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The interaction of radio frequency waves with charged particles in a magnetized
plasma is usually described by the quasilinear operator that was originally formulated
by Kennel & Engelmann (Phys. Fluids, vol. 9, 1966, pp. 2377–2388). In their
formulation the plasma is assumed to be homogenous and embedded in a uniform
magnetic field. In tokamak plasmas the Kennel–Engelmann operator does not capture
the magnetic drifts of the particles that are inherent to the non-uniform magnetic
field. To overcome this deficiency a combined drift and gyrokinetic derivation is
employed to derive the quasilinear operator for radio frequency heating and current
drive in a tokamak with magnetic drifts retained. The derivation requires retaining
the magnetic moment to higher order in both the unperturbed and perturbed kinetic
equations. The formal prescription for determining the perturbed distribution function
then follows a novel procedure in which two non-resonant terms must be evaluated
explicitly. The systematic analysis leads to a diffusion equation that is compact and
completely expressed in terms of the drift kinetic variables. The equation is not
transit averaged, and satisfies the entropy principle, while retaining the full poloidal
angle variation without resorting to Fourier decomposition. As the diffusion equation
is in physical variables, it can be implemented in any computational code. In the
Kennel–Engelmann formalism, the wave–particle resonant delta function is either for
the Landau resonance or the Doppler shifted cyclotron resonance. In the combined
gyro and drift kinetic approach, a term related to the magnetic drift modifies the
resonance condition.
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1. Introduction
The quasilinear operator derived by Kennel & Engelmann (1966) is widely used

to treat radio frequency (rf) heating and current drive in tokamaks even though
it was derived for plane electromagnetic waves in a constant magnetic field and
homogeneous plasma. It successfully captures the gyromotion departure of charged
particles from flux surfaces through its Bessel function dependence. However, it does
not retain the magnetic drift effects associated with tokamak confinement. These
magnetic drift effects enter by altering the resonance, which is then expected to
modify the quasilinear diffusivity. The absence of this geometrical effect is a key
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limitation of the Kennel–Engelmann operator, that retains the wave–particle Landau
and Doppler shifted cyclotron resonances, but not drift resonances. The main purpose
of the work herein is to show how this deficiency can be corrected by a simple
modification of the standard quasilinear diffusivity while preserving negative definite
entropy production. Even though this alteration is simple, the detailed proof is
rather involved since it requires using higher-order drift kinetic and high frequency
gyrokinetic variables (Lee, Myra & Catto 1983). In particular, the magnetic moment
must be employed to higher order and the non-resonant portions of the linearized
distribution must be evaluated explicitly.

The derivation of the quasilinear operator presented here takes advantage of
high frequency gyrokinetics to obtain the perturbed distribution function f1 with
magnetic drift effects retained in full tokamak geometry. We retain drift effects by
extending the high frequency electrostatic gyrokinetic treatment by Lee et al. (1983)
to electromagnetic waves. Their treatment employs gyrokinetic variables to higher
order than the standard lowest-order gyrokinetic variables introduced by Catto (1978).
We find that to retain drift modifications to the quasilinear operator we need to
employ their higher-order definition of the magnetic moment for the gyrokinetic and
drift kinetic changes of variables. Higher-order gyrokinetic variables are sometimes
required for low frequency gyrokinetic treatments as well (Catto, Tang & Baldwin
1981; Kagan & Catto 2008; Parra & Catto 2008; Parra & Calvo 2011; Calvo & Parra
2012).

Our high frequency gyrokinetic treatment also has the virtue that it avoids Fourier
transforming the perturbed distribution function f1 in poloidal angle. We are thereby
able to obtain a compact modified Fourier representation for f1 with poloidally
varying coefficients so geometric coupling of modes is treated in a natural manner
in poloidally varying, axisymmetric tokamak magnetic fields. Our procedure provides
a more general treatment of geometric effects than has been possible in the past
(Faulconer 1987; Smithe et al. 1988; Catto, Lashmore-Davies & Martin 1993).

Once f1 is obtained in gyrokinetic variables, with the magnetic moment retained
to higher order, it must be transformed back to drift kinetic variables to form
the quasilinear operator appearing in the drift kinetic equation for the unperturbed
distribution function f0. Consequently, a key difference between our gyrokinetic and
drift kinetic treatments is that our gyrokinetic variables retain the distinction between
the guiding centre and charge location, while our drift kinetic ones do not.

Our treatment is not transit or bounce averaged, but does not retain radial spatial
derivatives in the quasilinear operator. Therefore, it does not treat large departures
of charges from flux surfaces by retaining the radial derivative terms of Kaufman
(1972) and Eriksson & Helander (1994). Their elegant treatments are in canonical
variables so the transit averaged collision operator must be transformed to the same
canonical variables. Then once the equation for the unperturbed distribution function
is solved the solution must be changed back to drift kinetic variables for use in full
wave codes or for the evaluation of energy input or current driven. In addition to the
drift corrections evaluated here, these radial derivative terms can become important
for energetic ions produced by minority heating (Eriksson et al. 1998; Mantsinen
et al. 2002) when they have very large departures from a flux surface. Moreover,
minority ion cyclotron current drive plays a role in sawtooth control (Chapman et al.
2015) where spatial diffusion is known to result in additional current drive (Hellsten,
Carlsson & Eriksson 1995). Our small poloidal gyroradius treatment neglects spatial
diffusion, which may also be important for minority current drive in the core, as well
as for heating and current drive in the pedestal.
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The retention of the magnetic drift effects in the non-transit averaged description
considered here is expected to be relevant – and perhaps even important – for ions
whenever perpendicular wavelengths become small or for charges in the vicinity of
a turning point. For example, the ion cyclotron radio frequency mode conversion
process to an ion Bernstein wave and an ion cyclotron wave (Perkins 1977) involves
perpendicular wavelengths comparable to or smaller than the gyroradius (Jaeger et al.
2003; Lin et al. 2003; Wright et al. 2004). Consequently, magnetic drift effects
might be expected to play a role in this case. These drift effects matter because they
alter the resonance. In particular, both the velocity dependent magnetic drift and the
usual parallel streaming velocity term broaden the cyclotron resonance especially for
energetic minority ions. However, we will find that the drift terms typically become
important as the perpendicular wavelengths become comparable to or smaller than
the ion gyroradius ρi. In this limit the argument of the usual Bessel functions is large
so the quasilinear diffusivity is reduced. Indeed, this is likely the main reason that
the quasilinear form of Kennel & Engelmann (1966) works so well. Even though the
drift correction derived herein may not substantially affect heating and current drive
by most rf waves, it may shift the resonant interaction to a significantly different
poloidal location for minority current drive when the energetic ions have large
drift velocities. Most existing quasilinear codes are transit averaged, but a non-transit
averaged implementation is necessary to evaluate some effects associated with toroidal
geometry. In particular, a non-transit averaged quasilinear code (Kapper et al. 2016)
has recently verified electron cyclotron current drive enhancement due to symmetric
spectrum effects associated with toroidal geometry as described by Helander & Catto
(2001). In addition to velocity space diffusion, it would ultimately be desirable to
generalize our quasilinear treatment to retain radial derivative modifications due to
finite orbit effects for minority ions.

In the following we present a background discussion in § 2 and formulate our
combined drift and gyrokinetic descriptions in § 3 with the higher-order magnetic
moment retained. In § 4 we solve the gyrokinetic equation for the perturbed
distribution function after explicitly extracting two non-resonant contributions to
it. Section 5 derives the non-transit averaged quasilinear operator with drifts retained
in a form that manifestly satisfies the entropy production principle. We close with a
brief summary in § 6, and give some mathematical details in the appendix A.

2. Background
The quasilinear operator must be valid for a wide range of wave frequencies ω.

For waves harmonic in time and space, our orderings must allow us to consider low
frequencies of order

ω∼ k‖v‖ ∼ k⊥ · vd, (2.1)

to recover the unmagnetized and low frequency limit of Kennel & Engelmann (1966).
Here and hereafter, k‖ and k⊥ are the parallel and perpendicular components of the
wave vector, and v‖ and vd are the parallel and magnetic drift velocities. For higher
frequencies we must allow

ω− k‖v‖ − k⊥ · vd ∼Ω� k⊥ · vd (2.2)

to recover magnetized Kennel & Engelmann (1966), where Ω is the gyrofrequency.
The large range of frequencies allows our quasilinear result to treat frequencies from
drift waves to ion and then electron cyclotron frequencies and above.
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For magnetic drifts to modify the usual quasilinear (QL) resonance condition ω −
pΩ − k‖v‖= 0 requires k⊥ · vd ∼ k‖v‖, where p is an integer or zero. Letting ρ and R
denote the gyroradius and major radius of the tokamak, we find that

k⊥ρp ∼ k‖R, (2.3)

with ρp=ρB/Bp the poloidal gyroradius and Bp the poloidal magnetic field. Typically,

k‖R� 1, (2.4)

so we expect magnetic drift effects will be of most interest when

k⊥ρp� 1. (2.5)

For large values of k⊥ρi we expect the QL diffusivity to be small since it depends
on Bessel functions that for large argument behave as Jp(w)∼w−1/2, with w∼ k⊥ρi. As
a result, the magnetic drift corrections we evaluate may be important when k⊥ρi ∼ 1
for Bp�B. Indeed, this seems to explain why the Kennel & Engelmann (1966) limit
of the QL operator works so well in a tokamak.

The quasilinear diffusivity in the constant magnetic field case is proportional to a
delta function whose argument is ω − pΩ − k‖v‖. We desire to generalize this QL
diffusivity to include magnetic drifts. We expect to find that generalized diffusivity
contains a drift modified resonance condition so the argument of the delta function
depends on ω − pΩ − k‖v‖ − k⊥ · vd. This new resonance condition is now what
must be used to gather terms in the proper way to obtain the required form of the
quasilinear diffusivity with magnetic drift effects retained.

3. Formulation of the quasilinear and linear equations
Consider the full kinetic equation

∂f /∂t+ v · ∇f + (Ze/M)[e+ c−1v× (B+ b)] · ∇vf =C{ f }, (3.1)

with e and b the applied radio frequency (rf) wave fields and B=Bn the unperturbed
magnetic field. We then take

f = f0 + f1 + · · · (3.2)

with

f1� f0, (3.3)

and f0 gyrophase independent so that

∂f0/∂ϕ = 0, (3.4)

with ϕ the gyrophase. We are interested in situations for which collisions and
quasilinear diffusion are equally important in the evolution of f0. We also require that
f0 does not have any fast time or space dependence so take it to be the coarse grain
average of f :

f0 = 〈 f 〉cg =
1

2T

∫ t+T

t−T
dτ

1
2∆

∫ ψ+∆

ψ−∆

dψ ′
∮

dζ
2π
〈 f 〉ϑ , (3.5)

https://doi.org/10.1017/S0022377817000903 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000903


A quasilinear operator retaining magnetic drift effects in tokamak geometry 5

where the integral over toroidal angle ζ insures axisymmetry, and the average 〈. . .〉ϑ
over poloidal angle ϑ removes the high poloidal mode number variation. The integral
over τ removes fast time variation by taking ω−1

�T� ν−1, and the integral over the
poloidal flux function ψ removes rapid radial variation by assuming λradial

rf �∆� a,
with ν and ω being the collision frequency and typical rf wave frequency, respectively,
and a and λradial

rf being the minor radius and the typical radial wavelength of the rf
wave, respectively. More details on how 〈. . .〉ϑ deals with rapid variation will be given
in § 5, but for now it is sufficient to know that f0 is allowed to be a slow function of
ϑ , as well as ψ and t. Consequently, we are assuming

Ωf0� ∂f0/∂t∼ v · ∇f0 ∼ νf0 ∼Q, (3.6)

with Ω=ZeB/Mc and Q the quasilinear operator to be derived. We allow f1 to rapidly
vary in time and space by permitting

Ω∂f1/∂ϕ ∼ ∂f1/∂t∼ v⊥ · ∇f1 ∼ v‖n · ∇f1. (3.7)

These assumptions mean that f0 satisfies the quasilinear (QL) equation

∂f0/∂t+ v · ∇f0 + (Ze/Mc)v× B · ∇vf0 + (Ze/M)〈(e+ c−1v× b) · ∇vf1〉cg =C{ f0},

(3.8)

while f1 satisfies the linear equation

∂f1/∂t+ v · ∇f1 + (Ze/Mc)v× B · ∇vf1 =−(Ze/M)(e+ c−1v× b) · ∇vf0, (3.9)

with collisions neglected since we are normally interested in wave frequencies much
higher than the collision frequencies. If the sum of these last two equations is
subtracted from the full kinetic equation then the kinetic equation for the difference
f − ( f0 + f1) is recovered. However, this difference equation is not needed to derive
the quasilinear diffusivity. Except for tokamak geometry, equations (3.8) and (3.9) are
the standard starting equations for all quasilinear treatments of rf heating and current
drive.

For the QL equation we use the drift kinetic limit of gyrokinetics in which we keep
the magnetic moment to higher order. In these r, v, µ, ϕ, t drift kinetic variables the
magnetic moment is given by

µ=µ0 +µ1, (3.10)

with

µ0 = v
2
⊥
/2B(r) (3.11)

the usual lowest-order magnetic moment. We write the velocity v in the usual
cylindrical velocity space variables aligned with the magnetic field

v = v⊥ + v‖n= v⊥[e1(r) cos ϕ + e2(r) sin ϕ] + v‖n(r), (3.12)

with ϕ the gyrophase,

v = |v| =

√
v2
⊥ + v

2
‖ (3.13)
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the magnitude of velocity of the charge (a constant of the motion for our treatment),
and the three orthonormal unit vectors satisfying

e1(r)× e2(r)= n(r)= B(r)/B(r). (3.14)

Then the next-order correction to the magnetic moment is (Catto et al. 1981; Lee et al.
1983; Kagan & Catto 2008; Parra & Catto 2008)

µ1 = −B−1v⊥ · vd − (v‖/4BΩ)(v⊥ · ∇n · v× n+ v× n · ∇n · v⊥)
− (v‖v

2
⊥
/2BΩ)n · ∇× n, (3.15)

with

vd =Ω
−1n× (µ∇B+ v2

‖
n · ∇n) (3.16)

the magnetic drift velocity. The unperturbed E × B drift can be added to vd if the
unperturbed electric field E is known. In typical quasilinear treatments, including the
treatment here, the perturbed drift due to the applied wave fields is considered to
be small and neglected. However, these and other small fluctuating corrections to the
unperturbed gyrokinetic trajectories are expected to provide the stochasticity necessary
to randomize kicks as charges make successive passes through a resonance (Becoulet,
Gambier & Samain 1991). While low frequency gyrokinetic treatments have been very
successful in retaining the effects of low frequency fluctuating fields (Kagan & Catto
2008; Parra & Catto 2008; Parra & Calvo 2011; Calvo & Parra 2012), at present
there seems to be no systematic way of treating high frequency fluctuations in high
frequency gyrokinetics.

Changing to these new variables, gyroaveraging, and coarse grain averaging results
in the QL equation in its drift kinetic form

∂f0/∂t+ (v‖n+ vd) · ∇f0 =C{ f0} +Q{ f0}, (3.17)

with the QL operator given by

Q{ f0} =−〈a · ∇vf1〉cg,ϕ =−

〈∮
dϕ
2π

a · ∇vf1

〉
cg

=−

〈∮
dϕ
2π
∇v · (a f1)

〉
cg

, (3.18)

and where the perturbed acceleration is defined as

a= (Ze/M)(e+ c−1v× b). (3.19)

There are two important points to mention here. The first point is that Q{ f0} must be
allowed to be a slow function of ϑ in a tokamak so that 〈. . .〉ϑ 6= (2π)−1

∮
dϑ(. . .).

The second point is that the drift kinetic treatment requires that we average the QL
term over gyrophase, as well as perform a coarse grain average. Therefore, in the
unperturbed distribution function

f0 = f0(ψ, ϑ, v, µ, σ , t), (3.20)

σ = v‖/|v‖| is the sign of v‖, ψ is the poloidal flux function and ϑ is the poloidal
angle variable. The preceding form and/or the original full f form of the kinetic
equation are convenient for forming conservation equations, as well as other moment
equations. Which form is to be used depends on the accuracy required.
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It is important to mention here that we will not obtain a radial spatial derivative
in our quasilinear operator since we will evaluate Q{ f0} in drift kinetic variables by
assuming

ρpf−1
0 ∇f0� 1, (3.21)

with ρp = ρB/Bp the poloidal gyroradius and Bp the poloidal magnetic field.
To evaluate the lowest-order distribution function it is sometimes convenient to solve

the transit averaged version of the preceding equation. To lowest order we then assume
that streaming dominates so that

v‖n · ∇f̄0 = 0, (3.22)

with the lowest-order distribution function defined to be independent of poloidal angle

f̄0 = f̄0(ψ, v, µ, σ , t). (3.23)

Then

vd · ∇f̄0 = vd · ∇ψ
∂ f̄0

∂ψ
= v‖n · ∇

(
Iv‖
Ω

∂ f̄0

∂ψ

)
. (3.24)

Letting

f0 = f̄0 + δf0, (3.25)

with

δf0� f̄0, (3.26)

the next-order QL equation becomes

∂ f̄0/∂t+ v‖n · ∇[δf0 + (Iv‖/Ω)∂ f̄0/∂ψ] =C{ f̄0} +Q{ f̄0}. (3.27)

It is then convenient to introduce the transit average

(. . .)=

∮
dτ(. . .)

/∮
dτ =

[∮
dϑ(. . .)

/
v‖n · ∇ϑ

]/[∮
dϑ/v‖n · ∇ϑ

]
, (3.28)

with dτ = dϑB/v‖B · ∇ϑ and f̄0 the transit average of f0. The τ and ϑ integrations
in both the numerators and denominators are over a full poloidal circuit following a
charged particle. In this way v‖ and ϑ change signs together at a turning point for
trapped particles, and odd functions of v‖ result in a vanishing transit average (for
example, v‖ = 0 and v‖/B= 0).

Equation (3.27) treats magnetic drift departures from a flux surface as being small
by assuming δf0 ∼ (Iv‖/Ω)∂ f̄0/∂ψ so that poloidal gyroradius corrections are small
compared to the radial scale length associated with f̄0. This small poloidal gyroradius
assumption means that finite orbit effects will be treated as being negligible.

Transit averaging the equation for δf0 and using the periodicity of f̄0 we obtain

∂ f̄0/∂t=C{ f̄0} +Q{ f̄0}, (3.29)
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where ∂ f̄0/∂t is often ignored as small. This transit averaged equation is the QL
equation that must be solved numerically for transit averaged f̄0 once the QL term is
made explicit.

To solve the linear equation we use the gyrokinetic variables R, v, µ, ϕ and t of
Lee et al. (1983) and Parra & Catto (2008), where

R= r +Ω−1v× n+ · · · , (3.30)

and v = |v|, µ = µ0 + µ1, v = v‖n + v⊥(e1 cos ϕ + e2 sin ϕ) and e1 × e2 = n = B/B
defined by (3.10) to (3.14), that is, exactly as for drift kinetics.

Higher-order terms not shown in the gyrokinetic variable R are needed to remove
the gyrophase dependence from Ṙ to the requisite order and thereby obtain

Ṙ= v‖n(r)+ vd(r), (3.31)

where for an arbitrary scalar or vector function X,

Ẋ = dX/dt= ∂X/∂t+ v · ∇X +Ωv× n · ∇vX. (3.32)

Similarly, the µ1 modification of µ0 results in

µ̇= 0 (3.33)

to the requisite order. In addition, we can even retain the gyrophase to higher order,

ϕ = ϕ0 + ϕ1, (3.34)

where to lowest order

ϕ̇0 =−Ω(r)=−Ω, (3.35)

while to next order

ϕ̇ =−Ω̄ =−
[
Ω(R)+ v‖n ·

(
1
2∇× n+∇e1 · e2

)]
. (3.36)

We assume an axisymmetric unperturbed magnetic field of the form

B= I(ψ)∇ζ +∇ζ ×∇ψ, (3.37)

with ζ the toroidal angle variable and I=RBt a flux function, where Bt is the toroidal
magnetic field. We are free to let e1 be the unit vector in the ∇ψ direction by taking

∇ψ = RBpe1, (3.38)

with Bp the poloidal magnetic field and e2 = n× e1.
Using these higher-order gyrokinetic variables the perturbed kinetic equation

becomes the high frequency gyrokinetic equation (Lee et al. 1983)

∂f1

∂t
− Ω̄

∂f1

∂ϕ
+ (v‖n+ vd) · ∇R f1 =−a · ∇vf0 =−

[
a · v
v

∂f0

∂v
+ a · ∇vµ

∂f0

∂µ

]
, (3.39)

to the requisite order. To obtain the preceding it is not necessary to gyroaverage the
perturbed kinetic equation so that f1 depends on guiding centre location R,

f1 = f1(R, v, µ, ϕ, σ , t), (3.40)

but the rf electric (and magnetic) field depends only on particle location r,

e= e(r, t). (3.41)

This distinction between the guiding centre location R and the particle location r gives
rise to magnetic drift and Bessel function modifications in (3.39).
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4. Gyrokinetic solution of the linear equation
There is an important subtlety we must address before proceeding any further. As

we need to perform the gyrokinetic change of variables on the perturbed equation
to higher order than usual it is necessary to depart from the more straightforward
treatment by solving explicitly for certain pieces of the perturbed distribution function.
To do so we first use Faraday’s law,

c∇× e=−∂b/∂t, (4.1)

to write

∂a
∂t
=

Ze
M

[
∂e
∂t
− v× (∇× e)

]
=

Ze
M

(
∂e
∂t
+ v · ∇e−∇e · v

)
, (4.2)

and then use

∇vµ0 = B−1v⊥ (4.3)

to write

∂a
∂t
· ∇vµ0 =

Ze
MB

[
∂e
∂t
· v + v‖n · ∇e · v − v‖

(
∂e
∂t
+ v · ∇e

)
· n
]
. (4.4)

We begin by ignoring the poloidal gyroradius over unperturbed scale length
corrections by using the approximation(
∂e
∂t
+ v · ∇e

)
· (nv‖B−1∂f0/∂µ)'

(
∂

∂t
+ v · ∇+Ωv× n · ∇v

)
(e · nv‖B−1∂f0/∂µ).

(4.5)

The preceding term requires special handling since it must be treated in the same way
we treat the adiabatic portion of the v · ∇f1 term in standard gyrokinetics.

To deal with time derivatives without Fourier (or Laplace) transforming in time we
form the time derivative of the perturbed equation

∂2f1/∂t2
+ v · ∇(∂f1/∂t)+ (Ze/Mc)v× B · ∇v(∂f1/∂t)=−(∂a/∂t) · ∇vf0. (4.6)

The next step is unconventional, but is one of two steps that allow us to obtain
results with drifts included that would not otherwise be possible. We extract the first
non-resonant portion of the perturbed distribution function by defining h via

∂h
∂t
=
∂f1

∂t
−

Zev‖
MB

e · n
∂f0

∂µ
, (4.7)

to obtain the alternate and convenient form

∂2h
∂t2
+ v · ∇

∂h
∂t
+ (Ze/Mc)v× B · ∇v

∂h
∂t

=−
∂ε

∂t
· v

(
1
v

∂f0

∂v
+

1
B
∂f0

∂µ

)
− n · ∇ε · v

v‖

B
∂f0

∂µ

−

(
∂ε

∂t
· ∇vµ1 + v · ∇ε · ∇vµ1 −∇vµ1 · ∇ε · v

)
∂f0

∂µ
, (4.8)
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where we define

ε=
Ze
M

e. (4.9)

In the preceding equation for h we use

∇vµ=∇vµ0 +∇vµ1, (4.10)

where

B∇vµ1 = −vd +
v‖

4Ω
[(
↔

I −nn) · ∇n× n · v + v⊥ · ∇n× n− n×∇n · v − v · n×∇n

− 4v⊥n · ∇× n] +n
1

4Ω
[v⊥ · ∇n× n · v − v · n×∇n · v

− 2v2
⊥

n · ∇× n] −∇vvd · v⊥, (4.11)

with

∇vvd · v⊥ =Ω
−1
[B−1v⊥v⊥ · n×∇B+ 2v‖nv⊥ · n× (n · ∇n)]. (4.12)

Next, we use the second unconventional step to extract a second term by using(
∂ε

∂t
+ v · ∇ε

)
· vd '

(
∂

∂t
+ v · ∇+Ωv× n · ∇v

)
(ε · vd), (4.13)

where we neglect k−1
⊥ ∇`nB∼ 1/k⊥R� 1 corrections. Then, we extract the second non-

resonant piece of the perturbed distribution function by defining g as

∂g
∂t
=
∂h
∂t
−

Ze
MB

e · vd
∂f0

∂µ
=
∂f1

∂t
−

Ze
MB

e · (v‖n+ vd)
∂f0

∂µ
, (4.14)

to obtain the more convenient form

∂2g
∂t2
+ v · ∇

∂g
∂t
+ (Ze/Mc)v× B · ∇v

∂g
∂t

=−
∂ε

∂t
·
v

v

∂f0

∂v
−

[
∂ε

∂t
+ (v‖n+ vd) · ∇ε

]
·

v

B
∂f0

∂µ

−

(
∂ε

∂t
· G+ v · ∇ε · G− G · ∇ε · v

)
1
B
∂f0

∂µ
, (4.15)

with

G≡ B∇vµ1 + vd ∼ vd. (4.16)

Three of the terms depending on G∼ vd can be seen to be small since

∂ε

∂t
· v�

∂ε

∂t
· G∼

∂ε

∂t
· vd, (4.17)

v‖n · ∇ε · v� v‖n · ∇ε · G∼ v‖n · ∇ε · vd, (4.18)
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and

v‖n · ∇ε · v� n · Gn · ∇ε · v ∼ |vd|n · ∇ε · v. (4.19)

Consequently, we are left to consider

∂2g
∂t2
+ v · ∇

∂g
∂t
+ (Ze/Mc)v× B · ∇v

∂g
∂t

=−
∂ε

∂t
·
v

v

∂f0

∂v
−

[
∂ε

∂t
+ (v‖n+ vd) · ∇ε

]
·

v

B
∂f0

∂µ

− (v⊥ · ∇ε · G− G⊥ · ∇ε · v)
1
B
∂f0

∂µ
. (4.20)

We can Fourier decompose the applied electric field e poloidally and toroidally. We
also Fourier decompose in time to permit more than a single wave frequency as might
be the case for lower hybrid and ion cyclotron heating. In addition, we allow the local
fine scale radial eikonal variation to have multiple roots (that must be summed over)
due to mode conversion. Therefore, we take

e=
∑

m,n,ω,κ

em exp(−iωt− inζ + iS(ψ)+ imϑ)=
∑

m,n,ω,κ

em exp(−iωt+ imϑ + iΥ (r)).

(4.21)

To solve for f1 we seek solutions of the form

g =
∑

p,n,ω,κ

gp(Θ) exp(−iωt− inZ+ iS(Ψ )− ipϕ)

=

∑
p,ω,n,κ

gp(Θ) exp(−iωt+ iΥ (R)− ipϕ), (4.22)

h =
∑

p,n,ω,κ

hp(Θ) exp(−iωt− inZ+ iS(Ψ )− ipϕ)

=

∑
p,ω,n,κ

hp(Θ)e−iωt+iΥ (R)−ipϕ, (4.23)

and

f1 =
∑

p,n,ω,κ

fp(Θ) exp(−iωt− inZ+ iS(Ψ )− ipϕ)

=

∑
p,ω,n,κ

fp(Θ) exp(−iωt+ iΥ (R)− ipϕ), (4.24)

with

Υ (r) = S(ψ)− nζ , (4.25)
S(Ψ ) = S(ψ)+ (Ψ −ψ)∂S/∂ψ + · · · ' S(ψ)+Ω−1v× n · κ + · · · , (4.26)

and

Υ (R)=Υ (r)+ (R− r) · ∇Υ + · · · =Υ (r)+Ω−1v× n · (κ − n∇ζ )+ · · · , (4.27)
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and where we define

Ψ =ψ +Ω−1v× n · ∇ψ + · · · , Θ = ϑ +Ω−1v× n · ∇ϑ + · · · , (4.28a,b)

Z= ζ +Ω−1v× n · ∇ζ + · · · , (4.29)

and

κ =∇S=∇ψ∂S/∂ψ = e1RBp∂S/∂ψ = κe1. (4.30)

The sums are over all wavenumbers and frequencies for the poloidally periodic applied
wave fields. However, because of the presence of trapped particles, g, h and f1 are not
Fourier decomposed poloidally. The extra sum over p in g, h and f1 is for the Fourier
decomposition in gyrophase. The toroidal and poloidal wave numbers are taken to be
n and m, respectively, and ω denotes wave frequencies. The vector

κ = κe1 (4.31)

is the radial wave vector.
The distinction between drift kinetic and gyrokinetic variables is important and

must be treated carefully in exponentials. In particular, we need to use the preceding
expressions to write the right-hand side of the g equation in terms of the gyrokinetic
variables Ψ , Θ, Z, v, µ, ϕ. Before doing so it is useful to note that fp and gp are
related by ∑

p,n,ω,κ

[ fp(Θ)− gp(Θ)] exp(−iωt− inZ+ iS(Ψ )− ipϕ)

=−
Ze
MB

∂f0

∂µ
(v‖n+ vd) ·

∑
m,ω,n,κ

em

iω
exp(−iωt− inζ + iS(ψ)+ imϑ). (4.32)

Using the preceding expressions, multiplying by exp(ip′ϕ), integrating over φ from
0 to 2π, defining,

k= κ +m∇ϑ − n∇ζ , (4.33)
k⊥ = k⊥(e1 cos α + e2 sin α), (4.34)

and

L≡Ω−1v× n · k= (k⊥v⊥/Ω) sin(ϕ − α), (4.35)

recalling the ‘Bessel generating function’

e−iL
= e−iw sin(ϕ−α)

=

∑
p

e−ip(ϕ−α)Jp(w), (4.36)

and performing the gyrophase integrals using

U0 ≡

∮
dϕ
2π

eipϕ−iL
=

∮
dϕ
2π

eipϕ−iw sin(ϕ−α)
=

∑
p′

e−ip′(ϕ−α)+ipϕJp(w)= eipαJp(w), (4.37)
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we obtain in gyrokinetic variables that

fp(Θ)= gp(Θ)−
Ze

iωMB
∂f0

∂µ
(v‖n+ vd) ·

∑
m

emJp(w)eimΘ, (4.38)

where we define

w≡ k⊥v⊥/Ω, (4.39)

and we have ignored small poloidal gyroradius corrections that arise from Taylor
expanding B−1v‖∂f0/∂µ about Ψ . The distinction between drift and gyrokinetic
variables on the right- and left-hand sides of the equation results in the term
L=Ω−1v× n · k∼ k⊥ρ.

We are now ready to Fourier transform the kinetic equation for g in ϕ to obtain∑
p

e−ipϕ
{(v‖n+ vd) · ∇ϑ

∂gp

∂Θ
− i[ω− pΩ̄ − κ · vd + n(v‖n+ vd) · ∇ζ ]gp}

= −

∑
m

eimΘ−iL

{
(εm · nv‖ + εm · v⊥)

[
1
v

∂f0

∂v
+
(ω− k‖v‖ − k · vd)

ωB
∂f0

∂µ

]
−
∆m

ωB
∂f0

∂µ

}
,

(4.40)

where we define

Ω̄ 'Ω(R), (4.41)

k‖ = (m− qn)I/qR2B∼ (m− qn)/qR, (4.42)

q= B · ∇ζ/B · ∇ϑ, (4.43)

and

∆m ≡ k⊥ · v⊥εm · G− k⊥ · G⊥εm · v. (4.44)

In writing down this form of the kinetic equation for gp we have taken the liberty of
using the eikonal approximation for the radial variation to streamline the solution. We
could avoid doing this by performing a more complicated trajectory integral in Ψ as
well as Θ , rather than just in Θ .

We again multiply by exp(ip′ϕ) and integrate over ϕ, but this time we use the
additional results∮

dϕ
2π

exp(i(p± 1)ϕ − iw sin(ϕ − α)) =
∑

p′

exp(−ip′(ϕ − α)+ i(p± 1)ϕ)Jp(w)

= ei(p±1)αJp±1(w), (4.45)

and

U1 ≡

∮
dϕ

2πv⊥
v⊥eipϕ−iL

=

∮
dϕ

2πv⊥
v⊥ exp(ipϕ − iw sin(ϕ − α))= eipαe⊥p, (4.46)
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where we define e± as

e± = e1 ± ie2 (4.47)

and e⊥p as

e⊥p =
1
2
[e−eiαJp+1(w)+ e+e−iαJp−1(w)] =

p
k⊥w

Jp(w)k⊥ +
i

k⊥
J′p(w)n× k, (4.48)

with

k⊥ = (k⊥/2)(e−eiα
+ e+e−iα). (4.49)

The alternate form of e⊥p is found by using the Bessel recurrence relations.
Using the preceding we obtain

(v‖n+ vd) · ∇ϑ
∂gp

∂Θ
− i[ω− pΩ̄ − κ · vd + n(v‖n+ vd) · ∇ζ ]gp

=−

∑
m

eimΘ+ipαεm ·

[
n Jp(w)

v‖

v
+ e⊥p

v⊥

v

] ∂f0

∂v

−

∑
m

eimΘ

{
eipαεm ·

[
n Jp(w)

v‖

v
+ e⊥p

v⊥

v

] [∂f0

∂v
+
(ω− k‖v‖ − k · vd)v

ωB
∂f0

∂µ

]
−
∆meipϕ−iL

ωB
∂f0

∂µ

}
. (4.50)

The approximate sign in (4.50) is a reminder of the approximations (4.5) and (4.13)
used to remove the non-resonant terms. An alternate form follows using qB · ∇ϑ =
B · ∇ζ = I/R2 with q= q(ψ) the safety factor,(

Iv‖
qR2B

+ vd · ∇ϑ

)
∂gp

∂Θ
− i
[
(ω− ipΩ̄)+

nIv‖
R2B
− (κ − n∇ζ ) · vd

]
gp

=−

∑
m

eimΘ(Wp,m − δp,m), (4.51)

where

Wp,m = eipαεm · [nv‖ Jp(w)+ e⊥pv⊥]

[
1
v

∂f0

∂v
+
(ω− k‖v‖ − k · vd)

ωB
∂f0

∂µ

]
(4.52)

and

δp,m =

∮
dϕ
2π

eipϕ−iL∆m

ωB
∂f0

∂µ
. (4.53)

To see that it does not vanish, the integrals needed to evaluate δp,m can be performed
as sketched in the appendix. However, there is actually no need to do so since the δp,m

term can be neglected for the following two reasons. First, to derive the quasilinear
operator we will show that only the residual associated with ω− k‖v‖− k · vd = pΩ is
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needed for p 6=0. Second, for p = 0 we need only assume ∆m�ω. The first condition
means we can neglect the δp,m for p 6= 0 as long as we assume

∆m

ω− k‖v‖ − k · vd
∼

k⊥|G|
pΩ
∼

k⊥|vd|

pΩ
∼ k⊥ρ

ρ

pR
� 1. (4.54)

The second condition for neglecting δp,m requires the even less stringent assumption

∆m

ω
∼

k⊥|G|
ω
∼

k⊥|vd|

ω
∼
ω∗Ln

ωR
� 1 (4.55)

for p= 0, where ω∗∼ k⊥ρ2Ω/Ln is the diamagnetic drift frequency with Ln the density
scale length.

In addition, we are continuing to assume that on the right-hand side of the kinetic
equation for gp the distinction between gyrokinetic and drift kinetic variables is
unimportant for Wp,m as long as poloidal gyroradius over unperturbed radial scale
lengths are small as is normally assumed in the core. Consequently, on the right we
may assume R ' r to the order required except in exp(imΘ). This ρpf−1

0 ∇f0 � 1
assumption may fail in a high confinement pedestal or for the very energetic ions
produced by minority heating, but such considerations are beyond the scope of the
present treatment.

To ignore the ρ/R terms in Ω̄ on the left-hand side of (4.51) for gp, we need only
recall that the poloidal variation of the magnetic field is much more important because
B∝ R−1

∝ [1+ (r/R) cos ϑ]−1. As a result, we need only assume

r� ρi, (4.56)

with ρi the ion gyroradius. As this assumption is easily satisfied from here on we use

Ω̄ 'Ω(R)'Ω(r)'Ω. (4.57)

The preceding assumptions mean we need only solve(
Iv‖

qR2B
+ vd · ∇ϑ

)
∂gp

∂Θ
− i
[
(ω− ipΩ)+

nIv‖
R2B
− (κ − n∇ζ ) · vd

]
gp = −

∑
m

eimΘWp,m.

(4.58)

To integrate the gp equation we introduce the trajectory time variable τ via

dΘ(τ)
dτ
= (v‖n+ vd) · ∇Θ ' (v‖n+ vd) · ∇ϑ =

Iv‖
qR2B

+ vd · ∇ϑ, (4.59)

with

Θ(τ = 0)=Θ. (4.60)

Defining

χ =

∫ τ

0
dτ ′{ω− pΩ̄[Θ(τ ′)] − κ · vd + n(v‖n+ vd) · ∇ζ }, (4.61)
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with κ · vd and (v‖n+ vd) · ∇ζ slow functions of space, gives upon integrating along
the trajectory

d
dτ
{gp[Θ(τ)]e−iχ(τ)

} =−

∑
m

eimΘ(τ)−iχ(τ)Wp,m(τ ), (4.62)

where the weak Θ(τ) and/or τ dependence of the coefficient Wp,m exp(ipα) will turn
out to be unimportant because of our approximation in the next paragraph. Integrating
from τ→−∞ to τ = 0, and assuming any memory of the initial state is lost so we
can take gp[Θ(τ→−∞)] = 0 gives the general form

gp(Θ)=−
∑

m

eimΘ
∫ 0

−∞

dτ exp(−iχ(τ)+ im[Θ(τ)−Θ])Wp,m(τ ). (4.63)

The usual derivations of the QL operator always neglect any memory of the initial
condition of the charges. The use of unperturbed trajectories might seem to imply a
long memory of the past, in which case even collisions might matter. However, in
practice the applied rf fields actually perturb these trajectories and thereby introduce
stochasticity (Becoulet et al. 1991). As a result, for a QL treatment the unperturbed
trajectories are only approximately valid between successive passes through resonance.

To simplify this expression we integrate by parts by taking advantage of the rapid
variation of the exponential compared to the slow variation of Wp,m. To do so we use

exp(−iχ(τ)+ im[Θ(τ)−Θ])Wp,m(τ )

=
−Wp,m(τ )

i(ω− pΩ − k‖v‖ − k · vd)

d
dτ

exp(−iχ(τ)+ im[Θ(τ)−Θ])

=−
d

dτ

{
Wp,m(τ ) exp(−iχ(τ)+ im[Θ(τ)−Θ])

i(ω− pΩ − k‖v‖ − k · vd)

}
+

exp(−iχ(τ)+ im[Θ(τ)−Θ])
i(ω− pΩ − k‖v‖ − k · vd)

dWp,m(τ )

dτ
. (4.64)

The

k · vd = (∇S+m∇ϑ − n∇ζ ) · vd (4.65)

term includes the following contributions:

vd · ∇ψ = v‖n · ∇(Iv‖/Ω)=−
κ(v2

‖
+µB)I2

qR3B2ΩBp

∂B
∂ϑ
, (4.66)

vd · ∇ϑ =

[
(v2
‖
+µB)

∂B
∂ψ
+

4πv2
‖

B
∂P
∂ψ

]
I B · ∇ϑ
ΩB2

, (4.67)

and

vd · ∇ζ =
v2
‖
+µB

ΩB2R2
∇ψ · ∇B−

4πv2
‖
B2

p

ΩB3

∂P
∂ψ

, (4.68)

with P the total plasma pressure.
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We could also integrate (4.63) over the periodic poloidal motion of the trapped
and passing particles by assuming that the unperturbed trajectories remained valid
for many complete poloidal periods. This procedure could imply weaker stochasticity
since successive passes through the resonance are correlated, leading to bounce and
poloidal transit resonances appearing in the resonant denominator. Such behaviour is
inherent in transit averaged descriptions which make an implicit assumption of weaker
stochasticity.

The coefficient Wp,m is expected to be slowly varying compared to the variation in
the vicinity of the denominator since Wp,m is constant in a constant magnetic field.
Assuming the denominator changes slowly as the charged particle passes through
resonance,

W−1
p,m(τ ) dWp,m(τ )/dτ

(ω− pΩ − k‖v‖ − k · vd)
� 1, (4.69)

then an additional integration by parts yields the form convenient for full wave
treatments:

gp(Θ)=
∑

m

eimΘWp,m

i(ω− pΩ − k‖v‖ − k · vd)
+ · · · , (4.70)

where we neglect the small corrections. For unmagnetized plasmas or low frequency
waves (ω� Ω) only the p = 0 term matters since all other terms will be small by
ω/Ω . For higher frequencies such that ω∼ pΩ + k‖v‖+ k · vd only the p term in the
sum is significant since all other terms will be small by |ω− pΩ − k‖v‖− k · vd|/pΩ
� 1. For higher frequencies, the k‖v‖ and k · vd terms are important because they
determine the location of the wave damping – and this can be quite different than
where ω = pΩ . This form is used to evaluate the density and current in full wave
treatment since we can write g in drift kinetic variables as

g =
∑

p,n,ω,κ

gp(Θ) exp(−iωt− inZ+ iS(Ψ )− ipϕ)

=

∑
p,n,ω,κ

gp(Θ) exp(−iωt− inζ + iS(ψ)− ipϕ − inΩ−1v× n · ∇ζ + iΩ−1v× n · ∇S)

=

∑
p,n,ω,κ

gp(Θ) exp(im(ϑ −Θ)− iωt− inζ + iS(ψ)− ipϕ + iL)

'

∑
m,p,n,ω,κ

Wp,m exp(−iωt+ imϑ − inζ + iS(ψ)− ipϕ + iL)
i(ω− pΩ − k‖v‖ − k · vd)

+ · · · . (4.71)

This form is not a strict Fourier representation in poloidal angle since the coefficients
depend on poloidal angle. To see that this is a compact and efficient means of treating
the poloidal variation of the resonant part of the distribution function, assume that
there is only a single poloidal mode for the applied rf electric field of (4.21). Then
there is only a single m term in our non-standard representation for the distribution
function g of (4.71). Due to the resonant denominator its coefficient varies strongly
with poloidal angle ϑ . As a result, a standard Fourier representation would require an
infinite sum of poloidal modes.
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The preceding form (4.71) is convenient to use when forming the density and
species current,∫

d3vg' Re
∑

m,p,n,ω,κ

exp(−iωt+ imϑ − inζ + iS(ψ))
∫

d3v
e−ipαWp,mJp(w)

i(ω− pΩ − k‖v‖ − k · vd)

(4.72)

and ∫
d3vvg ' Re

∑
m,p,n,ω,κ

exp(−iωt+ imϑ − inζ + iS(ψ))

×

∫
d3v

exp(−ipα)Wp,m[nv‖Jp(w)+ e⊥pv⊥]

i(ω− pΩ − k‖v‖ − k · vd)
, (4.73)

with ∫
d3v

∂

∂t
( f1 − g)=

Ze
MB

∫
d3v

∂f0

∂µ
(v‖n+ vd) · e (4.74)

and ∫
d3vv

∂

∂t
( f1 − g)=

Ze
MB

n
∫

d3v
∂f0

∂µ
v‖(v‖n+ vd) · e, (4.75)

where Re denotes the real part. As we did not Fourier decompose gp in poloidal angle,
our full wave results are quite general and compact, with all poloidal angle coupling
due to magnetic field variation retained. We have allowed

k‖v‖/k · vdi ∼ k‖R/k⊥ρpi ∼ 1, (4.76)

so that drift effects can become significant for the ions (denoted by a subscript i) when
k⊥ρi ∼ 1 for Bp � B. Here ρpi = ρiB/Bp is the ion poloidal gyroradius and Bp the
poloidal magnetic field. These moment expressions ignore any drift corrections from
δp,m implying that ω�∆m for p= 0 and ω− k‖v‖ − k · vd ∼ pΩ�∆m for p 6= 0.

To form the quasilinear (QL) operator, the principle value part of the integral∫ 0

−∞

dτ exp(−iχ(τ)+ im[Θ(τ)−Θ])Wp,m

' P
∫ 0

−∞

dτ exp(−iχ(τ)+ im[Θ(τ)−Θ])Wp,m +
Wp,m

i(ω− pΩ − k‖v‖ − k · vd)
(4.77)

is neglected. The preceding expression uses the δ function form found from a causal
Laplace transform with a positive imaginary part to ω, Imω> 0,

1
i(ω− pΩ − k‖v‖ − k · vd)

→πδ(ω− pΩ − k‖v‖ − k · vd). (4.78)

Using this result gives the approximation needed for the QL operator to be

gp(Θ)'π
∑

m

eimΘWp,mδ(ω− pΩ − k‖v‖ − k · vd)+ · · ·. (4.79)
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For Kennel & Engelmann (1966) to be valid we need to assume k‖R� k⊥ρ.
To examine the validity of the preceding expressions we use

W−1
p,m(τ ) dWp,m(τ )/dτ ' [(v‖n+ vd) · ∇ϑ]W−1

p,m∂Wp,m/∂ϑ. (4.80)

Then the width of the resonance is determined by the broadening so we can estimate

|ω− pΩ − k‖v‖ − k · vd| ∼ k‖v‖ + k · vd. (4.81)

As a result, we expect our results to be valid when

W−1
p,m(τ ) dWp,m(τ )/dτ

(ω− pΩ − k‖v‖ − k · vd)
∼

(v‖n+ vd) · ∇ϑ

(k‖v‖ + k · vd)Wp,m

∂Wp,m

∂ϑ
∼

1
Wp,m

∂Wp,m

∂ϑ
�

r
R
, (4.82)

since poloidal angle variation of Wp,m varies slowly through the narrow resonance
region that is much less than the minor radius r appearing in the coefficient of the
poloidal varying portion of the magnetic field B∝R−1

∝ [1+ (r/R) cosϑ]−1. However,
trapped particles reflecting (v‖=0) in the resonance layer ω'pΩ are known to violate
(4.82) when k · vd→ 0 (Catto & Myra 1992; Belikov & Kolesnichenko 1994; Catto,
Myra & Russell 1994). Whether this continues to be the case when k · vd is retained
is less clear since vd 6= 0 when v‖ = 0.

The new term we obtain in the resonant denominator or argument of the delta
function is the expected Doppler broadening of the resonance due to the shift k · vd

caused by magnetic drift effects. As a result of this drift motion the actual resonance
is shifted to a different location on the flux surface with the resonance occurring
at a slightly different poloidal location in velocity space experiencing different wave
fields. The distinction between the gyrofrequency of the guiding centre and charge
does not matter since only k⊥ρi � 1 are of interest. The damping associated with
the k · vd magnetic drift is illustrated in Bajaj & Krall (1972) and Lee et al. (1983)
for ion drift cyclotron waves. Although unimportant for our purposes, there is also
Landau damping associated with the distinction between the guiding centre and charge
location as illustrated in Antonsen & Manheimer (1978) and Lee et al. (1983) for ion
Bernstein modes. All these new broadening terms are expected to matter more for ions
than electrons.

5. Quasilinear operator

To form the QL operator we need g in drift kinetic variables. Expanding the
exponential we obtain

g =
∑

p,n,ω,κ

gp(Θ) exp(−iωt− inZ+ iS(Ψ )− ipϕ)

=

∑
p,n,ω,κ

gp(Θ) exp(−iωt− inζ + iS(ψ)− ipϕ − inΩ−1v× n · ∇ζ + iΩ−1v× n · ∇S).

(5.1)
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Then, expanding the exponential in (4.79)

gp(Θ) ' π
∑

m

exp(imϑ + imΩ−1v× n · ∇ϑ)

×Wp,mδ(ω− pΩ − k‖v‖ − k · vd)+ · · · (5.2)

gives

g = −π
∑

p,m,n,ω,κ

Wp,mδ(ω− pΩ − k‖v‖ − k · vd)

× exp(−iωt+ imϑ − inζ + iS(ψ)− ipϕ + iL), (5.3)

where we have carefully kept the distinction between drift kinetic and gyrokinetic
variables in the exponential to get the L factor. Consistent with our orderings
we ignore the distinction between gyrokinetic and drift kinetic variables in the
gyrofrequency.

In the QL operator we can use the delta function to simplify Wp,m by letting

Wp,m→ eipαεm · [nv‖Jp(w)+ e⊥pv⊥]

[
1
v

∂f0

∂v
+

pΩ
ωB

∂f0

∂µ

]
. (5.4)

Moreover, we need to account for the difference between f1 and g,

f1 = g−
Ze
MB

∂f0

∂µ
(v‖n+ vd) ·

∑
ω,m,n,κ

em

iω
exp(−iωt+ imϑ − inζ + iS(ψ)). (5.5)

The difference f1 − g is gyrophase independent, while 〈v⊥〉ϕ = 0, leaving〈∮
dϕ
2π
∇v · [a( f1 − g)]

〉
cg

=
v‖∂

v∂v

〈
( f1 − g)ε ·nv‖

v‖

〉
cg

+
v‖∂

v∂µ

〈
v( f1 − g)

v‖

∮
dϕa · ∇v µ

2π

〉
cg

, (5.6)

where we use ∇vϕ = v−2
⊥ n× v to obtain the lowest-order result ∇vv ×∇vµ0 · ∇vϕ =

1/vB.
We must again consider µ to higher order to retain drift effects∮

dϕ
2π

B∇vµ1 =−vd −
µ

Ω
n×∇B (5.7)

and ∮
dϕ
2π
(B∇vµ1)v⊥ =−

v‖v
2
⊥

Ω
n n× (n · ∇n) (5.8)

giving∮
dϕa · ∇v µ1

2π

=−
Ze
M

[(
e+

v‖

c
n× b

)
·

(
vd +

µ

Ω
n×∇B

)
+
v‖v

2
⊥

cΩ
n× (n · ∇n) · n× b

]
. (5.9)
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To simplify further for harmonic fields ε, χ and ς we use

〈εε〉cg =
1
4

∑
ω,m,n.κ

(εmε
∗

m + ε
∗

mεm) (5.10)

and

〈ςχ〉cg =
1
4

∑
ω,m,n.κ

(ςmχ
∗

m + ς
∗

mχm), (5.11)

so if ςm = em and χm = iem we get zero. The 〈. . .〉ϑ in 〈. . .〉cg replaces the double
poloidal angle sum over m and m′ by a single sum over m by introducing the
Kronecker delta function δm′m. By using (5.10) and (5.11) we are not allowing
poloidal mode numbers that differ by order unity to contribute to the quasilinear
operator. This property of 〈. . .〉ϑ is necessary to maintain the correct entropy
production for our QL operator and recover the Kennel–Engelmann (1966) operator.
The preceding averages are performed in real physical space, unlike the elegant
Hamiltonian action-angle treatment of Kaufman (1972) and Eriksson & Helander
(1994) that employ similar averages in phase space. Their Hamiltonian treatments
lead to transit average quasilinear operators in action-angle variables, while we will
find the non-transit averaged form in configuration space variables.

Recalling that for Imω> 0 ∫ t

−∞

dte−iωt
=
−1
iω

e−iωt (5.12)

we find 〈∮
dϕ
2π
∇v · [a( f1 − g)]

〉
cg

= 0. (5.13)

Therefore, we need only consider

Q{ f0} =−
v‖

v

∂

∂v

[〈∮
dϕ

2πv‖
gv · ε

〉
cg

−
v‖∂

v∂µ

〈
v

v‖

∮
dϕga · ∇vµ

2π

〉
cg

]
. (5.14)

Using the preceding and ∮
dϕ
2π

eiL−ip(ϕ−α)
= Jp(w), (5.15)

and ∮
dϕ

2πv⊥
v⊥eiL−ip(ϕ−α)

=
1
2
[e−eiαJp−1(w)+ e+e−iαJp+1(w)] = e∗

⊥p, (5.16)

gives〈∮
dϕ
2π

gv · ε

〉
cg

= −
π

2v

∑
ω,m,n.κ,p

δ(ω− pΩ − k‖v‖ − k · vd)
∣∣εm · [nv‖ Jp(w)+ e⊥pv⊥]

∣∣2
×

(
∂f0

∂v
+

pΩv
ωB

∂f0

∂µ

)
. (5.17)
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In addition, we use〈
B
∮

dϕga · ∇vµ
2π

〉
cg

=

〈∮
dϕ
2π

g a · (v⊥ − vd)

〉
cg

+

〈∮
dϕ
2π

g a · G
〉

cg

, (5.18)

with

a · (v⊥ − vd) =
∑
ω,m,n,κ

[(
1−

k‖v‖
ω
−

k · vd

ω

)
εm · v⊥ +

(
k · v⊥
ω
−

k · vd

ω

)
εm · nv‖

−

(
1−

k · v
ω

)
εm · vd

]
exp(−iωt+ imϑ − inζ + iS(ψ))

'

∑
ω,m,n,κ

[(
1−

k‖v‖
ω
−

k · vd

ω

)
εm · v⊥ +

k⊥ · v⊥
ω

εm · nv‖
]

× exp(−iωt+ imϑ − inζ + iS(ψ)), (5.19)

where in the last form we have neglected unimportant drift corrections. Using this
result along with earlier results, and k⊥ · e⊥pv⊥=pΩJp(w) and ω−pΩ− k‖v‖− k ·vd=

0 gives〈∮
dϕ
2π

ga · (v⊥ − vd)

〉
cg

= −
π

2v

∑
ω,m,n.κ,p

δ(ω− pΩ − k‖v‖ − k · vd)
pΩ
ω

×
∣∣εm · [nv‖Jp(w)+ e⊥pv⊥]

∣∣2(∂f0

∂v
+

pΩv
ωB

∂f0

∂µ

)
. (5.20)

Then we need only note that all the terms in〈∮
dϕ
2π

ga · G
〉

cg

(5.21)

are small compared to the terms just evaluated.
Combining the preceding results, we find our final form for the QL operator to be

Q{ f0} =
∑
ω,p

v‖

v

(
∂

∂v
+

pΩv
ωB

∂

∂µ

) [
D
v

v‖

(
∂f0

∂v
+

pΩv
ωB

∂f0

∂µ

)]
, (5.22)

with

D=
πZ2e2

2M2v2

∑
m,n.κ

δ(ω− pΩ − k‖v‖ − k · vd)
∣∣em · [nv‖ Jp(w)+ e⊥pv⊥]

∣∣2 , (5.23)

manifestly positive. Consequently, we have managed to carefully derive the desired
tokamak form for the QL operator that is the same as the Kennel–Englemann (1966)
form except for the simple k · vd modification to the argument of the delta function.
Our QL ordering Q ∼ νf0 with D ∼ Z2e2

|em|
2/M2ω ∼ ωv2

quiv and vquiv ∼ Ze|em|/Mω,
then requires small quiver speeds vquiv compared to the thermal speed vthermal such that
v2

quiv/v
2
thermal ∼ ν/ω� 1.
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The preceding form satisfies a QL entropy principle. Multiplying Q by `nf0 and
integrating over all velocity space using d3v → 2πvB dv dµ/|v‖| gives the entropy
production to be negative definite as required,∫

d3v`nf0Q{ f0} =−

∫
d3v

∑
ω,p

D
f0

∣∣∣∣∂f0

∂v
+

pΩv
ωB

∂f0

∂µ

∣∣∣∣2 6 0. (5.24)

By changing to the cylindrical velocity space variables v⊥, v‖, and ϕ we can rewrite
the quasilinear operator in vector form as

Q{ f0} =∇v · (
↔

D ·∇vf0), (5.25)

with

↔

D =D‖nn+ v−2
⊥

D⊥v⊥v⊥ + v−1
⊥

D×(nv⊥ + v⊥n), (5.26)

where the various diffusivities are defined as

D‖ =
∑
ω,p

(
1−

pΩ
ω

)2
v2

v2
‖

D, (5.27)

D⊥ =
∑
ω,p

(
pΩv
ωv⊥

)2

D, (5.28)

and

D× =
∑
ω,p

pΩ
ω

(
1−

pΩ
ω

)
v2

v‖v⊥
D. (5.29)

For simulations the delta function can be approximated as the limiting form of a
Gaussian. Also, using form (5.25), we can easily evaluate the energy moment of Q{ f0}

as

1
2

∫
d3vv2Q{ f0} = −

∫
d3vv ·

↔

D ·∇vf0

= −

∑
ω,p

∫
d3vv2 D

v‖

[(
1−

pΩ
ω

)
∂f0

∂v‖
+

pΩv‖
ωv⊥

∂f0

∂v⊥

]
. (5.30)

For completeness we also note that the transit averaged QL operator is

Q{ f0} =
1

v
(∮

dτ
) ∑

ω,p

(
∂

∂v
+

pΩv
ωB

∂

∂µ

) [
vD
(∮

dτ
)(

∂f0

∂v
+

pΩv
ωB

∂f0

∂µ

)]
, (5.31)

with D the transit average of the full diffusivity

D=
∮

dτD
/∮

dτ =
[∮

dϑD/v‖n · ∇ϑ
]/[∮

dϑ/v‖n · ∇ϑ
]
. (5.32)
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Sometimes a pitch angle variable is used in place of µ. The transit average of D is
most easily performed explicitly by using the argument of the delta function to select
the poloidal angle at resonance.

Our expression for the transit averaged quasilinear operator Q{ f0} is equivalent
to the usual Kennel & Engelmann (1966) and Eriksson & Helander (1994) result
written in an explicit and compact form in drift kinetic variables, but without the
radial diffusion terms. It is consistent with the transit averaged form of Belikov &
Kolesnichenko (1994) that extended the result of Catto & Myra (1992) to allow finite
k‖ and retain radial diffusion. Both references explicitly treat the distinction between
trapped and passing particles, but without the drift modifications considered here.

In heating and current drive applications the wave fields for the QL diffusivities are
assumed to be known from full wave codes such as TORIC (Brambilla 1999; Wright
et al. 2004) and AORSA (Jaeger et al. 2002). The density and currents needed for
a full wave code have already been partially evaluated by performing the required
gyroaverages in (4.72) to (4.75). The remaining integrals can be performed once f0 is
found numerically by solving the QL equation. Coarse grain averaging is unnecessary
for the full wave representation of the linear wave fields. Otherwise they are derived
with the same approximations as used to obtain the QL operator and so provide
a consistent evaluation for a full wave code in a representation that is expected to
require keeping fewer poloidal modes. They can be converted to v‖ and µ variables
so the non-transit averaged form of the kinetic equation for f0 can be employed to
keep streaming effects that can sometimes play a role (Helander & Catto 2001).

6. Summary

We have derived the modification of the standard Kennel–Engelmann (1966) QL
operator that incorporates magnetic drift effects in tokamak geometry in a non-transit
averaged form and continues to have non-negative entropy production. The only
modification is in the argument of delta function that now includes a broadening term
due to the total magnetic drift as well as usual Landau and cyclotron broadening of
the resonance. To carefully derive this drift modified form for the quasilinear operator
is not as straightforward as might be expected because the higher-order magnetic
moment must be retained. The need to go to higher order requires the unconventional
steps of solving explicitly for two non-resonant terms in the perturbed distribution
function that do not alter the QL operator and directly lead to its most compact form.
Our QL form also has the advantages that it is explicitly in drift kinetic variables
and not transit averaged.

The perturbed distribution function need not be periodic in poloidal angle because
of the presence of trapped particles. Therefore, it is not Fourier decomposed in
poloidal angle like the periodic wave fields. Consequently, a compact modified Fourier
representation for the perturbed distribution function is found having poloidally angle
dependent coefficients. This form is expected to be useful for full wave treatments.
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Appendix A
To see that the integral (4.52) does not vanish we present a partial evaluation of∮

dϕ
2π

eipϕ−iL∆m =

∮
dϕ
2π

eipϕ−iL(k⊥ · v⊥εm · G− k⊥ · Gεm · v). (A 1)

We first write

εm = ε
⊥

m k−1
⊥

k⊥ + ε×m k−1
⊥

n× k+ ε‖mn (A 2)

and note that the k⊥ component ε⊥m does not contribute. Then, defining

G≡ B∇vµ1 + vd =G‖n+ v−1
⊥

G⊥v⊥ + v−1
⊥

G×v× n, (A 3)

we see that we need only consider

∆m = ε‖m

[(
G‖ −

v‖

v⊥
G⊥

)
k⊥ · v⊥ −

v‖

v⊥
G×k · v× n

]
+ ε×m k⊥v⊥G×

= Ωεm · n
[(

G‖ −
v‖

v⊥
G⊥

)
∂L
∂ϕ
−
v‖

v⊥
G×k · ∇kL

]
+ εm × n · kv⊥G×, (A 4)

where

n× v = ∂v⊥/∂ϑ, (A 5)
k⊥ · v⊥ =Ω∂L/∂ϕ, (A 6)

and

v× n=Ω∇kL. (A 7)

In the preceding we define

G‖ = −
1

4Ω
[v⊥ · ∇n · v× n+ v× n · ∇n · v⊥ + 2v2

⊥
n · ∇× n]

−
2v‖
Ω

v× n · (n · ∇n), (A 8)

v⊥G× = v× n · G=
v‖

2Ω
[v⊥ · ∇n · v⊥ − v× n · ∇n · v× n], (A 9)

and

v⊥G⊥ = v⊥ · G

= −
v‖

2Ω
[v⊥ · ∇n · v× n+ v× n · ∇n · v⊥ + 2v2

⊥
n · ∇× n]

−
2µ
Ω

v× n · ∇B, (A 10)

and note

v⊥G⊥ +
2µ
Ω

v× n · ∇B= 2v‖G‖ +
4v2
‖

Ω
v× n · (n · ∇n), (A 11)

∂

∂ϕ
(v⊥G×)=−

v‖

Ω
[v× n · ∇n · v⊥ + v⊥ · ∇n · v× n], (A 12)
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∂2

∂ϕ2
(v⊥G×)=− 4v⊥G×, (A 13)

v⊥G⊥ =
∂

∂ϕ

(
v⊥G×

2
+
v2
⊥

ΩB
v⊥ · ∇B

)
−
v‖v

2
⊥

Ω
n · ∇× n, (A 14)

and

v‖G‖ =
∂

∂ϕ

[
v⊥G×

4
+

2v2
‖

Ω
v⊥ · (n · ∇n)

]
−
v‖v

2
⊥

2Ω
n · ∇× n. (A 15)

To evaluate the required integrals we also use

∇kα = k−2
⊥

n× k= (i/2k⊥)(e−eiα
− e+e−iα). (A 16)

Then, we find as before that

U1 = iv−1
⊥
Ωn×∇kU0 = iv−1

⊥
Ωn×∇k[eipαJp(w)] = eipαe⊥p. (A 17)

In addition, we can evaluate
↔

U2 ≡ eipα↔e⊥⊥p ≡

∮
dϕ

2πv2
⊥

v⊥v⊥eipϕ−iL
= iv−1

⊥
Ωn×∇kU1 = iv−1

⊥
Ωn×∇k(eipαe⊥p)

=
eipα

4
[e−e−ei2αJp+2(w)+ e+e+e−i2αJp−2(w)+ (e−e+ + e+e−)Jp(w)],

=
eipα

4k2
⊥

[
Jp+2(w)(k⊥ − in× k)(k⊥ − in× k)+ Jp−2(w)(k⊥ + in× k)(k⊥ + in× k)

+ 2Jp(w)(k⊥k⊥ + n× kn× k)
]
, (A 18)

where
↔

U2 :
↔

I=
↔

I :
↔

U2=U0, (A 19)
e−e+ + e+e− = 2k−2

⊥
(k⊥k⊥ + n× kn× k), (A 20)

e−e−ei2α
= k−2
⊥
(k⊥ − in× k)(k⊥ − in× k), (A 21)

and

e+e+e−i2α
= k−2
⊥
(k⊥ + in× k)(k⊥ + in× k). (A 22)

Then, integrating by parts allows us to evaluate∮
dϕ
2π

eipϕ−iL∆m = iΩεm · n
∮

dϕ
2π

eipϕ

(
G‖ −

v‖

v⊥
G⊥

)
∂

∂ϕ
e−iL

+

[
εm × n · kv⊥ − i

v‖

v⊥
Ωεm · nk⊥ · ∇k

] [∮
dϕ
2π

eipϕ−iLG×

]
= pΩεm · n

∮
dϕ
2π

eipϕ−iL

(
G‖ −

v‖

v⊥
G⊥

)
− iΩεm · n

∮
dϕ
2π

eipϕ−iL

(
∂G‖
∂ϕ
−
v‖

v⊥

∂G⊥
∂ϕ

)
+

[
εm × n · kv⊥ − i

v‖

v⊥
Ωεm · nk⊥ · ∇k

] [∮
dϕ
2π

eipϕ−iLG×

]
(A 23)

by using only U0, U1 and
↔

U2.

https://doi.org/10.1017/S0022377817000903 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000903


A quasilinear operator retaining magnetic drift effects in tokamak geometry 27

The G× integral is∮
dϕ

2πv⊥
eipϕ−iLG× =

v‖

2Ω

∮
dϕ

2πv2
⊥

eipϕ−iLv⊥v⊥ : (∇n+ n×∇n× n)

=
v‖

2Ω
eipαe⊥⊥p : (∇n+ n×∇n× n)

=
v‖eipα

4Ω
[Jp+2(w)K− + Jp−2(w)K+] ≡ I+p eipα, (A 24)

where we also define

K∓ ≡ k−2
⊥
(k⊥ · ∇n · k⊥ ∓ ik⊥ · ∇n · n× k∓ in× k · ∇n · k⊥ − n× k · ∇n · n× k)

= k−2
⊥
(k⊥k⊥ ∓ ik⊥n× k∓ in× kk⊥ − n× kn× k) : ∇n. (A 25)

Using k⊥ · ∇kK∓ = 0 and k⊥ · ∇kw=w, the preceding gives

k⊥ · ∇k

[∮
dϕ

2πv⊥
eipϕ−iLG×

]
=
v‖weipα

4Ω
[J′p+2(w)K− + J′p−2(w)K+]. (A 26)

The second of the remaining two integrals gives∮
dϕ

2πv⊥
eipϕ−iL

(
∂G‖
∂ϕ
−
v‖

v⊥

∂G⊥
∂ϕ

)
=

(
2v‖
v⊥
−
v⊥

v‖

) ∮
dϕ

2πv⊥
eipϕ−iLG× +

v‖

Ω
eipαe⊥p · (∇`nB− 2n · ∇n)

=

(
2v‖
v⊥
−
v⊥

v‖

)
I+p eipα

+ upeipα, (A 27)

where

upeipα
≡
v‖

Ω
e⊥p · (∇`nB− 2n · ∇n)

=
v‖eipα

k⊥Ω

[ p
w

Jp(w)k⊥ + iJ′p(w)n× k
]
· (∇`nB− 2n · ∇n). (A 28)

The remaining integral is∮
dϕ

2πv⊥
eipϕ−iL

(
G‖ −

v‖

v⊥
G⊥

)
=

1
4Ω

(
2v2
‖

v2
⊥

− 1

)∮
dϕ

2πv⊥
eipϕ−iL(v⊥v⊥ × n− n× v⊥v⊥) : ∇n

+
v⊥

2Ω

(
v2
‖

v2
⊥

−
1
2

)
eipαJp(w)n · ∇× n+

v‖

Ω
eipαe⊥p · n× (∇`nB− 2n · ∇n)

=
v⊥

2Ω

(
v2
‖

v2
⊥

−
1
2

)
eipα(e⊥⊥p × n− n× e⊥⊥p) : ∇n
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+
v⊥

2Ω

(
v2
‖

v2
⊥

−
1
2

)
eipαJp(w)n · ∇× n+ speipα

=−i
(
v‖

v⊥
−
v⊥

2v‖

)
eipαI−p +

v⊥

2Ω

(
v2
||

v2
⊥

−
1
2

)
eipαJp(w)n · ∇× n+ speipα, (A 29)

where

speipα
≡
v‖

Ω
e⊥p · n× (∇`nB− 2n · ∇n)

=
v‖eipα

k⊥Ω

[ p
w

Jp(w)k× n+ iJ′p(w)k⊥
]
· (∇`nB− 2n · ∇n) (A 30)

and

I±p ≡
v‖

4Ω
[Jp+2(w)K− ± Jp−2(w)K+], (A 31)

with K− and K+ complex conjugates, K∗
∓
=K±.
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