, this model is
unsuitable for thermal processes that take place at low tempera-
tures or with ultra-fast heating. In the last years, many non-
Fourier mathematical models have been proposed [1,2].

Due to the advanced technologies, very precise devices have
been made for measuring experimental data. Significant discrepan-
cies between the theoretical and experimental results were found
by these measurements. The non-Fourier heat conduction phe-
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nomena in porous material heated by a microsecond laser pulse,
for instance, were the subject of experiments by Jiang et al. [3],
which have revealed numerous discrepancies between the experi-
mental findings and the theoretical analyses provided by the
Cattaneo-type and Jeffreys-type models.

Fractional calculus has recently found use in a variety of
domains, including biology, economics, engineering, and physical
sciences. Researchers proposed generalized models of the diffusion
processes by using fractional calculus with different memory
kernels.

A transient heat diffusion equation with a relaxation term sta-
ted by the Caputo-Fabrizio time-fractional derivative [5] has been
developed by Hristov [4] beginning from Cattaneo’s constitutive
relation. This article explains the theoretical foundations of the
Caputo-Fabrizio time-fractional derivative and illustrates how
non-singular fading memories may be used to change the constitu-
tive equations.

Compte and Metzler studied different generalizations of the
Cattaneo equation to describe anomalous transport using the
Rieman-Liouville time-fractional derivative [6]. The generalized
heat transfer in living tissues was discussed by Hristov [7] present-
ing fractionalization by different constitutive approaches with dif-
ferent fractional differential operators. This study shows how
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crucial it is to formulate the bio-heat equation with memory cor-
rectly by selecting the damping (relaxation) function of the heat
flux. Rukolaine has looked at a mathematical model of heat con-
duction that is based on the first/higher-order approximation to
the dual-phase-lag constitutive relation [8,9]. He investigated a
short-duration positive localized source initial value problem for
the three-dimensional Jeffreys-type equations and reported illogi-
cal behavior for negative temperature values, leading one to
believe that the dual-phase-lag model may not be the best one to
describe heat conduction.

Rukolaine has looked at a mathematical model of heat conduc-
tion that is based on the first/higher-order approximation to the
dual-phase-lag constitutive relation [8,9]. He investigated a
short-duration positive localized source initial value problem for
the three-dimensional Jeffreys-type equations and reported illogi-
cal behavior for negative temperature values, leading one to
believe that the dual-phase-lag model may not be the best one to
describe heat conduction. By taking into consideration a general-
ized diffusion equation and a generalized wave equation, respec-
tively, Bazhlekova and Bazhlekov [10] explored the heat
conduction equation with a fractional Jeffreys-type constitutive
rule for two regimes: diffusion regime and propagation regime.
They took into account the memory kernels defined in terms of
Mittag-Leffler functions for both scenarios. The one-dimensional
problem’s fundamental solutions have been discovered and exam-
ined. Using Caputo’s time-fractional derivative, Datsko et al. [11]
examined the time-fractional diffusion equation with mass absorp-
tion in a sphere under the impact of the harmonic loading on the
sphere surface. The Laplace transform and the finite sine-Fourier
transform have been used to arrive at the analytical solution to
the central-symmetric issue.

In the context of the extended thermoelasticity theory with two
time delays and kernel functions, El-Karamani and Ezzat [12]
explored the thermoelastic diffusion in anisotropic/isotropic solid
bodies. Using a convolutional variational approach, they demon-
strated the reciprocity theorem and the uniqueness of the solution.
Ezzat et al. [13] have created a novel fractional relaxation operator
linear thermo-viscoelasticity model for isotropic media. Using the
Laplace transform approach, certain specific issues, including the
thermal shock problem and a problem for half-space exposed to
ramp-type heating, have been resolved within the framework of
the new theory. Based on fractional derivative heat transfer for
perfectly conducting media in the presence of a constant magnetic
field, a mathematically unified model of phase-lag Green-Naghdi
magneto-thermoelastic theories has been established in [14].
Using a numerical approach based on Fourier expansion tech-
niques, the analytical solutions were obtained in the Laplace
domain and modified in the real domain. A new mathematical
model for the two-temperature electro-thermo viscoelasticity the-
ory with memory-dependent derivative has been studied in
[15,16], as well as the two-temperature phase-lag Green-Naghdi
theory of thermoelasticity with fractional derivatives for the half
space subjected to a time-dependent boundary temperature. For
an isotropic, perfect conducting thermoelastic body with
temperature-dependent thermal conductivity, Ezzat and El-Barry
[17] studied a fractional model of the generalized magneto-
thermoelasticity. A issue involving an infinitely long hollow cylin-
der in the presence of an axial uniform magnetic field has been
solved using the mathematical model. [18] has studied a fascinat-
ing fractional Fourier law with three-phase lag thermoelasticity
model. Intriguing qualitative research for the flows of a fractional
second-grade fluid defined by the fractional Caputo operator was
conducted by Yavuz et al. [19]. The impact of the fractional opera-
tor on the fluid behavior is analyzed. Flows of the fractional Casson
fluids described with the Caputo time-fractional derivative have
been studied by Sene [20] using the Laplace and Fourier trans-
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forms. Other interesting and recent topics have been investigated
in the papers [21-25].

In this article, the generalized time-fractional diffusion equation
in spherical domains is studied. The situation of central symmetry
under the time-variable Dirichlet condition is taken into account.
The generalized Cattaneo’s constitutive equation of the heat flow
uses the time-fractional derivative with a power-law kernel. The
analytical solution of the issue in the Laplace domain is found
using the Laplace transform and appropriate transformations of
the independent variable and function.

Two functions of the exponential type are given their inverse
Laplace transforms in order to derive the temperature distribution
in the real domain. These equations are brand-new to the litera-
ture. The solutions corresponding to the time-fractional general-
ized Cattaneo’s law are used to determine the specific instances
of the classical Cattaneo’s law of heat conduction and the classical
Fourier’s law. Analyses of several specific scenarios are done, and
the outcomes are visually displayed.

2. Statement of the problem

In this paper, we consider the mathematical model of a thermal
process described by [1,8]:

- the conservation law of energy

pcp% = —dil/al — b%] (&1,?1) (1)
1

- the constitutive Cattaneo thermal flux equation

o 9O\~ ~ ~ ~ o~
(] + Tq T) q. (X17 tl) = —kVTl (X], tl) (2)
oty
where,(?q,;]) eD %[0, oo),ﬁ C R3, p is the specific mass, ¢, is the
specific heat, T, (%;, t1) is the temperature, q;(%:, ;) is the density
vector of thermal flux, b is the heat absorption coefficient, k is the
thermal conductivity, and 7, is the thermal relaxation time and
the divergence operator in spherical coordinate is given
.= - - . )
bydiv(V) =1 2 (r?v;) + 5 2 (Vo sin ) + (,qu
In the following, we consider the domain D is a spherical

domain  inR?, D= {&1(F1,<7)1,51) e R’ 0<r <R R>0,

@, €[0,2m), 51 € [-m/2,m/2]} reported to a spherical coordinate

system(r+, &1,51), Fig. 1.
In this study, we consider the case of transient central symmet-
ric diffusive process; therefore, all the functions involved in the

description of the model are functions of 71 and ;1 only, and the
basic equations (1) and (2) are written in the simplified forms

OT1(F1, t 10 (2 ~ ~ P
ity 1.9 (rlq,wl<r17 n)) BTy (71, 1) 3)
ot r ory
-9\~ o~ ~ PG
(1 + T4 N> g, (11, t1) = 7I<M (4)
8['1 81']

Along with Egs. (3) and (4), we consider the IB(initial and
boundary) conditions

Ty(f1,0) = 0, g, (71,0) = 0, 71 € [0,R] (5)
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v
)

Fig. 1. The spherical coordinate system.

Ti(R.t1) = Tof (1), £1 >0 (6)

where, the function f; (Zl) is a differentiable function of the expo-
nential order to infinity.
Using the nondimensional functions and parameters

T @)
ar =g b="F f0 =11 (%),

into Egs. (4)-(6), we obtain the following dimensionless
equations:

aTgt’ H_ —rl—z % (q(r,t)) — bT(r, ) (8)
(1 + I(%)q(r, AL 9)
T(r,0)=0, q(r,0)=0, r[0,1] (10)
T(1,6) =f() (11)

2.1. The generalized fractional thermal process

To analyze a generalized heat diffusion process, we consider the
thermal flux described by the following non-dimensional general-
ized Cattaneo’s law:

(1+17D?)q(r.t) = — aTgr’ D ocw<t (12)
where, the operator .D;’— time-fractional Caputo derivative of
orderw, defined as [26]

it Jo (€= 2)°q(r, A)di, 0 < w <1,

13
q(r,t), o =1. (13)

Dq(r,t) = {

In the above definition, I'({) = [;° exp(—4)2""'dZ, Re({) > 0 is
Gamma function.

Let ch(t, w) = 55755,
Caputo derivative.

Eq. (13) can be written as

0 < w < 1 be the kernel of time-fractional

Ain Shams Engineering Journal 14 (2023) 102031

. [ ch(tw)=q(r.t) = [* ch(t = 2,@)q(r,2)d2,0 < < 1,
Dt q(rv t) - 0
('I(r7 t)~ w = 17

(14)

where, “x” the convolution product. Using Eq. (14), the initial con-
dition (10), and the properties of the Laplace transform [27], we
obtain that Laplace transform of the time-fractional Caputo deriva-
tive (13) is given by

L{DYq(r,t)}(B) = B’q(r,B), 0 <0 < 1 (15)

where L{q(r,t)}(B) = q(r,B) = [, exp(—ht)q(r,t)dt is the Laplace
transform of the function q(r,t) and kis transform parameter.

Obviously, if the fractional parameterw = 1, the generalized
constitutive equation (12) becomes identically with the classical
Cattaneo law (9).

3. Solution of the generalized thermal process

In this section, we will determine the analytical solution of the
Egs. (8) and (12) along with the IB conditions (10) and (11). To do
this, we first use the Laplace transform to get the following prob-
lem in the transform domain:

- 10

hT(r B = -2 (Pq(r, k) — bT(r, B (16)
(1+Tlﬂr‘“)(;(r,l+):—%,0<w<l (17)
T(1, ) =f(h (18)

Eliminating function q(r,l) between equations (16) and (17),
we obtain that the function T(r, ) is the solution of the differential
equation

2 T T A~
9 Ta(rrz B) +% mgr’h) — (TR =0 (19)
where,
91(B) = (1 + Th”)(B+ b) (20)

Making the change of variable and function

z=r/9(B), T(r,B) = /97?0, R (21)

we obtain the following modified Bessel equation [28]:

POz _00(z,R) o\

2 ) ’ o 2 _

R (z +2 )@(z,h) =0 (22)
The general solution of Eq. (22) is

Ozl =AW 2(2) + BBK12(2) (23)

where I1,,(2), Ki)2(z) are the modified Bessel functions of order 1/2.
Given thatlirrgl( 1/2(2) = oo, to have a finite temperature distri-
Z—

bution inside the sphere, we must considerB(s) = 0.
Now, using the property I,,(z) = \/%sinh(z) and transforma-
tions (21), we obtain that the temperature T(r, B is given by
ABV2

T(r,h) =
r/ 7/ 9B

sinh(rd; (1) (24)

Imposing the boundary condition (18), we find the temperature
in Laplace domain
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1 sinh(rd; (B)

T(r,B) =f( )F m (25)
Let ¥(r, b be the function
- __sinh(rd; ()
) = i, ) (26)
which is written in the equivalent forms
- _exp (r\/m)—exp (4 dl(h-)) _exp((r—l) ﬁl(h))—exp (—(HI) w,(h—))
\}l(r’h-)_ exp( ﬂl(h))fexp(f\/m) - 1—exp(—2 r’/,(h))
-y —2k+1 1)/ () - exp (—(2k+1—1)\/3, (B
3 [exp (k1) (B) — exp (~(2k+1-1)y/0i(B) |
(27)

Considering the following pair of functions
) (,D(Cl t) 2r\/‘ EXp< ) (28)
d(a, k) = L{p(a,t)} = exp(—avh), Re(a?) > 0,

and using the property of the inverse Laplace transform of com-
posite functions, we obtain [29]

L’l{exp(—(2k+1—r) m(h))}— 1{ ((2k+1fr),q91(1+))}=

Jo @((2k+1 —r1),u)x(t, u)du,
L’l{exp< 2k+1+71) )} { (2k+1+T1) 191(1:1—))}
= [0 @(2k+1+71),u)x(t, u)du,
(29)
where,
x(t,u) =L {exp (—uv; (b))} (30)
Using (29) in Eq. (27) we obtain
-y /x [O(2k+1—1),u) — @((2k + 1+ 1), w)]y(t, u)du
k=0 /0
(31)
The temperature field is given by
1
T(rt) = _f(O) xy(r,0) (32)
where, “x” is convolution product.

To determlne the functiony(t,u), we first prove the following.
Proposition. The inverse Laplace transform of function

W(hu,a,b) = exp {—u(ah—“’+1 + bh—‘”)}, a,b>0,0<w<1

(33)
is
o« k k+1 k—m
m!a™b o
W(t,u,a,b) = /
; ,;) k1) k m)!T"(m + wk)
% %Zmﬂ;)k—l]l (2\/E> dz (34)
Proof. Let U(k,u,a, b) be the function
i b a b
U u,a,b) =exp |—u W+? (35)
Function (35) is written in the equivalent form
k
Ulhsu,a b)_1+z () =
P (36)

(—w*mlamp* ™ m'a"‘bk moq
k’ (k— m)! h_m+wk

mi

Using the following formula
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) 1 tm+wk 1
L {l}mwk} :F(m-s—(uk)’ O<w<1, k=1 me{0,1,..,k}

(37)

we obtain the inverse Laplace transform of the function
U(k,u,a,b) in Eq. (35) as

u) kmgmpk—m gmrok-1

(k —m)!T"(m + wk)

U(t.u.ab) = ot +i (38)

— Ok'

where §(t) is Dirac’s distribution.
Now, we use the following property of Laplace transform [29]:

if G = LIF(©)}, thenl ' {LG() } = [ F@ls 2vER)dz.  (39).
We obtain

%_U (%_, ua, b) = %_exp (—u(ah—“’“ T bh—“’))
= %{W(h—, u,a,b) (40)

therefore,
! {%{U(i, u,a, b)}
ook
DD

k=1 m=0

{1Wl+uab} Jo 620 (2Vtz)dz+
—u) m‘a’"b" mem+wk—1 fo zm+(u’( ]] (2\/_)

2 (k—m)![(m-+wk)
(41)
Since [;” 6(2)] (2Vz)dz = ], (2V1Z) |,
0 1M k=M em+-ok—
/ (auabda—l+zzl' Vmia"b s
0 K

— =0 (k)" (k — m)!T"(m + wk)

=J,(0) = 1, we obtain

v / 2o, (2viz) dz (42)

0

Deriving relation (41) concerning the time t and using the fol-
lowing relation?e"®) — _J, (h(t))h'(t), we obtain (33), therefore,
the proposition is demonstrated.

Now, using the result given by the above proposition, we obtain
the following expression of the functiony(t,u):

7(t,w) = L™ {exp(—ud; (B)} = e 0L ferthe-ue o) |
= e L e L Wik u T, b) |

=e (t —u)x W(t,u,7,b7) = e "W (t — u,u,1,b1)
L S gk () g-bu ok
= 2 X Rt o VRNV U)d
(43)
where, we used the property of the Dirac distribution

o(t — to) + f(t) = f(t — to).

3.1. Particular case w = 1

It is easy to see that all the results presented in the previous sec-
tion remain true if the fractional parameter w is equal to 1. There-
fore, the solution of the problem of a thermal process described by
the classical Cattaneo law of thermal flux is given by Eq. (32) with
the fractional parameter w replaced by 1. However, in this section,
we determine another form of the analytical solution correspond-
ing to the classical Cattaneo thermal process.

To do this, let’s observe that forw = 1, function ¥(s) is written in
the equivalent forms

91(h) =T + (1 +bDh+b=1 [(m ao)? — bg} (44)

where go = 1322, by = 15Pt,
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The inverse Laplace transform of function H(k; p) = e PV ® s
given by
H(t.p) =L {A(kp) } =L {e /i) — 1 fepiviar it}
_ { [epﬁ[mwo)—\/mwa)z—bé} _ 1] epVilha) | e—pﬁ<h+au>}
_ efuop\/?L*‘{efpﬁh[epﬁ[(mao)f\/(hv‘ﬂo)szﬂ _ 1] } L epYRan))
— o GoPVTS(f — bopy/Te %" 2 —aopVT §(t
e BPVIS(t — py/T) * Wh (bo\/t +2pﬁt) +e7%PVI5(t — py/7)
= 7”0"_%;:‘ I (bm/t2 - pzr) + e VIS (t — py/T).

(45)
Using (25)-(27) and (45), we obtain

T(rt) =1 S F(6) « H(t, 2k + 1 — 1) — f(0) % H(E, 2k + 14 7)]
k=0
13 [ @@ IVIT(E — 2k + 1+ 1)) — e @k IV (E — 2k +1—1)]
k=0

1S [f(E— 0)[@y(6.2k +1 1) — @y (0. 2k + 1 +1))do,
k=0

(46)

where

)
T

o
T

Temperature T(r.t)

[ [

Temperature T(1.t)
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1(boy/2 = i)

_ bopy/Te~t |

t,
¢:(t,p) 2t

(47)

3.2. Particular case T = 0

This case corresponds to a thermal process described by the
classical Fourier’s law. The solution is given by

Lt {e*l’\/ﬂl—@} =1 {e*”m}

~bt  p?
=P o %
2tV/nt e,

(48)

(2k+1-r)2

T =10« X [Gene w i -

(2kt1+1) o bp— e 2
2tV/mt ’

4. Numerical examples and discussions

A generalized thermal transport in spherical domains with
heated boundaries has been studied in the case of central symme-
try. Using the generalized fractional Cattaneo’s law, the thermal
transport is influenced by the heat transfer history. The boundary
temperature is described by a time-variable differentiable func-
tionf (t). In this section, two cases are discussed namely, the case
of constant temperature on the spheref(t) = 4, t > 0, respectively

AF T T T
t=010 — 5 =020
— » =040
3F — @ =0.60 =
— @=0.80

@ =095

(]

Temperature T(1.t)

v
L

Temperature T(r,t)

L)

[
i

Fig. 2. The profiles of T(r,t) versus r for different values ofw.
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an exponential time-variation of the temperature on the sphere’s
surfacef(t) =1(1+e™), £ > 0.

The numerical results corresponding to the first case are plotted
in Figs. 2 and 3 for the non-dimensional thermal relaxation time
7 = 0.1 and the parameter of heat absorptionb = 2.

The profiles of theT(r,t), versus the radial coordinate r are
sketched in Fig. 2 for starting of the time t and for different values
of the fractional parameterw. It can be seen in Fig. 1 that the tem-
perature values decrease with the memory parameterw. It should
be noted that, in the classic Cattaneo case of heat transfer
(w = 1), the temperature profile is significantly different from
the fractional case. The difference is due to the presence of the
Caputo kernel in the fractional derivative. Caputo kernel plays
the role of a weight function for the heat flux. The history of the
thermal process influences the heat transfer at the instant t.

Fig. 3 was plotted to show the evolution of temperature over
time in different positions inside the sphere and for different val-
ues of the fractional parameterw. As in the previous figure, note
that the influence of the fractional parameter is significant only

Temperature T(1.t)

() [

Temperature T(1,t)

04 06 ¢ o

Temperature T(1.t)

-0.

Temperature T(1.t)

Ain Shams Engineering Journal 14 (2023) 102031

for small values of time t. For time values t greater than 0.6, the
differences between the temperature profiles are insignificant.
Note that for high values of time t, the temperature attains a con-
stant value over time.

This property is theoretically proved because we have:

b limpd 1 sinh (r\/W) 4 sinh (r\/E)
=Ry sinh( ﬂl(h-)) T sinh (\/l_))

lim T(r, t) = lim kI (r,
t—o0 h—0

The influence of the non-dimensional relaxation time 7 on the
temperature profiles is shown in Fig. 4. It is observed that the tem-
perature is decreased with the parameterrt.

A comparison between the mathematical models of heat trans-
fer described by the fractional Cattaneo law, classical Cattaneo law,
and the classical Fourier law is given in Figs. 5 and 6. It is observed
in Figs. 4 and 5 that the maximum values of the temperature are
given by the Fourier model, while the fractional Cattaneo model
generates temperatures smaller than corresponding to the Fourier
model. The temperature of the classical Cattaneo model has

8
3k
r=0.80 — ®=020
— =040 |
) =0.60
— ®=0.80
®=0.95
— 0 =1.00
4
1 1 1
0 0.2 04 0.6 t 0.8

Fig. 3. The profiles of T(r,t) versus t for different values ofw.
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T T T T

T T T T

0.9F 0.9

0.8
__ 08 i
= &
E B 07
% 07 é
k) (¥
: ;
B 06 =
0.3
0.5 ; 1 1 ] ]
0'40 02 04 0.6 0.8 r 1
T T T T ©=1.0 T T T
@=08 — 7=0.002 =02
t=02 £
4 — 7=0.020
il — £=0.040 | _/’Z(
o —— 7=0.060 o
= 7=0.080 &
= 0.5 1
o — 7=0.100 o — 7=0.002
2 = — 7=0.020
S g — 7=0.040
£ 06 1 & — 7=0.060
ki g 7=0.080
= N
— 7=0.100
0- —
0-4 1 1 1 1 | 1 1 1 1
0 02 04 06 08 r 1 0 0.2 04 0.6 0.8 r 1

Fig. 4. The profiles of T(r,t) versus r for variation of the thermal relaxation timet.
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Fig. 5. The comparison between temperatures corresponding to fractional Cattaneo, classical Cattaneo, and classical Fourier model of heat transfer. Variation with the radial
coordinate.
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Fig. 6. The comparison between temperatures corresponding to fractional Cattaneo, classical Cattaneo, and classical Fourier model of heat transfer. Variation with the time t.

different behavior. In the central area of the spherical domain, the
temperature has the smallest values, and in the exterior area the
highest values. Also, in Fig. 5 is observed that, for large values of
the time t, the differences between temperature values are negligi-
ble; therefore, the fractional model is significantly different from
the classical model for small values of the time t.

5. Conclusions

In a spherical domain with the time-dependent Dirichlet
boundary condition, the time-fractional diffusion equation with
the Caputo fractional derivative of the order 0 < @ < 1 with heat
absorption has been explored.

The Laplace transform and an appropriate transformation of the
independent variable and unknown function were used to arrive at
the analytical solution to the problem.

For the first time in the literature, the novel inverse Laplace
transforms of two exponential-order functions have been
demonstrated.

The effect of the key issue factors, including the value of the
order of fractional derivative on the spatial-temporal development
of the temperature, is shown graphically by the generated analyt-
ical solutions.

Results provided by fractional and traditional mathematical
models are compared.
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