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Abstract: We consider the fractional optimal control problem with state constraints. The
fractional calculus of derivatives and integrals can be viewed as generalizations of their classical
ones to any arbitrary real order. In our problem setup, the dynamic constraint is captured by
the Caputo fractional differential equation with order α ∈ (0, 1), and the objective functional is
formulated by the left Riemann-Liouville fractional integral with order β ≥ 1. In addition, there
are terminal and running state constraints; while the former is described by initial and final states
within a convex set, the latter is given by an explicit instantaneous inequality state constraint.
We obtain the maximum principle, the first-order necessary optimality condition, for the problem
of this paper. Due to the inherent complex nature of the fractional control problem, the presence
of the terminal and running state constraints, and the generalized standing assumptions, the
maximum principle of this paper is new in the optimal control problem context, and its proof
requires to develop new variational and duality analysis using fractional calculus and functional
analysis, together with the Ekeland variational principle and the spike variation.
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1. INTRODUCTION

Fractional calculus of derivatives and integrals can be
viewed as generalizations of their classical notions to any
real arbitrary order. One important application of frac-
tional calculus is a class of fractional differential equations,
which enables us to describe more general and extraordi-
nary phenomena observed in real world. Various types of
fractional differential equations and their applications have
been studied in applied mathematics, science, engineering,
and economics; see (Kilbas et al., 2006; Diethelm, 2010;
Malinowska et al., 2015) and the references therein.

Along with fractional differential equations, fractional op-
timal control problems in the sense of Riemann-Liouville
(RL) and/or Caputo, and their numerical methods and
applications have been studied extensively in the liter-
ature under various different formulations. The reader
is referred to see (Gomoyunov, 2022; Liu et al., 2022;
Gong et al., 2021; Rahimkhani and Ordokhani, 2021; Go-
moyunov, 2020) and the references therein.

The maximum principle, i.e., the first-order necessary
optimality condition, for the fractional optimal control
problems was studied in several different directions; see
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(Jelicic and Petrovacki, 2008; Kamocki, 2014; Pooseh
et al., 2014; Ali et al., 2016; Bergounioux and Bourdin,
2020; Almeida et al., 2021; Yusubov and Mahmudov,
2021) and the references therein. Specifically, in (Kamocki,
2014), a simple convex variation was applied to obtain the
maximum principle for the RL fractional optimal control
problem. The Caputo fractional optimal control problem
without state constraints was studied in (Pooseh et al.,
2014), where the sufficient condition was also obtained
under the convexity assumption. In (Ali et al., 2016;
Almeida et al., 2021), the Caputo and Cucker-Smale multi-
agent fractional control problems without state constraints
were studied. In addition, (Yusubov and Mahmudov, 2021)
studied the singular fractional optimal control problem.
Recently, the Caputo fractional optimal control problem
with the terminal state constraint only was considered in
(Bergounioux and Bourdin, 2020).

In this paper, we consider the fractional optimal control
problem with terminal and running state constraints. The
precise problem statement is given in Section 3. In our
problem setup, the dynamic constraint is captured by the
fractional differential equation in the sense of Caputo with
order α ∈ (0, 1), and the objective functional is formulated
by the left Riemann-Liouville (RL) fractional integral with
order β ≥ 1. In addition, there are terminal and running
state constraints; while the former is described by initial
and final states within a convex set, the latter is expressed
by an explicit instantaneous inequality state constraint.

The main result of this paper is the maximum principle
(see Theorem 2). In the proof (see Section 5), we need to
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precise problem statement is given in Section 3. In our
problem setup, the dynamic constraint is captured by the
fractional differential equation in the sense of Caputo with
order α ∈ (0, 1), and the objective functional is formulated
by the left Riemann-Liouville (RL) fractional integral with
order β ≥ 1. In addition, there are terminal and running
state constraints; while the former is described by initial
and final states within a convex set, the latter is expressed
by an explicit instantaneous inequality state constraint.

The main result of this paper is the maximum principle
(see Theorem 2). In the proof (see Section 5), we need to

formulate the penalized unconstrained fractional control
problem, for which the Ekeland variational principle is
applied. Then to develop the variational and duality anal-
ysis via the spike variation, we have to use the fractional
calculus and the intrinsic properties of distance functions.
Moreover, the proofs for the complementary slackness and
the transversality condition are essentially required due to
the presence of the terminal and running state constraints.

The paper is organized as follows. Preliminaries on frac-
tional calculus are given in Section 2. We formulate the
problem in Section 3. The maximum principle of this paper
is stated in Section 4, and its proof sketch is provided in
Section 5. We conclude our paper in Section 6.

2. PRELIMINARIES ON FRACTIONAL CALCULUS

In this section, we provide some preliminary results on
fractional calculus. More detailed results on fractional
calculus can be found in (Kilbas et al., 2006; Diethelm,
2010).

Let Rn be the n-dimensional Euclidean space. For A ∈
Rm×n, A� denotes the transpose of A. Let 〈x, y〉 := x�y
and |x| := 〈x, x〉1/2 be the norm. Let In be an n×n identity
matrix. Define 1A(·) by the indicator function of any set
A. Let Γ be the Gamma function.

Define the following spaces for t0, tf ∈ [0, T ] with t0 < tf :

• Lp([t0, tf ];Rn), p ≥ 1: the space of functions ψ :
[t0, tf ] → Rn such that ψ is measurable and

‖ψ(·)‖Lp,n := (
∫ tf
t0

|ψ(t)|pRndt)
1
p < ∞;

• L∞([t0, tf ];Rn): the space of functions ψ : [t0, tf ] →
Rn such that ψ is measurable and ‖ψ(·)‖L∞,n :=
ess supt∈[t0,tf ]

|ψ(t)| < ∞;

• C([t0, tf ];Rn): the space of functions ψ : [t0, tf ] →
Rn such that ψ is continuous and ‖ψ(·)‖∞ :=
supt∈[t0,tf ]

|ψ(t)| < ∞;

• AC([t0, tf ];Rn): the space of functions ψ : [t0, tf ] →
Rn such that ψ is absolutely continuous;

• BV([t0, tf ];Rn): the space of functions ψ : [t0, tf ] →
Rn such that ψ is of bounded variation on [t0, tf ].

The norm on BV([t0, tf ];Rn) is defined by ‖ψ(·)‖BVn :=
ψ(t0) + TV(ψ), where TV(ψ) := sup(tk)k

{∑
k |ψ(tk+1) −

ψ(tk)|
}

< ∞ with the supremum being taken by all
partitions of [t0, tf ]. Let NBV([t0, tf ];Rn) be the space
of functions ψ(·) ∈ BV([t0, tf ];Rn) such that ψ is normal-
ized, i.e., ψ(t0) = 0 and ψ is left continuous. The norm
on NBV([t0, tf ];Rn) is defined by ‖ψ(·)‖NBVn := TV(ψ).
When ψ(·) ∈ NBV([t0, tf ];R) is monotonically nonde-
creasing, ‖ψ(·)‖NBV := ‖ψ(·)‖NBV1 = ψ(tf ).

Definition 1. For f(·) ∈ L1([t0, tf ];Rn) and t ∈ [t0, tf ],
the left Riemann-Liouville (RL) fractional integral Iαt0+[f ]
of order α > 0 is defined by

Iαt0+[f ](t) :=

∫ t

t0

(t− s)α−1

Γ(α)
f(s)ds.

For f(·) ∈ L1([t0, tf ];Rn) and t ∈ [t0, tf ], the right RL
fractional integral Iαtf−[f ] of order α > 0 is defined by

Iαtf−[f ](t) :=

∫ tf

t

(s− t)α−1

Γ(α)
f(s)ds.

For α = 0, we set I0t0+[f ](·) := I0tf−[f ](·) := f(·). �

Definition 2. (i) For f(·) ∈ L1([t0, tf ];Rn), the left RL
fractional derivative Dα

t0+[f ] of order α ∈ (0, 1) is
defined by

Dα
t0+[f ](t) :=

d

dt

[
I1−α
t0+ [f ]

]
(t),

provided that I1−α
t0+ [f ](·) ∈ AC([t0, tf ];Rn). In this

case, Dα
t0+[f ](·) ∈ L1([t0, tf ];Rn). Let DRL α

n t0+ be

the set of functions f(·) ∈ L1([t0, tf ];Rn) such that
f admits the left RL fractional derivative of order
α ∈ (0, 1);

(ii) For f(·) ∈ L1([t0, tf ];Rn), the right RL fractional
derivative Dα

tf−[f ] of order α ∈ (0, 1) is defined by

Dα
tf−[f ](t) := − d

dt

[
I1−α
tf− [f ]

]
(t),

provided that I1−α
tf− [f ](·) ∈ AC([t0, tf ];Rn). In this

case, Dα
tf−[f ](·) ∈ L1([t0, tf ];Rn). Let DRL α

n tf− be

the set of functions f(·) ∈ L1([t0, tf ];Rn) such that
f admits the right RL fractional derivative of order
α ∈ (0, 1). �

Definition 3. (i) For f(·) ∈ C([t0, tf ];Rn), the left Ca-

puto fractional derivative DC α
t0+[f ] of order α ∈ (0, 1)

is defined by

DC α
t0+[f ](t) := Dα

t0+[f(·)− f(t0)](t),

where f(·)−f(t0) ∈ DRL α
n t0+. In this case, DC α

t0+[f ] ∈
L1([t0, tf ];Rn). Let DC α

n t0+ be the set of functions
f ∈ C([t0, tf ];Rn) such that f admits the left Caputo
fractional derivative of order α ∈ (0, 1).

(ii) For f(·) ∈ C([t0, tf ];Rn), the right Caputo fractional

derivative DC α
tf−[f ] of order α ∈ (0, 1) is defined by

DC α
tf−[f ](t) := Dα

tf−[f(·)− f(tf )](t),

where f(·)−f(tf ) ∈ DRL α
n tf−. In this case, DC α

tf−[f ] ∈
L1([t0, tf ];Rn). Let DC α

n tf− be the set of functions

f ∈ C([t0, tf ];Rn) such that f admits the right
Caputo fractional derivative of order α ∈ (0, 1). �

3. FRACTIONAL OPTIMAL CONTROL PROBLEM

Consider the following Rn-valued left Caputo fractional
differential equation with order α ∈ (0, 1):{

DC α
t0+[X](t) = f(t,X(t), u(t)), t ∈ (t0, tf ],

X(t0) = X0 ∈ Rn,
(1)

where X(·) ∈ Rn is the state, u : [t0, tf ] → U ⊂ Rr is
the control input with U being the control space, and
f : [t0, tf ] × Rn × U → Rn is the driver of (1). Let
U := {u : [t0, tf ] → U | u is measurable t ∈ [t0, tf ]} be
the set of admissible controls for (1).

Assumption 1. (i) U ⊂ Rr is a separable metric space;
(ii) f holds that t �→ f(t,X, u) is continuous, f(·, X, u) ∈

L∞([t0, tf ];Rn), and (X,u) �→ f(t,X, u) is Lipschitz
continuous, and |f(t, 0, u)| ≤ L(1 + |X|);

(iii) X �→ f(t,X, u) is continuously differentiable with
(t,X, u) �→ ∂Xf(t,X, u) being bounded and (X,u) �→
∂Xf(t,X, u) being Lipschitz continuous. �

Theorem 1. Suppose that Assumption 1 holds. Then for
any (X0, u(·)) ∈ Rn×U , (1) has a unique solution ofX(·) ∈
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DC α
n t0+. In addition, for any (X0, u(·)), (X ′

0, u
′(·)) ∈ Rn×U

(with X(·;X0, u) := X(·)), we have

sup
t∈[t0,tf ]

|X(t;X0, u)−X ′(t;X ′
0, u

′)|

≤ b(tf ) +

∫ tf

t0

∞∑
k=1

(LΓ(α))k

Γ(kα)
(tf − s)kα−1b(s)ds

sup
t∈[t0,tf ]

|X(t;X0, u)|

≤ b′(tf ) +

∫ tf

t0

∞∑
k=1

(LΓ(α))k

Γ(kα)
(tf − s)kα−1b′(s)ds,

where b(t) := |X0 − X ′
0| + L

∫ t

t0

(t−s)α−1

Γ(α) |(u(s) − u′(s)|ds

and b′(t) := |X0|+ L
∫ t

t0

(t−s)α−1

Γ(α) ds.

Proof. The existence and uniqueness of the solution can
be shown by using the contraction mapping theorem
under the Bielecki norm on C([t0, tf ];Rn). The estimates
follow from Assumption 1 and the fractional Gronwall’s
inequality. Note that the detailed proof is omitted due to
space restriction. We complete the proof. �

The objective functional is given by the following left RL
fractional integral with order β ≥ 1:

J(X0;u(·)) = Iβt0+[l(·, X(·), u(·)](tf ) +m(X0, X(tf )).

The fractional optimal control problem of this paper is

(P) inf
u(·)∈U

J(X0;u(·))

subject to the terminal and running state constraints given
by

{
(X0, X(tf )) ∈ F ⊂ R2n,

Gi(t,X(t)) ≤ 0, ∀t ∈ [t0, tf ], i = 1, . . . , q.
(2)

Assumption 2. (i) l : [t0, tf ]×Rn×U → R is the running
cost, where t �→ l(t,X, u) is continuous, l(·, X, u) ∈
L∞([t0, tf ];R), and (X,u) �→ l(t,X, u) is Lipschitz
continuous. m : Rn × Rn → R is the terminal cost,
where (X,X ′) �→ m(X,X ′) is Lipschitz continuous;

(ii) X �→ l(t,X, u) is continuously differentiable, where
(t,X, u) �→ ∂X l(t,X, u) is bounded and (X,u) �→
∂X l(t,X, u) is Lipschitz continuous. (X,X ′) �→
m(X,X ′) is continuously differentiable, where
(X,X ′) �→ ∂Xm(X,X ′) and (X,X ′) �→ ∂X′m(X,X ′)
are bounded and Lipschitz continuous;

(iii) F is a nonempty closed convex subset of R2n;

(iv) (t,X) �→ G(t,X) := [G1(t,X) · · · Gq(t,X)]
�

with
Gi : [t0, tf ] × Rn → R, i = 1, . . . , q, is continuous,
where X �→ G(t,X) is continuously differentiable
with (t,X) �→ ∂XG(t, x) being bounded. �

4. MAIN RESULT

Assume that (u(·), X(·)) ∈ U × DC α
n t0+ is the optimal

solution of (P), i.e., u(·) ∈ U is the optimal solution of
(P) and X(·) := X(·;X0, u) ∈ DC α

n t0+ is the corresponding
optimal state trajectory of (1) controlled by u(·) ∈ U .
X(·) ∈ DC α

n t0+ holds the state constraints in (2). We let

f(t) := f(t,X(t), u(t)), ∂Xf(t) := ∂Xf(t,X(t), u(t))

l(t) := l(·, X(t), u(t)), ∂X l(t) := ∂X l(t,X(t), u(t))

∂X0
m := ∂X0

m(X0, X(tf )), ∂Xm := ∂Xm(X0, X(tf ))

Gi(t) := Gi(t,X(t)), ∂XGi(t) := ∂XGi(t,X(t)).

We state the main result of this paper.

Theorem 2. Suppose that Assumptions 1-2 hold. Assume
that (u(·), X(·)) ∈ U × DC α

n t0+ is the optimal solu-
tion of (P). Then there exists a tuple (λ, ξ, θ), where
λ ∈ R, ξ = (ξ1, ξ2) ∈ R2n with ξ1, ξ2 ∈ Rn, and
θ(·) = (θ1(·), . . . , θq(·)) ∈ NBV([t0, tf ];Rq) with θi(·) ∈
NBV([t0, tf ];R), i = 1, . . . , q, such that the following
conditions are satisfied:

(i) Nontriviality condition: (λ, ξ, θ) �= 0 with ξ =
(ξ1, ξ2) ∈ NF (X0, X(tf )) and ‖θi‖NBV = θi(tf ) ≥ 0

for i = 1 . . . , q, where NF (X0, X(tf )) is the normal

cone to the convex set F at (X0, X(tf )) ∈ F defined
in (4), and θi is finite, nonnegative and monotonically
nondecreasing on [t0, tf ];

(ii) Nonnegativity condition: λ ≥ 0 and dθi(t) ≥ 0
for t ∈ [t0, tf ] and i = 1, . . . , q, where dθi denotes the
Lebesgue-Stieltjes measure on [t0, tf ] corresponding
to θi, i = 1, . . . , q;

(iii) Adjoint equation: there exists a nontrivial p(·) ∈
DRL α

n tf− such that p is the unique solution of the
following right RL fractional differential equation:

d
[
I1−α
tf− [p]

]
(t) = −

[
∂Xf(t)�p(t) (3)

+ λ
(tf − t)β−1

Γ(β)
∂X l(t)�

]
dt−

q∑
i=1

∂XGi(t)
�dθi(t),

(iv) Transversality condition:

I1−α
tf− [p](t0) = −(ξ1 + λ∂X0

m�),

I1−α
tf− [p](tf ) = ξ2 + λ∂Xm�;

(v) Complementary slackness condition:
∫ tf

t0

Gi(s)dθi(s) = 0, i = 1, . . . , q;

(vi) Hamiltonian minimization condition:

min
u∈U

H(X(t), p(t);u) = H(X(t), p(t);u(t)),

a.e. t ∈ [t0, tf ], where H is the Hamiltonian:

H(X, p;u) := 〈p, f(t,X, u)〉+ λ
(tf − t)β−1

Γ(β)
l(t,X, u).

Remark 1. Without (2), Theorem 2 is reduced to (Ali
et al., 2016, Theorem 3.1). In this case, only (iii), (iv)
and (vi) of Theorem 2 are needed with λ = 1, ξ = 0, and
θ = 0. Note also that without the running state constraint,
Theorem 2 is specialized to (Bergounioux and Bourdin,
2020, Theorem 3.12) with θ = 0. �

5. SKETCH OF THE PROOF FOR THEOREM 2

In this section, the sketch of the proof for Theorem 2 is
presented. Note that the full proof cannot be included in
this paper due to space restriction.
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Proof. The existence and uniqueness of the solution can
be shown by using the contraction mapping theorem
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follow from Assumption 1 and the fractional Gronwall’s
inequality. Note that the detailed proof is omitted due to
space restriction. We complete the proof. �
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fractional integral with order β ≥ 1:

J(X0;u(·)) = Iβt0+[l(·, X(·), u(·)](tf ) +m(X0, X(tf )).

The fractional optimal control problem of this paper is

(P) inf
u(·)∈U

J(X0;u(·))

subject to the terminal and running state constraints given
by

{
(X0, X(tf )) ∈ F ⊂ R2n,

Gi(t,X(t)) ≤ 0, ∀t ∈ [t0, tf ], i = 1, . . . , q.
(2)

Assumption 2. (i) l : [t0, tf ]×Rn×U → R is the running
cost, where t �→ l(t,X, u) is continuous, l(·, X, u) ∈
L∞([t0, tf ];R), and (X,u) �→ l(t,X, u) is Lipschitz
continuous. m : Rn × Rn → R is the terminal cost,
where (X,X ′) �→ m(X,X ′) is Lipschitz continuous;

(ii) X �→ l(t,X, u) is continuously differentiable, where
(t,X, u) �→ ∂X l(t,X, u) is bounded and (X,u) �→
∂X l(t,X, u) is Lipschitz continuous. (X,X ′) �→
m(X,X ′) is continuously differentiable, where
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are bounded and Lipschitz continuous;
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(iv) (t,X) �→ G(t,X) := [G1(t,X) · · · Gq(t,X)]
�

with
Gi : [t0, tf ] × Rn → R, i = 1, . . . , q, is continuous,
where X �→ G(t,X) is continuously differentiable
with (t,X) �→ ∂XG(t, x) being bounded. �

4. MAIN RESULT

Assume that (u(·), X(·)) ∈ U × DC α
n t0+ is the optimal

solution of (P), i.e., u(·) ∈ U is the optimal solution of
(P) and X(·) := X(·;X0, u) ∈ DC α

n t0+ is the corresponding
optimal state trajectory of (1) controlled by u(·) ∈ U .
X(·) ∈ DC α

n t0+ holds the state constraints in (2). We let
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Gi(t) := Gi(t,X(t)), ∂XGi(t) := ∂XGi(t,X(t)).

We state the main result of this paper.

Theorem 2. Suppose that Assumptions 1-2 hold. Assume
that (u(·), X(·)) ∈ U × DC α

n t0+ is the optimal solu-
tion of (P). Then there exists a tuple (λ, ξ, θ), where
λ ∈ R, ξ = (ξ1, ξ2) ∈ R2n with ξ1, ξ2 ∈ Rn, and
θ(·) = (θ1(·), . . . , θq(·)) ∈ NBV([t0, tf ];Rq) with θi(·) ∈
NBV([t0, tf ];R), i = 1, . . . , q, such that the following
conditions are satisfied:

(i) Nontriviality condition: (λ, ξ, θ) �= 0 with ξ =
(ξ1, ξ2) ∈ NF (X0, X(tf )) and ‖θi‖NBV = θi(tf ) ≥ 0

for i = 1 . . . , q, where NF (X0, X(tf )) is the normal

cone to the convex set F at (X0, X(tf )) ∈ F defined
in (4), and θi is finite, nonnegative and monotonically
nondecreasing on [t0, tf ];

(ii) Nonnegativity condition: λ ≥ 0 and dθi(t) ≥ 0
for t ∈ [t0, tf ] and i = 1, . . . , q, where dθi denotes the
Lebesgue-Stieltjes measure on [t0, tf ] corresponding
to θi, i = 1, . . . , q;

(iii) Adjoint equation: there exists a nontrivial p(·) ∈
DRL α

n tf− such that p is the unique solution of the
following right RL fractional differential equation:

d
[
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tf− [p]

]
(t) = −
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(tf − t)β−1

Γ(β)
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(iv) Transversality condition:
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(v) Complementary slackness condition:
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Gi(s)dθi(s) = 0, i = 1, . . . , q;

(vi) Hamiltonian minimization condition:

min
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a.e. t ∈ [t0, tf ], where H is the Hamiltonian:

H(X, p;u) := 〈p, f(t,X, u)〉+ λ
(tf − t)β−1

Γ(β)
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Remark 1. Without (2), Theorem 2 is reduced to (Ali
et al., 2016, Theorem 3.1). In this case, only (iii), (iv)
and (vi) of Theorem 2 are needed with λ = 1, ξ = 0, and
θ = 0. Note also that without the running state constraint,
Theorem 2 is specialized to (Bergounioux and Bourdin,
2020, Theorem 3.12) with θ = 0. �

5. SKETCH OF THE PROOF FOR THEOREM 2

In this section, the sketch of the proof for Theorem 2 is
presented. Note that the full proof cannot be included in
this paper due to space restriction.

5.1 Preliminaries on Distance Functions

Let dF : R2n → R+ be the standard Euclidean distance
function to F defined by dF (x) := infy∈F |x − y| for
x ∈ R2n. By the projection theorem (Ruszczynski, 2006,
Theorem 2.10), there is a unique PF (x) ∈ F with PF (x) :
R2n → F ⊂ R2n, the projection of x ∈ R2n onto F , such
that dF (x) = infy∈F |x − y| = |x − PF (x)|. In view of
(Ruszczynski, 2006, Definition 2.37), we have x−PF (x) ∈
NF (PF (x)) for x ∈ R2n, where NF (x) is the normal cone
to the convex set F at a point x ∈ F defined by

NF (x) := {y ∈ R2n | 〈y, y′ − x〉 ≤ 0, ∀y′ ∈ F}. (4)

Lemma 3. (Clarke, 1990, Proposition 2.5.4) The func-
tion dF (x)

2 is Fréchet differentiable on R2n with the
Fréchet differentiation of dF (x)

2 at x ∈ R2n given by
DdF (x)

2(h) = 2〈x− PF (x), h〉 for h ∈ R2n. �

Define ψ : C([t0, tf ];Rn) → C([t0, tf ];Rq) by ψ(X(·)) :=

G(·, X(·)) = [G1(·, X(·)) · · · Gq(·, X(·))]�. Let S ⊂
C([t0, tf ];Rq) be a nonempty closed convex cone of
C([t0, tf ];Rq) defined by S := C([t0, tf ];Rq

−), where R
q
− :=

R− × · · · × R−. Note that S has a nonempty interior.

The normal cone to S at x ∈ S is defined by

NS(x) := {κ ∈ C([t0, tf ];Rq)∗ | (5)

〈κ, κ′ − x〉C∗
q×Cq

≤ 0, ∀κ′ ∈ S},
where 〈·, ·〉C∗

q×Cq
:= 〈·, ·〉C([t0,tf ];Rq)∗×C([t0,tf ];R)q stands

for the duality paring of C([t0, tf ];Rq) and C([t0, tf ];Rq)∗

with C([t0, tf ];Rq)∗ being the dual space of C([t0, tf ];Rq).

Let us define the distance function to S by dS(x) :=
infy∈S ‖x− y‖C([t0,tf ];Rq) for x ∈ C([t0, tf ];Rq).

Lemma 4. (Clarke, 1990, Proposition 2.4.1 and page 53)
dS is nonexpansive, continuous, and convex. �

Lemma 5. (Mordukhovich, 2006, Theorem 3.54) dS(x)
2

is strictly Hadamard differentiable on C([t0, tf ];Rq) \ S
with the Hadamard differential given by DdS(x)

2 =
2dS(x)DdS(x) for x ∈ C([t0, tf ];Rq)\S. Moreover, dS(x)

2

is Fréchet differentiable on S with the Fréchet differential
being DdS(x)

2 = 0 ∈ C([t0, tf ];Rq)∗ for all x ∈ S. �

5.2 Ekeland Variation Principle

For ε ≥ 0, define the penalized objective functional

Jε(X0;u(·)) =
(
([J(X0;u(·))− J(X0;u(·)) + ε]+)2

+ dF (X0, X(tf ))
2 + dS(ψ(X(·)))2

) 1
2 . (6)

Define the Ekeland metric by

d̂((X0, u(·)), (X̃0, ũ(·))) = |X0 − X̃0|+ d̃(u(·), ũ(·)), (7)

where d̃(u(·), ũ(·)) := |{t ∈ [t0, tf ] | u(t) �= ũ(t)}|. (Rn ×
U , d̂) is a complete metric space, and Jε is continuous on

(Rn × U , d̂) by Assumptions 1-2 and Lemmas 3-4.

Note that Jε(X0, u(·)) > 0 for (X0, u(·)) ∈ Rn × U and
Jε(X0;u(·)) = ε ≤ inf(X0,u(·))∈Rn×U Jε(X0, u(·)) + ε. Then
by the Ekeland variational principle (Ekeland, 1974), there
exists a pair (Xε

0, u
ε(·)) ∈ Rn × U such that

d̂((Xε
0, u

ε(·)), (X0, u(·))) ≤
√
ε,

and for any (X0, u(·)) ∈ Rn × U ,
Jε(X

ε
0, u

ε(·)) ≤ Jε(X0;u(·)) (8)

+
√
εd̂((Xε

0, u
ε(·)), (X0;u(·))).

5.3 Spike Variation and Notation

For δ ∈ (0, 1), define Eδ = {E ⊂ [t0, tf ] | |E| = δtf}, where
|E| denotes the Lebesgue measure of E. For any Eδ ∈ Eδ
and u(·) ∈ U , we introduce the spike variation:

uε,δ(t) :=

{
uε(t), t ∈ [t0, tf ] \ Eδ,

u(t), t ∈ Eδ.
(9)

Clearly uε,δ(·) ∈ U and d̃(uε,δ(·), uε(·)) ≤ |Eδ| = δtf .
Recall and consider the following variation: Xε(·) :=
X(·;Xε

0, u
ε) and Xε,δ(·) := X(·;Xε

0 + δa, uε,δ), where
a ∈ Rn and uε,δ ∈ U is given in in (9). Xε(·) is the state
trajectory of (1) under (Xε

0, u
ε(·)) ∈ Rn × U .

With Eε,δ(·) := Xε,δ(·)−Xε(·),
f ε(s) := f(s,Xε(s), uε(s)),
∂Xf ε(s) := ∂Xf(s,Xε(s), uε(s)),

f̂ ε(s) := f(s,Xε(s), u(s))− f(s,Xε(s), uε(s)),
lε(s) := l(s,Xε(s), uε(s)),mε := m(Xε

0, X
ε(tf )), ∂X lε(s) :=

∂X l(s,Xε(s), uε(s)),

l̂ε(s) := l(s,Xε(s), u(s)) − l(s,Xε(s), uε(s)), ∂X0m
ε :=

∂X0
m(Xε

0, X
ε(tf )), ∂Xmε := ∂Xm(Xε

0, X
ε(tf )), f̂(s) :=

f(t,X(s), u(s))− f(t,X(s), u(s)),

l̂(s) := l(s,X(s), u(s))− l(t,X(s), u(s)).

5.4 Variational Analysis I

By (6) and (8), together with (7) and (9),

−
√
ε(|a|+ tf ) ≤

1

Jε(Xε
0 + δa;uε,δ(·)) + Jε(Xε

0;u
ε(·))

× 1

δ

(
([J(Xε

0 + δa;uε,δ(·))− J(X0;u(·)) + ε]+)2

− ([J(Xε
0;u

ε(·))− J(X0;u(·)) + ε]+)2

+ dF (X
ε
0 + δa,Xε,δ(tf ))

2 − dF (X
ε
0, X

ε(tf ))
2

+ dS(ψ(X
ε,δ(·)))2 − dS(ψ(X

ε(·)))2
)
. (10)

Let Zε and Ẑε be the variational equations related to the
pair (Xε

0, u
ε(·)) ∈ Rn × U in (8) given by

Zε(t) = a+

∫ t

t0

(t− s)α−1

Γ(α)
(∂Xf ε(s)Zε(s) + f̂ ε(s))ds,

Ẑε(tf ) =

∫ tf

t0

(tf − s)β−1

Γ(β)
(∂X lε(s)Zε(s) + l̂ε(s))ds

+ ∂X0
mεa+ ∂XmεZε(tf ).

By continuity of Jε on Rn×U , it follows that limδ↓0 Jε(X
ε
0+

δa;uε,δ(·)) = Jε(X
ε
0;u

ε(·)). Then by the variational anal-

ysis of Jε, Ẑ
ε and Zε, together with Lemmas 3 and 5, as

δ ↓ 0, (10) becomes for any (a, u(·)) ∈ Rn × U ,
−
√
ε(|a|+ tf ) ≤ λεẐε(tf ) + 〈ξε1, a〉+ 〈ξε2, Zε(tf )〉 (11)

+ 〈µε, ∂XG(·, Xε(·))Zε(·)〉C∗
q×Cq

,

where by Lemma 5 and the property of dF in Section 5.1

|λε|2 + |ξε|2 + ‖µε‖2C([t0,tf ];Rq)∗ = 1 (12)
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with λε, ξε, µε defined by λε :=
[J(Xε

0 ;u
ε(·))−J(X0;u(·))+ε]+

Jε(Xε
0 ;u

ε(·)) ≥

0, ξε :=

[
Xε

0
Xε(tf )

]
−PF (Xε

0 ,X
ε(tf ))

Jε(Xε
0 ;u

ε(·)) ∈ NF (PF (X
ε
0, X

ε(tf ))),

and µε := dS(ψ(Xε(·)))DdS(ψ(Xε(·)))
Jε(Xε

0 ;u
ε(·)) ∈ C([t0, tf ];Rq)∗.

5.5 Variational Analysis II

Let Z and Ẑ be the variational equations related to the
optimal solution u(·) ∈ U given by

Z(t) = a+

∫ t

t0

(t− s)α−1

Γ(α)
(∂Xf(s)Z(s)ds+ f̂(s))ds (13)

Ẑ(tf ) =

∫ tf

t0

(tf − s)β−1

Γ(β)
(∂X l(s)Z(s) + l̂(s))ds (14)

+ ∂X0
ma+ ∂XmZ(tf ).

Let {εk} be a sequence of ε such that εk ≥ 0 and εk ↓ 0
as k → ∞. By the Banach-Alaoglu theorem (Conway,
2000, page 130), we may extract a subsequence of {εk},
still denoted by {εk}, such that as k → ∞,

({λεk}, {ξεk}, {µεk}) → (λ0, ξ0, µ0) =: (λ, ξ, µ),

where the convergence of {µεk} → µ (as k → ∞) is
understood in the weak–∗ sense (Conway, 2000). Hence,
we can show that the tuple (λ, ξ, µ) holds

λ ≥ 0, ξ ∈ NF (PF (X0, X(tf ))), µ ∈ NS(ψ(X(·))). (15)

Therefore, as k → ∞, (11) becomes

0 ≤ λẐ(tf ) + 〈ξ1, a〉+ 〈ξ2, Z(tf )〉 (16)

+ 〈µ, ∂XG(·, X(·))Z(·)〉C∗
q×Cq

, ∀(a, u(·)) ∈ Rn × U .

5.6 Proof of Theorem 2 (v): Complementary Slackness

Let µ = (µ1, . . . , µq) ∈ C([t0, tf ];Rq)∗. Based on (5),

〈µ, z − ψ(X(·))〉C∗
q×Cq

(17)

=

q∑
i=1

〈µi, zi − ψi(X(·))〉C∗
1×C1

≤ 0, ∀z ∈ S.

By choosing z appropriately, we can show that (17) is
equivalent to 〈µi, ψi(X(·))〉C∗

1×C1
= 0 for i = 1, . . . , q.

Then by the Riesz representation theorem (see (Con-
way, 2000, page 75 and page 382)), there is a unique
θ(·) = (θ1(·), . . . , θq(·)) ∈ NBV([t0, tf ];Rq) with θi(·) ∈
NBV([t0, tf ];R), i.e., θi, i = 1, . . . ,m, are normalized
functions of bounded variation on [t0, tf ], such that ev-
ery θi is finite, nonnegative, and monotonically nonde-
creasing on [t0, tf ] with θi(0) = 0. Moreover, the Riesz
representation theorem implies that for i = 1, . . . , q,

〈µi, ψi(X(·))〉C∗
1×C1 =

∫ tf
t0

Gi(s)dθi(s) = 0. This shows

the complementary slackness condition in Theorem 2.

5.7 Proof of Theorem 2 (i) and (ii): Nontriviality and
Nonnegativity Conditions

Recall (17). By the Riesz representation theorem (see
(Conway, 2000, page 75 and page 382)) and the fact that
θi, i = 1, . . . , q, is finite, nonnegative, and monotonically
nondecreasing on [t0, tf ] with θi(0) = 0 (see Section 5.6),
it follows that ‖µi‖C([t0,tf ];R)∗ = ‖θi(·)‖NBV = θi(tf ) ≥

0 for i = 1, . . . , q. In addition, as θi is monotonically
nondecreasing, we have dθi(s) ≥ 0 for s ∈ [t0, tf ].

By (15) and the fact that (X0, X(tf )) ∈ F implies

PF (X0, X(tf )) = (X0, X(tf )) (see Section 5.1), we have

ξ =
[
ξ�1 ξ�2

]� ∈ NF (X0, X(tf )).

In addition, from the fact that S = C([t0, tf ];Rq
−) has an

nonempty interior, there are z′ ∈ S and σ > 0 such that
z′ + σz ∈ S for all z ∈ B(C([t0,tf ];Rq),‖·‖C([t0,tf ];Rq))(0, 1)

(the closure of the unit ball in C([t0, tf ];Rq)). Then using
(15) and (12), we can show that σ‖µ‖C([t0,tf ];Rq)∗ =

σ
√

1− |λ|2 − |ξ|2 ≤ 〈µ, ψ(X(·))− z′〉C∗
q×Cq , z

′ ∈ S. Now,

note that σ > 0. When µ = 0 ∈ C([t0, tf ];Rq)∗ and ξ = 0,
we have λ = 1. When λ = 0 and µ = 0 ∈ C([t0, tf ];Rq)∗,
we have |ξ| = 1. When λ = 0 and ξ = 0, we have µ �= 0 ∈
C([t0, tf ];Rq)∗. This implies (λ, ξ, θ) �= 0, i.e., they cannot
vanish simultaneously. This shows the nontriviality and
nonnegativity conditions in Theorem 2.

5.8 Proof of Theorem 2 (iii): Adjoint Equation and
Duality Analysis

We can show that the unique solution of the adjoint
equation in (3) can be written as

p(t) = Π(tf , t)
�(ξ2 + λ∂Xm�) (18)

+ λ

∫ tf

t

Π(τ, t)�
(tf − τ)β−1

Γ(β)
∂X l(τ)�dτ

+

∫ tf

t

Π(τ, t)�
q∑

i=1

∂XGi(τ)
�Θi(τ)dτ,

where Π is the RL state-transition matrix associated with
∂Xf . Moreover, Z in (13) can be written as

Z(t) = a+

∫ t

t0

Π(t, s)(∂Xf(s)a+ f̂(s))ds. (19)

Using (14), (18) and (19) with Fubini’s formula, (16)
becomes

0 ≤ 〈ξ1 + λ∂X0
m�, a〉+ 〈ξ2 + λ∂Xm�, a〉 (20)

+

∫ tf

t0

q∑
i=1

∂XGi(s)dθi(s)a+

∫ tf

t0

〈p(s), ∂Xf(s)a〉ds

+ λ

∫ tf

t0

(tf − s)β−1

Γ(β)
∂X l(s)dsa

+

∫ tf

t0

〈p(s), f̂(s)〉ds+ λ

∫ tf

t0

(tf − s)β−1

Γ(β)
l̂(s)ds.

5.9 Proof of Theorem 2 (iv): Transversality Condition

When u = u, by the adjoint equation in (3), (20) becomes

0 ≤ 〈ξ1 + λ∂X0
m�, a〉+ 〈ξ2 + λ∂Xm�, a〉 (21)

+ 〈
∫ tf

t0

Dα
tf−[p](s)ds, a〉.

Recall from (18) that I1−α
tf− [p](tf ) = ξ2 + λ∂Xm�. Then

(21) becomes 0 ≤ 〈ξ1 + λ∂X0m
� + I1−α

tf− [p](t0), a〉. As this

holds for a,−a ∈ Rn, we must have I1−α
tf− [p](t0) = −(ξ1 +

λ∂X0m
�). This shows the transversality condition.
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with λε, ξε, µε defined by λε :=
[J(Xε

0 ;u
ε(·))−J(X0;u(·))+ε]+

Jε(Xε
0 ;u

ε(·)) ≥

0, ξε :=

[
Xε

0
Xε(tf )

]
−PF (Xε

0 ,X
ε(tf ))

Jε(Xε
0 ;u

ε(·)) ∈ NF (PF (X
ε
0, X

ε(tf ))),

and µε := dS(ψ(Xε(·)))DdS(ψ(Xε(·)))
Jε(Xε

0 ;u
ε(·)) ∈ C([t0, tf ];Rq)∗.

5.5 Variational Analysis II

Let Z and Ẑ be the variational equations related to the
optimal solution u(·) ∈ U given by

Z(t) = a+

∫ t

t0

(t− s)α−1

Γ(α)
(∂Xf(s)Z(s)ds+ f̂(s))ds (13)

Ẑ(tf ) =

∫ tf

t0

(tf − s)β−1

Γ(β)
(∂X l(s)Z(s) + l̂(s))ds (14)

+ ∂X0
ma+ ∂XmZ(tf ).

Let {εk} be a sequence of ε such that εk ≥ 0 and εk ↓ 0
as k → ∞. By the Banach-Alaoglu theorem (Conway,
2000, page 130), we may extract a subsequence of {εk},
still denoted by {εk}, such that as k → ∞,

({λεk}, {ξεk}, {µεk}) → (λ0, ξ0, µ0) =: (λ, ξ, µ),

where the convergence of {µεk} → µ (as k → ∞) is
understood in the weak–∗ sense (Conway, 2000). Hence,
we can show that the tuple (λ, ξ, µ) holds

λ ≥ 0, ξ ∈ NF (PF (X0, X(tf ))), µ ∈ NS(ψ(X(·))). (15)

Therefore, as k → ∞, (11) becomes

0 ≤ λẐ(tf ) + 〈ξ1, a〉+ 〈ξ2, Z(tf )〉 (16)

+ 〈µ, ∂XG(·, X(·))Z(·)〉C∗
q×Cq

, ∀(a, u(·)) ∈ Rn × U .

5.6 Proof of Theorem 2 (v): Complementary Slackness

Let µ = (µ1, . . . , µq) ∈ C([t0, tf ];Rq)∗. Based on (5),

〈µ, z − ψ(X(·))〉C∗
q×Cq

(17)

=

q∑
i=1

〈µi, zi − ψi(X(·))〉C∗
1×C1

≤ 0, ∀z ∈ S.

By choosing z appropriately, we can show that (17) is
equivalent to 〈µi, ψi(X(·))〉C∗

1×C1
= 0 for i = 1, . . . , q.

Then by the Riesz representation theorem (see (Con-
way, 2000, page 75 and page 382)), there is a unique
θ(·) = (θ1(·), . . . , θq(·)) ∈ NBV([t0, tf ];Rq) with θi(·) ∈
NBV([t0, tf ];R), i.e., θi, i = 1, . . . ,m, are normalized
functions of bounded variation on [t0, tf ], such that ev-
ery θi is finite, nonnegative, and monotonically nonde-
creasing on [t0, tf ] with θi(0) = 0. Moreover, the Riesz
representation theorem implies that for i = 1, . . . , q,

〈µi, ψi(X(·))〉C∗
1×C1 =

∫ tf
t0

Gi(s)dθi(s) = 0. This shows

the complementary slackness condition in Theorem 2.

5.7 Proof of Theorem 2 (i) and (ii): Nontriviality and
Nonnegativity Conditions

Recall (17). By the Riesz representation theorem (see
(Conway, 2000, page 75 and page 382)) and the fact that
θi, i = 1, . . . , q, is finite, nonnegative, and monotonically
nondecreasing on [t0, tf ] with θi(0) = 0 (see Section 5.6),
it follows that ‖µi‖C([t0,tf ];R)∗ = ‖θi(·)‖NBV = θi(tf ) ≥

0 for i = 1, . . . , q. In addition, as θi is monotonically
nondecreasing, we have dθi(s) ≥ 0 for s ∈ [t0, tf ].

By (15) and the fact that (X0, X(tf )) ∈ F implies

PF (X0, X(tf )) = (X0, X(tf )) (see Section 5.1), we have

ξ =
[
ξ�1 ξ�2

]� ∈ NF (X0, X(tf )).

In addition, from the fact that S = C([t0, tf ];Rq
−) has an

nonempty interior, there are z′ ∈ S and σ > 0 such that
z′ + σz ∈ S for all z ∈ B(C([t0,tf ];Rq),‖·‖C([t0,tf ];Rq))(0, 1)

(the closure of the unit ball in C([t0, tf ];Rq)). Then using
(15) and (12), we can show that σ‖µ‖C([t0,tf ];Rq)∗ =

σ
√
1− |λ|2 − |ξ|2 ≤ 〈µ, ψ(X(·))− z′〉C∗

q×Cq , z
′ ∈ S. Now,

note that σ > 0. When µ = 0 ∈ C([t0, tf ];Rq)∗ and ξ = 0,
we have λ = 1. When λ = 0 and µ = 0 ∈ C([t0, tf ];Rq)∗,
we have |ξ| = 1. When λ = 0 and ξ = 0, we have µ �= 0 ∈
C([t0, tf ];Rq)∗. This implies (λ, ξ, θ) �= 0, i.e., they cannot
vanish simultaneously. This shows the nontriviality and
nonnegativity conditions in Theorem 2.

5.8 Proof of Theorem 2 (iii): Adjoint Equation and
Duality Analysis

We can show that the unique solution of the adjoint
equation in (3) can be written as

p(t) = Π(tf , t)
�(ξ2 + λ∂Xm�) (18)

+ λ

∫ tf

t

Π(τ, t)�
(tf − τ)β−1

Γ(β)
∂X l(τ)�dτ

+

∫ tf

t

Π(τ, t)�
q∑

i=1

∂XGi(τ)
�Θi(τ)dτ,

where Π is the RL state-transition matrix associated with
∂Xf . Moreover, Z in (13) can be written as

Z(t) = a+

∫ t

t0

Π(t, s)(∂Xf(s)a+ f̂(s))ds. (19)

Using (14), (18) and (19) with Fubini’s formula, (16)
becomes

0 ≤ 〈ξ1 + λ∂X0
m�, a〉+ 〈ξ2 + λ∂Xm�, a〉 (20)

+

∫ tf

t0

q∑
i=1

∂XGi(s)dθi(s)a+

∫ tf

t0

〈p(s), ∂Xf(s)a〉ds

+ λ

∫ tf

t0

(tf − s)β−1

Γ(β)
∂X l(s)dsa

+

∫ tf

t0

〈p(s), f̂(s)〉ds+ λ

∫ tf

t0

(tf − s)β−1

Γ(β)
l̂(s)ds.

5.9 Proof of Theorem 2 (iv): Transversality Condition

When u = u, by the adjoint equation in (3), (20) becomes

0 ≤ 〈ξ1 + λ∂X0
m�, a〉+ 〈ξ2 + λ∂Xm�, a〉 (21)

+ 〈
∫ tf

t0

Dα
tf−[p](s)ds, a〉.

Recall from (18) that I1−α
tf− [p](tf ) = ξ2 + λ∂Xm�. Then

(21) becomes 0 ≤ 〈ξ1 + λ∂X0m
� + I1−α

tf− [p](t0), a〉. As this
holds for a,−a ∈ Rn, we must have I1−α

tf− [p](t0) = −(ξ1 +

λ∂X0m
�). This shows the transversality condition.

5.10 Proof of Theorem 2 (vi): Hamiltonian Minimization
Condition

When a = 0, (20) becomes 0 ≤
∫ tf
t0
〈p(s), f̂(s)〉ds +

λ
∫ tf
t0

(tf−s)β−1

Γ(β) l̂(s)ds. By the definition of H, we have∫ tf
t0

H(X(s), p(s);u(s))ds ≤
∫ tf
t0

H(X(s), p(s);u(s))ds.

As H is continuous in u ∈ U , and U is separable, for any
u ∈ U , we have H(X(t), p(t);u) ≤ H(X(t), p(t);u(t)), a.e.
t ∈ [t0, tf ], which proves the Hamiltonian minimization
condition in Theorem 2.

This is the end of the short proof for Theorem 2.

6. CONCLUSIONS

In this paper, we have obtained the maximum principle
for the fractional optimal control problem with terminal
and running state constraints. The new proof has to be
developed due to the inherent complex nature of the frac-
tional control problem, the presence of the terminal and
running state constraints, and the generalized standing
assumptions. Some potential future research problems are
(i) the generalization to other fractional equations such
as the Caputo–Katugampola differential equation and (ii)
studying the fractional dynamic programming principle.
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