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Abstract: Evaluating the economic feasibility of wind farms via long-term wind-resource assessments
is indispensable because short-term data measured at a candidate wind-farm site cannot represent
the long-term wind potential. Prediction errors are significant when seasonal and year-on-year
variations occur. Moreover, reliable long-term reference data with a high correlation to short-term
measured data are often unavailable. This paper presents an alternative solution to predict long-term
wind resources for a site exhibiting seasonal and year-on-year variations, where long-term reference
data are unavailable. An analysis shows that a mutually complementary measure-correlate-predict
method can be employed, because several datasets obtained over short periods are used to correct
long-term wind resource data in a mutually complementary manner. Moreover, this method is
useful in evaluating extreme wind speeds, which is one of the main factors affecting site compliance
evaluation and the selection of a suitable wind turbine class based on the International Electrotechnical
Commission standards. The analysis also shows that energy density is a more sensitive metric than
wind speed for sites with seasonal and year-on-year variations because of the wide distribution of
wind speeds. A case study with short-term data measured at Fujeij, Jordan, clearly identifies the
factors necessary to perform the reliable and accurate assessment of long-term wind potentials.

Keywords: measure-correlate-predict; site compliance; wind-resource assessment; wind
potential prediction

1. Introduction

Energy concerns arising from the depletion of fossil fuels and the volatility of natural resource prices
have led to an increased emphasis on the development of renewable energy sources. Renewable energy
sources also mitigate concerns about carbon dioxide emissions, which are the main reason for climate
change. Renewable energies, including solar, wind, hydro, biomass, geothermal, wave, and tidal energies,
are obtained from natural and persistent flows of energy occurring in the immediate environment.
This implies that renewable or alternative energies have great potential to generate electricity [1].

Among many renewable energies, the exploitation of wind energy is economically feasible
because of technological maturity. Technological advancements in aerodynamics, structural dynamics,
and micrometeorology have contributed to an increase in energy yields from wind turbines. Moreover,
the weight of wind turbines and their noise emissions have been halved over the last few years, whereas
their capacity has been doubled [2]. Therefore, wind energy is being actively investigated [3–7] and
large-scale commercial wind farms are being intensively developed worldwide [8]. Hence, 20% of new
installed power capacity is from the wind energy sector worldwide [9].
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An accurate and reliable feasibility study should be conducted to construct a new commercial
wind farm considering the substantial initial capital investment. Economic feasibility assessment
considers many factors including tariffs, energy yields, availability of wind turbines, and operation and
maintenance costs. One critical factor is the calculation of the net annual energy production (AEP) and
its inherent uncertainty. To accurately predict the AEP, long-term wind resources should be evaluated
over a period of 20 years for a candidate site because wind turbines are designed to operate for over
20 years. This suggests that the feasibility study of a wind farm should be performed for a similar
period, i.e., over 20 years [10,11]. However, the installation of a meteorological mast (met-mast) at
a site for the measurement of wind resources over 20 years is not feasible. A general approach is to
install a met-mast at a candidate site and measure wind resources for several years. Then, the obtained
short-term measured data can be corrected by employing a measure-correlate-predict (MCP) method
using long-term reference data [12].

Diverse methods have been proposed to improve the reliability and accuracy of the long-term
wind-resource assessment of wind farms [13–23]. The matrix method has been introduced to accurately
predict wind rose sector records for sites in complex terrains [24]. Furthermore, the round-robin site
assessment method has been suggested to improve the accuracy of MCP methods for measurements
over short periods [25]. The uncertainties of wind resource assessments and predictions regarding
energy production have also been analyzed [26]. Moreover, the applicability of several long-term
reanalysis datasets has been evaluated to determine suitable datasets for commercial offshore wind
farms [27]. Recently, several deep neural networks have been developed to increase wind resource
prediction accuracy [28,29]. These studies provided a firm theoretical foundation to perform reliable
and accurate long-term wind-resource assessments.

A prerequisite for applying these methods is to obtain highly reliable long-term reference data
and correlate such data to the short-term data measured on-site. Long-term reference data include
data obtained from meteorological stations, the Quick Scatterometer satellite [30,31], and reanalysis
datasets of the National Center for Atmospheric Research (NCAR)–National Centers for Environmental
Prediction (NCEP)/Modern Era-Retrospective analysis for Research and Application (MERRA) [32].
The use of highly reliable and correlated long-term reference data significantly affects the accuracy and
reliability of a long-term wind-resource assessment. However, it is not always easy to obtain these data,
particularly for onshore sites. In addition, the metrological reanalysis datasets from NCAR–NCEP/MERRA
have low spatial resolutions. Specifically, the spatial resolutions of NCAR–NCEP and MERRA are
approximately 25 and 50 km [33], respectively, implying that long-term reanalysis datasets from these
sources frequently exhibit a low correlation with the short-term data measured at a candidate site.
When long-term data are unavailable, wind-resource assessment can be conducted with short-term data.
However, assessments with short-term data have shown significant uncertainty. More specifically, wind
potentials assessed using short-term data differ significantly from those with long-term data for a site
characterized by seasonal and year-on-year variations [26], suggesting that an alternative method to
enhance the accuracy and reliability of wind-resource assessment would be useful.

These difficulties motivated this study to present an alternative solution for predicting the long-term
wind potential of a site characterized by seasonal and year-on-year variations, where long-term reference
data are not available. The proposed method is simple yet effective for practical field applications.
When reliable long-term reference data are unavailable, the long-term wind data in each dataset
are reconstructed using the mutually complementary MCP method via regression analysis of data
measured at various met-masts over different periods. Note that the measured datasets obtained from a
variety of met-masts should be highly correlated for the recreation of reliable long-term wind datasets.

The proposed method was applied to data measured at three met-masts in Fujeij, Jordan,
where long-term reference data were not available. The periods of measurement for each met-mast
differed, and data corresponding to several periods are missing due to the poor operation and
management of these met-masts. Analysis using short-term measured data shows that evaluations
of the wind potentials and extreme wind speed (EWS) for the candidate site significantly depend



Mathematics 2020, 8, 1795 3 of 20

on the data used. In contrast, long-term time-series datasets of the three met-masts, corresponding
to a period of over six years, were successfully recreated when the mutually complementary MCP
method was applied. Additionally, analysis of the long-term reference data reveals several important
features that result in significant differences in the economic feasibility assessment and the estimation
of site compliance. Hence, long-term wind-resource assessment for a site characterized by seasonal
and year-on-year variations should be conducted carefully with a suitable approach, using the
information provided.

2. Theories

2.1. Wind Characteristics

It is desirable to characterize wind resources with several representative metrics through statistical
analysis because time-series meteorological data are exceptionally large. The simplest and most
practical proxies are the parameters of a distribution function. Several probability density functions
describe wind potential characteristics. The Weibull and Rayleigh distributions are commonly used to
predict the wind resource at a candidate site [34]. These distributions are skewed because they are
defined only for values greater than 0. This study employs the Weibull distribution to assess long-term
wind resources. The Rayleigh distribution is a special case of the Weibull distribution [35]. Particularly,
the Weibull distribution changes to the Rayleigh distribution when the shape factor k of the former is
fixed at 2.

The Weibull probability density function f (v) that denotes the wind speed via a frequency
distribution is a special case of the Gamma distribution with two generalized parameters [36]:

f (v) =
k
c

(v
c

)k−1
exp

[
−

(v
c

)k−1
]

(1)

where c denotes the scale factor. The shape factor k and the scale factor c in the Weibull probability
density function can be calculated using several methods [37,38]. In this study, these parameters
were calculated with the maximum likelihood method that presents accurate and robust results for
time-series wind data [37]:

k =

∑n
i=1 vk

i ln(vi)∑n
i=1 vk

i

−

∑n
i=1 ln(vi)

n

−1

, (2)

c =

1
n

n∑
i=1

vk
i

1/k

, (3)

where the wind speed is vi in time stage i and n is the number of non-zero wind speed data points.
Note that the shape factor k is iteratively calculated in Equation (2), whereas the scale factor c is
explicitly calculated in Equation (3).

The mean wind speed vm is related to these two parameters in the Weibull distribution, as follows:

vm = cΓ
(
1 +

1
k

)
, (4)

where Γ denotes the gamma function.
The scale factor c represents the wind speed (m/s), whereas the shape factor k describes the form

of the distribution [39]. A higher value of c denotes a higher mean wind speed vm, suggesting that a
site characterized by a high c is likely to have a high wind energy potential because the wind energy
density PW is proportional to c3:

PW =
1
2
ρac3Γ

(
1 +

3
k

)
, (5)

where ρa is the air density of the region, calculated using:
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ρa =
B

R0T
, (6)

where B denotes the air pressure, R0 denotes the gas constant of dry air, 287.05 J/(kg K), and T is the
absolute air temperature. In wind-resource assessments, 10-minute averaged values of the air pressure
B10 min, and the absolute air temperature T10 min are used to calculate the 10-min averaged air density
ρa, 10 min.

A higher value of k indicates a smaller variation of v, whereas a lower value of k indicates larger
variability of v. The shape factor k is, thus, related to turbulence intensity I, which determines the wind
turbine class in compliance with International Electrotechnical Commission (IEC) 64,100 [10,11].

The AEP and capacity factor (CF) determine the economic feasibility of a candidate site.
These values are calculated as follows:

AEP = t
∫ vco

vci

PC(v) f (v)dv, (7)

CF (%) =
AEP

Rated power × t
× 100, (8)

where t is the number of hours per year, which is 8760, excluding the down time for wind turbines,
PC(v) is the power curve of the wind turbines, and vci and vco are the cut-in and cut-out wind speeds.
PC(v), vci, and vco are the characteristics of a wind turbine. The integral in the equation [30] does
not have a closed mathematical form. The trapezoidal rule, which can be employed to perform
numerical integration [34], is used to calculate the AEP. Then, the total capital cost and expected
income, i.e., the tariffs for the designed life of a wind farm, are estimated, and finally, the benefit–cost
ratio is analyzed to determine whether a project should proceed [40,41].

The AEP depends on the wind characteristics of a site and the wind turbine. The blade length
significantly affects the AEP because the power output of a wind turbine is directly correlated to the
area swept by the blades. The larger the blade diameter, the more power can be generated from wind.
For example, the turbine manufacturer Vestas introduced the model V112 with a blade span of 112 m,
which is 22 m longer than the blade span of the previous model, V90. As a result, the AEP of V112 is
10% more than that of V90, under the same wind conditions [42].

2.2. Extreme Wind Speed

EWS is an important metric in the evaluation of site compliance from the design perspective of
a wind turbine. IEC 61,400 suggests that load analyses of wind turbines must be conducted with
a recurrence period of 50 years under extreme wind conditions. EWS is the highest wind speed
statistically expected over a long period. Many turbines that are equipped with long blades have been
developed, owing to technological advances in the design and manufacturing of blades. A large blade
span intensifies the aerodynamic load on a blade, increasing the vulnerability of the blade and the
wind turbine to fatigue and extreme loads. Therefore, it becomes more significant to predict the EWS
to ensure the integrity of the wind turbine during the period of operation.

The Gumbel distribution was used to estimate the extreme distribution of each return period
because it has produced the most accurate results in previous studies [43]. The Gumbel distribution
F(x) is a cumulative distribution with parameters α and β, given by:

F(x) = exp
[
− exp−α(ve−β)

]
, (9)

where ve is a sample corresponding to the maximum value of wind speed and α and β denote the
measure of dispersion (or scale parameter) and the mode of extreme value distribution (or the location
parameter), respectively [34,44].
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Assuming that it follows the Gumbel distribution, the EWS V(p) with a return period p is
calculated using:

V(p) = −
1
α

ln
[
ln

(
λp
λp− 1

)]
+ β, (10)

where λ denotes the extracted extreme events per year [44]. The Gumbel distribution can be employed
to determine the parameters corresponding to the most suitable distribution types for the extracted
samples, and the parameters were estimated using the least squares method. To estimate the Gumbel
distribution, the Weibull (or probability) plotting position was used as follows:

WP =
j

N + 1
, (11)

where j is an integer denoting the samples sorted in ascending order and N denotes the total number
of samples. Thus, WP is the mean value of the jth order statistic in a sample set of size N. Note that
this is an unbiased, non-parametric estimate because no assumption involving the distribution type is
entailed [45]. In addition, the Gumbel distribution graph is illustrated using Gumbel reduced variates,
GG, as follows:

GG = ln(− ln WP). (12)

2.3. Mutually Complementary Measure-Correlate-Predict Method

The mutually complementary MCP method is a simple yet effective approach. The main advantage
of the proposed approach is that it can recreate long-term data using several short-term datasets that are
highly correlated; this is because each short-term dataset serves as a reference for the others. In contrast,
other MCP methods require long-term reference data. Therefore, if several highly correlated short-term
datasets are available, but the data corresponding to many periods are missing, the proposed approach
can effectively reconstruct a long-term time-series wind dataset. More specifically, the proposed
method can only be applied to short datasets that have overlapping periods and are highly correlated.
The detailed procedure is presented in Figure 1, and the process is explained subsequently.

1. In step, categorize all the datasets collected at a wind farm and near a site with regards to each
wind direction. The number of direction sectors depends on the site characteristics. Optimum
numbers can be decided by observing the wind rose of a site. In general, 12 sectors are used.

2. In step 2O, use the categorized data to calculate the coefficient of determination R2 between
datasets using Equation (13). Note that using many measured sample datasets enhances the
accuracy and reliability of the mutually complementary MCP method in analyzing wind resources,
similar to any other MCP method.

R2 =


n
(∑n

i=1 xiyi
)
−

(∑n
i=1 xi

)(∑n
i=1 yi

)
√

n
(∑n

i=1 x2
i

)
−

(∑n
i=1 xi

)2
√

n
(∑n

i=1 y2
i

)
−

(∑n
i=1 yi

)2


2

, (13)

where xi and yi denote the measured data from each met-mast.
3. Once correlations among all the datasets are calculated, the sections with very poor correlations

between datasets are selected and removed in step 3O, because data that are poorly correlated
have lower reliability for the prediction of long-term wind potentials. Generally, datasets showing
R2 > 0.8 are recommended to ensure accuracy and reliability in an MCP process [46].

4. In step 4O, sort sections in descending order of correlations and count the number of datasets.
5. Use the dataset with the highest correlation to recreate the data of a recoverable period by primarily

using a regression analysis in step 5O. Then, use the datasets with the highest correlations to
recreate the data of the recoverable periods. Note that the data obtained at each met-mast become
a reference for those obtained at other met-masts.
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6. Finally, the long-term wind data from all met-masts are serially ordered and recreated in a
mutually complementary manner.
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Figure 1. Flowchart for the mutually complementary Measure-Correlate-Predict (MCP) method.

3. Evaluation and Characterization of Wind Resources

Long-term wind resources of the site of interest, where seasonal and year-on-year variations
are significant, were evaluated in this study. Analysis of the site requires an alternative method to
assess long-term wind potentials, because long-term reference data are not available for the area under
consideration and some long-term measurement datasets have several missing periods. In Section 3.1,
information on the site and its data are provided. The availability of the data measured from the three
met-masts was also analyzed. In Section 3.2, long-term wind potentials are characterized for Fujeij.
The analysis clearly shows the effects of seasonal and year-on-year variations on the assessments of
long-term wind resources.

3.1. Site and Data Description

The geographical locations of the met-masts are shown in Figure 2. Six datasets gathered from
three met-masts were used in this study. The area under consideration is located at the intersection
of latitude 30◦35′ N and longitude 35◦37′ E. This area lies on top of a plateau at an elevation of
approximately 1250 m. The area is predominantly a desert. Hence, the ground is mostly covered by
bare rocks and scattered shrubs.
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To evaluate the economic feasibility of constructing a commercial wind farm, meteorological
data were measured at three met-masts, named GTZ, Fujeij 1, and Fujeij 2, which were installed in
2000, 2001, and 2002, respectively. All the met-masts were designed and installed according to IEC
standards [47].

GTZ has a lattice structure and is equipped with two anemometers, one wind vane, two temperature
sensors, and one air pressure sensor. One anemometer was mounted on top of the mast at a height of
40 m. The other anemometer was boom-mounted at 10 m. A wind vane was boom-mounted at 38
m. The boom-mounted anemometer and wind vane were oriented toward the west, the main wind
direction at the site. The temperature sensors were mounted at heights of 38 m and 3 m, respectively.
The air pressure sensor was located inside a data logger cabinet. The measured temperature T and air
pressure B were used to calculate the air density ρa of the area under consideration using Equation (6).

Both Fujeij 1 and Fujeij 2 are equipped with two prop-vanes, which measure wind speed
and direction. One prop-vane was mounted on top of the mast at 45 m, whereas the other was
boom-mounted at 30 m, and both were oriented toward the east. Data loggers were programmed
to record the mean wind speed, standard deviation of wind speed, and wind direction, as well as
the maximum and the minimum wind speeds at ten-minute intervals. More details are presented in
Table 1.

Table 1. Specific information of met-masts.

Name Latitude Longitude Measurement Period Mean Interval Measurement
Heights

GTZ N 30◦32.293′ E 35◦37.347′ August 2000–February 2008 10 min 10 m and 40 m
Fujeij 1 N 30◦34.049′ E 35◦’37.615′ December 2001–February 2008 10 min 30 m and 45 m
Fujeij 2 N 30◦33.991′ E 35◦’37.250′ June 2002–December 2006 10 min 30 m and 45 m

The three met-masts are close to each other. The distance between GTZ and Fujeij 1 is approximately
3.5 km and that between Fujeij 1 and Fujeij 2 is approximately 0.6 km. Moreover, there is no obstacle or
significant change in the elevation among the met-masts, as shown in Figure 2, suggesting that the wind
characteristics of the three met-masts would be highly correlated. The total periods of measurement
were 90, 75, and 55 months for GTZ, Fujeij 1, and Fujeij 2, respectively. Based on these, the period
of interest was set to 72 months (2001–2007) because a recent study showed that the wind potential
estimated after six years of measurement is similar to that derived via predictions corresponding to
over 20 years [48]. More specifically, a six-year wind potential span can represent that of 20 years.
Even though the data were recorded over a long period, the availability of data was poor because of
the improper operation and maintenance of the three met-masts. The sensors on the met-masts were
not maintained or repaired in a timely manner, leading to many periods with missing data. Hence,
the measured data were cleaned after first analyzing the log files. This process eliminated abnormal
data obtained during periods of malfunction, icing, and so on.

The detailed availability of the six datasets was ensured after data cleaning, as shown in Figure 3.
The meteorological data measured at GTZ exhibited availabilities of 71.5% and 53.9%, at the heights of
10 and 40 m, respectively, for the period of interest. The data measured for Fujeij 1 at heights of 30 and
45 m showed availabilities of 66.2% and 78.1%, respectively, whereas those for Fujeij 2 exhibited 18.6%
and 47.1%, respectively. These poor dataset availabilities imply that it is difficult to accurately predict
wind potentials for the site of interest.
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Figure 3a shows the annual availability of meteorological data obtained from the three met-masts.
Data availability is very low for GTZ in 2004 and Fujeij 1 in 2001. In addition, the data availability
for Fujeij 2 is almost zero for three years, namely, 2001, 2005, and 2006. This observation suggests
that year-on-year variations cannot be correctly estimated with the measured data. Note that annual
missing data also significantly affect the accuracy of the EWS estimation. Moreover, the seasonal
availability of most of the datasets is less than 70% (Figure 3b), suggesting that seasonal variations can
affect the prediction of wind characteristics. Hence, it is difficult to predict long-term wind resources
accurately with these measurements, suggesting that the data should be corrected using an MCP
method to ensure the reliability and accuracy of assessments. Interestingly, it can be observed that
the data availability for GTZ at 40 m decreases every year from 2001 to 2004, and then increases in
2005. This observation can be explained based on the repairing of the anemometer at the height of
40 m in August 2004. Following this, it could measure the wind speed accurately. Thus, operational
maintenance is important for the reliable measurement of long-term wind data.

Depending on the availability of meteorological data, long-term reference data are necessary to
assure the prediction of long-term wind potential. Hence, several units of the available long-term
reference data were analyzed. First, long-term datasets measured from meteorological stations located
nearby were correlated to the short-term data measured at the site of interest. Second, reanalysis
datasets from NCAR–NCEP/MERRA were correlated to the short-term data measured at the site.
However, the long-term reference datasets mentioned earlier have a low correlation with the short-term
measurements. Specifically, the coefficient of determination R2 for the long-term datasets obtained
from meteorological stations is less than 0.2, and those for the nearest reanalysis data of NCAR–NCEP
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and MERRA at 50 m and wind datasets from Fujeij 1 at 45 m are 0.671 and 0.341, suggesting that
these datasets are not suitable as long-term references. Note that the long-term wind potential data
obtained from meteorological stations were generally measured at a height of 10 m from the ground.
Consequently, this produces a very low correlation because uneven terrain strongly affects wind speed
at this height. Hence, for most cases, these data are not suitable as a long-term reference dataset.
The reanalysis datasets of NCAR–NCEP and MERRA frequently show a low correlation because of the
sparse spatial resolution. This is one of the reasons for the construction of a metrological mast with a
height of over 50 m at the wind farm candidate site to assess economic feasibility.

To overcome the aforementioned non-availability of appropriate long-term data, the mutually
complementary MCP method was employed to process the short-term data. This method recreates
missing and unmeasured periods in the datasets of all met-masts in a mutually complementary manner.
When the mutually complementary MCP method was employed, the datasets of the three met-masts
were reconstructed with an availability of 99% for all datasets. The coefficient of determination, R2,
between the datasets is in the range of 0.8–0.99. Moreover, R2 for the main wind directions is above 0.96,
suggesting that the data from the three met-masts are highly correlated. Note that correlation is one of
the most important factors in assuring the accuracy and reliability of long-term wind potential when
applying MCP methods. Long-term wind data corrected with reference data with a low correlation are
ineffective in the assessment of wind potentials. Nevertheless, reliable assessments with recovered
long-term datasets are possible. Note that such recovery is possible in the case where datasets have a
sufficient number of overlapping periods and are highly correlated to each other, suggesting that these
assumptions require careful consideration when this method is applied.

In summary, the periods of available measurements for GTZ, Fujeij 1, and Fujeij 2, were
approximately two years, six years, and four years, respectively. Nevertheless, the wind potentials for
the three met-masts can be analyzed for the long term, using datasets corresponding to six years after
the application of the mutually complementary MCP method.

3.2. Long-Term Wind Characteristics

To accurately assess the wind potential of an area, the air density ρa should be calculated first.
The energy density PW and AEP are linearly proportional to the air density ρa of a site. The monthly
mean air density was calculated with the air pressure B and absolute air temperature T, which were
measured from GTZ (Figure 4). The trends in the estimated air density ρa and air temperature T for
three years (2001 to 2003) are shown in Figure 4. Note that B and T were not obtained in 2004. Moreover,
the air pressure B measured for the period between 2005 and 2006 exhibits significant fluctuations,
even though there is no particular fault record of this in the log file. Specifically, the standard deviation
for monthly air pressure is approximately 30 hPa for the period between 2005 and 2006, while it is
approximately 1–5 hPa for the period between 2001 and 2003. These fluctuations may have been caused
by the sensor being damaged or partially clogged, which are the most common causes. However,
the precise reason for the fluctuations could not be identified because GTZ was already dismantled.
Hence, the air density ρa for a period of three years was used to characterize variations in the air
density ρa of the area under consideration.

The mean air density calculated for three years is 1.056 kg·m−3. This estimated value is much
smaller than the standard air density of 1.225 kg·m−3 at mean sea level, because the area under
consideration is located on a plateau at an elevation of approximately 1250 m. Moreover, the air density
ρa significantly depends on the season because T varies seasonally, as shown in Figure 4. The difference
between the maximum monthly mean air density and the minimum monthly mean air density is 8.5%.
The monthly wind speeds also show a trend similar to that of the air density, suggesting that the energy
density PW reflects a seasonal variation that would differ from that calculated with the annual mean
air density, scale factor c, and shape factor k.
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The characteristics of wind resources determined with the measured data were compared to
those obtained with the predicted data using the mutually complementary MCP method (Table 2).
Interestingly, the mean wind speed vm and scale factor c estimated from the measured data are similar
to those determined from the predicted data obtained with the mutually complementary MCP method.
The differences among these parameters are less than 1%. However, the shape factors, k, estimated
from the measured data differ by up to 4% from the predicted data. Moreover, these differences result
in significant variations in PW , namely, up to approximately 8%. This is because the mean energy
density PW is nonlinearly proportional to wind speed and is therefore affected by the shape factor k,
which determines the distribution of the wind speed.

Table 2. Characteristics of wind resources from the measured and the predicted data.

GTZ Fujeij 1 Fujeij 2

10 m 40 m 30 m 45 m 30 m 45 m

Scale factor
(c)

Measured data 6.76 7.62 7.28 7.51 7.66 7.85
Predicted data 6.80 7.71 7.24 7.49 7.74 7.91
Difference (%) −0.59 −1.17 0.55 0.27 −1.03 −0.76

Shape factor
(k)

Measured data 2.25 2.29 1.99 2.00 1.81 1.86
Predicted data 2.16 2.20 2.05 2.05 1.88 1.94
Difference (%) 4.17 4.09 −2.93 −2.44 −3.72 −4.12

vm
[m/s]

Measured data 5.99 6.75 6.40 6.60 6.70 6.90
Predicted data 6.02 6.83 6.41 6.63 6.80 6.92
Difference (%) −0.58 −0.02 −0.16 −0.45 −1.47 −0.29

PW
[W/m2]

Measured data 194.6 273.1 269.9 296.6 352.2 370.7
Predicted data 205.4 295.2 258.3 286.3 347.8 359.5
Difference (%) −5.53 −8.08 5.31 4.47 1.24 3.01

This observation is more clearly shown in Figure 5. Particularly, Figure 5a–c show the ratios of the
mean wind speed vm and mean energy density PW between the measured and predicted data for the
three met-masts, respectively, for the primary wind directions. Similar to the mean wind speed vm that
was estimated for the entire period, shown in Table 2, the ratio of the mean wind speed vm between the
measured and predicted data over the primary wind directions is almost uniform. However, the ratio
of the mean energy density PW shows significant differences in some directions because of differences
in the estimation of the shape factor k. For example, a difference of 7% in k leads to a ratio of 24% for
PW when the wind is directed toward the west of GTZ, as shown in Figure 5a. Note that these large
differences in PW in several directions were lessened while calculating the overall PW , because PW did
not show a significant difference in the main wind direction (Figure 5d) [48].
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Figure 5. Ratios of the mean wind speed vm and the mean energy density PW between the measured
data and predicted data over direction for (a) GTZ at 40 m, (b) Fujeij 1 at 45 m, and (c) Fujeij 2 at
45 m; (d) frequency rose of wind resources. Note that dark blue color represents regions where vm and
PW overlap.

A variation in the monthly mean wind speed vm clearly demonstrates that the large difference in
the shape factor k between the measurements and predictions was caused by seasonal variations in
wind resources. As seen in Figure 6a, the wind speed of the candidate site significantly depends on the
season. Furthermore, vm is higher in winter and lower in summer. The largest difference between the
maximum and minimum vm values was 46% for Fujeij 2, again suggesting that the seasonal variation
would create a wide distribution in wind speed. The many missing periods depicted in Figure 3b
distort the influence of seasonal wind variations. For example, the monthly mean wind speed vm for
January, February, and March for Fujeij 2 was established using measured data for a period of only
two years (2003 and 2004). Conversely, six-year winter data were included in the datasets from GTZ
and Fujeij 1 that were used to predict wind resources with the mutually complementary MCP method.
Hence, vm at the height of 45 m for Fujeij 2 shows a significant difference between the measured
and predicted data (black line with diamond marks and black dashed line with diamond marks in
Figure 6a). It also exhibits a significant difference when calculating the shape factor k because k depends
on the distribution of vm. Seasonal variation is also important from the design perspective because
large wind speed fluctuations accelerate fatigue, thereby reducing the lifespan of wind turbines.
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Figure 6. Variations in (a) monthly wind speed and (b) monthly energy density estimated from
metrological data from three met-masts; the solid lines represent the measured data; dashed lines are
the data predicted using the mutually complementary MCP method.

Seasonal variations of wind resources are more clearly characterized by the monthly mean energy
density PW (Figure 6b), even though the monthly PW follows a trend similar to that of the monthly mean
wind speed vm. Note that the monthly mean energy density PW reflects the monthly mean air density ρa,
which enhances the prediction accuracy. The largest differences between the maximum and minimum
monthly mean energy density values were 300%, 309%, and 366% for the predicted data corresponding
to GTZ, Fujeij 1, and Fujeij 2, respectively. At the target site, an extensive variation in wind speed
results in energy production being four times higher in winter than in summer. This information
is also useful to schedule operation and maintenance work at wind farms. Performing scheduled
maintenance during summer rather than winter reduces electricity production losses and thereby
maximizes the efficiency of wind farms.

The effects of the air density on the ratio of the mean energy density PW were quantitatively
analyzed (Figure 7). The first bar, colored yellow, shows the result of using the simplest method to
calculate PW . This bar was established using the measured data and the annual mean air density,
which is hereafter referred to as the reference energy density. Next, other approaches were compared
with the reference energy density approach. The bar with red diagonal lines represents the energy
density calculated using the measured wind data and monthly mean air density. The bar with blue
leftward diagonals represents the energy density calculated with corrected wind data obtained using
the proposed method and annual mean air density. Finally, the bar with purple horizontal lines
represents the energy density calculated using the corrected wind data and monthly mean air density.
The maximum difference is approximately 10% between the energy density calculated using measured
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data and annual mean air density and that calculated using corrected wind data and monthly mean air
density; this also suggests that seasonal variations significantly affect the predictions of wind resources.
Hence, wind resources should be carefully characterized for a site affected by seasonal variations.
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Figure 7. Ratio of energy density with respect to data measured with annual mean air density.

The annual mean wind speed vm also changes significantly over a year (Figure 8). Note that the
data obtained in 2001 from Fujeij 1 at the height of 45 m exhibit a large deviation because the data
actually measured in 2001 contributed only 8.3% to the yearly mean wind speed; furthermore, these
measured data cannot represent the data for the entire year. Excluding the data obtained in 2001 for
Fujeij 1 at 45 m, the year-on-year variation, which is calculated by dividing the standard deviation of
the annual mean wind speed by the annual mean wind speed, ranges from 2.46% to 4%, depending
on data from the met-masts. Moreover, the difference between the minimum and maximum mean
wind speeds ranges from 6.3% to 10.9%, depending on data from the met-masts. This observation
suggests that the analysis of data from the entire period should be performed by applying the mutually
complementary MCP method to reflect all factors in detail, including seasonal variations, year-on-year
variations, etc., and correctly calculate important parameters including the air density ρa, the scale
factor c, and the shape factor k.
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4. Assessment of Site Compliances and Energy Production

4.1. Site Compliances

The IEC categorizes wind turbines into different classes based on the EWS and turbulence
intensity [10,11]. These factors are classified into three categories. For EWS, the categories are I, II,
and III, while for turbulence intensity, the categories are A, B, and C under IEC 61400-1 (Table 3).

Table 3. Wind turbine class [10].

Wind Turbine Class I II III S

Vref (m/s) 50 42.5 37.5

Values specified by the designerA Iref 0.16
B Iref 0.14
C Iref 0.12

The reference EWS Vref at each class is specified in IEC 61400-1. V50 is the extreme 10-min mean
wind speed with a recurrence period of 50 years at the height of a turbine hub. Manufacturers should
design wind turbines such that they can endure aerodynamic loads corresponding to the reference
EWS with a recurrence period of 50 years V50. Therefore, a wind turbine certified as Class I should
withstand a high EWS of 50 m/s, whereas a wind turbine certified as Class III should withstand a
low EWS of 37.5 m/s, as depicted in Table 3. This IEC standard for certification is very important
when designing a blade. As the blade length increases, the area swept by the blade to capture wind
energy will also increase, thus enhancing the AEP and CF; however, a large blade span intensifies
the aerodynamic loads on the blades, rendering the blades and the wind turbine more vulnerable to
material fatigue and extreme loads. Hence, the determination of the appropriate wind turbine class for
a candidate site is as important as predicting long-term wind resources because diverse turbines with
different blade lengths have been developed and are commercially available.

The turbulence intensities I at the three met-mast locations were characterized and are shown
in Figure 9 with the IEC standards. The turbulence intensities I values at the three locations were
high even though the area under consideration is mostly covered by bare rocks and scattered shrubs.
The turbulence intensity for Fujeij 2 complies with category A, and those for GTZ and Fujeij 1 conform
to category B. This observation is explained based on a steep cliff located to the west-northwest
of the site. This cliff creates upwind flow that increases the turbulence intensity in the area under
consideration. Hence, a wind turbine certified as category A is appropriate for the area under
consideration. This analysis was conducted with data recorded at the top of each mast. The turbulence
intensity at the hub height of an MW-class wind turbine is approximately 80 m, suggesting that the
turbulence intensity at the hub height is more moderate than that indicated by the recorded data shown
herein; this is because, in general, the turbulence near the ground is more intense. Obstacles and the
unevenness of terrain can intensify the turbulence near the ground.
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Table 4 and Figure 10 illustrate the EWS estimated with the corrected data using the mutually
complementary MCP method. The second row for each meteorological station in Table 4 shows the
EWS estimated based on shear exponents calculated for each station at a height of 80 m using the hub
height of multi-MW wind turbines [49]. Based on the EWS estimated with the data measured at GTZ
and Fujeij 1, wind turbines of any class can be installed on this site. In contrast, only a wind turbine
certified as Class I can be installed in the area under consideration for the EWS estimated with the data
measured at Fujeij 2. These differences in the EWS results with regard to the met-masts are caused by
the periods for which data were unavailable.
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Table 4. Predicted EWS and corresponding wind turbine class for the area under consideration.

GTZ, 40 m Fujeij 1, 45 m Fujeij 2, 45 m

40 m 80 m 45 m 80 m 45 m 80 m

V50
[m/s]

Measured data 32.4 34.5 35.5 36.5 41.9 42.6
Corrected data 35.6 38.0 34.7 35.7 38.5 39.2
Difference (%) 8.99 9.21 2.31 2.24 8.31 8.16

Wind turbine
class

Measured data I, II, and III I, II, and III I
Corrected data I and II I, II, and III I and II

CV *
[%]

Measured data 6.3 5.0 9.3
Corrected data 4.6 4.6 4.2
Difference (%) 36.96 8.70 121.43

* CV stands for Coefficient of Variance.

When the mutually complementary MCP method is applied, the estimated EWS differs by up
to 9% from that estimated with short-term measured data. Interestingly, the EWS estimated for the
location of Fujeij 2 decreases; therefore, Class I or II wind turbines can be used in the area under
consideration. As the reconstruction of the data corresponding to the missing periods diminishes
deviations and increases reliability, it is possible to speculate on the collection of mutually similar
values using decreasing uncertainty and coefficient of variance. In particular, strong winds were
measured at Fujeij 1 and Fujeij 2 during the periods for which data were not obtained at GTZ; the
EWS surge values were determined based on these available data, but the predicted values decreased
when long-term data were used. Furthermore, the strong winds were not measured at GTZ during
the periods with missing data, and this can be corrected by introducing the mutually complementary
MCP method. Consequently, it is possible to identify an increase in the EWS. Note that the wind
turbine class is decided conservatively only when several datasets are available for the site because the
reliability of the system is the most important factor when studying the feasibility of power plants.

4.2. Assessment of Energy Production

Using the estimated wind potential, the AEP and CF of wind turbines widely in use were calculated
and are summarized in Table 5. The data from Fujeij 1 were used, and the estimated wind potential
parameters were adjusted to the hub height using the measured wind shear exponent [23].

Table 5. Estimation of the annual energy production (AEP) and capacity factor (CF) (c: 7.49, k: 2.05).

Manufacturer Turbine
Class

Rated Power
(kW)

Rotor Diameter
(m)

AEP
(MWh)

AEP/MW
(MWh)

CF
(%)

VESTAS IIA 3000 112 9158 3053 34.8
Alstom IIA 3000 110 8945 2982 34.0
Gamesa IIA 4500 128 13,312 2958 33.8

REpower IIA 3300 104 9114 2762 31.5
Alstom IA 3000 100 8076 2692 30.7

REpower IB 5000 126 12,519 2504 28.6
Siemens IA 3600 107 8990 2497 28.5
VESTAS IA 2000 80 4896 2448 27.9
GE Wind IB 3600 104 8757 2433 27.8
VESTAS IIA 3000 90 6656 2219 25.3

ENERCON IA 7500 127 16,353 2180 24.9

The EWS predicted with the measured data required that a Class I wind turbine should be selected
to ensure the safety and reliability of the wind farm. In this regard, the maximum CF of the Alstom
ECO100 Class I wind turbine is 30.7%, and this turbine can be employed in the target site. Meanwhile,
turbines classified as Class II are included as candidates while applying the mutually complementary
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MCP method. The CF of Class II wind turbines is approximately 31.5–34.8%. In general, the CF
of Class II wind turbines is higher than that of Class I wind turbines because of the longer blades.
Considering that a wind farm operates for over 20 years, the turbine class determined based on the EWS
is critical in the assessment of long-term wind resources and significantly affects economic feasibility.
It is emphasized that the EWS is more critical than the mean wind speed in analyzing the economic
feasibility of a wind farm, as many new wind turbines have been designed, certified as Class II or III,
and launched on the market.

5. Conclusions

This study presents the mutually complementary MCP method to ensure the reliability of
long-term wind resources for sites for which long-term data are unavailable. The following conclusions
can be drawn based on the results of the analysis.

1. The mutually complementary MCP method is simple yet effective for sites characterized by
seasonal and year-on-year variations, where long-term reference data for estimating wind
potentials and EWS are unavailable. The various periods of missing data corresponding to
different masts result in the inconsistent determination of turbine classes based on the EWS,
thereby confounding the estimation of site compliance.

2. Because of extensively variable wind distributions, the energy density PW is a more sensitive
metric than the mean wind speed vm for sites characterized by seasonal and year-on-year
variations. Specifically, a difference of up to 4% in the shape factor k results in a change of over
20% in the mean energy density PW .

3. Similarly, the scale factor c and the shape factor k, which govern the energy density PW of the site,
are more important than the mean wind speed vm.

4. The seasonal variation in the air density ρa should be considered when calculating PW , as the
variations in ρa cause an error in the prediction of long-term wind potential.

Note that the proposed method was validated with a single case study because large-scale wind
datasets are extremely difficult to obtain and the wind datasets of most commercial wind farms are
confidential. In the future, the proposed method can be validated with more wind datasets as they
become available.
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Nomenclature

Abbreviations
AEP Annual energy production
CF Capacity factor
CV Coefficient of variance
EWS Extreme wind speed
IEC International Electrotechnical Commission
Iref 10-min mean turbulence intensity
MERRA Modern-Era Retrospective Analysis for Research and Application
MCP Measure-correlate-predict
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Prediction
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Variables or parameters
B Air pressure
N Total number of samples
GG Gumbel distribution graph
P Energy density
PC Power curve
R2 Coefficient of determination
R0 Gas constant of dry air, 287.05 J/(kg K)
WP Weibull plotting position
T Absolute air temperature
V Extreme wind speed

Vref
Extreme 10-min mean wind speed with a recurrence period of 50 years
at the height of a turbine hub

c Scale factor
j Ascending sort order of samples
k Shape factor
n Number of non-zero wind speed data points
p Return period
t Number of hours per year
v Wind speed
Greek letters
α Measure of dispersion
β Mode of extreme value distribution
λ Extracted extreme events per year
ρ Density
Subscripts
10 min Ten-minute averaged values
W Wind
a Air
ci Cut-in
co Cut-out
e Sample of the maximum value
i Time stage
m Mean
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