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ABSTRACT Diagnostic methods for power transmission facilities are important for energy security because
the growth of defects in power facilities increases the risk of blackouts in an entire power grid. However,
damage in power transmission facilities is difficult to detect because cracks or defects are minuscule
and are challenging to determine. One interesting phenomenon caused by damage in power transmission
facilities is ultrasound emissions on a damaged surface. However, measuring ultrasound emissions to detect
defects is limited by the severity of the surrounding noise. To overcome this limitation, this study proposes
a new method for damage detection by fusing ultrasound measurements with recorded optical images.
The proposed method consists of two phases. The first phase preprocesses ultrasound measurements for
ultrasound feature extraction. This phase aims to detect the location of ultrasound emissions by analyzing
ultrasound characteristics including the intensity and density. The second phase detects and classifies a
damaged object with optical images recorded using a deep convolutional neural network. This phase not
only discards the noise from the ultrasound measurements but also classifies a damaged system among many
components in power transmission facilities. The experiments validate the effectiveness of the proposed
method using ultrasound measurements and recorded images and finally suggest scenarios for potential
applications.

INDEX TERMS Health management, diagnostics, deep learning, damage detection, feature extraction,
ultrasound camera.

I. INTRODUCTION
The reliability of power transmission facilities is important
for securing the stability of power resources and the safety
of power facilities. Specifically, the failure of transmission
facilities causes serious problems, including blackouts [1]
that threaten the livelihood of society. Diagnostics and prog-
nostics must be considered for transmission facilities using
novel sensors and smart inspection systems to ensure the
safety and reliability of power transmission facilities.

Power transmission facilities suffer from a variety of fail-
ure modes [2]. Problems, such as bullet holes, strand failures,
or insulator cracks, can damage the surfaces of transmis-
sion facilities. Vibrations in transmission lines cause wear,
spacer fractures, and breakaways between transmission facil-
ities. Hence, most damage originates from transmission lines,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu Liu .

spacers, stock bridge (SB) dampers, insulators, and marker
balls, which comprised 159 out of 205 cases of defects (78%)
in 2016 in Korea [3], [4]. The failure mode analysis suggests
that inspecting major failure modes and their components is
crucial for the intelligent operation andmaintenance of power
facilities. Therefore, several direct and indirect diagnostic
methods have been studied to inspect damage in transmission
facilities [2].

The direct diagnostic method requires that electricians
climb transmission towers and walk along transmission lines
using simple tools to visually inspect whether damage has
occurred in the current [2]. This intuitive inspection method
can detect many failure modes directly. However, the per-
formance of this traditional inspection method depends on
the skills and concentration of the electrician. If the electri-
cian is distracted from inspection, this traditional inspection
approach does not efficiently detect damage in power facili-
ties. Moreover, this method exposes electricians to potential
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accidents, such as being hurt from a tower or electrical short,
due to the geographical and overhanging nature of power
transmission facilities.

In these dangerous environments, a nondestructive inspec-
tion approach is useful for mitigating concerns regarding
potential accidents [1]. These methods measure corona dis-
charge [5], ultrasonic emissions [6], and heat generation [7]
from a damaged system. With the technological advances in
the fourth industrial revolution, these methods have attracted
attention. Specifically, smart mobilities have enabled these
sensors to closely approach power facilities to measure infor-
mative data. Mobile robots [8] and crewless aerial vehicles
[9] have been vigorously developed by equipping these non-
destructive sensors to inspect power facilities. This suggests
that proactive maintenance with these novel sensors equipped
with smart mobilities reducesmaintenance cost, decreases the
potential for accidents, and avoids the catastrophic failure of
power facilities.

Each nondestructive inspection method has benefits and
drawbacks. Specifically, an infrared camera measures heat
generation on a damaged surface, which was the type of
defect in 75 out of 205 (37%) cases in 2016 in Korea [4]. This
method is quite useful for detecting defects in connection
parts because the wear or damage in connection parts results
in overheating. However, the exact temperature in outside
environments is difficult to estimate using infrared thermal
cameras because many of the parameters used to convert
thermal energy into temperature depend on the surround-
ing environment [7]. Specifically, parameter tuning for an
infrared thermal camera depends on the weather and phys-
ical surroundings; thus, recording thermal images requires
significant effort. Consequently, infrared thermal cameras are
primarily used for controlled environments, such as the inside
of buildings or underground tunnels [10].

A corona camera can detect partial discharges, called
corona discharges, on damaged surfaces [11]. This approach
is effective because the type of defect in 88 of 205 cases
(43%) in 2016 in Korea [4] emitted corona discharge that can
be detected using a corona camera. Corona discharge does
not naturally occur on Earth because the corona discharge
from the sun is absorbed by the ozone layer, suggesting
that measuring the corona discharge is an effective metric.
However, the main drawback of this approach is that corona
cameras are too expensive to produce, especially considering
the wide distribution of power transmission lines.

Interestingly, corona discharge accompanies ultrasonic
emissions, suggesting that an ultrasound array can be used
to detect most damaged surfaces [12]. Moreover, an ultra-
sound array is a much cheaper method than using a corona
camera; therefore, an ultrasound array is economically fea-
sible. However, a current ultrasound array measures the sur-
rounding noise, including reflection and diffraction noises.
Relatively weak sources may also be misjudged as noise
if more than one ultrasound source exists. Moreover, this
sensor only measures ultrasound intensity to deduce whether
information for an object emitting ultrasound is missing.

FIGURE 1. Flowchart for the proposed fault detection method using
ultrasound measurements and optical image fusion.

To overcome these limitations, this study proposes a
method for damage detection using ultrasound and optical
images. The proposed method comprises two phases. The
first phase preprocesses ultrasound measurements to elim-
inate noise using intensity and density filters. An intensity
filter applies a statistical outlier detection method, and a
density filter uses an unsupervised clustering method called
Euclidean distance clustering to account for the circle-like
shapes of ultrasound emissions. The second phase analyzes
optical images through a deep convolutional neural net-
work (DCNN) for object detection. Hence, this phase not
only enhances the accuracy of distinguishing true ultrasound
sources from noises but also classifies the damaged facili-
ties. The experiments show that the proposed method detects
ultrasounds in a variety of operational conditions even with
the inherent characteristics of ultrasounds.Moreover, the pro-
posed neural network effectively cognizes five power facil-
ities with high accuracy. Finally, a potential scenario for
damage detection is illustrated with the proposed method to
suggest future applications using a crewless aerial vehicle.

II. DAMAGE DETECTION METHOD
The proposed damage detection method detects defects and
classifies damaged systems by fusing information from
ultrasound measurements and optical images. The proposed
damage detection algorithm comprises two phases: the detec-
tion of ultrasound locations using ultrasound measurements
(Phase A in Fig. 1) and object detection with optical images
using a DCNN (Phase B in Fig. 1). The details for each phase
are described in the following subsections.

A. ULTRASOUND DETECTION
This section describes the ultrasound detection method com-
prising five steps (Phase A in Fig. 1). This phase aims to
eliminate noise from a) the surroundings of other sources,
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b) the characteristics of a system, and c) the reflection and
diffraction of ultrasound emissions in constrained environ-
ments. It is assumed that the intensity of these types of noise
is relatively weaker than that of ultrasound emissions from
the damaged surface of power transmission facilities.

In the first step (A-1 in Fig. 1), the measured intensity of
ultrasound IUS , which is lower than the intensity threshold Ith,
is filtered. Specifically, the ultrasound intensity IUS is mea-
sured as a two-dimensional (2D) vector map (40 by 30 pixels)
from an ultrasound array. Each pixel contains information
regarding the ultrasound intensity IUS calculated using the
time difference of the arrival method [13] at an embedded
digital-signal-processing board in an ultrasound array. In this
step, the ultrasound intensity IUS , which is higher than the
intensity threshold Ith, maintains the same value for each
pixel, whereas the other cases are converted to the value of the
intensity threshold Ith for each pixel. This study sets the inten-
sity threshold Ith automatically by applying the three-sigma
outlier detection method [14], where the measured intensity
from faults is significantly stronger than that in normal con-
ditions. This statistical filtering method automatically deter-
mines the intensity threshold Ith, implying that this method
is easily applied to other future applications. Hence, this step
effectively eliminates weak surrounding noise.

In the second step (A-2 in Fig. 1), the filtered intensity is
clustered by addressing Euclidean distance clustering [15],
which effectively calculates density data clustered in a circle
shape, such as ultrasound emissions. The proposed method
accounts for the characteristics (i.e., the strong intensity/high
density) of ultrasound emissions from the damaged surface
of power transmission facilities.

The third step (A-3 in Fig. 1) calculates the density of
each cluster ρcluster and then filters the clusters with the
density threshold ρth, where the density threshold ρth is
set to 0.5 times the maximum density ρmax of each mea-
surement because this is a problem of binary classification:
true ultrasound vs. noise. Hence, the center point between
0 and 1 is an appropriate threshold. This threshold is also
automatically determined from the maximum of each mea-
surement. A cluster that is lower than the density threshold
ρth is considered noise and is eliminated. The filtered clusters
with a strong intensity/high density are defined as the region
of interest for ultrasounds (ROIUS ) which are candidates for
ultrasounds emitted from a damaged system. To conduct this
procedure, the Euclidean distance R is properly selected by
considering the environment and the distance from the ultra-
sound array because ultrasound intensity depends on these
factors.

The fourth step (A-4 in Fig. 1) transforms a 2D intensity
vector map to a normalized 2D intensity map in grayscale as
follows:

Inor =
255

Imax − Ith
× (I − Ith) , (1)

where I denotes the intensity of each pixel in each ROIUS
and Inor and Imax denote the normalized intensity in the
range of 0 to 255 with a rounding off operation to make the

result an integer and the maximum intensity in each ROIUS ,
respectively. An optical image is normally represented as red,
green, and blue in integer form with 8 bits of data expressed
for color, ranging from 0 to 255. To match the 2D ultrasound
intensity map with this characteristic of optical images, a 2D
intensity map is linearly normalized in the range of 0 to 255.

The final step upsamples the 2D intensity map using the
nearest-neighbor interpolation method [16] to correct the
resolution mismatch between the normalized ultrasound 2D
intensity map (40 by 30 pixels) and the optical image (640 by
480 pixels). The nearest-neighbor interpolation method is
introduced because its mean processing time is the fastest
among interpolation methods.

B. OBJECT DETECTION AND CLASSIFICATION
This section describes Phase B of the proposed method
comprising three steps. This phase increases the damage
detection accuracy when distinguishing ultrasounds emitted
from a damaged system with noisy ultrasounds. Moreover,
object classification provides useful information to identify a
damaged system in power transmission facilities.

The first step (B-1 in Fig. 1) executes object detection
using an optimal image recorded through a DCNN because
the DCNN outperforms other methods for object detection
if sufficient training datasets are provided. The prediction
through DCNN provides information for object detection
with a confidence score, including the center of the object,
the width of the object wobj, and the height of the object hobj.

The second step (B-2 in Fig. 1) calculates the region
of interest for object detection ROIOD, which requires a
proper margin in terms of width and height to account for
the different resolutions of ultrasound measurements and
optical images. This is because one pixel in ultrasound mea-
surement covers several pixels in optical images, as ultra-
sound measurements are upsampled at A-5 in Fig. 1. Hence,
the mismatch between the location of an ultrasound emission
and object detection should be considered, especially for a
long-distance object. In consideration of these characteristics,
ROIOD is defined as follows:

ROIOD,∗ = GA × G∗,a × ∗obj (2)

where GA and G∗,a denote the distance gain and aspect ratio
gain. The asterisk ∗ indicates the width w or height h of the
object estimated from the previous step (i.e.,wobj or hobj). The
distance gain is calculated as follows:

GA =

1, if Aobj > Ath

1.2− 0.2×
Aobj
Ath

, else
(3)

where Aobj and Ath are the object area and area threshold,
respectively. The object area is calculated by multiplying the
width of an object wobj and the height of an object hobj.
The threshold Ath is set to 5% of the overall area of an
optical image. The distance gain GA is addressed due to
the resolution mismatch depending on the distance between
the ultrasound array and the object of interest. The longer the
distance between an ultrasound array and object of interest,
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FIGURE 2. The region of interest for object detection ROIOD with respect
to the size and aspect ratio of an object.

the greater the distance mismatch. The aspect ratio gain G∗,a
is set as follows:

G∗,a =


1.2∓ 0.2× γ, if γ ≥ 1.2
1.2± 0.2× γ, if γ ≤ 0.8
1, else

(4)

where γ denotes the aspect ratio between the width of object
wobj and the height of object hobj (i.e., wobj/hobj). This gain
is addressed to maintain a proper margin for all objects with
different aspect ratios. In Eq. (4), the upper sign in front of
aspect ratio γ is used for the aspect ratio gain for width Gw,a,
whereas the bottom sign in front of aspect ratio γ is used
for the aspect ratio gain for height Gh,a. This study presents
area threshold Ath and aspect ratio γ , considering the charac-
teristics of power facilities. However, the main principle in
determining Ath and γ is simple, suggesting that selecting
these two thresholds is intuitive and easily implemented in
other applications.

Fig. 2 depicts an example of executing the first and second
steps in this phase. The first step detects objects, such as
insulators or SB dampers (red boxes in Fig. 2), and provides
the width of the object wobj, and the height of the object hobj.
Then, the second step calculates ROIOD,W and ROIOD,H to
compare ROIOD to ROIUS in the following step.
In the last step (B-3 in Fig. 1), an upsampled 2D intensity

map (from A-5 in Fig. 1) is compared to an object detection
result (fromB-2 in Fig. 1). If the center ofROIUS is inROIOD,
a fault alarm is triggered with the information regarding
the class and location of the damaged system. Hence, the
proposed method detects a damaged system and informs its
class.

III. DCNN FOR OBJECT DETECTION
The accuracy of object detection in the B-1 phase is important
to accurately predict a defect in the proposed method, sug-
gesting that selecting the appropriate DCNN determines the
overall accuracy of the proposed method. Hence, this study
compares the architectures of three state-of-the-art one-stage
DCNNs, which simultaneously extract the location and class
of objects with parallel neural network structures because the
two-stage model limits real-time applications. Specifically,
this study examines the single-shot multi-box detector (SSD),

FIGURE 3. Architecture of deep convolutional neural networks (DCNNs)
for object detection. (a) Single-shot multi-box detector (SSD). (b) You only
look once version 3 (YOLOv3), and (c) M2Det.

you only look once (YOLOv3), and a multi-level feature
pyramid network (MLFPN) called M2Det [17]–[19].

A. SINGLE-SHOT MULTI-BOX DETECTOR
The SSD was proposed in 2016 and has two key characteris-
tics in comparison to the previous one-stage object detection
models, including YOLOv1 [20]. One key characteristic is
defining the centers, widths, and heights of the default bound-
ing boxes called prior boxes, whereas only the centers of the
prior boxes are defined in YOLOv1. The other characteris-
tic is feature resampling. Feature resampling retains more
meaningful information and is used to construct multi-scale
feature maps. These characteristics improve the accuracy and
calculation time.

Specifically, the SSD is a feed-forward convolutional net-
work (Fig. 3(a)). An optical image is first inserted into a
backbone network, which is the basis of the feature extraction
layers. The SSD uses VGG-16, which is pretrained using the
ImageNet Large Scale Visual Recognition Challenge dataset
[21], among many backbone networks [22]–[25]. The fea-
tures extracted through a backbone network pass through
multi-scale convolutional layers to construct multi-scale fea-
ture maps, which is meaningful because of their respective
field sizes. The location of an object, including the center,
width, and height relative to the default box, is extracted, and
the classification is simultaneously executed for each object
location at each feature map layer. Data augmentation with
selective sampling is also implemented for effective training.
Hard negative mining is used to deal with class imbalance
problems.

B. YOU ONLY LOOK ONCE (v3)
The YOLOv3 was proposed in 2018 as part of the YOLO
series [18],[20],[26]. Fig. 3(b) illustrates the overall archi-
tecture of YOLOv3, which uses a custom network called the
darknet as the backbone network. A skip connection between
downsampling and upsampling is used to effectively extract
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features containing semantic information for localization and
classification. High-feature layers strengthen detailed infor-
mation, but meaningful semantic information from an object
can be lost. By concatenating the upsampled and previous
features of the two-step layers on a channel basis, meaningful
semantic information from low layers is conserved as fea-
tures for high-feature layers. This neural network uses multi-
scale training, data augmentation, and batch normalization to
improve the performance of object detection.

C. THE M2Det NETWORK
The M2Det network includes multi-scale and multi-level
characteristics [19]. Fig. 3(c) illustrates the overall archi-
tecture of M2Det. Specifically, M2Det extracts multi-level
features by addressing an MLFPN, whereas the previous
deep neural networks in object detection use single-level
features that are extracted using only a serial structure with
single-feature layers.

The MLFPN comprises a feature fusion module (FFM),
a thin U-shaped module (TUM), and a scale-wise feature
aggregation module (SFAM) to improve object detection per-
formance. The FFM aims to avoid losing low-layer infor-
mation by inserting lower features into a higher layer to
extract higher features. The concatenated feature from the
FFM is inserted into the TUMs. The TUMs consist of
multi-level structures with multi-TUM layers. Each TUM
is a multi-scale autoencoder-formatted convolutional layer
to extract multi-scale features. The features in the encoding
parts are concatenated to be featured in decoding parts to
become distinct features. Hence, multi-level features from
TUM layers are inserted into the SFAM to generate the final
multi-scale feature maps.

Sparse features representing low scales are used to detect
large objects, whereas dense features are for small objects.
These feature maps are reweighted through the channel-wise
attention submodule. This submodule executes global aver-
aging pooling for each channel, and the resulting features
are inserted into two fully connected layers. Finally, the fea-
tures that pass through all these modules are inserted into a
prediction layer to evaluate the object location and classes.

IV. EXPERIMENTS
This section describes experiments for ultrasound
measurements and image data acquisition. Experiments were
conducted to verify the detectability of ultrasound emis-
sions using the proposed method in a variety of operational
conditions. Image data acquisition presents procedures and
methods to acquire image datasets using a crewless aerial
vehicle. These image datasets were used for the training and
validation of object detection with the DCNN.

A. EXPERIMENTS FOR ULTRASOUND DETECTION
The attenuation, reflection, and diffraction of ultrasounds are
affected by the position, intensity, and surrounding environ-
ment of an ultrasound source, resulting in mirror or ghost
ultrasounds [27]. Mirror or ghost ultrasound emissions inter-
fere with detecting the true ultrasound in a damaged system.

TABLE 1. Experimental cases for ultrasound detection.

The direction of ultrasound emissions is also important, con-
sidering the straightness of the ultrasound, because an ultra-
sound source might not directly face an ultrasound array in
most cases. Hence, experiments were conducted to evaluate
the detectability of the proposed method with respect to the
distance between an ultrasound array and ultrasound source,
emission angles of ultrasounds, single- or multiple- sources,
and the intensity of the ultrasound source (Table 1).

The ultrasound array BATCAM 1.0 (SM Instruments,
Republic of Korea), JETSON TX2 (NVIDIA, USA) and
two ultrasound generators (Wildlife, USA) were used in the
experiments (Fig. 4(a)). BATCAM 1.0 measures ultrasounds
and provides a preprocessed 2D intensity vector map (40 by
30 pixels, 25 frame per second (FPS)) with a measurement
angle of 90◦. The signal bandpass of BATCAM 1.0 is set to
the range of 38 to 42 kHz because the ultrasound frequency
emitted from a damaged surface is around 40 kHz.

Four cases with different ultrasound sources were explored
using a single source vs. multiple sources (Fig. 4(b)). Sources
in the intensity range of 36 to 48 dB were classified as weak
sources, and an intensity range of more than 100 dB was
classified as strong. Each case was conducted for different
distances and emission angles between the BATCAM 1.0
ultrasound array and the ultrasound generator. The ultrasound
generator and BATCAM 1.0 were installed at the heights of
0.5 m and 0.3 m from the ground, and the measurement time
was set to 4 s for all cases.

The first case (Case 1 in Table 1) was conducted with a sin-
gle strong ultrasound source. The ultrasound generator was
installed at distances of 5, 10, and 15 m from the BATCAM
1.0 with an emission angle in the range of −60◦ to 60◦ with
an angular resolution of 30◦. The emission angle is defined
as 0◦ when the ultrasound generator faces the BATCAM 1.0.
The counterclockwise direction is positive, and the clockwise
direction is negative. Hence, datasets of 15 were measured,
replicating a situation in which a single, strong ultrasound
was emitted from a damaged system at different distances
without external interference.

The second case (Case 2 in Table 1) assumes that two small
instances of damage occur in the transmission facilities. Two
ultrasound sources, which emit the same weak ultrasound
intensity, were installed to mimic this situation at a distance
of 5mwith an emission angle in the range of−60◦ to 60◦ with
an angular resolution of 30◦. The distance between the two
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FIGURE 4. (a) Hardware configuration and (b) experimental conditions.

sources was set to 3 m. Hence, this case records datasets of
25measurements to test the interference of two same-intensity
sources to check the detectability of the proposed method in
multiple source situations.

The third case (Case 3 in Table 1) assumed that two
damaged surfaces emit different-intensity ultrasounds at the
same distance of 5 m from BATCAM 1.0 because of the
different degrees of damage. The surface to the left features
minor damage and emits an ultrasound of weak intensity,
whereas the surface on the right features major damage and
emits an ultrasound of strong intensity. These experiments
were also conducted with the same emission angle range and
angular resolution for the two ultrasound generations so that
datasets of 25 measurements were recorded.

The fourth case (Case 4 in Table 1) was conducted to locate
two different-intensity ultrasounds at different distances. The
weak ultrasound generator was located at a distance of 5 m,
and the strong ultrasound generator was located at a distance
of 10 m from the BATCAM 1.0 with the same emission angle
range and angular resolution as the other cases; thus, datasets
of 25 measurements were recorded. This case replicated the
case in which two instances of damage occurred in different
systems at different distances from an ultrasound array where

TABLE 2. Detailed information on image data measurements.

a heavily damaged system was farther from an ultrasound
array.

B. DATA ACQUISITION OF OPTICAL IMAGES
The acquisition of optical image datasets is important for
object detection through DCNNs because a large num-
ber of high-quality image datasets increases the accuracy
of object detection. A specialized crewless aerial vehicle
was employed by the Korea Electric Power Corporation
(KEPCO) Research Institute to record images of core com-
ponents in transmission facilities. This crewless aerial vehicle
was equipped with SPMY FDR-AX100 (SONY, Japan) and
acquired optical image datasets with a resolution of 1920 by
1080 pixels. The crewless aerial vehicle flew via autopilot
controlled by a KEPCO ground control station [9] in actual
fields.

This method is effective because transmission facilities are
located in mountainous environments, which are difficult to
reach. The ground control station has a virtual safety wall
from the transmission facilities to mitigate concerns regard-
ing the interference of an inertial measurement unit sensor
from magnetic fields energized by high-voltage transmission
lines. Hence, the data acquisition of optical images proceeded
at 12X magnification using SPMY FDR-AX100 equipped in
the crewless aerial vehicle while maintaining a safe distance
from transmission lines.

Four sites where 154, 345, and 765 kV transmission
lines (TLs) are located were navigated with a crewless aerial
vehicle to acquire image datasets at a variety of transmission
facilities (Table 2). The total recorded image datasets for
the transmission facilities is 15 251. Image datasets of 13
726 (90%) were used to train the DCNN, whereas the rest
of the image datasets (1525, 10%) were used to validate
the performance of the DCNN. All transmission facilities
installed on the towers were recorded and classified into five
categories, including a tower, insulator, SB damper, spacer,
and marker ball (Fig. 5), because these are potentially dam-
ageable facilities.

V. RESULTS AND DISCUSSION
This section analyzes two experimental results. Section 5.1
analyzes the results of the source detectability in various
situations, such as using single or multiple sources with
a variety of distances, emission directions, and intensities.
Section 5.2 compares the performance of the three DCNN
models for object detection to select a proper DCNNwith the
Microsoft Common Objects in Context (MS COCO) dataset
[28]. Then, a selected object detection model was trained
using the training datasets for the transmission facilities, and
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FIGURE 5. Core components in transmission facilities including (a) a
tower, (b) insulator and stock bridge damper, (c) spacer, and (d) marker
ball.

FIGURE 6. Results of single ultrasound detection at a distance of 5 m and
an emission angle of 60◦ for Case 1.

the performance of the object detection step was validated
using test datasets. Finally, Section 5.3 presents a scenario
for damage detection using the proposed system.

A. ULTRASOUND SOURCE DETECTION
Case 1 tested the detectability of a single ultrasound at differ-
ent distances. Fig. 6 depicts one experimental result through
Phase A of the proposed method, where the distance between
the ultrasound source and ultrasound array was 5 m, and the
emission angle of the ultrasound source was 60◦. The density
threshold ρth was set to one pixel. Noise reflected from the
surrounding buildings and the ground remained, even after
intensity filtering (­ in Fig. 6). However, the density filter
eliminated most noise that was misjudged to be ultrasound
emissions from a real source (® in Fig. 6). Other results were
similar and were omitted for the sake of brevity.

Fig. 7(a) shows the maximum measured intensity and
detectability for Case 1. The maximum intensity decreased
over the measurement distance. Moreover, for the same dis-
tance, the maximum intensity was the strongest when an
ultrasound source directly faced an ultrasound array (0◦)
whereas the ultrasound intensity was attenuated when a
source obliquely faced an ultrasound array. These results
suggest that detection accuracy depends on the distance

FIGURE 7. Results for Case 1. (a) Maximum intensity map. (b) Measured
intensity of a single source and noise w.r.t time at 5 m from an ultrasound
array with 60◦ emission angle.

and emission angle, implying that facilities should face an
ultrasound array within a measurable angle.

Fig. 7(b) presents the ultrasound intensity from the source
IUS (blue line), background noises Inoise (red line), and ultra-
sound threshold Ith(black line), which is automatically deter-
mined using the three-sigma outlier detection method over
time. The ultrasound threshold Ith has the same trend as
that of the source because the threshold is set statistically.
Measurement reveals that the ultrasound intensity increases
significantly around the source and exceeds 3σ of the mea-
surement. Specifically, the mean of the ultrasound intensity
at the source is 3 dB and that of the ultrasound threshold
is -27 dB, whereas the noise intensity is -67 dB, suggesting
that background noises are effectively eliminated. Hence,
the proposed method successfully detects ultrasound emis-
sions for all experiments, although the measured ultrasounds
depend on the distance and emission angle, suggesting that
ultrasounds emitted from a damaged system can be easily
detected if no other noise source exists in the surrounding
environment.

Case 2 describes the condition in which two instances of
damage occur at the same distance and emit a similar intensity
of ultrasound. However, the emission angle could be different
because of the complex shape of power facilities. This is
a more complicated condition than Case 1 because of the
interference of the two ultrasounds.
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FIGURE 8. Results for Case 2. (a) Maximum intensity map. (b) Measured
intensity of a weak source on the left side, a weak source on the right
side, and intensity threshold with an emission angle of (top)
−60◦

(
left

)
/60◦(right) and (bottom) −60◦(left)/30◦(right).

Fig. 8(a) presents the results for the maximum inten-
sity and detectability. The experimental results reveal that
the maximum intensity was low compared to the results of
Case 1 in which both ultrasounds were emitted from weak
sources. Moreover, detectability depends on the emission
angle. Both ultrasounds were detected using an ultrasound
array when both ultrasounds had a small emission angle
(i.e., −30◦ to 30◦; Fig. 9(a)), whereas ultrasounds headed
with a larger emission angle were not detected (Fig. 9(b)).
These results suggest that the relative emission angle of
two ultrasounds affects the detectability due to interference.
However, the noise decreased or was eliminated using inten-
sity and density filters. Hence, the proposed method discrim-
inates true ultrasounds from noise. Fig. 8(a) also reveals that
the maximum intensity was affected by the emission angle
of both sources because the intensity of the two sources was
similar. In this case, the two sources were detected from
22 angles in 25 situations. Moreover, the source on the right
side was detected when an emission angle of the source to the
left was−60◦, whereas the left source was detected when the
emission angle of the right source was 60◦. This phenomenon
can be explained by the superposition of the forced linear
wave equation [27].

Fig. 8(b) presents the ultrasound intensity of the left source
(blue line), right source (red line), and intensity threshold

FIGURE 9. Results of ultrasound source detection with an emission angle
of (a) −30◦(left)/30◦(right) and (b) −60◦(left)/30◦(right) for Case 2; US
denotes ultrasound.

Ith (black line) over time with an emission angle of (top)
−60◦(left)/60◦(right) and (bottom) −60◦(left)/30◦(right).
With an emission angle of−60◦ and 60◦ for the left and right
sources, respectively, the mean of both sources exceeds the
threshold. However, the ultrasound intensity of the left source
is lower than the ultrasound threshold Ith during a period
of 1.75 to 2.75 seconds, suggesting that small defects may
not be detected during entire period of measurements, and
the detected frequency also should be accounted for. The left
source is not detected with an emission angle of −60◦ (left)
and 30◦ (right) because the ultrasound intensity of the left
source is smaller than the ultrasound intensity threshold.

In Case 3, two sources emit ultrasounds with different
intensities at 5 m from an ultrasound array to verify the
detectability of multiple ultrasound sources. This case repli-
cates two defects that are differently damaged in power
facilities.

Fig. 10 illustrates the results of applying the proposed
method for Case 3. Noise still occurs after the ultrasound
measurement passes through the intensity filter, and the inten-
sity of some noise was similar to that of a weak ultrasound,
suggesting that the intensity filter limits the detection of two
true sources. However, the two sources were detected after
passing through the density filter (® in Fig. 10(a)). Hence,
the classification process through theDCNNmight determine
which component is damaged. However, a weak source is
not detected, as depicted in Fig. 10(b) where two sources
are installed at −60◦ and 30◦, again confirming that the
straightness and superposition of ultrasounds are important
characteristics.

The detailed results for the maximum intensity and
detectability are presented in Fig. 11(a). Both ultrasounds
were detected for most cases; however, some cases could
not detect the weak ultrasound, where the emission angle
of the weak ultrasound θw on the left side was significantly
oblique. Fig. 11(b) depicts the ultrasound intensity of the
left source (blue line), right source (red line), and intensity
threshold Ith (black line) over time with an emission angle of
(top) −30◦(left)/−30◦(right) and (bottom) −60◦(left)/−30◦

(right) to elucidate the reason for this observation.
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FIGURE 10. Results of ultrasound source detection with an emission
angle of (a) −60◦(left)/60◦(right) and (b) −60◦(left)/30◦(right) for Case 3;
US denotes ultrasound.

FIGURE 11. Results for Case 3. (a) Maximum intensity map. (b) Measured
intensity of a weak source, strong source, and intensity threshold with an
emission angle of (top)−30◦(left)/−30◦(right) and (bottom)
−60◦(left)/−30◦(right).

This analysis demonstrates that the ultrasound intensity of the
weak source is significantly different, although the maximum
intensity from the strong source is similar, suggesting that
ultrasound intensity depends on the emission direction.

Case 4 is the condition in which a weak and strong source
were both installed at distances of 5 and 10 m from an ultra-
sound array. This condition replicated a situation in which
a seriously damaged component was farther from an ultra-
sound array than a less-damaged component. This condition
is plausible for our application because many transmission

FIGURE 12. Results for Case 4. (a) Maximum intensity map. (b) Measured
intensity of a weak source, strong source, and intensity threshold with an
emission angle of (top) −30◦(left)/0◦(right) and (bottom)
−60◦(left)/0◦(right).

facilities are located at different distances. Similar to the
results of Cases 2 and 3, the intensity and density filters
eliminated noise; therefore, ultrasound emissions from the
true source were more clearly detected. However, a strong
source was only detected for some cases, including those with
an emission angle of weak and strong sources at−60◦/0◦ and
−60◦/30◦ (Fig. 12(a)).
Detailed results for themaximum intensity and detectability

are listed in Fig. 12(a). The maximum intensity from the
strong ultrasound decreases in the overall experiments com-
pared to Cases 1 and 3 because of the long distance.
Specifically, the maximum intensity was 35 dB when the
emission angles of the weak and strong sources were 60◦

and 0◦, respectively, whereas the maximum intensity was
48 dB for the same angles in Case 3. Fig. 12(b) shows the
reason for the undetected cases. The ultrasound intensity
of the weak source is low, although the maximum inten-
sity from the strong source is similar, suggesting that the
relative ultrasound difference between two sources is impor-
tant because the threshold is determined statistically. The
proposed method detected both ultrasounds for 23 cases.
The other two cases also detected strong sources, sug-
gesting that seriously damaged components can always be
detected, and less-damaged components can be detected if
an inspection is conducted appropriately using the proposed
method.
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TABLE 3. Performance comparison with COCO data.

The experimental results for Cases 1 to 4 suggest that
the emission angle between the damaged surface and ultra-
sound array is not important for a single damaged condition.
However, the emission angle between the damaged surface
and ultrasound array and the angle between two ultrasounds
are important, considering the convolution effects of the ultra-
sounds. All cases detected the ultrasounds at the emission
angles of -30◦ to 30◦ using the proposed method, suggesting
that damaged components can be detected if the ultrasound
array faces the power facilities at the proper angle.

B. OBJECT DETECTION WITH DCNN
This study evaluated three state-of-the-art DCNN models for
object detection using the MS COCO dataset [28]. The MS
COCO dataset is one of themost popular datasets used to ana-
lyze the performance of DCNN models designed for object
detection. In total, training/validation datasets of 2014 with
80 classification categories in the MS COCO dataset were
used. The training of the DCNN model was executed on
a graphics processing unit (GPU) server with two Intel
Xeon 5218 (2.30GHz) CPUs with 32 GB memory and four
RTX-2080Ti GPUs.

The AP is given as the ratio of true positives (TPs) to
the total predicted positives, which is the sum of TPs and
false positives (FPs) (i.e., AP = TP/(TP + FP)). The mean
average precision (mAP) is mean value of AP for all objects,
which was used as a metric of prediction performance in two
different ways. One is the mAP in terms of the intersection of
union (IoU), which is the intersecting area over the overlap-
ping area between the ground truth and prediction, indicating
the performance of both the object localization and classifi-
cation. The IoU threshold was set to eliminate the effects of
well-classified and inaccurately localized predictions. A high
IoU threshold increases the FPs for objects. Hence, the AP is
inversely proportional to the IoU threshold. The mAP were
calculated, such as 0.5 or 0.75 in Table 3. Moreover, the mAP,
0.5:0.95 in Table 3, is the averaged mAP over different IoU
thresholds from 0.5 to 0.95 with 0.05 increments.

This is a primary metric in many studies [17]–[19] because
this metric evaluates the overall performance of the neu-
ral network. The mAP with the following three pixel areas
also is calculated to check the object detectability: small
(area < 322), medium (322 < area < 962), and large (area
> 962). The mAP for different areas is also an impor-
tant metric to evaluate the capability of multi-scale and

multi-level networks. The input images for the three differ-
ent sizes are predefined in the test datasets for quantitative
comparison.

All conditions, including input size, backbone network,
and hyperparameters, were set to the same values as the
SSD, YOLOv3, and M2Det methods described in [17]–[19]
to conduct quantitative comparisons, as presented in Table 3.
These results reveal that the mAPs estimated from the three
models in this study have similar accuracy to the refer-
ences, confirming that the three models were built properly.
Moreover, M2Det exhibits the highest mAP in both the IoU
and area, whereas YOLOv3 is the fastest in terms of cal-
culation time. The SSD is inferior to the others in terms of
both accuracy and calculation time. The FPS in the reference
literature is not displayed in this paper because quantitative
comparisons between references and this study cannot pro-
vide useful information due to the different hardware con-
figurations. Hence, this paper only compares the FPS of the
three models from our GPU server. This result suggests that
M2Det should be introduced as a damage detection method
for power facilities because the calculation time and accuracy
are both important when attempting to detect defeats in trans-
mission facilities. However, accuracy is more important than
calculation time for our study.

As the next step, M2Det was trained with the datasets
from the transmission facilities. The number of objects clas-
sified in the datasets is 33 555, which includes 3253 towers
(9.7%), 6628 spacers (19.7%), 7653 SB dampers (22.8%),
1044 marker balls (3.1%), and 14 977 insulators (44.6%).
All images are downsampled from 1920 × 1080 pixels to
800× 800 pixels to reduce the calculation time.
Data augmentation was randomly conducted before

training. Data augmentation included cropping, expansion,
distortion, and mirroring to supplement a lack of data diver-
sity and increase the accuracy of object detection.When train-
ingM2Det with images of transmission facilities, a batch size
of 2, a momentum of 0.9, and a decay weight of 0.0005 were
used as hyperparameters.

The structure of M2Det for the feature extraction parts
comprises four multi-level feature layers and four multi-scale
features. The total training epochs were 200, and the initial
value of the learning rate was 4×10−4. Every 20 epochs, the
learning rate decreased by a factor of 1/2 until 60 epochs.
After 60 epochs, the learning rate was set as 1/10 of the
previous learning rate for every 20 epochs until 140 epochs.
At 140 epochs, the learning rate was fixed at 1×10−8 for
efficient training.

Table 4 lists the AP of all categories through M2Det con-
cerning the IoU. The AP for five objects and the mAP was
around 0.90 for the IoU threshold of 0.5, suggesting that
datasets over 15 000 are effective for trainingM2Det. The AP
for five objects and the mAP are almost the same, implying
that all objects were evenly trained, although several input
images are different. The AP for the tower and marker ball
is higher than that of the others for the IoU thresholds even
though the number of images for towers and marker balls
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TABLE 4. Prediction accuracy of M2Det for transmission facility data.

is smaller than the rest of the objects. These observations
can be explained a factor that the unique shape of marker
balls and towers discriminated from the surroundings results
in distinct features. The AP for the insulator is the lowest
because insulators are located near a tower and overlap with
the structure of a tower in an image. This spatial characteristic
of insulators interferes with feature extraction and results in
low accuracy compared with other objects.

The AP and mAP decrease when the IoU threshold
increases. The same phenomena are shown in mAP in terms
of different IoUs in Table 3 due to the formula for the AP.
A smaller size significantly decreases the IoU considering
the effect of the same pixel difference in the calculation
of small and large objects. The same origin also explains
with mAP (area) in Table 3. The mAP (area) is high for
large objects over 40% and low for small objects less than
20% because the low resolution of small objects significantly
decreases the IoU.

The IoU thresholds of 0.5 and 0.6 are generally used in
DCNNs for object detection [29]. These thresholds are also
reasonable for our application. The flight protocol with 12X
magnification of the optical zoom measures medium and
large images for five components. The mAP can be increased
by omitting the downsampling process of the original optical
images. The tradeoff between the prediction accuracy and
calculation time can be optimized in future work for real-time
applications.

C. SCENARIO FOR FAULT DETECTION IN POWER
FACILITIES
This section describes the damage detection scenario in
transmission facilities with the proposed method and system
equipped in a crewless aerial vehicle. This scenario demon-
strates how the proposed method and system could be used
in the actual field. A defect is not frequently found through
field inspection; therefore, it is difficult to show an exam-
ple of detecting damaged facilities. Validating the proposed
method in field applications requires significant effort and
time.

To illustrate the potential scenario, the measured
ultrasound was overlapped with optical images. It assumed
that the damage of an insulator, SB damper, and spacer emit-
ted ultrasounds because the main damage of these facilities is
correlated to the partial discharge of TLs, whereas the towers
are insulated for safety. In addition, themain defect in amaker
ball occurs on the surface.

FIGURE 13. Scenario results using the object detection method.
(a) Insulators and stock bridge (SB) dampers. (b) Spacers.

Considering the random characteristics in ultrasound dif-
fusion, virtual ultrasound sources were randomly generated
within an optimal image using the 2D Gaussian distribution.
If the center of an ultrasound source was included in ROIOD,
a faulty alarm was generated with information on the defect
location and class. Fig. 13 illustrates the examples of a sce-
nario in which the defects in the transmission facilities were
detected. This scenario demonstrates that Phase B provides
information on the damaged components when ultrasounds
are detected in Phase A using the proposed method.

VI. CONCLUSION
This paper presents a method for damage detection by fus-
ing ultrasounds emitted from damaged surfaces and optical
images. The proposed method comprises two phases for
discriminating true ultrasounds from noise. The first phase
preprocesses ultrasound measurements through intensity and
density filters. The second phase aims to not only increase the
accuracy of ultrasound detection but also classify a damaged
system by comparing the location of an ultrasound with an
optical image, which detects the object using object detection
through a DCNN. The experiments demonstrated that single
and multiple areas of damage could be effectively detected.
However, proper angles that consider the straightness and
superposition characteristics of ultrasounds are important for
enhancing accuracy. Moreover, M2Det successfully recog-
nizes the power facilities with up to 15 000 image datasets,
suggesting that the DCNN is useful not only for enhanc-
ing accuracy but also for classifying damaged components.
Finally, a scenario for damage detection with a crewless
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aerial vehicle was demonstrated for potential applications.
Future work includes many field experiments equipping the
proposed method and system in a crewless aerial vehicle and
verifying the quantitative accuracy in actual fields.
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