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Abstract: For most machine learning and deep learning models, the selection of hyperparameters
has a significant impact on the performance of the model. Therefore, deep learning and data analysis
experts have to spend a lot of time on hyperparameter tuning when building a model for accom-
plishing a task. Although there are many algorithms used to solve hyperparameter optimization
(HPO), these methods require the results of the actual trials at each epoch to help perform the search.
To reduce the number of trials, model-based reinforcement learning adopts multilayer perceptron
(MLP) to capture the relationship between hyperparameter settings and model performance. How-
ever, MLP needs to be carefully designed because there is a risk of overfitting. Thus, we propose a
random forest-enhanced proximal policy optimization (RFEPPO) reinforcement learning algorithm
to solve the HPO problem. In addition, reinforcement learning as a solution to HPO will encounter
the sparse reward problem, eventually leading to slow convergence. To address this problem, we
employ the intrinsic reward, which introduces the prediction error as the reward signal. Experiments
carried on nine tabular datasets and two image classification datasets demonstrate the effectiveness
of our model.

Keywords: hyperparameter optimization (HPO); proximal policy optimization; random forest;
reinforcement learning

1. Introduction

Machine learning (ML) models have exploded in complexity in recent years at the
expense of high computational costs [1]. ML is actually the calculation process of learning
data through a certain algorithm. Parameters that can be updated during the training
process are called model parameters. There is another kind of parameter, hyperparameter,
which should be defined before training and cannot be learned from the normal training
process. For instance, the kernel, regularization parameter, and kernel coefficient of a sup-
port vector machine (SVM), and the hidden state size and learning rate of a deep learning
(DL) model are all hyperparameters. The process of finding the optimal hyperparameters is
inevitable since hyperparameters have a remarkable effect on the performance in terms of
time or accuracy of the model. In many cases, engineers rely on the trial-and-error method
to manually tune hyperparameters. Even experienced engineers will try multiple times
in a certain range to find the optimal combination of hyperparameters, not to mention
that for non-experts in ML and DL, finding the best hyperparameters is time consuming
and difficult.

To solve this issue, automated ML (AutoML) has been proposed, which can build ML
pipelines on a limited computational budget automatically, without human interference.
The overall process of AutoML consists of four phases: data preparation, feature engineer-
ing, model generation, and model evaluation [2]. The optimization method is a part of
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model generation, which can be further divided into architecture optimization (AO) and
hyperparameter optimization (HPO). Thornton et al. [3] defined the automatic selection of
learning algorithms and the setting of hyperparameters to optimize empirical performance
as a combined algorithm selection and hyperparameter optimization (CASH) problem. In
this work, we focus on the HPO task.

In practice, HPO is confronted with many challenges, which make it a difficult prob-
lem. First, the hyperparameter tuning of ML models is generally considered a black-box
optimization problem, that is, we can only observe the inputs and outputs of the model
during the tuning process. We usually cannot obtain the gradient of the cost function with
respect to the hyperparameters. Second, when facing large models, large datasets, the
target model needs to be trained with selected hyperparameters to obtain the loss value,
so the process of evaluation is very expensive. Finally, the configuration space is very
complex and high dimensional. For a given algorithm, there are multiple hyperparameters
correspondingly, and each hyperparameter has its own range of values.

Recently, many methods are used to solve HPO problem, and several libraries have
implemented these methods to allow researchers to conveniently work with them, such
as Hyperopt (https://github.com/hyperopt/hyperopt, accessed on 16 May 2022), Hp-
BandSter (https://github.com/automl/HpBandSter, accessed on 16 May 2022), SMAC
(https://github.com/automl/SMAC3, accessed on 16 May 2022), Sherpa [4], etc. The
methods shown in Figure 1 are mainly classified into two categories:

• Black-box optimization, e.g., grid search (GS) [5], random search (RS) [6], Bayesian op-
timization (BO) [7,8], simulated annealing (SA) [9], and evolution algorithm (EA) [10].

• Multi-fidelity optimization, e.g., successive having (SH) [11], hyperband [1], Bayesian
optimization hyperband (BOHB) [12], and differential evolution hyperband (DEHB) [13].

Figure 1. HPO methods.

GS is very simple and can be executed in parallel; however, the number of trials
increases exponentially with the number of hyperparameters. Compared to GS, RS is
more efficient, but it does not guarantee finding the global optimum in the limit, whereas
GS never will. A typical BO method is to adopt a Gaussian process (GP) as the surro-
gate model; however, GP is cubically related to the number of data sizes. Hyperband
dynamically allocates resources to each set of configurations and uses SH to stop underper-
forming configurations. However, it randomly samples new configurations at each step.
In order to learn the previously sampled configurations, BOHB combines BO with hyper-
band, and DEHB combines the evolutionary optimization method of differential evolution
(DE [14]) with hyperband. However, these hyperband-based methods tend to choose the
hyperparameter settings that enable the model to converge quickly in the early stages of

https://github.com/hyperopt/hyperopt
https://github.com/automl/HpBandSter
https://github.com/automl/SMAC3
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training. Wu et al. [15] used the reinforcement learning (RL) method and treated HPO
as a sequential decision process. In addition, to speed up training, they used MLP as a
surrogate model to predict accuracy and dynamically train the agent with true accuracy
and predicted accuracy. This approach reduces the number of trials and does not tend
to choose a hyperparameter setting that converges quickly in the early stages of training.
However, due to the sequential selection of hyperparameters, the reward is obtained only
when the last hyperparameter is selected, and the rewards of previous steps are all 0, which
causes the problem of sparse reward. Moreover, the MLP model needs to be carefully
designed and requires a large sample size to prevent overfitting. Inspired by [15], we adopt
random forest (RF) as a surrogate model and use part of the real rewards and part of the
predicted rewards from the surrogate model when updating the agent. Moreover, in order
to solve the problem of sparse reward, we add the curiosity to provide intrinsic reward.

The basic process of RL-based HPO is shown in Figure 2. The agent observes state
st in the environment at time step t and then executes action at according to the policy.
Consequently, the environment returns a reward rt to the agent, and the state is transferred
from st to st+1. For the environment, state, action and reward of this paper, we introduce
them in detail in Section 3.

Figure 2. The process of HPO using reinforcement learning methods.

In this work, we use the proposed method to optimize the hyperparameters of ex-
treme gradient boosting (XGBoost) [16] on nine tabular datasets and convolutional neural
network (CNN) on two image datasets. The main contributions of this paper are as
follows:

• We use the RF algorithm as a surrogate model which can predict rewards and then
reduce the consumption of resources.

• For the sparse reward problem of HPO, we use curiosity to provide an intrinsic reward
that speeds up the convergence and finds better hyperparameter configuration faster.

• We use the proposed method to tune the hyperparameters of the XGBoost on nine
tabular datasets and CNN models on two image datasets. The experimental results
show that our method has higher accuracy and faster convergence compared to other
optimization algorithms.

The remainder of this paper is organized into four sections. Section 2 introduces the
hyperparameter optimization methods and the optimization objective of RL. In Section 3,
we describe our proposed method. Section 4 displays and discusses the experiment results.
Finally, we draw conclusions in Section 5.

2. Related Work
2.1. Hyperparameter Optimization

HPO is a task to find the optimal/suboptimal hyperparameters in ML/DL models
by using certain algorithms. HPO generally consists of three components: the first is the
objective function, i.e., the goal that the algorithm needs to minimize or maximize; the
second is the search range, which needs to determine candidates for discrete spaces and
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upper and lower bounds for continuous spaces; and the third is the parameters of the
algorithm itself, such as the selection of acquisition functions. The definition of HPO is as
follows: LetA denote a ML or DL algorithm with n hyperparameters;Aλ is the algorithmA
with hyperparameter λ; Λn is the search space of the n-th hyperparameter; and Λ denotes
all hyperparameter search spaces. Therefore, given a data set D, the purpose of HPO is
to find

λ∗ = argmin
λ∈Λ

E(Dtrain ,Dvalid)∼DL(Aλ, Dtrain, Dvalid) (1)

where L(Aλ, Dtrain, Dvalid) denotes the loss value of model A with hyperparameter setting
λ on validation data set Dvalid that is trained on training set Dtrain.

Some popular hyperparameter tuning algorithms have been proposed in recent years
and widely used in different fields.

Grid search and random search: GS defines the search space as a regular grid and
evaluates every position in the grid. With a large search range and a small step size,
GS has a high probability of discovering the global optimum. However, this method
is very computationally intensive and time consuming, especially when the number of
hyperparameters to be tuned is relatively large. The idea of RS is similar to GS, but it
is generally faster than GS. Instead of testing all values in the grid, RS randomly selects
sample points within the search space. RS assumes that if the set of sample points is
sufficiently large, then the global optimum or its approximation can also be found with a
high probability through random sampling.

Bayesian optimization: BO is an effective optimization method and generally used
for optimizing expensive black-box functions [17]. BO finds the value that minimizes the
objective function based on the historical evaluation results by building a surrogate function
(probabilistic model). Several surrogate models commonly used in BO are Gaussian process
(GP), tree-structured Parzen estimator (TPE) [5], and RF. The Bayesian based approach
differs from grid or random search in that it saves a lot of useless work by referring to
previous evaluations when trying the next set of hyperparameters.

Evolutionary algorithm-based optimization: The idea of the EA method comes from
the concept of biology. Since natural evolution is a dynamic process occurring in a changing
environment, it is applicable to the HPO task, which is also a dynamic process. The covari-
ance matrix adaptation evolution strategy (CMA-ES) [18] is one of the most well-known
EA methods. EA can also be used to optimize the neural structure and hyperparameters of
deep learning models [19].

Bandit-based optimization: It is very expensive to verify the performance of different
hyperparameters when the data set is very large or the model is very complex. Common
techniques to address this problem include using subsets of the data set, feature dimen-
sionality reduction, reducing training steps, etc. However, the multi-fidelity approach
converts this manual heuristic into a formal algorithm that uses an approximation of the
real loss function for optimization [20]. Typical bandit-based methods are hyperband and
successive halving. The BOHB proposed in [12] utilizes hyperband to decide how many
sets of hyperparameters to use at a time and how much budget to allocate to each set of
hyperparameters. In addition, BOHB uses BO to select hyperparameters instead of random
selection as hyperband does [21]. The DEHB proposed in [13] combines DE and HB, which
maintains a sub-population for each budget level and uses the size of the sub-population
as the maximum number of hyperparameter configurations for the corresponding budget
level.

2.2. Reinforcement Learning

RL is an area of ML that aims to allow agents to take actions in an environment in
order to maximize their expected benefits. The RL problems are often modeled by an MDP,
which was first proposed by Bellman [22]. Watkins first attempted with MDP modeling
in RL [23]. MDP is usually defined as a tuple < S, A, P, γ, R >, where S denotes the state
set with s ∈ S and si denotes the state at step i; A denotes a set of actions with a ∈ A and
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ai denotes the action at step i; P is the probability of transition from one state of a system
into another state; R is the reward function; and γ is the discount factor. The purpose of
RL is to allow agents to learn an optimal policy or near-optimal policy that maximizes the
expectation of the discount reward sum. The policy can be expressed by

π(a, s) = Pr(at = a|st = s) (2)

where π(a, s) represents the probability of choosing action a in state s at step t.
RL can be classified into two types: value-based (e.g., Q Learning [24]) and policy-

based (e.g., TRPO [25]). Q Learning constructs a Q table to store Q values and updates it
with a weighted sum of the expected values of over all future steps from this state after the
execution of the action. It is clear that traditional Q Learning cannot handle tasks with too
many states and optional actions. Deep Q Network (DQN) [26] combines DL models with
RL to successfully learn policies from high-dimensional inputs directly. These value-based
RL methods are relatively well used in many fields, but they have several limitations. For
example, they do not have enough ability to handle continuous actions and cannot solve
the stochastic policy problem. To solve these problems, policy-based methods with an
estimated representation of the policy are introduced. However, selecting the appropriate
step size for the policy-based methods is challenging because it is very sensitive to the step
size. TRPO is able to find the right step size at each step and reliable performance, but it
is relatively complicated. The proximal policy optimization (PPO) proposed in [27] takes
some benefits of TRPO and makes the implementation simpler and more general by using
first-order optimization, and has better sample complexity. Therefore, in this paper, we
choose to enhance the PPO algorithm and apply it on HPO task.

RL was previously used for neural architecture search (NAS). Zoph et al. [28] first
used the policy gradient algorithm to train an agent; the agent samples architecture from
the search space and receives reward from the environment, which refers to the neural
network training procedure. More recently, RL was also used for HPO. Jomaa et al. [29]
used Q Learning to tune hyperparameters on 50 classification datasets. Ref. [30] adopted
context-based meta-RL to help the agent to quickly identify task by learning from past
experience. However, the problem of sparse reward was ignored in all these studies.

3. Methodology

In this section, we first transform the HPO task into an MDP task for RL. Second,
we introduce the agent and training algorithm of RL that we use in this task. Finally, we
describe our enhanced part.

3.1. MDP Formulation

MDP is a mathematical model for the sequential decision problem. It is often used
to model the stochastic policies and rewards achievable by an agent in an environment
that has Markovian properties. HPO can also be formulated as a MDP. Assume that we
have n hyperparameters that need to be optimized, since the agent selects hyperparameters
sequentially, each episode has n steps. According to our task, since the probability of
transition is unknown, we define HPO as a MDP with a four-tuple < S, A, γ, R >, which is
represented as follows:

• S is the state space. As mentioned above, the agent selects hyperparameters sequen-
tially, and the state at time t is the output of the agent at time t− 1, i.e, st = N (st−1).

• A is the action space. This task treats the hyperparameter λt selected at time t as an
action at. The hyperparameter λt is sampled from the distribution N (st), which is the
output of the agent.

• R is the reward function. We need to obtain the metrics result as the reward signal on
the validation set after selecting all hyperparameters. The reward is only available
when the last hyperparameter is selected, and the rest of the time steps use the
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prediction error as intrinsic reward ri. The agent is updated once at the end of each
episode.

• γ is the discount factor.

3.2. Agent Architecture

Figure 3 shows an example of the selection process for the five hyperparameters of a
CNN with an agent. The initial state is randomly initialized, and then the action distribution
output at each time step is used as the input for the next time step. As depicted in Figure 4,
the agent consists of an input fully connected (FC) layer, three LSTM layers, and an output
FC layer.

Figure 3. An example of our agent selecting hyperparameters sequentially for CNN model. Agent
selects the required hyperparameters for the CNN at each time step and then feeds them to the next
time step as input.

Figure 4. The structure of the agent. The agent consists of an input fully connected layer, three
LSTM layers, and two output fully connected layers which use tanh and softplus activation
functions, respectively.

LSTM is a variant of the recurrent neural network (RNN) that solved the long-term
dependency problem of vanilla RNN by using a gating system. There is a cell state Ct and
three gates in the LSTM cell: input gate it, output gate ot, and forget gate ft. The input gate
it determines how much new information is allowed to be added to the cell state; the forget
gate ft determines what information is discarded from the cell state Ct; and the output gate
ot determines what values are output. The following formulas denote the forward process
of the LSTM cell:
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ft = σg(W f · [ht−1; xt] + b f ) (3)

it = σg(Wi · [ht−1; xt] + bi) (4)

ot = σg(Wo · [ht−1; xt] + b0) (5)

ct = ft � ct−1 + it � (tanh(Wc[ht−1, xt] + bc)) (6)

ht = ot � tanh(ct) (7)

where W f , Wi, Wc, Wo are weight matrices and b f , bi, bc, bo are bias vectors need to
be learned. σg and � are the sigmoid function and Hadamard product, respectively.
Furthermore, ht is the hidden state and xt is the input at step t. This structure can also be
extended into a multi-layer structure by leveraging the output of the last layer as the input
to the next layer.

Following [15], we represent the distribution of each hyperparameter as a Gaussian
distribution. Then, both the input and output of our agent are vectors containing two
values: the mean µ and standard deviation σ of the Gaussian distribution, respectively. The
output at step t will be sent to the agent to obtain the result at step t + 1. The initial input
we set to the standard normal distribution. The input FC layer is used to expand the input
into the same dimensions as the LSTM layer, with the aim of learning more patterns. The
LSTM layer is applied to learn the temporal dependency between the steps. The output
layer consists of two FC layers. After receiving the output of the LSTM layer, one of the
FC layers uses the tanh function to output a value as µ, while the other uses the softplus
function to output σ.

3.3. Proximal Policy Optimization with Curiosity

Let θ denote the parameters of the agent, and we use the PPO-clip algorithm to update
the θ in this work. As mentioned in Section 2.2, the policy gradient algorithm is difficult to
select an appropriate step size. Too much difference between older and newer policies dur-
ing the training process is not helpful for learning. PPO is a novel policy gradient algorithm,
which can solve the issue of difficulty in determining the step length in the policy gradient
algorithm. PPO algorithm introduces a new objective function that can achieve small
batch update in multiple training steps. PPO-clip updates the policy with the following
objective function:

θk+1 = argmax
θ

E
s,a∼πθk

[L(s, a, θk, θ)] (8)

where L is given by

L(s, a, θk, θ) =min(
πθ(a|s)
πθk (a|s) Aπθk (s, a),

clip(
πθ(a|s)
πθk (a|s) , 1− ε, 1 + ε)Aπθk (s, a))

(9)

where ε is a hyperparameter of PPO and we set ε = 0.2, according to the authors’ recommen-
dations. Let rt(θ) =

πθ(a|s)
πθak

(a|s) ; the PPO approach is summarized by controlling the ratio rt(θ)

of the old and new policies to prevent the change of update magnitude from affecting the
agent’s learning. Clip operation will limit the value of rt(θ) to [1− ε, 1 + ε]. Furthermore,
A is the advantage function.

To solve the sparse reward problem, we use the curiosity-based prediction error
method to obtain an intrinsic reward. We construct a model that receives the state st
and action at of the current time step t and predicts the state s

′
t+1 of the next time step

t + 1. Then, the difference between the predicted state and the true next state is used as
the intrinsic reward. The agent obtains a reward rt after executing action at at each time
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step. The reward rt is composed of ri and re, where ri is the intrinsic reward and re is the
environment reward. Assuming that each episode has T time steps, the re of time steps 1 to
T− 1 is 0, while the re of time step T is the validation set accuracy. The ri is related to the
state st, the action at of the current time step t, and the state st+1 of the next time step t + 1.
Figure 5 shows how the intrinsic reward is calculated. Since each state is composed of µ
and σ, we need to extend the state to a certain dimension. First, we convert st and st+1 to
Φ(st) and Φ(st+1) with an embedding layer. Then we concatenate the Φ(st) and at, and
then feed them to the forward network to predict the Φ

′
(st+1). The mean squared error

(MSE) between the predicted state Φ
′
(st+1) and the true next state Φ(st+1) is used as the

intrinsic reward ri for the current time step t.

Figure 5. Calculating the intrinsic reward. First embed st and st+1 to get Φ(st) and Φ(st+1), then
send Φ(st) and at to the forward network. The forward network outputs Φ

′
(st+1) with the same

dimension as Φ(st+1), and then calculate the MSE error of Φ(st+1) and Φ
′
(st+1). The MSE is used as

an intrinsic reward and becomes part of the reward for the current time step t.

3.4. Random Forest Surrogate Model

To speed up training the agent, we use the surrogate model to establish the map-
ping of hyperparameter settings to the corresponding rewards. We adopt the RF algo-
rithm to predict rewards in this work. RF belongs to the bagging algorithm in ensem-
ble learning (EL) and has many advantages, such as determining the importance of fea-
tures, determining the interaction between different features, being relatively simple to
implement, etc.

Although RF can speed up the search for hyperparameters, using the surrogate model
for a long time can make the agent unstable since the predicted reward is not the true
accuracy after all and will produce a certain degree of bias. Therefore, we follow the
works of [15] to control the adoption of the surrogate model dynamically. In the initial
stage of searching, we use real rewards to update the agent. Then, we use all the obtained
hyperparameter combinations and corresponding rewards as samples to train the RF
algorithm and save the policy at this episode, defined as πθ . The KL distance of the
before-and-after policy is used to control the utilization of the surrogate model dynamically.
When the KL distance is less than the threshold, the surrogate model is used to predict the
evaluation results of validation data set to avoid training the model. When the distance
exceeds the threshold, indicating that the policy changes too much, the agent is updated by
real rewards. The threshold is set to 0.1 in this work. In this way, we can utilize surrogate
models to make the search process more efficient.
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3.5. Overall Framework

Algorithm 1 describes the entire process. For a given task, the agent selects hyperpa-
rameters sequentially in each episode in order, then we use the selected hyperparameters
to obtain the evaluation results of the Dvalid as a reward, and finally use the PPO algorithm
to update the parameters θ of the agent.

Algorithm 1 RFEPPO

Input: n: Number of hyperparameters; s1: Randomly generated distributions; D: Data set
D = ∅;

Output: top-1 hyperparameter configuration;
1: while not done do
2: for i = 1 to episodes

2 do
3: τ = []
4: agent selects λ and obtains rT on Dvalid
5: τ = [(st, at, rt), ..., (sT , aT , rT)]
6: use τ to update agent according to Equation (8)
7: add (λ, rT) to D
8: end for
9: Use D to train random forest

10: Save the current policy π

11: for episodes
2 + 1 to episodes do

12: τ = []
13: agent selects λ
14: if d(π, πθ) 6 0.1 then
15: use random forest to predict r

′
T

16: τ = [(st, at, rt), ..., (sT , aT , r
′
T)]

17: use τ to update agent according to Equation (8)
18: add (λ, r

′
T) to D

19: else
20: obtain real rT on Dvalid
21: τ = [(st, at, rt), ..., (sT , aT , rT)]
22: use τ to update agent according to Equation (8)
23: add (λ, r) to D
24: end if
25: end for
26: end while

At the beginning of the search process, we first collect some samples of the real hyper-
parameter combinations λ = [λ1, λ2, . . . , λT ] and their corresponding validation accuracy
rT . After each episode, the combination of hyperparameters and corresponding accuracy
(λ, rT) are collected for training the surrogate model. The agent is updated at the end of
each episode using the trajectory τ, where rt in the trajectory is ri + re. After the initial phase,
the surrogate model is trained with the collected samples, and the policy π is recorded
at this time. In the subsequent search process, the policy πθ of each episode is compared
with the π, and the RL agent is updated by the intrinsic reward and real accuracy if it is
greater than 0.1; otherwise, the agent is learned by the intrinsic reward and the predicted
accuracy r

′
T is made by the surrogate model. Episodes is the total number of times to search

for hyperparameters.
The time complexity of searching for hyperparameters is O(E× t), where E is the

number of episodes in the whole process, and t is the time required for each episode. It is
worth noting that E = Ereal + Epre, t is divided into treal and tpre, where Ereal is the number
of episodes with real rewards, and treal is the time required for various operations in each
episode at this time; Epre is the number of episodes with rewards predicted by the surrogate
model; and tpre is the time required for various operations in each episode at this time. The
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time required to train the RF is O(m× log(m)× n× k), where m is the number of samples,
n is the number of hyperparameters, and k is the number of decision trees. Therefore, the
time complexity of the whole process is O(E× t + m× log(m)× n× k).

4. Experiments

In this section, to evaluate our proposed RFEPPO method, we use it to optimize the
hyperparameters of XGBoost and CNN. Among them, XGBoost is a common algorithm for
handling tabular data, while CNN is a typical model for processing image data. We first
introduce the experimental setup, present the datasets, the conventional approaches, and
the evaluation method. Then we conduct comparison experiments on tabular and image
datasets to compare our method with conventional methods. Finally, to verify the effect of
the components in our method on the HPO results, we perform ablation experiments.

For fairness, all search algorithms ran on Intel Core i9-11900K CPU. The XGBoost
algorithm also ran on the CPU. To save time, we used a single NVIDIA GeForce RTX 3090
GPU when training the CNN model.

4.1. Experimental Setup

Datasets: We validated our method on 11 datasets, 9 of which are tabular data to verify
the performance of RFEPPO tuning the hyperparameters of XGBoost, and the remaining
two image datasets to verify the performance tuning the hyperparameters of CNN. Table 1
shows the details of the datasets.

The tabular datasets are from the UCI Machine Learning Repository [31] and openML [32].
These datasets come from different fields, including computer, medicine, education, life,
and physics. The MNIST dataset [33] and Fashion MNIST dataset [34] are classic image
classification datasets in the field of ML. Both of them consist of 60, 000 training samples
and 10, 000 test samples, each of which is a 28× 28 pixel grayscale image. Fashion MNIST
is identical to the original MNIST in training set/test set division, size and format.

For the tabular datasets, we divide each dataset into training, validation and test set
by a ratio of 6 : 2 : 2; for the image datasets, we follow the original split ratio and then use
the last 5000 samples of the training set as the validation set.

Table 1. Details of datasets.

Default Task Datasets #Instances #Attributtes

Multi Classification

winequality_white 4898 11
optdigits 5620 64
Turkiye_Student_Evaluation 5820 28
balance_scale 625 4
Cardiotocography 2126 21

Binary Classification

monks_1 556 6
DR_Debrecen 1151 19
churn 5000 20
socmob 1156 5

Image Classification MNIST 70,000 28× 28× 1
Fashion_MNIST 70,000 28× 28× 1

Comparison Methods: In this paper, we compared our approach with the following
optimization algorithms: RS [6], TPE [5], hyperband [1], BOHB [12], and the default
configuration of XGBoost (baseline). In this paper, we implemented these algorithms
with the Hyperopt and HpBandSter Libraries. In addition, we also compared our method
with the MBRL-SDP model proposed in the [15]. RS randomly selects samples within
the search range. By random sampling, the global optimum or its approximation can
also be searched with high probability if the set of samples is sufficiently large.TPE is a
sequential model-based optimization (SMBO) method that tries to build a probabilistic
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model of the function at each step and selects the most promising parameters for the next
step. Hyperband attempts to explore as many configurations as possible with limited
resources and returns the most probable configuration as a final result. The weakness
of hyperband is generating new configurations randomly without leveraging finished
trials. BOHB is a follow-up work to hyperband, which generates a certain percentage
of new configurations by constructing multiple TPE models to take advantage of the
finished trials.

Evaluation metrics: The performance of HPO methods are evaluated using the
following metrics:

• Time: average search time required to search 200 episodes per method.
• Accuracy: average accuracy of each method in the test set.

Details: As presented in Section 3.2, the agent consists of an input FC layer, three
LSTM layers with hidden state size of 128, and an output FC layer. The learning rate of the
agent is set to 0.001. The rest of the settings are configured using the default configuration
of the PPO algorithm. Before using the surrogate model RF, we adopted grid search to find
the best hyperparameters for RF. The accuracy of the validation set is collected for the first
100 episodes, and then the combination of hyperparameters and accuracy from these 100
episodes are used as samples to train the RF. The KL distance threshold between policies
is set to 0.1. For the curiosity model, the embedding layer captures state information and
extends the state to 32 dimensions. The input of the forward network is the action and the
state after embedding, and the middle layer is a fully connected layer with hidden_size of
64. Since the prediction error is calculated with the next true state, the output layer size of
the forward network is also 32.

In this experiment, we ran each method five times and the budget for each run was
training 200 episodes. For the five best configurations output from five trials, the average
of the corresponding test set accuracy is compared.

4.2. Performance Evaluation
4.2.1. HPO for XGBoost

XGBoost is derived from the gradient boosting framework. It is more efficient because
of the algorithm’s parallel computation, approximate tree building, efficient handling of
sparse data, and memory usage optimization, which make it at least 10 times faster than
the existing gradient boosting implementations. XGBoost can handle many tasks, such as
regression, classification, and sorting.

Search Space: We consider the 10 hyperparameters of XGBoost as shown in Table 2.
We ran experiments with XGBoost on nine classification datasets, and Table 3 shows the
performance.

Table 2. Hyperparameters of XGBoost.

Name Type Ranges

max_depth int [1, 25]
learning_rate float [0.001, 0.1]
n_estimators int [50, 1200]
gamma float [0.05, 0.9]
min_child_weight int [1, 9]
subsample float [0.5, 1]
colsample_bytree float [0.5, 1]
colsample_bylevel float [0.5, 1]
reg_alpha float [0.1, 0.9]
reg_lambda float [0.01, 0.1]
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Table 3. The performance (mean ± std) of our method and other conventional algorithms on nine
tabular datasets.

Data Set RS TPE Hyperband BOHB

Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s)

winequality_white 64.86 ± 2.12 479 ± 16 66.35 ± 0.75 518 ± 101 67.10 ± 0.51 137 ± 7 62.24 ± 0.40 124 ± 5
optdigits 97.79 ± 0.33 506 ± 12 97.85 ± 0.34 493 ± 65 98.17 ± 0.37 129 ± 7 98.10 ± 0.13 120 ± 3
Turkiye_Student_Evaluation 85.46 ± 0.94 313 ± 15 86.67 ± 0.33 315 ± 79 86.92 ± 0.52 73 ± 3 87.03 ± 0.38 72 ± 2
balance_scale 89.92 ± 1.18 48 ± 1 91.52 ± 0.64 57 ± 9 91.04 ± 0.93 17 ± 0 92.48 ± 0.96 20 ± 0
Cardiotocography 88.45 ± 1.65 263 ± 7 87.09 ± 0.42 273 ± 33 87.32 ± 0.15 80 ± 2 88.03 ± 0.66 63 ± 1
monks_1 96.07 ± 1.84 20 ± 0 95.54 ± 1.69 26 ± 2 97.32 ± 0.00 9 ± 1 90.36 ± 6.79 9 ± 0
DR_Debrecen 70.04 ± 2.81 41 ± 1 70.13 ± 1.52 45 ± 5 69.18 ± 0.50 14 ± 1 71.26 ± 0.89 13 ± 0
churn 95.58 ± 0.89 89 ± 3 94.60 ± 0.23 106 ± 8 96.08 ± 0.07 25 ± 1 95.86 ± 0.29 27 ± 0
socmob 93.71 ± 1.11 22 ± 0 93.62 ± 0.74 28 ± 3 92.07 ± 0.58 9 ± 1 94.31 ± 1.37 5 ± 0

Average values 86.88 ± 1.43 198 ± 6 87.04 ± 0.74 236 ± 34 87.24 ± 0.40 55 ± 2 86.63 ± 1.32 50 ± 1

Data Set MBRL-SDP RFEPPO (Our Method) Baseline

Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s)

winequality_white 65.40 ± 0.87 397 ± 44 67.84 ± 0.40 420 ± 187 65.25 ± 1.29 -
optdigits 97.44 ± 0.69 370 ± 169 98.35 ± 0.18 408 ± 146 97.59 ± 0.39 -
Turkiye_Student_Evaluation 85.98 ± 0.80 298 ± 99 87.87 ± 0.37 253 ± 81 84.69 ± 1.44 -
balance_scale 90.88 ± 1.09 143 ± 9 92.67 ± 0.64 150 ± 2 86.24 ± 0.93 -
Cardiotocography 87.42 ± 1.25 223 ± 35 89.39 ± 0.27 252 ± 70 86.99 ± 0.19 -
monks_1 96.25 ± 1.64 139 ± 5 98.57 ± 0.44 136 ± 6 98.39 ± 0.87 -
DR_Debrecen 67.00 ± 3.48 142 ± 4 74.72 ± 1.49 152 ± 15 68.13 ± 2.85 -
churn 95.58 ± 0.40 163 ± 17 96.38 ± 0.30 169 ± 6 95.83 ± 0.71 -
socmob 93.88 ± 0.57 136 ± 6 96.55 ± 0.39 137 ± 5 93.87 ± 1.03 -

Average values 86.65 ± 1.20 223 ± 43 89.15 ± 0.50 228 ± 58 86.33 ± 1.08 -

Results: We ran each method five times, and the average search time and accuracy
on the test set are tabulated in Table 3. It can be seen that RFEPPO outperforms other
optimization methods and baseline in terms of accuracy. The accuracy of our method is
substantially higher than the baseline, which indicates the importance of HPO. For the
search time, hyperband and BOHB spend the least time on all datasets due to the fact that
the bandit-based approach would use a very small budget in the initial stage and would
quickly discard the poorly performing hyperparameter configurations. However, for the
accuracy, both BOHB and hyperband are lower than our method. We believe that BOHB
and hyperband may throw away the hyperparameter configurations that really perform
well in the initial stage. Compared to RS and TPE, our method can reduce the time by about
27% to 40% on winequality_white, optdigits and Turkiye_Student_Evalution datasets, and
reduce the time by about 4% on the Cardiotocography dataset. For other datasets, the
search time of our method is a little slower. However, the accuracy on test set of our method
is better than all other methods. This shows that our method has a clear advantage for
datasets with a large sample size and a large number of features. Although the search time
of our method is slower for small datasets, the accuracy is higher than other methods. In
addition, compared to MBRL-SDP, our method has higher accuracy in the test set. This
demonstrates that intrinsic reward can encourage the exploration of novel states and thus
quickly find well-performing hyperparameter configurations.

To verify the effectiveness of RFEPPO, we visualize the performance curve as the
validation accuracy of all methods over a period of wall clock time. Figure 6 compares
RFEPPO with all methods on the winequality_white dataset. From the figure, we can see
that our method can find good hyperparameter configurations faster and performs better
overall compared to MBRL-SDP and RS. As can be seen by the left part of the black line,
our method can achieve similar performance to hyperband, and is initially slightly faster
than it. Although TPE also converges quickly in the initial stage, the final performance is
worse than RFEPPO. This experiment demonstrates that our method not only shortens the
search time on large datasets, but also improves the accuracy and reliability of the tasks.
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Figure 6. Average validation accuracy across five trials on the winequality_white dataset over time.

4.2.2. HPO for CNN

In this experiment, we try to optimize the hyperparameters of the LeNet [35] automat-
ically. The LeNet-5 designed for handwritten font recognition is one of the most popular
CNN models. LeNet-5 saves a lot of computational cost by cleverly designing the network
to extract features using convolution operation, parameter sharing, and pooling, then using
an FC layer for classification recognition. Moreover, many recent novel CNN models are
inspired by this network structure.

Search Space: We consider the five hyperparameters of LeNet as shown in Table 4.
Experiments were carried with LeNet on MNIST and Fashion MNIST datasets, which are
commonly used to test the performance of ML and DL models.

Table 4. Hyperparameters of LeNet

Name Type Ranges

conv_size int [2, 7]
hidden_size int [124, 1024]
batch_size int [16, 32]
dropout_rate float [0.5, 0.9]
learning_rate float [0.0001, 0.1]

Results: The results for average accuracy and search time of our method and other
conventional methods are tabulated in Table 5. As can be seen in this table, our method
outperforms other methods in terms of accuracy and time. The search time is greatly
reduced since utilizing the surrogate model. Among RS, TPE, hyperband and BOHB, for
MNIST and Fashion MNIST datasets, BOHB takes the shortest time, and TPE has the
highest accuracy. Compared to BOHB, our method can reduce the time by about 15% to
20%, demonstrating that the surrogate model can reduce the search time. For MBRL-SDP,
although its time is similar to our method on these two datasets, it does not perform well
on the test set. This also illustrates the effectiveness of intrinsic reward. This experiment
demonstrates that our method not only achieves high accuracy on large datasets, but also
requires much less time.
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Table 5. The performance (mean ± std) of our method and other conventional algorithms on 2
image datasets.

Datasets RS TPE Hyperband

Acc (%) Time (h) Acc (%) Time (h) Acc (%) Time (h)

MNIST 99.17 ± 0.14 1.48 ± 0.013 99.19 ± 0.06 1.46 ± 0.051 98.82 ± 0.07 1.04 ± 0.050
Fashion_MNIST 90.56 ± 0.59 1.48 ± 0.016 91.70 ± 0.24 1.53 ± 0.040 86.85 ± 1.29 0.98 ± 0.004

Datasets BOHB MBRL-SDP RFEPPO (Our Method)

Acc (%) Time (h) Acc (%) Time (h) Acc (%) Time (h)

MNIST 99.10 ± 0.02 0.94 ± 0.046 99.24 ± 0.04 0.76 ± 0.010 99.33 ± 0.05 0.75 ± 0.002
Fashion_MNIST 90.78 ± 0.40 0.92 ± 0.013 89.91 ± 0.04 0.76 ± 0.003 92.16 ± 0.27 0.78 ± 0.014

Figure 7 shows the best validation set accuracy over time for all methods on the
MNIST dataset. Each method was run five times and the average of the five accuracy
was calculated. By observing the black line, we can see that our method can find a good
hyperparameter configuration much faster compared to MBRL-SDP. Since hyperband
and BOHB use a small budget (e.g., epoch) in the initial stage, these two methods will
run multiple sets of hyperparameter configurations initially, and it is possible to find
hyperparameter configurations that perform well. Therefore the speed of finding good
configurations is faster than our method. Although TPE and our method will find good con-
figurations simultaneously, our method converges faster in the initial stage. Moreover, our
method has significant advantages over RS and MBRL-SDP. This experiment demonstrates
that RFEPPO not only achieves high accuracy on large datasets, but also requires much
less time.

Figure 7. Average validation accuracy across 5 trials on MNIST dataset.

4.3. Ablation Experiments

In this section, first we compare the performance with and without the curiosity-driven
method, then compare the performance with different RL algorithms, and next we compare
the performance with and without the surrogate model. Finally, we replace RF with other
conventional regression models and compare the performance of these different algorithms.

4.3.1. Performance Comparison with and without Curiosity-Driven Method

To demonstrate that the addition of intrinsic reward has a better effect and can improve
accuracy in the test set, we removed the curiosity mechanism and only used the validation
set accuracy as reward. We conducted comparison experiments on the balance_scale
data set.
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Figure 8 shows the effect of intrinsic reward on the overall search process. In Figure 8a,
the green line refers to the reward return for each episode using only the accuracy of the
validation set as the reward. We can find that the agent’s reward has no obvious upward
trend with the growth of episodes. We believe that the reason for this phenomenon is that
the agent is updated slowly due to too many sparse rewards and little sample utilization.
Moreover, better validation set accuracy is obtained at the initial stage of the search process,
which we believe is caused by the suitability of the initial state of this dataset. The coral
line refers to the reward return for each episode when using the intrinsic reward. We can
find an overall upward trend in the reward return for the whole search process. This is
because the curiosity-driven method encourages the agent to explore more unfamiliar
states, and the more novel the state, the higher the intrinsic reward. The use of intrinsic
reward improves the utilization of the sample, which allows the agent to learn more about
the environment. Figure 8b shows the accuracy of the validation set corresponding to
the best hyperparameter configuration searched in the current episode. We can see that
compared to the non-intrinsic reward approach, the use of the intrinsic reward approach
can find high-performance hyperparameter configuration quickly and with higher accuracy.
Therefore, we believe that intrinsic reward can solve the problem of sparse reward in HPO.
The curiosity-driven method encourages the agent to keep exploring unfamiliar states, and
finds better hyperparameter configurations faster.

(a) (b)

Figure 8. The performance of curiosity-driven method on dataset balance_scale. (a) Reward returns
for each episode. The green line is the reward return using only the accuracy of the validation set, and
the coral line is the reward return using both the intrinsic reward and the accuracy of the validation
set. (b) The accuracy of the validation set corresponding to the best hyperparameter configuration
found by the current episode.

4.3.2. Performance Comparison with Different RL Algorithms

To verify the effectiveness of PPO used in this experiment, we replaced PPO with
other RL algorithms. In this experiment, we did not use the intrinsic reward and surrogate
model, and performed comparisons on nine tabular datasets by replacing PPO with advan-
tage actor–critic (A2C), deep deterministic policy gradient (DDPG) [36], soft actor–critic
(SAC) [37], and twin delayed DDPG (TD3) [38]. For A2C, DDPG and SAC, we set the
hidden size to a range of {32, 64, 128}. For TD3, we set the exploration noise scale to a range
of {0.5, 1} and the delay update frequency to a range of {3, 4, 5}. The hyperparameters of
these RL algorithms were determined by the grid search within their respective ranges,
ensuring the final model performance. Table 6 shows the accuracy and search time of
the five sets of experiments. We ran each method five times, and trained 200 episodes
each time.

As can be seen from Table 6, the highest accuracy is achieved on most of the datasets
using the PPO algorithm, while other algorithms can only achieve the highest accuracy on
one data set. DDPG has the lowest accuracy on all datasets. However, in terms of search
time, PPO is slower than other algorithms. A2C has a relatively fast search time on small
datasets, DDPG and TD3 have a relatively fast search time on large datasets, but none of
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the corresponding accuracies is the highest. Therefore, for the task of HPO, we believe that
PPO is more effective than other RL algorithms.

Table 6. The performance (mean ± std) of our method with different RL algorithms.

Datasets A2C DDPG SAC TD3 PPO

Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s) Acc (%) Time (s)

winequality_white 67.03 ± 1.60 479 ± 29 66.73 ± 1.62 420 ± 192 67.38 ± 1.40 530 ± 4 67.34 ± 2.15 422 ± 52 0.6837 ± 0.89 548 ± 34
optdigits 98.45 ± 0.40 508 ± 21 98.40 ± 0.24 459 ± 177 98.29 ± 0.26 576 ± 16 98.47 ± 0.75 403 ± 42 0.9855 ± 0.29 580 ± 11
Turkiye_Student_Evaluation 87.67 ± 0.47 334 ± 14 87.65 ± 0.19 154 ± 3 87.60 ± 0.74 378 ± 6 87.52 ± 0.47 292 ± 56 0.8763 ± 1.30 363 ± 16
balance_scale 92.54 ± 0.96 67 ± 2 92.58 ± 1.09 89 ± 22 92.80 ± 2.24 112 ± 2 93.31 ± 0.60 71 ± 9 0.9367 ± 1.28 103 ± 1
Cardiotocography 89.47 ± 1.33 262 ± 6 89.00 ± 1.26 299 ± 57 89.36 ± 1.91 316 ± 18 88.92 ± 0.58 245 ± 22 0.8904 ± 0.82 296 ± 2
monks_1 99.39 ± 1.64 39 ± 1 98.86 ± 2.44 63 ± 0 99.18 ± 0.87 83 ± 2 99.64 ± 0.87 58 ± 2 0.9970 ± 1.21 77 ± 1
DR_Debrecen 73.06 ± 1.88 59 ± 2 72.73 ± 2.00 72 ± 2 73.38 ± 1.87 105 ± 3 73.66 ± 3.63 73 ± 1 0.7301 ± 2.39 98 ± 0
churn 96.42 ± 0.34 130 ± 30 96.21 ± 0.62 135 ± 44 96.40 ± 0.32 156 ± 2 96.42 ± 0.69 91 ± 19 0.9643 ± 0.95 151 ± 1
socmob 96.12 ± 2.29 41 ± 1 96.21 ± 0.47 62 ± 8 96.40 ± 1.72 85 ± 0 95.76 ± 1.64 64 ± 10 0.9598 ± 1.20 78 ± 0

4.3.3. Performance Comparison with Surrogate Model and without Surrogate Model

To verify the effectiveness of the surrogate model, we removed the RF surrogate
model in RFEPPO and compared it with our method. In this experiment, we performed
comparisons on nine tabular datasets. Table 7 shows the accuracy and search time of
the two sets of experiments. Each method was run five times and trained 200 episodes
each time.

As can be seen from Table 7, the time spent is reduced after adding the surrogate
model. This indicates that the predicted accuracy of the surrogate model is used to update
the agent during the search, making part of the process without actually training XGBoost,
which ultimately reduced the time. Additionally, seven of the nine datasets also show an
increase in accuracy after adding the surrogate model. Thus, this demonstrates that the
inclusion of the surrogate model speeds up the search without affecting the accuracy of the
test set.

Table 7. The performance (mean ± std) of PPO with surrogate model and without surrogate model.

Datasets Without Surrogate Model With Surrogate Model

Acc (%) Time (s) Acc (%) Time (s)

winequality_white 67.81 ± 1.07 553 ± 109 67.84 ± 0.40 420 ± 187
optdigits 98.31 ± 0.15 659 ± 256 98.35 ± 0.18 408 ± 146
Turkiye_Student_Evaluation 87.85 ± 0.26 379 ± 172 87.87 ± 0.37 253 ± 81
balance_scale 92.16 ± 0.32 193 ± 17 92.67 ± 0.64 150 ± 2
Cardiotocography 89.42 ± 0.59 363 ± 141 89.39 ± 0.27 252 ± 70
monks_1 98.04 ± 0.67 149 ± 10 98.57 ± 0.44 136 ± 6
DR_Debrecen 72.90 ± 0.59 185 ± 11 74.72 ± 1.49 152 ± 15
churn 96.42 ± 0.29 204 ± 43 96.38 ± 0.30 168 ± 6
socmob 95.78 ± 0.92 149 ± 11 96.55 ± 0.39 137 ± 5

4.3.4. Performance Comparison with Different Surrogate Models

To verify the effectiveness of RF in our approach, we replaced RF in RFEPPO with
other common ML methods and compared them. Since the surrogate model in our method
can be replaced with other regression models arbitrarily, we compared our method with
LREPPO, KNNEPPO, SVRPPO, REPPO, BAGEPPO, XGBEPPO, ABEPPO, and GBEPPO,
which replace RF in RFEPPO with linear regression, KNN, SVR, Ridge, Bagging, XGBoost,
AdaBoost, and gradient boost, respectively. For KNN, we set the number of neighbors and
the power parameter to a range of {2, 3, 4, 5, 6} and {1, 2} respectively. For SVR, we used
the radial basis function (RBF) kernel. For ridge, we set regularization strength among
{0, 0.01, 0.1, 1}. For bagging, XGBoost, AdaBoost, gradient boost and RF, we set the number
of decision trees among {100, 110, . . . , 200}. The hyperparameters of these methods were
determined by the grid search within their respective ranges, ensuring the final model
performance. In this experiment, we chose the Turkiye Student Evaluation dataset for
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validation. As in previous experiments, we ran each method five times and trained 200
episodes each time. The accuracy and time for each method are shown in Figure 9. From
this figure, it can be seen that RF has better final accuracy than other models. Although
LREPPO, KNNEPPO, and SVRPPO take less time than RFEPPO, the cost of using them is
reduced accuracy. Other methods are worse than RF in terms of both time and accuracy.
Therefore, we believe that RF is the most suitable surrogate model in our method.

(a) (b)

Figure 9. The performance of PPO with different surrogate models on Turkiye Student Evaluation
data set: (a) the average accuracy; (b) the average time.

In order to further analyze the RF surrogate model, we need to know its predictive
performance, thus we collected 100 samples from the first 100 episodes. Each sample was
a combination of hyperparameters and the corresponding accuracy of validation set. To
compare the performance of these surrogate models, the 100 samples were divided into
training and testing samples in the ratio of 8:2. The RMSE results of the test samples are
tabulated in Table 8, and the ground truth of the test samples and the predicted results of
each model are presented in the Figure 10. It is obvious from Table 8 that RF performs the
best. In Figure 10, the blue points represent the true values and the red points represent the
predicted results. Moreover, we can see that the ensemble methods, bagging, RF, XGBoost,
Adaboost, and gradient boost, perform better than the remaining methods.

Table 8. RMSE results of different surrogate models on the test samples set.

Method RMSE

Linear Regression 0.0216
KNN Regressor 0.0201
SVR 0.0258
Ridge 0.0216
Bagging 0.0111
XGBoost 0.0120
AdaBoost 0.0107
Gradient Boost 0.0112

RandomForest 0.0105
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(a) Linear Regression (b) KNN Regressor (c) SVR

(d) Ridge (e) Bagging (f) XGBoost

(g) Random Forest (h) AdaBoost (i) Gradient Boost

Figure 10. Prediction results of test samples. (a–i) are the prediction results for each surrogate model.
The blue points represent the true values, and the red points represent the predicted results.

4.4. Discussion

This paper focuses on the HPO problem and proposes an RL-based approach. First,
we treated the HPO problem as a sequential decision process and model it as MDP. Then,
we designed an agent to select the hyperparameters sequentially and be updated by PPO.
In order to mitigate sparse rewards problem, the curiosity-driven approach was used to
provide intrinsic rewards. Additionally, we adopted RF as a surrogate model to reduce
the search time. We validated our method on multi-classification, binary classification and
image datasets. The accuracy of our method is better than other methods on all datasets.
Our proposed method does not take less time than bandit-based methods when processing
tabular data, but we have a significant improvement in search efficiency when processing
image data. We believe that our approach is more efficient than bandit-based methods
in the case of relatively large dataset sizes and long model training times. The reason is
that bandit-based methods have to train the model with all candidate hyperparameter
combinations for at least one epoch in the initial stage, while our method avoids the process
of training the model many times by using the surrogate model.
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In our future work, we will focus on two research directions. First, we will study
how to optimize the hyperparameters of models that accomplish more complex tasks,
such as object detection and sentiment analysis, which have been widely studied recently.
Second, we will study how to accomplish model generation and HPO simultaneously, and
eventually develop a complete automatic ML framework.

5. Conclusions

HPO plays a vital role in ML and DL models. In this paper, we propose a novel
RFEPPO algorithm to solve the HPO problem. We consider the selection of hyperparame-
ters as a sequential decision problem, and use the agent to sequentially select hyperparam-
eters which is updated with the PPO based algorithm with surrogate model. The proposed
method is validated on nine tabular datasets and two image datasets. The experiment
results indicate that the proposed RFEPPO outperforms RS, TPE, hyperband, and BOHB.
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