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1 Introduction

The gauge/gravity duality [1–4] has been applied to strongly correlated systems as an
efficient tool to handle the strong coupling. In the context of this duality, a theory of
superconductivity was set up [5] using the spontaneous symmetry breaking of the U(1)
symmetry of an Abelian Higgs model coupled to AdS the gravity [6, 7], after which huge
number of investigations on s-wave holographic superconductors [12–22] has been reported
in past decade. Although the original model [5] allowed to estimate the gap and the
critical temperature of conductivity of isotropic system, typical high Tc superconductors
show the momentum dependent gap structure ∆k [8, 9, 11] which has been considered as
one of the most important finger prints of high Tc superconductors. To address p-wave
superconductors, Gubser [23] first introduced the non-Abelian gauge field for holographic
superconductor model, which is followed by many investigations on p-wave [24–35] or
d-wave [36–42] holographic superconductors using abelian vector and tensor fields. However,
to our surprise, none of the investigations addressed the momentum ~k dependence of the
superconducting gap, because in all the previous works, non-vanishing components of vector
Aν or tensors Bµν were assumed to be isotropic. Although the angle dependence of the gap
was introduced in a notably exceptional paper [36], the angle dependence in that work was
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introduced by considering the ‘fermion spectrum’ explicitly rather than through the gap
equation, that is, the equation of motion of the complex scalar function. For more review,
see [43–45].

In this paper, we study the momentum dependence of the gap function in holographic
set-up. We consider angle dependent fields in two holographic models, namely, scalar field
model and vector field model. We first consider the vector field model in order to see
whether the role of the spin-1 field model is essential. We have explicitly shown that the
normalized ground state of the vector model is provided only by the p-wave state and the
s-wave state is not normalizable. Similarly in the scalar field model, we have shown that
the ground state of s-wave superconductors is from s-wave, while the p-wave and d-wave
states give excited states. We will also show that the traditional formalism of holographic
p-wave superconductor is rather twisted in the gap structure so that one can not introduce
the order parameter of px ± ipy type. We will show how to fix this problem.

Our investigation is done by constructing the angle dependent gap function in mo-
mentum space. For the vector field model, we will be able to construct the gap functions
analytically by imposing the vortex free condition. For the scalar field model case, we can
find general l-wave type superconductors as excited states. In general, the gap equation in
holography is non-linearly coupled with that of the photon field in the AdS, which is not
solvable by usual separation of variable, which is useful in linear equations. To overcome
this difficulty, we consider the system near the critical temperature (Tc) and expand the
field and equation of motion by the small parameter 1− T/Tc and consider the system of
equations order by order.

We have also investigated Tc itself in the probe limit of the gravity field for each models.
We have used matrix-eigenvalue algorithm with the Pincherle’s Theorem to calculate the
Tc values for scalar field model. For vector field model, we have used Sturm-Liouville
eigenvalue method. Interestingly, we have observed that the critical temperature for vector
field model is higher than the critical temperature of scalar field model for any fixed value
of the dimension of the Cooper pair operator. We considered the possibility that p-wave
condensation can be discussed in scalar field model context provided s-wave condensation is
forbidden under a special constraint due to e.g. the lattice symmetry. We compared the
gap functions for p-wave states coming from scalar model and that from the vector model.

This paper is organized as follows. We have started our discussion on different holo-
graphic set up for s, p, d-wave superconductors of the BCS theory in section 2. In section 3,
we studied field equations of various holographic models and described their equation of
motion in the unified fashion. In section 4, we have studied the vector field model with
angular dependence and show that the normalizable solution is available only from the
p-wave solution. We also show how to introduce the px± ipy type of gap of p-wave supercon-
ductivity in holographic set up. In section 5, we compare the critical temperature for ground
state of scalar field model and vector field model. We then compare the excited p-wave
state from scalar field model with p-wave state in the vector field model. We summarize
our findings in section 6.
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2 Momentum dependence of the gap in BCS theory

To understand the origin of the momentum dependence gap structure in p and d-wave
superconductors, we start with a basic discussion on the BCS gap structure. For arbitrary
pairing interaction, the BCS gap equation can be written as [46]

∆k = −1
2
∑
k′

Vkk′∆k′√
ξ2
k′ + |∆k′ |2

tanh


√
ξ2
k′ + |∆k′ |2

2kBT

 (2.1)

where ξk is energy spectrum. The potential in k-space can be expressed as

Vkk′ =
∞∑
l=0

2l + 1
2 Vl(k, k′)Pl(k̂.k̂′) ; Vl(k, k′) = 4π√

kk′

∫
Jl+ 1

2
(k′r)V (r)Jl+ 1

2
(kr)rdr , (2.2)

where l is angular quantum number and V (r), Pl, Jl are the interaction potential, Legendre
polynomials and Bessel function respectively. The different value of l describes the different
orbital symmetry which determines the different type superconductors, namely, s-wave(l =
0), p-wave(l = 1), d-wave(l = 2) superconductor. Recently f -wave(l = 3) and g-wave(l = 4)
superconductors also has been reported in [47, 48] and [49] respectively. For non-zero
value of l, they lead to the momentum dependent BCS gap function. For different orbital
symmetry, the angle dependent gap structures are known in literature. The cuprate exhibits
dx2−y2-wave superconductivity. The superconducting order parameter of dx2−y2-wave
superconductivity is [50]

∆k = ∆(T )(cos kx − cos ky) ' ∆(T ) cos(2θ) . (2.3)

This gap structure in the holographic set-up will play a very important role to understand
the properties of real-world materials since there are many data available: those of angle-
resolved photoelectron spectroscopy (ARPES), Raman Spectroscopy, scanning tunnel
spectroscopy and neutron magnetic scattering [50].

3 Unified field equations of holographic models

We start with a general discussion from and summarizing field equations for various spin
fields in a unified form following [44, 45]. We use planar symmetric AdS4-Schwarzschild
blackhole as the background:

ds2 = −f(r)dt2 + dr2

f(r) + r2(dx2 + dy2) , f(r) = r2
(

1− r2
h

r2

)
(3.1)

where rh is the horizon radius. For s-wave superconductor, we use Abelian-Higgs model
with a complex scalar field [5]:

Ls = −1
4F

µνFµν − (Dµψ)∗Dµψ −m2ψ∗ψ, (3.2)
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where Fµν = ∂µAν − ∂νAµ, Dµψ = ∂µψ− iqAµψ. From this Lagrangian, the field equations
read

∂µ[
√
−gFµν ] = 2

√
−gq2Aνψ∗ψ + iq

√
−g[ψ∗∂νψ − ψ∂νψ∗]

∂µ[
√
−g∂µψ] =

√
−g[q2AµA

µ +m2]ψ + iq[
√
−g(∂µψ)Aµ + ∂µ(

√
−gAµψ)]. (3.3)

Using the ansatz ψ = ψ(r) and A = At(r), the equation motion for s-wave holographic
superconductors takes form

A′′t (r) + 2
r
A′t(r)−

2q2ψ∗(r)ψ(r)
f(r) At(r) = 0 (3.4)

ψ′′(r) +
[
f ′(r)
f(r) + 2

r

]
ψ′(r) +

[
q2A2

t (r)
f2(r) −

m2

f(r)

]
ψ(r) = 0 . (3.5)

For p-wave superconductors, the holographic p-wave model was first introduced in [23] using
a SU(2) Yang-Mills field in AdS4-Schwarzschild background with Lagrangian

LYM
p = −1

4F
a
µνF

aµν (3.6)

where F aµν = ∂µA
a
ν − ∂νAaµ + qεabcAbµA

c
ν is the field strength for SU(2) gauge field. The

equation of motion yields

1√
−g

∂µ[
√
−gF aµν ] + qεabcAbµF

cµν = 0 . (3.7)

To break the rotation symmetry in the system, the field ansatz is considered as A =
At(r)σ3dt+ ψ

(g)
x (r)σ1dx in which the condensed phase breaks U(1) symmetry and SO(2)

rotational symmetry in xy-plane. Using this ansatz, the equation motion for non-abelian
gauge theory reads

A′′t (r) + 2
r
A′t(r)−

q2ψ
(g)∗
x (r)ψ(g)

x (r)
r2f(r) At(r) = 0 (3.8)

ψ(g)′′
x (r) + f ′(r)

f(r) ψ
(g)′
x (r) + q2A2

t (r)
f2(r) ψ(g)

x (r) = 0 . (3.9)

Later, an alternative p-wave holographic superconductors model was introduced by a charged
vector field. The matter Lagrangian density for this model is

LVp = −1
4FµνF

µν − 1
2Ψ†µνΨµν −m2ψ†µψ

µ (3.10)

which gives the following field equations

1√
−g

∂µ[
√
−gFµν ] + i[ψ†µΨµν − ψµ(Ψµν)†] = 0 (3.11)

1√
−g

∂µ[
√
−gΨµν ]− [m2ψν + iAµΨµν ] = 0 (3.12)

– 4 –



J
H
E
P
0
9
(
2
0
2
2
)
0
9
8

where Ψµν = ∂µψν − ∂νψµ − iAµψν + iAνψµ. By taking complex vector field ψµdx
µ =

ψx(r)dxx along x-direction, we break the rotational symmetry of the vector field. Using this
vector field ansatz and gauge field ansatz Aµdxµ = At(r)dt, the field equations takes form

A′′t (r) + 2
r
A′t(r)−

2q2ψ∗x(r)ψx(r)
r2f(r) At(r) = 0 (3.13)

ψ′′x(r) + f ′(r)
f(r) ψ

′
x(r) +

[
q2A2

t (r)
f2(r) −

m2

f(r)

]
ψx(r) = 0 . (3.14)

If we map ψx(r) = ψ
(g)
x (r)√

2 , we will recover the field equations for non-abelian model. This
two models are equivalent for m2 = 0. To construct holographic d-wave model, the vector
field model was generalized tensor field model with minimal effective matter Lagrangian
density

LTd = −1
4FµνF

µν − (DµBνλ)†DµBνλ −m2B†µνB
µν (3.15)

where Bµν is a charged tensor field. To realized d-wave condensate, they considered the
tensor field ansatz Bxx = −Byy = ψxx(r) which breaks rotational symmetry and flips sign
under a π

2 -rotation on the xy-plane. Using this tensor field ansatz and the gauge field ansatz
A = At(r), the field equations read

A′′t (r) + 2
r
A′t(r)−

4q2ψ∗xx(r)ψxx(r)
r4f(r) At(r) = 0 (3.16)

ψ′′xx(r) +
[
f ′(r)
f(r) −

2
r

]
ψ′xx(r) +

[
q2A2

t (r)
f2(r) −

m2

f(r) −
2f ′(r)
rf(r)

]
ψxx(r) = 0 . (3.17)

This model is based on minimal effective action without looking the constraint equations
for propagating degrees of freedom. Another holographic d-wave tensor field model was
proposed with the correct number of propagating degrees of freedom in [38].1 To generalized
spin field models with spin s, we consider the field eq. (3.17) for d-wave holographic
superconductors model. Using the mapping

ψs(r) = ψ(r), ψs(r) = ψx(r)
r

and ψs(r) =
√

2ψxx(r)
r2 (3.18)

1The Lagrangian density in this modified model is LHd = − 1
4FµνF

µν−|DαBµν |2 +2|DµBµν |2 + |DµB|2−
[DµB†µνDνB+h.c.]− iqFµνB†µλBνλ−m2(|Bµν |2−|B|2)+2RµνρλB†µρBνλ− 1

4R|B|
2 where B ≡ Bµµ, Bµ ≡

DνBνµ and Rµνρλ is the Riemann tensor of the background spacetime. With the tensor fields ansatz
Bxy = ψxy(r) and gauge field ansatz A = At(r), the matter field equation reads

ψ′′xy(r) +
[
f ′(r)
f(r) −

2
r

]
ψ′xy(r) +

[
q2A2

t (r)
f2(r) −

m2

f(r) −
2f ′(r)
rf(r) + 2

r2

]
ψxy(r) = 0

which is differ from the eq. (3.17) because of the last term. If we take ψxy(r) = r2
√

2ψ(r), we will get exactly
same field equations for s-wave holographic model.
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the unified form of the spin fields equation for holographic superconductor models with
different wave state (s, p, d-wave respectively) takes in the following form [44]

A′′t (r) + 2
r
A′t(r)−

2q2ψ∗s(r)ψs(r)
f(r) At(r) = 0 (3.19)

ψ′′s (r) +
[
f ′(r)
f(r) + 2

r

]
ψ′s(r) +

[
q2A2

t (r)
f2(r) − Vs(r)

]
ψs(r) = 0 (3.20)

where

Vs(r) = m2

f(r) − s(2− s)
f ′(r)
rf(r) + s(s− 1)

r2 (3.21)

which is called ‘effective potential’.2 From this above unified field equation, we recover the
field equations for s, p, d-wave holographic superconductor for the spin values s = 0, 1, 2
respectively. If we calculate the perturbation of Maxwell’s field Aµ = δxµAx exp(−iωt) for
conductivity, we will get the same equation structure for different values of spin. The radial
(only) dependent field structure in the unified field equations leads to spherically symmetric
ground state of superconductors. Since all holographic superconductor models so far, are
governed by the above unified field equations which depends only on r, we can say that the
momentum dependent order parameter in holographic set-up is missing in the literature.

To gain a better understanding of high Tc superconductors through holographic set-up,
we need to modify the ansatz of the fields which will help us to distinguish s, p, d-wave
superconductors in a generic sense. The generic sense means that the distinguishable proper-
ties for s, p, d-wave superconductors depends on the values of angular momentum quantum
number instead of spin number s in holographic set-up. The angular momentum number
determines the actual orbital symmetry which is responsible for the superconductivity.

Although the choice of the ansatz of the field breaks the rotational symmetry in
holographic superconductors models, those models do not have any angular momentum
number l which is essential to understand the p-wave or d-wave superconductivity. In [36],
the spatial angle θ is introduced by the transformation of spin two field and the angle
dependence gap is generated using the interaction term between the spin two field with
fermions. From the literature of holographic superconductors, it seems that the spin number
s of the field in holographic set-up is related to the angular momentum number l of the
boundary theory. In order to understand the connection between them, we start with vector
field (s = 1) model with angular dependent fields.

4 Vector field model with angle dependent gap

Here, we assume that there is strong asymmetry in the direction of the c-axis so that we can
just consider 2+1 dimensional direction. To introduce the angle dependent gap structure
in holographic superconductors, we consider the polar coordinate of 2 + 1-dimensional

2This terminology is quoted because it is not exactly the same as the actual effective potential term
derived from a dynamical equation. For our discussion, we consider it as an effective potential for this
coupled equation.
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boundary where the system lives. Accordingly we write the AdS4-Schwarzschild black hole
metric (3.1) in polar coordinate (t, r, u, θ) reads

ds2 = −f(r)dt2 + 1
f(r)dr

2 + r2(du2 + u2dθ2) ; f(r) = r2
(

1− r3
h

r3

)
, (4.1)

from which the Hawking temperature can be read as

TH = f ′(rh)
4π = 3rh

4π . (4.2)

The p-wave holographic superconductors model has been described by the matter Lagrangian
density (3.10) which consists of gauge field and vector field. The field equation are given by
eq. (3.11) and eq. (3.12). We now modify the complex vector field and gauge field ansatz
which reads

ψµ = ψx(r, x, y)dx, and Aµ = At(r, x, y)dt .

We consider field along one direction since we want to break the rotational symmetry of
the vector field. The ansatz changes in polar coordinate

Aµ = At(r, x, y)dt = At(r, u, θ)dt (4.3)
ψµ = ψx(r, x, y)dx = ψx{cos θdu− u sin θdθ} = ψu(r, u, θ)du+ ψθ(r, u, θ)dθ (4.4)

where
ψu(r, u, θ) = cos θψx(r, u, θ) and ψθ(r, u, θ) = −u sin θψx(r, u, θ) . (4.5)

Using the above relation, we find the relation between ψu and ψθ which is

ψθ(r, u, θ) = −u tan θψu(r, u, θ) . (4.6)

Using the eq. (3.11) and the above field ansatz, the gauge field equation becomes

∂2
rAt + 2

r
∂rAt + 1

r2f(r)

[
∂2
uAt + ∂uAt

u
+ ∂2

θAt
u2

]
= 2q2

u2r2f(r)
[
u2|ψu|2 + |ψθ|2

]
At (4.7)

From eq. (3.12), the matter field equation reads

1√
−g

∂µ[
√
−gΨµν ]− [m2ψν + iqAµΨµν ] = 0 (4.8)

Setting ν = u and substituting
√
−g = r2u, we obtain

∂2
rψu + f ′(r)

f(r) ∂rψu + 1
r2f(r)u2∂θ[∂θψu − ∂uψθ] +

[
q2A2

t

f2(r) −
m2

f(r)

]
ψu = 0 . (4.9)

Similarly we obtain field equation for ψθ by setting ν = θ,

∂2
rψθ + f ′(r)

f(r) ∂rψθ + u

r2f(r)∂u
(
∂uψθ − ∂θψu

u

)
+
[
q2A2

t

f2(r) −
m2

f(r)

]
ψθ = 0 (4.10)
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4.1 The angular dependent part of the matter field

We now impose vortex free condition (perpendicular to the plane) which is

∂uψθ(r, u, θ)− ∂θψu(r, u, θ) = 0 . (4.11)

Using the relation between ψu and ψθ, the above condition becomes

u∂uψu(r, u, θ) + ψu(r, u, θ) + ∂θψu(r, u, θ)
tan θ = 0 (4.12)

Using this condition, we want to solve the u, θ dependence part of the matter field. We can
write

ψu(r, u, θ) = Ψ(r)Ru(u, θ) = Ψ(r)U(u)Θ(θ) . (4.13)

From eq. (4.12) and eq. (4.13), we now try to solve the boundary wave state Ru(u, θ) with
help of the separation constant lp

1
Θ(θ)

∂θΘ(θ)
tan θ = −lp , ; u∂uU(u) + (1− lp)U(u) = 0 , (4.14)

⇒ Θ(θ) = (cos θ)lp , ; ⇒ U(u) = ulp−1 . (4.15)

Therefore the solution reads Ru(u, θ) = ulp−1(cos θ)lp . where we deleted one multiplicative
integration constants absorbing them into Ψ. Using the relation (4.6) and ψθ(r, u, θ) =
Ψ(r)Rθ(u, θ), we find Rθ(u, θ) = ulp(cos θ)lp−1 sin θ. Therefore, we can write

ψu(r, u, θ) = Ψ(r)ulp−1(cos θ)lp , ψθ(r, u, θ) = CΨ(r)ulp(cos θ)lp−1 sin θ. (4.16)

The separation constant lp should be integer: this can be seen from the fact that the matter
field should be one valued under the rotation of 2π of θ, which is the same as the twice of
the π rotation under which

cos θ → − cos θ. (4.17)

From this, we can identify lp as the angular momentum in this set-up. For lp = 0,

ψu(r, u, θ) = Ψ(r)
u

and ψθ(r, u, θ) = CΨ(r) tan θ (4.18)

which is not normalizable because the normalization condition is∫
ψ2
x(r, x, y)dxdy =

∫
0

∫
0

[
ψ2
u(r, u, θ) + ψ2

θ(r, u, θ)
u2

]
ududθ =

∫ a

0

du

u
|Φ(r)|2, (4.19)

which is logarithmically divergent. Therefore the vector field model does not give us the
normalizable ground state for the s-wave state. For the p-wave of lp = 1, the solution is
given by

ψu(r, u, θ) = cos θΨ(r), ψθ(r, u, θ) = −u sin θΨ(r), (4.20)

which is normalizable solution. Notice that C should be chosen to be −1 to be consistent
with eq. (4.5). Therefore the ground state of the vector field model comes from the lp = 1,
while the s-wave solution of the model is not normalizable. which is first main result of this
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paper. Notice also that ψx(r, u, θ) = Ψ(r) for lp = 1 but only for this case. That is, the
solution ψx(r, x, y)dx is reduced to ψx(r)dx for the ground state. Now if we take the ψx(r)
as the order parameter of the p-wave superconductivity as it was suggested in the original
model [23], there is no angular dependence in the gap, which is a contradiction. Our
analysis in the present setup is telling us that the gap function of the p-wave model is ψu,
not the ψx. Notice that ψx can not be the order parameter of p-wave superconductivity
because it does not have any angular dependence, and ψθ can not be the one either, because
it shows the vanishing gap at u = 0, which is a coordinate singularity not the real nature.

There is nothing wrong here but what we got is not really what we would expect in the
usual tensor analysis. All the oddities come from the assumption that only ψx 6= 0 while
ψi = 0, i = y, t, r which is very unusual gauge choice from rotation tensor point of view.
The better ansatz for the gap structure should be the following one:

ψx = A(r) cos θ, ψy = A(r) sin θ. (4.21)

Then by a simple calculation, we can get the identification A = Ψ(r) where Ψ(r) is the
function we met before. Here we can regards any of Ai as the order parameter. Then, the
order parameter for the gap structure px + ipy can be naturally introduced as

ψx + iψy = Φ(r)eiθ, (4.22)

which has not been possible so far. This is simple but one of the main points of this paper.

4.2 The critical temperature and field solutions

We now proceed to solve the radial part of the matter field. Using the vortex free condition,
eqs. (4.9), (4.10) can be written as

∂2
rψu(r, u, θ) + f ′(r)

f(r) ∂rψu(r, u, θ) +
[
q2A2

t

f2(r) −
m2

f(r)

]
ψu(r, u, θ) = 0 (4.23)

∂2
rψθ(r, u, θ) + f ′(r)

f(r) ∂rψθ(r, u, θ) +
[
q2A2

t

f2(r) −
m2

f(r)

]
ψθ(r, u, θ) = 0 (4.24)

Substitute eq. (4.16) in eq. (4.23) and eq. (4.24), we get a single equation for Ψ(r) which
takes form as

Ψ′′(r) + f ′(r)
f(r) Ψ′ +

[
q2A

(0)2
t (r)
f2(r) − m2

f(r)

]
Ψ(r) = 0 (4.25)

where we have substitute the zeroth order of gauge field part from the gauge field expansion
At(r, u, θ) = A

(0)
t (r) + εA

(1)
t (r, u, θ) near the critical temperature. Substitute ψu(r, u, θ) and

ψθ(r, u, θ) for lp = 1, the zeroth order gauge field equation becomes

A
(0)′′
t (r) + 2

r
A

(0)′
t (r) = 2q2

r2f(r) |Ψ(r)|2A(0)
t (r) (4.26)

The above two field equations are same with the field equations for vector field model in
literature. Therefore, the critical temperature and the temperature dependence condensation
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operator value will be unchanged. To get the solution of the fields, we need to know the
asymptotic behavior of the fields. At the asymptotic limit, we consider f(r) ≈ r2 and
O(r4) =∞. Using this, we obtain the field equation near boundary

Ψ′′(r) + 2
r

Ψ′(r)− m2

r2 Ψ(r) = 0 (4.27)

A
(0)′′
t (r) + 2

r
A

(0)′
t (r) = 0 (4.28)

Using the gauge/gravity duality, the asymptotic behavior of the field reads

Ψ(r) = Ψ−
rδ−−1 + Ψ+

rδ+−1 ; A
(0)
t (r) = µ− ρ

r
(4.29)

where δ± = 1
2 [3 ±

√
1 + 4m2] is the scaling dimension, µ and ρ is the chemical potential

and the charge density respectively and Ψ± maps to temperature dependent condensation
operator value of the boundary theory. The Breitenlohner-Freedman mass bound [51, 52]
for this holographic set-up is m2

BF ≥ −1
4 . Under the coordinate transformation z = rh

r , the
metric field reads

f(z) = r2
h

z2 g(z) ; g(z) = 1− z3 . (4.30)

In the z-coordinate, the field equations become

d2Ψ(z)
dz2 + g′(z)

g(z)
dΨ(z)
dz

+
[
q2(A(0)

t (z))2

r2
hg

2(z)
− m2

z2g(z)

]
Ψ(z) = 0 (4.31)

d2A
(0)
t (z)
dz2 − 2q2

r2
hg(z)

|Ψ(z)|2A(0)
t (z) = 0 (4.32)

At T = Tc, the matter field Ψ(z) = 0 which leads to the zeroth order gauge field eq. (4.32)

d2A
(0)
t (z)
dz2 = 0 . (4.33)

Using the aymptotic behavior of fields (4.29), the solution of the above equation reads

A
(0)
t (z) = λrh(c)(1− z) , (4.34)

where λ = ρ
r2
h(c)

. We can write the radial part of the matter field in following form

Ψ(z) = Cp
rδ−1
h

zδ−1F (z) (4.35)

where F (z) is the trail function for Sturm-Liouville eigenvalue method, δ(= δ±) is the
scaling dimension and Cp is unknown constant which need to be determined. We now
substitute this in the matter field equation which yields

d2F (z)
dz2 +

[2(δ − 1)
z

+ g′(z)
g(z)

]
dF (z)
dz

+
[

(δ − 1)(δ − 2)
z2 + g′(z)

g(z)
(δ − 1)
z

− m2

z2g(z)

]
F (z)

+ λ̃2(1− z)2

g2(z) F (z) = 0 (4.36)
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δ λ̃2 α̃ Tc
5
4 1.2418 0.1426 Tc = 0.226√qρ
7
4 7.8766 0.4017 Tc = 0.142√qρ

Table 1. Critical temperature for different scaling dimension for m2 = − 3
16 .

where λ̃ = qλ. The above equation can be written in the Sturm-Liouville form
d

dz

{
p(z)F ′(z)

}
+ q(z)F (z) + λ̃2r(z)F (z) = 0 (4.37)

with

p(z) = z2δ−2g(z) , r(z) = z2δ−2

g(z) (1− z)2

q(z) = z2δ−2g(z)
{

(δ − 1)(δ − 2)
z2 + g′(z)

g(z)
(δ − 1)
z

− m2

g(z)z2

}
. (4.38)

The above identification enables us to write down an equation for the eigenvalue λ̃2 which
minimizes the expression

λ̃2 =
∫ 1

0 dz {p(z)[F ′(z)]2 − q(z)[F (z)]2}∫ 1
0 dz r(z)[F (z)]2

. (4.39)

For the estimation of λ̃2, we shall now use the trial function F = Fα̃(z) ≡ 1− α̃z2 which
satisfies the conditions F (0) = 1 and F ′(0) = 0. The critical temperature reads from
eq. (4.2)

Tc = 3
4π

√
qρ√
λ̃

(4.40)

where the Sturm-Liouville eigenvalue λ̃ is estimated from eq. (4.39). For m2 = − 3
16 , the

scaling dimensions are δ = δ− = 5
4 and δ = δ+ = 7

4 . We have shown the critical temperatures
in the table 1. The critical temperature for δ = 2 (setting m2 = 0) is Tc = 0.124√ρ which
matches with the result from the non-abelian model [23].

We now move to calculate the constant Cp from the gauge field equation near Tc.
Substituting eq. (4.35) in eq. (4.32), we get

d2A(0)
t (z)
dz2 =

C2
p

r2δ
h

B(z)A(0)
t (z) (4.41)

where B(z) = 2q2z2δ−2 F 2(z)
g(z) . We may now expand A(0)

t (z) in the small parameter C
2
p

r2δ
h

as

A(0)
t (z)
rh

= λ(1− z) +
C2
p

r2δ
h

χ(z) (4.42)

with χ(1) = 0 = χ′(1). From eq. (4.42), we get the asymptotic behavior (near z = 0) of the
gauge field. Comparing the both equations of the gauge field about z = 0, we obtain

µ− ρ

rh
z = λrh(1− z) +

C2
p

r2δ−1
h

{
χ(0) + zχ′(0) + . . .

}
(4.43)
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Comparing the coefficient of z on both sides of eq. (4.43), we obtain

− ρ

r2
h

= −λ+
C2
p

r2δ
h

χ′s(0) . (4.44)

We now need to find out the χ′(0) by substituting eq. (4.42) in eq. (4.41). Comparing the
coefficient of C

2
p

r2δ
h

of left hand side and right hand side of the eq. (4.41), we get the equation
for the correction χ(z) near to the critical temperature

χ′′(z) = λB(z)(1− z) . (4.45)

Using the boundary condition of χ(z), we integrate (4.45) between the limits z = 0 and
z = 1 which gives

χ′(z) |z→0= −λBs (4.46)

where Bs = 2q2 ∫ 1
0 dz

z2δ−2(1−α̃z2)2

1+z+z2 . Using eq. (4.46) and eq. (4.44), we obtain

C2
p = r2δ

h

Bs

[
r2
h(c)
r2
h

− 1
]

(4.47)

where the definition of λ is used. Using the expression for the critical temperature eq. (4.47),
we get

C2
p = (4πT )2δ

Bs[3]2δ
(
Tc
T

)2
[
1−

(
T

Tc

)2
]
. (4.48)

Using the fact that T ≈ Tc, we can write T 2δ
(
Tc
T

)2
[
1−

(
T
Tc

)2
]
≈ 2T 2δ

c

[
1−

(
T
Tc

)]
. Using

this, we finally obtain the constant which gives the temperature dependence condensation
value in following form

Cp =
√

2
Bs

[4π
3

]δ
T δc

√
1− T

Tc
= βT δc

√
1− T

Tc
, (4.49)

where β =
√

2
Bs

[
4π
3

]δ
. Near the critical temperature, the radial part of the scalar field

solution now takes form

Ψ(z) = β̃Tc

√
1− T

Tc
zδ−1(1− α̃z2) = β̃Tc

√
1− T

Tc
F̃ (z) (4.50)

where β̃ =
√

2
Bs

[
4π
3

]
and F̃ (z) = zδ−1(1− α̃z2). Given value of m2 and δ, the value of β̃

and α̃ are fixed from the SL method. For m2 = − 3
16 , we get the value of β̃ = 7.359 and

β̃ = 11.96 for δ− = 5
4 and δ+ = 7

4 respectively.

4.3 Gap structure in vector field model

We would like to mention the general prescription for the mapping between the order
parameter (gap function) and the matter field by the near boundary behavior of the bulk
field ψ:

ψ(z, u, θ) ∼ 〈O(u, θ)〉zδ−1, ψ̃(z, k, θ) ∼ ∆~k
(k, θ)zδ−1, (4.51)
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in the limit z → 0. Here ψ̃(z, k, θ) =
∫
d2xei

~k·~xψ(z, u, θ) is the Fourier transform and
k =

√
k2
x + k2

y. Since the radial coordinate in gravity theory is associated with the energy
in boundary theory, the temperature dependence is solely coming from the radial part of
the field Ψ(z) and angle dependence is from the solution R(u, θ) so that we can see that
these dependencies are factorized as in the eq. (4.13). From this, the angle dependent
condensation operator can be written as

〈O〉 = ∆(T )H(u, θ), ∆k = ∆(T )I(kx, ky), (4.52)

where H(u, θ) is R(u, θ) upto a constant and I(kx, ky) is the Fourier transformation of
H(u, θ). From eq. (4.50), we can write the solution near boundary for ground state as

ψu = β̃Tc

√
1− T

Tc
cos θzδ−1 and ψθ = −β̃Tc

√
1− T

Tc
u sin θzδ−1, (4.53)

from which

Hu(u, θ) = cos θ, Hθ(u, θ) = −u sin θ, (4.54)

∆(T ) = β̃Tc

√
1− T

Tc
=


7.359 Tc

√
1− T

Tc
for δ = δ− = 5

4

11.96 Tc
√

1− T
Tc

for δ = δ+ = 7
4

. (4.55)

The Fourier transformation of Hu(u, θ) and Hθ(u, θ) gives3

∆(u)
k = ∆(T )Iu(kx, ky) and ∆(θ)

k = ∆(T )Iθ(kx, ky) (4.56)

where

Iu(kx, ky) = −2πa2 iak

6 1F2

(
3
2; 2, 5

2; −a
2k2

4

)
cos θ, Iθ(kx, ky) = 2πa2 iJ2(ak)

k
sin θ,

(4.57)
with 1F2

(
3
2 ; 2, 5

2 ; −a2k2

4

)
being a hypergeometric function. Inspite of their major difference,

the gap structure from this two components are connected by the just phase factor ψu(r, u, θ)
and ψθ(r, u, θ) are related by eq. (4.6). See the density plots in the figure 1 where we draw
the p-wave gap function for fixed value of a. We now focus on the gap function ∆(u)

k since

ψu represents the order parameter of the system. The ratio ∆(u)
k
Tc

is shown in figure 2 for
m2 = − 3

16 at T = 0.9Tc.

4.4 Angular dependent waves in scalar field model

Our task is now to ask whether the p-wave gap function can be simply obtained from a
scalar order model and if not, to ask what is the differences between the p-wave states

3Two dimensional Fourier transformation is given by

I(kx, ky) =
∫ a

0

∫ 2π

0
H(u, θ)e−iu(kx cos θ+ky sin θ)ududθ.
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(a) ∆(u)
k (b) ∆(θ)

k

Figure 1. Two components gap function from vector wave model with lp = 1.

(a) For δ = δ+ = 5
4 (b) For δ = δ+ = 7

4

Figure 2. The p-wave gap function (order parameter) for m2 = − 3
16 with T = 0.9Tc.

in vector model and the scalar model? We examine the angle dependent scalar field in
the Abelian-Higgs Model in appendix A. In this section, we describe just physics of angle
dependent wave states in the scalar field model.

When we consider the angle dependent fields in the scalar field model, two dimensional
Laplacian appears in the matter field equations. Here, we are interested on the solution of
the Laplacian part only in the matter field equation. After expanding both fields, we will
be able to use the separation variables method for solving the Laplacian part of the matter
field equations. Substituting R(u, θ) = R(u)Θ(θ) in the Laplacian part of the matter field
eq. (A.12), we obtain

∂u[u∂uR(u)]
uR(u) + 1

u2
∂2
θΘ(θ)
Θ(θ) = −α2 . (4.58)

The angle dependence part is separated by the separation constant l in which equation
takes form

d2Θ(θ)
dθ2 + l2Θ(θ) = 0 . (4.59)

The solution can be chosen such that Θ(θ) = eilθ, where l can be identified as angular
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quantum number. Using the separation constant l, the equation (4.58) now becomes

d2R(u)
du2 + 1

u

dR

du
+
(
α2 − l2

u2

)
R(u) = 0, (4.60)

which is nothing but the Bessel equation whose solution takes form

R(u) = Jl (αu) (4.61)

for the finiteness at the origin u = 0. The value of u runs from 0 to system size a. The
R(u) should vanish at the boundary of the system for which we have to set α = αl1

a where
αl1 is the first zero of the Jl polynomial. The solution now reads

R(u) = Jl

(
αl1

u

a

)
. (4.62)

We can finally express the solution R(u, θ) in the following form

R(u, θ) = R(u)Θ(θ) = Jl

(
αl1
a
u

)
eilθ. (4.63)

For the angular momentum l = 0, the ground state is independent of θ which implies
that the ground state in the scalar field model is represented by s-wave state. The wave
state for non-zero l represents the excited states in the scalar field model. Since α = 0 in
eq. (A.13) recovers the field eq. (3.5), we set α01 = 0 for l = 0 which gives trivial solution of
R(u, θ) = 1 for s-wave state. To visualize the wave in momentum space, we now make the
Fourier transformation of this solution R(u, θ) which yields as follow

I(k, φ) =
∫ a

0

∫ 2π

0
Jl

(
αl1
a
u

)
eilθe−iku cos(θ−φ)ududθ (4.64)

where k =
√
k2
x + k2

y, kx = k cosφ, ky = k sinφ and φ is the angle in momentum space. After
some calculation, we obtain

I(k, φ) = 2πa2(−i)leilφ [αl1Jl−1(αl1)Jl(ka)− kaJl−1(ka)Jl(αl1)]
k2a2 − α2

l1
(4.65)

This result is very crucial for understanding the different wave state structures in the scalar
field model. We can identify the angles in coordinate space and that in momentum space,
φ = θ as it is well known, the states in momentum space become

I(k, θ) =

 2πa2 J1(ka)
ka for l = 0

2πa2 (−i)leilθ αl1Jl−1(αl1)Jl(ka)
k2a2−α2

l1
otherwise

. (4.66)

The αl1 values are α01 = 0, α11 = 3.8317, α21 = 5.1356 for s, p, d-wave state respectively.
Using real part of I(k, θ) (4.66), the density plot of s, d-wave states in momentum space
are presented in figure 3, where kx and ky is expressed in inverse unit of a.
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(a) s-wave state (l = 0) (b) d-wave state (l = 2)

Figure 3. Density plot of l-wave states in momentum space. α01 = 0, α21 = 5.1356 for l = 0, 2
respectively.

Figure 4. Comparing Tc in the Vector vs Scalar models.

5 Comparing the scalar field vs the vector field models

5.1 The critical temperatures

We already know that the ground state in scalar model is in s-wave state and the ground
state in vector field model is in p-wave state. In this subsection, we will discuss the critical
temperature of the ground state in both models and compare them for each value of
scaling dimension δ. For example, at the same value of the scaling dimension δ = 2, the
critical temperature for vector field is Tc = 0.124√ρ while that of the scalar field model
(Tc = 0.117√ρ) so that

T p-wave
c > T s-wave

c . (5.1)

This interesting result continue to hold for other values of δ. The critical temperature for
p-wave state matches with the results of non-abelian holographic model. See figure 4. The
difference in the critical temperature of ground state in both models is mainly because of the
difference in q(z) in Sturm-Liouville form whereas p(z), r(z) are same in both models. For the
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ground state in scalar field model, we can write qs(z) = z2δ−2g(z)
[
δ(δ−3)
z2 + g′(z)δ

zg(z) −
m2

z2g(z)

]
if we recast eq. (A.23) in Sturm-Liouville form. If we denote q(z) as qv(z) (from eq. (4.38))
for vector field model, then the difference

qv(z)− qs(z) = z2δ−1, (5.2)

which leads lower λ̃ values in vector field model. This is the mathematical reason for
higher Tc in vector field model. The possible physical reason for this interesting feature in
holographic setup may be lurk in the instability of the bulk field since mass of the fields
are different for same value of the scaling dimension. The mass of the scalar field and the
vector field are m2

s = δ(δ − 3) and m2
v = (δ − 1)(δ − 2) respectively, they are related by

m2
v = m2

s + 2, (5.3)

which is responsible for the simple result of eq. (5.2). Before we finish this subsection, we
mention that in the ref. [30], the competition between the s-and p-wave condensations were
studied. However, the authors compared p-wave and s-wave such that the p-wave model
has fixed conformal weight 2 while the s-wave model has varying weights. In contrast,
we compared s-wave and p-wave at the same weight for various values of weight. In the
presence of the condensate and the charge density, it is not necessary to respect the Lorentz
invariance and density operator and current operator may have different weights.

5.2 Comparing p-wave states in vector and scalar models

The p-wave state in the scalar field model is in the excited state of the system while that
state in the vector field model is the ground state. Nevertheless they can be the same
since they are states in different models. Therefore the question here is how much they are
different if they are different. Before we compare these, we would like to mention that the
condensation to p-wave state in the scalar field model is possible only under the constraint
such that s-wave condensation is forbidden for some reason. In such situation, the p-wave
state is the ground state in the scalar field model. Then one may ask whether the p-wave
gap structure in scalar field model and in vector field model are similar or not. We only
need to focus on the momentum dependent part I(k, θ) of the gap function here. From the
scalar field model, the excited p-wave state in momentum space is represented by (from
eq. (4.66))

I(k, θ) = −2πa2i
α11J0(α11)J1(ka)

k2a2 − α2
11

eiθ (5.4)

The momentum dependence part of the gap energy in vector field model reads

Iu(k,θ) =−2πa2 iak

6 1F2

(
3
2;2, 52;−a

2k2

4

)
cosθ and Iθ(k,θ) = 2πa2 iJ2(ak)

k
sinθ (5.5)

Since Iu(k, θ) and Iθ(k, θ) are related and ψu is the measure of the order parameter, we
now discuss only about the Iu(k, θ) part from the gap energy ∆(u)

k . From the figure 1 and
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(a) Imaginary part of I(k, θ) (b) Real part of I(k, θ)

Figure 5. The excited p-wave state from the scalar field model.

(a) (b)

Figure 6. The plot of the ratio function.

figure 5, we observe that the density plot of the imaginary part of I(k, θ) is very similar to
the density plot of Iu(k, θ). We now take the ratio between this two function

Im.(I(k, θ))
Iu(k, θ) = α11J0(α11)J1(ka)

(k2a2 − α2
11)ka

6

1F2
(

3
2 ; 2, 5

2 ; −a2k2

4

) (5.6)

which is independent of θ. We can now plot this ratio function (5.6) in figure 6 for fixed
value of a, which is almost constant function for ka� 1.4 Notice, however, that this ratio
function diverges at the roots of the generalized hypergeometric function. The first of which
is ka = 5.8843.

6 Discussion

In this paper, we have investigated the angle dependent gap structures in the vector field
models. In order to understand the necessity of the vector field model for p-wave super-
conductors, we have started with the vector field model. We showed that the normalizable

4If we consider ka < 1, then we can write this ratio function as Im.(I(k,θ))
Iu(k,θ) ≈ 0.32 + 0.006k2a2. In this

limit ka < 1, we can neglect the higher order terms in k2a2.
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ground states of this system is given by the p-wave state while the state with lp = 0 is not
normalizable. Therefore, the p-wave ground state can be achieved only from the vector field
model. We have found that the order parameter for vector field model is represented by ψu,
not the ψx since ψx does not have any angular dependency.

We then explore the angular dependence in the scalar field model, where all l-wave
states are available. Here the ground state of the system is from the s-wave state. For l > 0,
they are excited states of the system. We have then compare the momentum dependent
part Ik,θ of gap function from the scalar field model and the vector field model. We observe
that the structure of both gap energy is almost same for small momentum range. The point
is that p- and d-wave gap structures can be explained through the scalar field model if we
assume that the states for lower value of angular momentum number (l = 0, 1) is forbidden
in the scalar field model.

We also studied the critical temperature in the probe approximation of the gravity
background using matrix-eigenvalue algorithm method and Sturm-Liouville’s eigenvalue
method for different scaling dimensions. Another interesting point is that the critical
temperature for the ground state of vector field model is higher than the ground state of
the scalar field model for same value of the scaling dimensions.

We would now like to mention the drawbacks and future works. The Fermi surface is not
easily demonstrated in our set-up, where fermions are not included at all. The appearance
of Fermi arc and Fermi surface is only possible when one consider the interaction between
fermion and tensor field in holographic set-up [38]. We will come back to this issue in the
future work.
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A Abelian-Higgs model with angular dependent scalar field

In the scalar order model, angular dependent matter field and gauge ansatz are

ψ = ψ(r, u, θ) , A = At(r, u, θ)dt (A.1)

Using the fields ansatz (A.1) in fields eq. (3.3), we obtain the gauge field and the scalar
field equation

∂r[r2∂rAt(r,u,θ)]+
1

f(r)

[
∂u[u∂uAt(r,u,θ)]

u
+ ∂2

θAt(r,u,θ)
u2

]
= 2q2r2

f(r) |ψ(r,u,θ)|2At(r,u,θ) (A.2)

∂r[r2f(r)∂rψ(r,u,θ)]+
[
∂u[u∂uψ(r,u,θ)]

u
+ ∂2

θψ(r,u,θ)
u2

]
= r2

[
−q

2A2
t (r,u,θ)
f(r) +m2

]
ψ(r,u,θ) .

(A.3)
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Because of the non-linear coupling term, we can not use the separation variables technique to
solve eqs. (A.2), (A.3). We therefore expand the both field as a series in a small parameter ε:

At(r, u, θ) = A(0)
t (r) + εA

(1)
t (r, u, θ) + . . . (A.4)

ψ(r, u, θ) = Ψ(0)(r) +
√
εψ(1)(r, u, θ) + . . . . (A.5)

Comparing the power of ε in fields equations (A.2), (A.3), we obtain for gauge field

ε0 : d2A(0)
t (r)
dr2 + 2

r

dA(0)
t (r)
dr

= 2q2

f(r) |Ψ
(0)(r)|2A(0)

t (r) (A.6)

ε1 : ∂2
rA

(1)
t (r,u,θ)+ 2

r
∂rA

(1)
t (r,u,θ)+ 1

r2f(r)

[
∂2
uA

(1)
t (r,u,θ)+ ∂uA

(1)
t (r,u,θ)
u

+∂2
θA

(1)
t (r,u,θ)
u2

]
= 2q2

f(r)
{
|ψ(1)(r,u,θ)|2A(0)

t (r)+|Ψ(0)(r)|2A(1)
t (r,u,θ)

}
(A.7)

and those for the matter field

ε0 : d2Ψ(0)(r)
dr2 +

[
∂rf(r)
f(r) + 2

r

]
dΨ(0)(r)
dr

=
[
−q

2A(0)2
t (r)

f2(r) + m2

f(r)

]
Ψ(0)(r) (A.8)

√
ε : ∂2

rψ
(1)(r,u,θ)+

[
∂rf(r)
f(r) + 2

r

]
∂rψ

(1)(r,u,θ)+ 1
r2f(r)

[
∂2
uψ

(1)(r,u,θ)

+∂uψ
(1)(r,u,θ)
u

+ ∂2
θψ

(1)(r,u,θ)
u2

]
=
[
−q

2A(0)2
t (r)

f2(r) + m2

f(r)

]
ψ(1)(r,u,θ) . (A.9)

Since we expand the fields at near Tc, we can identify the small parameter ε = 1− T
Tc
. Since

ψ(r, u, θ) = 0 at T = Tc and at the nodes, we have to set Ψ(0)(r) = 0. Therefore, the matter
field can be expressed as

ψ(r, u, θ) = ψ(1)(r, u, θ)
√

1− T

Tc
. (A.10)

We now need to solve ψ(1)(r, u, θ) in order to know the gap structure since ψ(∞, u, θ) is
the order parameter of the boundary theory. Using the separation of variables method in
eq. (A.9), scalar field can be separate out as

ψ(1)(r, u, θ) = Ψ(1)(r)R(u, θ) . (A.11)

With this, the scalar field equation now becomes

1
Ψ(1)(r)

[
d2Ψ(1)(r)
dr2 +

{
∂rf(r)
f(r) + 2

r

}
dΨ(1)(r)
dr

]
+
{
q2A

(0)2
t (r)
f2(r) − m2

f(r)

}

= − 1
r2f(r)

1
R(u, θ)

[
∂2
uR(u, θ) + ∂uR(u, θ)

u
+ ∂2

θR(u, θ)
u2

]
:= α2 . (A.12)
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(a) Vs(r) from generalized spin field model (b) Vl(r) from scalar field model

Figure 7. Plot of Vs(r) and Vl(r) for m2 = −2 with Schwarzschild-AdS4 metric with rh = 1 in
different wave states s, p, d. Left figure is for spin field model with different spin value and the figure
in right hand side is for Abelian-Higgs model with α = αl1

a = 0, 3.8317, 5.1356 (setting a = 1) for
different angular momentum value l = 0, 1, 2 respectively. Here l = 1 and l = 2 represent the excited
states in the scalar field model.

Right hand side of the above equation is two dimensional Laplacian in u, θ coordinate.
Using the separation constant α2, the radial part of the matter field becomes

d2Ψ(1)(r)
dr2 +

{
∂rf(r)
f(r) + 2

r

}
dΨ(1)(r)
dr

+
{
q2A

(0)2
t (r)
f2(r) − m2

f(r)−
α2

r2f(r)

}
Ψ(1)(r) = 0 . (A.13)

For α = 0, the above equation becomes same as eq. (3.5) which tells us that the trivial
solution of R(u, θ)=constant represents the solution of field without any angular dependency.
The non-zero value of α gives us the excited states for the scalar field model. The value
of separation constant α = αl1

a is determined by the first root the Bessel functions with
angular quantum number l, where a is the system size (see section 5). We can now recast
the radial part of the scalar field in the following form

d2Ψ(1)(r)
dr2 +

{
∂rf(r)
f(r) + 2

r

}
dΨ(1)(r)
dr

+
{
q2A

(0)2
t (r)
f2(r) − Vl(r)

}
Ψ(1)(r) = 0 (A.14)

where the effective potential, Vl(r), is given by

Vl(r) = m2

f(r) + α2

r2f(r) . (A.15)

We would like to mention that some feature of Vl(r) are quite different from the “effective
potential” of the ground states in (3.21), which has no centrifugal potential 1/r2 for s = 0, 1.
We will need to consider the vector field (s = 1) model and tensor field model (s = 2) to
get the ground state of the p-wave and d-wave superconductors respectively, simply because
the higher values of l in scalar field model represent the excited states of the system. In
the figure 7, the “effective potential” Vs(r) (3.21) and Vl(r) (A.15) are shown for m2 = −2
for different l-wave states. The figure in right hand side in figure 7 reveals similar physics
with hydrogen like atom.
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A.1 The critical temperature

The zeroth order and first order gauge field equations

d2A(0)
t (r)
dr2 + 2

r

dA(0)
t (r)
dr

= 0 (A.16)

∂2
rA

(1)
t (r,u,θ)+ 2

r
∂rA

(1)
t (r,u,θ)+

∇2
(2)A

(1)
t (r,u,θ)
r2f(r) = 2q2

f(r) |Ψ
(1)(r)R(u,θ)|2A(0)

t (r) (A.17)

where ∇2
(2) is the two dimensional Laplacian. The asympotic solution of the zeroth order

gauge field and the radial part of the first order matter field read [5]

A(0)
t = µ− ρ

r
, Ψ(1)(r) = Ψ−

rδ−
+ Ψ+
rδ+

(A.18)

where δ± = 1
2 [3 ±

√
9 + 4m2] is the scaling dimension in the scalar field model which is

different from the vector field model. In z = rh
r coordinate, zeroth order gauge field and

the radial part of the first order matter field yield with the identification of α = αl1
a

d2A(0)
t (z)
dz2 = 0 (A.19)

d2Ψ(1)(z)
dz2 +

(
g′(z)
g(z) −

2
z

)
dΨ(1)(z)

dz
+
[
q2(A(0)

t (z))2

r2
hg

2(z) − m2

z2g(z)−
α2
l1

a2r2
hg(z)

]
Ψ(1)(z) = 0 (A.20)

The first order gauge field becomes

∂2
zA

(1)
t (z,u,θ)+ 1

r2
hg(z)

∇2
(2)A

(1)
t (z,u,θ) = 2q2

z2g(z)
(
Ψ(1)(z)

)2
Jl

(
αl1
a
u

)2
A(0)
t (z). (A.21)

To estimate the critical temperature, we just need to solve the zeroth order gauge field
equation (A.19) and first order scalar field equation (A.20). At the critical temperature
T = Tc, the solution of the zeroth order gauge field yields

A(0)
t (z) = λrh(c) (1− z) (A.22)

where λ will be computed from the matter field equation using Matrix-eigenvalue algorithm.
We now substitute A(0)

t (z) (A.22) in the first order scalar field equation (A.20), we obtain

d2Ψ(1)(z)
dz2 +

(
g′(z)
g(z) −

2
z

)
dΨ(1)(z)
dz

−
[

m2

z2g(z) + α2
l1λ

a2ρg(z)

]
Ψ(1)(z)+ q2λ2(1− z)2

g2(z) Ψ(1)(z) = 0

(A.23)
Factoring out the behavior near the boundary z = 0 and the horizon, we define

Ψ(1)(z) = Cs
rδh
zδF (z) where F (z) = (z2 + z + 1)−λ̃/

√
3y(z) (A.24)

where λ̃ = qλ. Then, F is normalized as F (0) = 1. We now substitute this in the matter
field equation (A.23) which yields

d2y

dz2 +

(
1− 4√

3 λ̃+ 2δ
)
z3 + 2λ̃√

3z
2 + 2λ̃√

3z + 2(1− δ)
z(z3 − 1)

dy

dz
(A.25)

+

(
3δ2 − 4

√
3δλ̃+ 4λ̃2

)
z2 −

(
−3h2λ̃+ 4λ̃2 − 2

√
3δλ̃+

√
3λ̃
)
z − 2

√
3(1− δ)λ̃

3z(z3 − 1) y = 0,
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where h = αl1
a
√
qρ . Notice that this is the generalized Heun’s equation that has five regular

singular points at z = 0, 1, −1±
√

3i
2 ,∞. Substituting y(z) =

∑∞
n=0 dnz

n into (A.25), we
obtain the following four term recurrence relation:

αn dn+1 + βn dn + γn dn−1 + δn dn−2 = 0 for n ≥ 2, (A.26)

with 

αn = −3(n+ 1)(n+ 2δ − 2)
βn = 2

√
3λ̃(n+ δ − 1)

γn =
√

3(2n+ 2δ − 3)λ̃+ 3h2λ̃− 4λ̃2

δn = 3
(
n− 2√

3 λ̃+ δ − 2
)2

(A.27)

The first four dn’s are given by α0d1 + β0d0 = 0, α1d2 + β1d1 + γ1d0 = 0, d−1 = 0 and
d−2 = 0. The series y(z) =

∑∞
n=0 dnz

n is absolutely convergent for |z| < 1. The condition
for convergence at |z| = 1 involves parameters of the equation. The convergence of the
series y(z) =

∑∞
n=0 dnz

n can be analyzed by studying asymptotic behaviour of the linear
difference equation eq. (A.26) as n→∞. One finds that eq. (A.26) possesses three linearly
independent asymptotic solution of the form

d1(n) ∼ n−1

d2(n) ∼
(
−1+

√
3i

2

)n
n
−1− 2λ̃√

3

d3(n) ∼
(
−1−

√
3i

2

)n
n
−1− 2λ̃√

3

(A.28)

d2(n) and d3(n) are called minimal solutions to eq. (A.26), and d1(n) represents a dominant
one [54]. This distinction reflects the property limn→∞ d2(n)/d1(n) = limn→∞ d3(n)/d1(n) =
0, because λ̃ > 0. Now we ask when the series converges at the boundary point z= 1. It
has been known [55] that we have a convergent solution of y(z) at |z|= 1 if only if the
four term recurrence relation eq. (A.26) has a minimal solution. According to Pincherle’s
Theorem [54], (dn)n∈N is the minimal solution if α0 6= 0 and

det (MN×N ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 α0
γ1 β1 α1
δ2 γ2 β2 α2

δ3 γ3 β3 α3
δ4 γ4 β4 α4

. . . . . . . . . . . .
δN−1 γN−1 βN−1 αN−1

δN γN βN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (A.29)

in the limit N →∞. One should remember that αn, βn, γn, δn’s are functions of λ̃ so that
eigenvalues are the solution of the above equation. Notice also that eq. (A.29) becomes a
polynomial of degree N with respect to λ̃. To find λ̃ for a given δ, we should increase N
until roots λ̃ become constant to within the desired precision [53].
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(a) For δ = 1 (b) For δ = 2

Figure 8. For numerical λ values with the fitting function in terms of h for δ = 1, 2 cases.

For computation of roots, we choose N = 30. For given value of h, we have numerically
solved the eigenvalue λ̃ using the above mentioned procedure. The smallest positive real
roots of the λ̃ is corresponding to the ground state of the system. Using our numerical
results for the smallest positive real roots of λ̃ and approximate fitting function, we find
the λ values in terms of h, which takes in the following form

λ̃ ≈ 0.987h2 + 0.784h+ 1.09 for δ = 1 (A.30)
λ̃ ≈ 0.979h2 + 1.591h+ 4.069 for δ = 2 . (A.31)

We have shown the numerical value of λ̃ and the above fitting functions for δ = 1, 2 in the
figure 8.

Substituting the above expression in eq. (4.40) and the definition of the dimensionless
parameter h, we finally obtain the critical temperature in terms of charge density in the
following form

Tc ≈
3

4π

√
qρ√

1.09 + 0.784 αl1
a
√
qρ + 0.987 α2

l1
a2qρ

for δ = 1 (A.32)

Tc ≈
3

4π

√
qρ√

4.069 + 1.591 αl1
a
√
qρ + 0.979 α2

l1
a2qρ

for δ = 2 . (A.33)

For s-wave holographic superconductors, the value of α01 = 0 since α = 0. From the above
expression, we recover the critical temperature for s-wave holographic model, which are
Tc = 0.225√qρ and Tc = 0.117√qρ for δ = δ− = 1 and δ = δ+ = 2 respectively. We present
the critical temperature as function of charge density for l = 0(s-wave), l = 1(p-wave), l =
2(d-wave) states of the spin-0 field model in figure 9 for q = 1. The p-wave and d-wave
states are excited states in this model.

Using eq. (4.63) and eq. (A.24), we can now write the matter field solution as

ψ(z, u, θ) =
√
εψ(1)(z, u, θ) =

√
εΨ(1)(z)R(u, θ)

⇒ ψ(z, u, θ) = Cs
√
εH(u, θ)K(z) (A.34)
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(a) For a = 10 and For δ = 1 (b) For a = 10 and For δ = 2 (c) For a = 15 and For δ = 2

Figure 9. Tc plot in term of charge density for different sample sizes a = (10, 15) for l = 0(s-wave),
l = 1(p-wave), l = 2(d-wave) states with different δ of the scalar field model.

where H(u, θ) = Jl
(αl1
a u
)
eilθ and K(z) = zδ

rδ
h

(1− α̃z2). Using the above expression and the
gauge/gravity duality, the condensation operator of the boundary theory yields

〈O〉 = CsH(u, θ)
√

1− T

Tc
= CsJl

(
αl1
a
u

)
eilθ

√
1− T

Tc
. (A.35)

From this expression, we can identify the temperature dependent part of the condensation
operator as 〈Õ〉 = Cs

√
1− T

Tc
. To determine the integration constant Cs in the above

equation, we need to solve the first order gauge field equation (A.21) which reads

∂2
zA

(1)
t (z, u, θ) +

∇2
(2)A

(1)
t (z, u, θ)
r2
hg(z)

= 2C2
sq

2J2
l

(
αl1
a
u

) K2(z)
z2g(z)A

(0)
t (z) . (A.36)

Since the first order gauge field equation is not separable, it is difficult to solve the above
equation. Therefore, it is not possible to determine the integration constant Cs here.
Although the amplitude of the gap function in angle dependent scalar field model is not
possible to determine, we can write the momentum dependent gap structure part without
amplitude which is coming from the different wave states in momentum space in the scalar
field model. Using two dimensional Fourier transformation of eq. (A.35), we obtain the gap
function for different wave states (using eq. (4.66))

∆k = ∆(T )I(k, θ) = Cs

√
1− T

Tc
×

 2πa2 J1(ka)
ka for l = 0

2πa2(−i)leilθ αl1Jl−1(αl1) Jl(ka)
k2a2−α2

l1
otherwise

(A.37)
where the amplitude Cs is undetermined here. We can compare the gap structure I(k, θ)
for excited p-wave state in the scalar field model with ground state in vector field model.
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