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1.  Introduction and motivation: rotation reversals 
and second derivatives

Explaining the dramatic change of intrinsic rotation with slight 
changes in density is an open question [1–5]: White et al[5] 
present a pair of Alcator C-Mod discharges where the turbu-
lent drive terms are essentially the same within error bars, the 
only noticeable difference being that the electron density is 
slightly higher in one discharge. Despite this apparent simi-
larity, the toroidal rotation profile is dramatically different 
between the two discharges: peaked and strongly co-current in 
the lower density case and hollow and slightly counter-current 
on axis in the higher density case. The rotation profiles for 
these shots are shown in figure 1, the electron density profiles 

are shown in figure 3 and the electron temperature profiles are 
shown in figure 4.

Ida et al[6] and the references therein discuss the exper
imental connection between the ion temperature gradient 
(ITG) and the intrinsic toroidal rotation. Beyond this, there 
are theoretical reasons to believe that the second derivatives 
of the profiles play a role in momentum transport [7–17, 18]. 
Barnes gave a very intuitive description of two of the ways 
this can occur [13]:

	 (i)	The strength of the turbulence depends on the pro-
file gradient. Therefore, the second derivative of the 
profile corresponds to a gradient in the strength of the 
turbulence. Consider two ensembles of trapped electrons 
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proposed explanation is that momentum transport is sensitive to the second derivatives of the 
temperature and density profiles (Lee et al 2015 Plasma Phys. Control. Fusion 57 125006), 
but it is widely considered to be impossible to measure these higher derivatives. In this paper, 
we show that it is possible to estimate second derivatives of electron density and temperature 
using a nonparametric regression technique known as Gaussian process regression. This 
technique avoids over-constraining the fit by not assuming an explicit functional form for the 
fitted curve. The uncertainties, obtained rigorously using Markov chain Monte Carlo sampling, 
are small enough that it is reasonable to explore hypotheses which depend on second 
derivatives. It is found that the differences in the second derivatives of ne and Te between 
the peaked and hollow rotation cases are rather small, suggesting that changes in the second 
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which start from the same place at the outboard midplane 
of an up-down symmetric plasma which have opposite 
parallel velocities. Supposing the toroidal plasma current 
is in the same direction as the toroidal magnetic field, the 
electrons for which v‖ > 0 drift radially outwards when 
undergoing a banana orbit while the electrons for which 
v‖ < 0 drift radially inwards. In the absence of turbulence 
(and ignoring other collisions), the electrons all eventu-
ally return to the same poloidal location, forming a pair of 
closed banana orbits. With turbulence of constant strength 
(i.e. the second derivatives of the profiles are zero) the 
losses due to turbulence for both populations of electrons 
are equal, and no net momentum transport occurs. But if 
there is stronger turbulent transport on one side than on 
the other then more of the electrons going one direction 
will be lost and there will be net transport of momentum. 
Therefore, the second derivatives of the plasma profiles 
must be non-zero for there to be net momentum transport.

	(ii)	When there are spatial gradients in the density and 
temperature profiles there are diamagnetic corrections to 
the distribution function of the particles which induce a 
diamagnetic flow. The strength of this flow depends on 
the first derivatives of the density and temperature pro-
files. When there is no initial rotation, this diamagnetic 
flow cancels with the E × B flow. But there can be dif-
ferent diffusion coefficients for these two flows. So, if the 
second derivatives of the profiles are non-zero, there will 
be a gradient in the diamagnetic flow which can cause it 
to diffuse at a different rate than the E × B flow, thereby 
creating a net diffusion of momentum.

Lee et al [16] puts this in a particularly clear mathematical 
form: the intrinsic momentum transport is shown to consist 
of six components (equation (37) of [16]). Of these, the term 
arising from the different diffusion coefficients for the dia-

magnetic and E × B flows, Π∆χϕ

int ∝ ∂Ωϕ,d/∂r, is found to be 
a major contributor to the momentum transport in GS2 [19] 
simulations of the cyclone base case [20, 21]. Because the 

diamagnetic toroidal rotation frequency Ωϕ,d is, in general, a 
function of the temperature and density gradients, this is the 
term which depends on the second derivatives.

In the past it has been widely believed that it is impossible 
to test hypotheses depending on second derivatives because 
of how large the uncertainties are expected to grow with each 
order of derivative, and the risk that an over-constrained fit 
could mask the true level of uncertainty. In this paper, we 
show that recent advances in tokamak profile fitting enable 
this measurement to be made with reasonable uncertainty esti-
mates. It is found that the differences in the second derivatives 
of ne and Te between the peaked and hollow rotation cases are 
small. This means that, unless the sensitivity to second deriva-

tives is very high, Π∆χϕ

int  does not appear to be the dominant 
momentum transport term in the experimental cases, in con-
trast to what was observed for the Cyclone Base Case. Note, 
however, that second derivatives of the ion temperature Ti may 
still play a role [22]: because the primary Ti measurement on 
Alcator C-Mod is an x-ray imaging crystal spectrometer [23], 
rigorous uncertainty estimates on the second derivatives of 
the tomographically inverted Ti profiles are outside the scope 
of the present paper. This paper focuses on the experimental 
measurements and their interpretation; future work will con-
tinue the comparison to theory using GS2 simulations of real 
Alcator C-Mod conditions.

The rest of this paper is organized as follows: section  2 
gives a brief review of Gaussian process regression (GPR), 

Figure 1.  Toroidal rotation profiles for the shots with hollow (red 
circles) and peaked (blue triangles) rotation profiles. The data 
shown cover 0.9 s � t � 1.2 s. The hollow rotation shot has ne 
approximately 20% higher than the peaked rotation shot, as shown 
in figure 3.

Figure 2.  Magnetic equilibrium reconstruction and diagnostic 
locations for the high density shot with hollow rotation profile. 
The lower density shot with a peaked rotation profile is essentially 
the same. In the legend, ‘CTS’ is the core Thomson scattering 
system, ‘ETS’ is the edge Thomson scattering system, and ‘GPC’ 
and ‘GPC2’ are the two grating polychromator electron cyclotron 
emission diagnostics. This figure was produced using eqtools 
[47–49].
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the profile fitting technique which enables the present work. 
Section 3 presents the actual fits to the ne and Te profiles, and 
section 4 uses these results to quantify the differences in the 
second derivative profiles in a statistically rigorous manner. 
Section 5 summarizes the work and presents the conclusions 
reached. Appendix shows how to obtain the derivatives of the 
squared exponential covariance kernel used for the present 
work.

2.  Estimating derivatives and their uncertainties 
using Gaussian process regression

Recent advances in tokamak profile fitting using GPR allow 
derivatives to be computed along with statistically rigorous 
uncertainty estimates [24, 25]. GPR is a very powerful gen-
eral-purpose Bayesian nonparametric regression technique 
[26–33], and the past few years have seen a number of applica-
tions of GPR in plasma physics [24, 25, 34–40]. Open-source 
software is available for both general-purpose GPR [41, 42] 
and plasma profile analysis [43, 44].

Refer to [29] for an introduction to the general mathe-
matical details, and [24, 25] for an introduction with plasma 

physics-specific applications. In short, GPR describes the data 
and the fit using a multivariate normal distribution rather than 
assuming a specific functional form:

fy,y∗(y, y∗) = N
(

0,
[

K(x, x) +Σn K(x, x∗)
K(x∗, x) K(x∗, x∗)

])
,� (1)

where fy,y∗(y, y∗) is the joint prior probability density func-
tion of the observations yi ∈ y taken at locations xi ∈ x and 
the values of the smoothed curve y∗,i ∈ y∗ evaluated at loca-
tions x∗,i ∈ x∗, N (µ,Σ) is the multivariate normal distribu-
tion with mean vector µ and covariance matrix Σ, and K(a, b) 
is the covariance kernel k(ai, bj) ≡ cov[y(ai), y(bj)] evaluated 
between all pairs of the points ai ∈ a and bi ∈ b. The prop-
erties of this probability distribution are determined by the 
covariance kernel, k(xi, xj), which sets how smooth the pro-
file is: a covariance kernel which decays rapidly with the dis-
tance |xi − xj| will lead to profiles with fine spatial structure 
and many wiggles, while a covariance kernel which does not 
decay rapidly will lead to smooth profiles with little spatial 
structure. It is this lack of assumed functional form which 
allows GPR to be flexible enough to rigorously quantify the 
uncertainty in the fitted curve: the error bars on the fitted curve 

Figure 3.  Data and fitted ne profile for the two shots with different rotation profiles. Red circles and solid curves are from the higher 
density, hollow rotation profile shot and blue triangles and dashed curves are from the lower density, peaked rotation profile shot. For all 
curves, the dark band is  ±1σ and the light band is  ±3σ. The shaded grey region r/a < 0.6 indicates where the largest difference in rotation 
is. The data were averaged over the same time period as figure 1 before performing the fit. The subplots are: (a) the averaged data and 
the fitted core profiles, (b) the first derivative of the profile, (c) the normalized inverse gradient scale length of the profile, (d) the second 
derivative of the profile, (e) the inverse normalized gradient scale length of the gradient (see equation (7)), and ( f ) the normalized second 
derivative (see equation (8)).
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include all of the flexibility permitted by the data and any prior 
knowledge regarding the macroscopic smoothness of the pro-
file. Furthermore, predictions and observations of any order of 
derivative can be included by noting that

cov

[
∂myi

∂xm
i

,
∂nyj

∂xn
j

]
=

∂m+nk(xi, xj)

∂xm
i ∂xn

j
.� (2)

appendix presents an expression for arbitrary derivatives of 
the squared exponential covariance kernel used in the present 
work.

A critical step in fitting profile data using GPR is to infer 
the hyperparameters3 θ which determine how rapidly the 
covariance kernel decays. This can be handled one of two 
ways: finding a single estimate for the hyperparameters which 
are most likely given the data, or drawing samples from the 
posterior distribution for θ given the data y:

θ̃ ∼ fθ|y(θ|y) =
fy|θ(y|θ) fθ(θ)

fy(y)
,� (3)

where θ̃ is the sample of the hyperparameters, fθ|y(θ|y) is 
the posterior density containing everything which is known 
about the hyperparameters once the data have been measured, 
fy|θ(y|θ) is the likelihood function representing the prob-
ability of observing the data given a particular value of the 
hyperparameters, fθ(θ) is the prior density containing any 
prior knowledge about typical values for the hyperparameters, 
and fy(y) is a normalization constant. In practice, these sam-
ples are drawn using Markov chain Monte Carlo (MCMC) 
sampling [33, 45, 46], and are then used to estimate the mar-
ginalized profile

fy∗|y(y∗|y) =
∫

fy∗,θ|y(y∗,θ|y) dθ� (4)

=

∫
fy∗|y,θ(y∗|y,θ) fθ|y(θ|y) dθ� (5)

and its uncertainty according to the procedure described in 
[24, 25], where y∗ is the predicted profile and/or its deriva-
tives. As was shown in [24, 25], when inferring derivatives it is 
necessary to use MCMC sampling to obtain a full accounting 
of uncertainty.

3.  Fitting the second derivative profiles  
of the rotation reversal data

The profile data from the same shots used in [5] were re-fit 
using GPR, and the second derivatives and their uncertain-
ties were computed. Both of these L-mode discharges had 
Ip = 800 kA, BT = 5.4 T and were heated with 1.2 MW 
of ICRF power. For each shot the data were averaged over 
the period 0.9 s � t � 1.2 s. Data from the core and edge 
Thomson scattering systems were used for both the ne and 
Te profiles. In addition, the data from two electron cyclotron 

emission grating polychromator systems were used for the Te 
profiles. The equilibrium shape and diagnostic locations for 
the hollow rotation profile shot are shown in figure 2.

While the approach in [24] is able to fit entire profiles 
(including the rapid changes at the edge of the plasma) through 
use of a nonstationary covariance kernel, it was found that 
the simplified parameterization of the covariance length scale 
used in that work could over-constrain the fitted curve and 
introduce artifacts when considering higher-order derivatives. 
Therefore, only the data from inside the LCFS were used, so 
the rapid change in ne and Te at the edge does not need to be 
fit. This enables the use of the stationary squared exponential 
covariance kernel:

kSE(xi, xj) = σ2
f exp

(
−
|xi − xj|2

2�2

)
,� (6)

where � is the (constant) covariance length scale which sets 
how fast the correlation drops off and σ2

f  is the signal vari-
ance which sets the extent of variation in the fitted curve. It 
is very important to note that the covariance length scale � is 
not in any way the same thing as the gradient scale length: 
even if � is constant throughout the domain, a/L can still 
vary. The slope at the magnetic axis was forced to zero 
and very simple uniform prior distributions were used for 
the hyperparameters, which are given in table  1. In order 
to ensure a complete accounting of the uncertainty, the 
hyperparameters were sampled using MCMC with an affine-
invariant ensemble sampler [50, 51]. The sampler was run 
with 200 walkers for 600 samples, 200 samples were burned 
and the remaining samples were thinned by a factor of 200. 
The computed profiles are given in figures 3 and 4, summary 
statistics for the posterior distributions of the hyperparam
eters are given in table  2 and the posterior distributions 
themselves are shown in figure 5. The posterior distributions 
for the hyperparameters are very similar between the two 
shots for both ne and Te.

Figures 3 and 4 show the unnormalized second derivative 
profiles as well as two possible normalizations:

a
L∇ne

=
ad2ne/dr2

dne/dr
� (7)

a2d2ne/dr2

ne
.� (8)

The first version was chosen by analogy with the gradient 
scale length, a/Lne = a(dne/dr)/ne, but is made useless in the 
core by the fact that the first derivative dne/dr must go to zero 
on axis. Therefore, the second version, chosen purely from 
dimensional analysis, is likely to be more useful in practice.

Table 1.  Prior distributions used for the hyperparameters of the 
squared exponential covariance kernel when fitting the rotation 
reversal data.

Quantity σf �

ne U(0, 50 × 1020m−3) U(0, 15)
Te U(0, 50 keV) U(0, 25)

3 The term ‘hyperparameters’ is used to denote the fact that these are the 
parameters of the prior distribution representing the prior knowledge 
regarding the smoothness of the profile rather than the parameters of a curve 
used to explicitly fit the profile. See [29, 33] for more details.
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4.  Quantifying the profile differences

In order to test theories which attempt to explain momentum 
transport in terms of differences in the second derivatives it 
is necessary to have an objective way of characterizing the 
difference between two profiles in the presence of very large, 
overlapping uncertainty envelopes. One approach could be to 
apply multivariate hypothesis testing as described in [52]. In 
this case, the test would be deciding whether or not the data 
are sufficient to reject the null hypothesis that the mean vec-
tors are equal. This oversimplified choice between ‘mean vec-
tors match’ and ‘mean vectors do not match’ has been noted 
as a key shortcoming of frequentist hypothesis testing [33]: 

what really matters is the probability of the profiles being dif-
ferent enough to cause a significant change in the rotation pro-
file. The Bayesian framework allows a more useful test to be 
made: we can actually use the results of the GPR fit to quantify 
how likely it is that the profiles differ by a given amount.

For a given pair of quantities to compare yh, yp (with 
corresponding realizations of the hyperparameters θp, θh) 
we have4 yh|θh ∼ N (µh,σ2

h) and yp|θp ∼ N (µp,σ2
p). In this 

Figure 4.  Data and fitted Te profile for the two shots with different rotation profiles, presented as in figure 3. With the high resolution ECE 
measurements, the Te profiles have a shorter covariance length scale and smaller relative uncertainties than the ne profiles.

Table 2.  Summary statistics of the posterior distributions for the hyperparameters.

Quantity Case Parameter (units) Mode Mean 95% interval

ne Hollow σf  (1020m−3) 1.35 13.6 [1.07, 45.9]

� 1.23 3.10 [0.929, 7.19]
Peaked σf  (1020m−3) 1.09 13.1 [0.854, 46.1]

� 1.18 3.13 [0.913, 7.40]

Te Hollow σf  (keV) 1.20 1.92 [0.835, 5.16]
� 0.317 0.355 [0.255, 0.510]

Peaked σf  (keV) 1.33 2.09 [0.933, 5.17]
� 0.313 0.344 [0.247, 0.477]

4 Note that the normalized forms of the second derivative are actually the 
ratio of two Gaussian-distributed random variables. As was shown in [24], 
as long as the denominator is sufficiently far from zero the result can be  
approximated as being Gaussian.

Nucl. Fusion 57 (2017) 126013
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context, yh could be the second derivative at r/a = 0.5 of the 
hollow rotation case and yp could be the second derivative at 
r/a = 0.5 of the peaked rotation case. The probability den-
sity function (PDF) for the difference of these two quantities, 
∆y = yh − yp, is then

f∆y|θh,θp(∆y|θh,θp) = N (∆y;µh − µp,σ2
h + σ2

p).� (9)

Likewise, the cumulative distribution function (CDF) is

F∆y|θh,θp(c|θh,θp) = P(∆y � c|θh,θp)

= Φ

(
c − (µh − µp)

σ2
h + σ2

p

)
,

� (10)

where Φ(x) is the CDF of the standard normal distribution 
N (0, 1). What is actually of interest are the PDF and CDF 
averaged over all values of θh and θp:

f∆y(∆y) =
∫

f∆y|θh,θp(∆y|θh,θp) fθh,θp(θh,θp) dθh dθp

� (11)

F∆y(c) =
∫

F∆y|θh,θp(c|θh,θp) fθh,θp(θh,θp) dθh dθp.�

(12)

These two functions are estimated from the MCMC samples 

{θ(i)
h }, {θ(i)

p } according to

f∆y(∆y) ≈ 1
n

n∑
i=1

f
∆y|θ(i)

h ,θ(i)
p
(∆y|θ(i)

h ,θ(i)
p )� (13)

F∆y(c) ≈
1
n

n∑
i=1

F
∆y|θ(i)

h ,θ(i)
p
(c|θ(i)

h ,θ(i)
p ).� (14)

These two functions can then be used to compute the posterior 
intervals which show how large the differences are likely to 
be.

Figure 6 shows the marginalized PDFs for the normalized 
and unnormalized second derivatives of ne and Te at r/a = 0.5. 
In all six cases the 68% equal-tailed posterior density interval 
contains zero, suggesting that there is very little difference in 
both the normalized and unnormalized second derivatives of 
both ne and Te between these two cases. This implies that, 
unless there is a very strong sensitivity to second derivatives, 

the momentum diffusion term Π∆χϕ

int  cannot account for the 
change in rotation between these two discharges. This is in 
contrast to GS2 predictions for the Cyclone Base Case, which 

Figure 5.  Posterior distributions for the hyperparameters σf  and � of the various fits. In each subfigure, the lower left corner shows the 
bivariate histogram of the MCMC samples and the other two plots show the univariate histograms. The posterior distributions for the 
peaked and hollow cases are essentially the same. Most of the probability mass is concentrated on the modes at σf ≈ 1020m−3, � ≈ 1 for 
ne and σf ≈ 1 keV, � ≈ 0.3 for Te. The posterior distributions are strongly peaked compared to the uniform prior distributions used, which 
indicates that the sensitivity of the result to the prior distribution is low.
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suggest that Π∆χϕ

int  is one of the dominant momentum flux 
components [16]. That being said, table 3 shows that there are 
key differences between the Cyclone Base Case and the real 
experimental conditions. In particular, the Cyclone Base Case 
is constructed to be far from marginal stability so as to exhibit 
robust ITG turbulence [53]. The results presented here sug-
gest that GS2 simulations of the real experimental conditions 
should be performed to check whether or not the momentum 
diffusion term is still expected to be dominant in this pair of 
discharges.

5.  Summary and conclusions

This paper has presented the use of GPR to infer second 
derivative profiles from noisy, discrete profile data. A com-
plete accounting of uncertainty was obtained through use of 
MCMC sampling. This work shows that the uncertainties on 
second derivatives are not as large as might be feared, and 
hence we can realistically attempt to test hypotheses which 
depend on these quantities. This technique was used to test 
the hypothesis that changes in the second derivatives can 
explain the dramatic change in intrinsic rotation induced 
by slight changes in density. The present analysis indicates 
that there is not a substantial difference between the second 
derivatives of ne and Te in the higher density, hollow rotation 
and lower density, peaked rotation shots. Therefore, unless 
a theory is put forth which predicts an exceptionally strong 
sensitivity to the second derivatives, another explanation is 
needed.
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Appendix.  Derivatives of the squared exponential 
covariance kernel

This section obtains an expression for the nth derivative of the 
D-dimensional squared exponential (SE) covariance kernel. 
The n = 2, D = 1 case is what was used for the present work. 
For this section, xi ∈ RD is the location an observation or 
prediction yi is to be made at, while in the rest of this paper 
xi = ri/a ∈ R was a single coordinate.

Recall that the covariance kernel is defined as 
k(xi, xj) ≡ cov[y(xi), y(xj)]. Next, note that the relationship 
between a Gaussian process and its derivatives is

cov
[

yi,
∂yj

∂xjd

]
=

∂k(xi, xj)

∂xjd
� (A.1)

cov
[
∂yi

∂xic
,
∂yj

∂xjd

]
=

∂2k(xi, xj)

∂xic ∂xjd
,� (A.2)

where the notation ∂/∂xjd refers to a derivative with respect 
to the dth component of the input xj to the covariance kernel 
k(xi, xj). These expressions can be extended to arbitrary 
derivatives simply by taking the relevant partial derivatives of 
k(xi, xj). The SE covariance kernel given in equation (6) only 
depends on xi, xj through the quantity r = |τ | = |xi − xj|; 
covariance kernels with this property are said to be isotropic. 
But, if xi consists of position and time, for instance, we have no 
reason to expect the curve to behave the same in every direc-
tion. In general, one can make the substitution r2 → τTMτ  
to introduce anisotropy into an isotropic covariance kernel, 
where M is any positive semidefinite matrix. This work takes 
M to be diagonal and uses the substitution

r2

�2 →
D∑

d=1

τ 2
d

�2
d
=

D∑
d=1

(xid − xjd)
2

�2
d

,� (A.3)

where each dimension has its own covariance length scale �d.
Substituting equation  (A.3), the general form of the SE 

covariance kernel is

kSE(xi, xj) = kSE(τ ) = σ2
f exp

(
−1

2

D∑
d=1

τ 2
d

�2
d

)
� (A.4)

= σ2
f exp

(
−1

2

D∑
d=1

(xid − xjd)
2

�2
d

)
.� (A.5)

Turning the sum in the middle expression in equation (A.5) 
into a product yields

kSE(xi, xj) = σ2
f

D∏
d=1

exp

(
− τ 2

d

2�2
d

)
.� (A.6)

Recall the Rodrigues representation of the (physicists’) 
Hermite polynomials Hn(x) [55]:

Hn(x) = (−1)nex2 dn

dxn e−x2
,� (A.7)

where [56, 57]:

Hn(x) = n!
�n/2�∑
l=0

(−1)l(2x)n−2l

l!(n − 2l)!
.� (A.8)

Rearranging,

dn

dxn e−x2
= (−1)nHn(x)e−x2

.� (A.9)

To find the derivatives of equation (A.6), first find

dn

dτ n
d
exp

(
− τ 2

d

2�2
d

)
=

(
1√
2�d

)n dn

dxn e−x2

=

(
−1√
2�d

)n

Hn

(
τd√
2�d

)
exp

(
− τ 2

d

2�2
d

)
,

� (A.10)

where the substitution x = τd/(
√

2�d) was used. The deriva-
tive of equation (A.6) to arbitrary orders for each dimension 
is then

Figure A1.  One-dimensional squared exponential covariance 
kernel and a few of its derivatives. The horizontal scale has 
been scaled by � and the vertical scale has been scaled by 
σ2

f  to remove the dependence on the hyperparameters. The 
solid blue curve gives kSE(0, x) itself. The long-dashed curves 
give the functions necessary for dealing with first derivatives. 
The green dashed curve is ∂kSE/∂xj = cov[y(0), y′(x)]. 
The red dashed curve is ∂kSE/∂xi = cov[y′(0), y(x)]. The 
teal dashed curve is ∂2kSE/∂xi ∂xj = cov[y′(0), y′(x)]. 
The dotted curves give the functions necessary for dealing 
with second derivatives. The magenta dotted curve is 
∂2kSE/∂x2

i = ∂2kSE/∂x2
j = cov[y′′(0), y(x)] = cov[y(0), y′′(x)]. The 

yellow dotted curve is ∂3kSE/∂xi ∂x2
j = cov[y′(0), y′′(x)]. The black 

dotted curve is ∂3kSE/∂x2
i ∂xj = cov[y′′(0), y′(x)]. The blue dotted 

curve is ∂4kSE/∂x2
i ∂x2

j = cov[y′′(0), y′′(x)].
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∂nkSE(τ )∏D
d=1 ∂τ

nd
d

= σ2
f

D∏
d=1

(
−1√
2�d

)nd

Hnd

(
τd√
2�d

)
exp

(
− τ 2

d

2�2
d

)

� (A.11)

= kSE(τ )

D∏
d=1

(
−1√
2�d

)nd

Hnd

(
τd√
2�d

)
,� (A.12)

where n =
∑D

d=1 nd and nd is the order of derivative with 
respect to dimension d. What is needed to apply equa-
tions (A.1) and (A.2), however, are the derivatives with respect 
to xid  and xjd . Note that

τd = xid − xjd ,
∂τd

∂xid
= 1,

∂τd

∂xjd
= −1� (A.13)

∂ni+njτd

∂xni
id ∂xnj

jd

= 0, for ni + nj � 2.� (A.14)

Applying the chain rule to equation (A.12) then gives

∂nkSE
(
τ (xi, xj)

)
∏D

d=1 ∂x
nid
id

∏D
d=1 ∂x

njd
jd

� (A.15)

=
∂nkSE(τ )∏D

d=1 ∂τ
nid+njd
d

D∏
d=1

(
∂τd

∂xid

)nid
D∏

d=1

(
∂τd

∂xjd

)njd

� (A.16)

= kSE(τ )

D∏
d=1

(
−1√
2�d

)nid+njd

Hnid+njd

(
τd√
2�d

)
·

D∏
d=1

(−1)njd

� (A.17)

= kSE(τ )

D∏
d=1

(−1)nid+2njd

(
√

2�d)
nid+njd

Hnid+njd

(
τd√
2�d

)
,� (A.18)

where n =
∑D

d=1 nid +
∑D

d=1 njd, nid is the order of derivative 
with respect to dimension d of xi and njd is the order of deriva-
tive with respect to dimension d of xj. Equation (A.18) enables 
the computation of derivatives of arbitrary order for data of 
arbitrary dimensionality. A plot of the 1D SE covariance 
kernel and its first few derivatives is provided in figure A1.

ORCID iDs

M.A. Chilenski  https://orcid.org/0000-0002-3616-8484

References

	 [1]	 Bortolon A. et al 2006 Observation of spontaneous toroidal 
rotation inversion in ohmically heated tokamak plasmas 
Phys. Rev. Lett. 97 235003

	 [2]	 Rice J.E. et al 2011 Observations of core toroidal rotation 
reversals in Alcator C-Mod ohmic L-mode plasmas 
Nucl. Fusion 51 083005

	 [3]	 Rice J.E. et al 2012 Ohmic energy confinement saturation and 
core toroidal rotation reversal in Alcator C-Mod plasmas 
Phys. Plasmas 19 056106

	 [4]	 Rice J.E. et al 2013 Non-local heat transport, rotation reversals 
and up/down impurity density asymmetries in Alcator 
C-Mod ohmic L-mode plasmas Nucl. Fusion 53 033004

	 [5]	 White A.E. et al and Alcator C-Mod Team 2013 Multi-channel 
transport experiments at Alcator C-Mod and comparison 
with gyrokinetic simulations Phys. Plasmas 20 056106

	 [6]	 Ida K. et al and LHD experiment group 2010 Spontaneous 
toroidal rotation driven by the off-diagonal term of 
momentum and heat transport in the plasma with the 
ion internal transport barrier in LHD Nucl. Fusion 
50 064007

	 [7]	 Parra F.I., Barnes M. and Catto P.J. 2011 Sources of intrinsic 
rotation in the low-flow ordering Nucl. Fusion 51 113001

	 [8]	 Parra F.I., Barnes M. and Peeters A.G. 2011 Up-down 
symmetry of the turbulent transport of toroidal angular 
momentum in tokamaks Phys. Plasmas 18 062501

	 [9]	 Camenen Y. et al 2011 Consequences of profile shearing on 
toroidal momentum transport Nucl. Fusion 51 073039

	[10]	 Parra F.I. et al 2012 Intrinsic rotation with gyrokinetic models 
Phys. Plasmas 19 056116

	[11]	 Parra F.I. et al 2012 Scaling of spontaneous rotation with 
temperature and plasma current in tokamaks Phys. Rev. 
Lett. 108 095001

	[12]	 Barnes M. et al 2013 Intrinsic rotation driven by non-
Maxwellian equilibria in tokamak plasmas Phys. Rev. Lett. 
111 055005

	[13]	 Barnes M. 2014 Dependence of intrinsic rotation on higher-
order profile gradients personal communication

	[14]	 Lee J. et al 2014 Turbulent momentum pinch of diamagnetic 
flows in a tokamak Nucl. Fusion 54 022002

	[15]	 Lee J.P. et al 2014 The effect of diamagnetic flows on 
turbulent driven ion toroidal rotation Phys. Plasmas 
21 056106

	[16]	 Lee J. et al 2015 Turbulent momentum transport due to 
neoclassical flows Plasma Phys. Control. Fusion 57 125006

	[17]	 Parra F.I. and Barnes M. 2015 Intrinsic rotation in tokamaks: 
theory Plasma Phys. Control. Fusion 57 045002

	[18]	 Hillesheim J.C., Parra F.I., Barnes M., Crocker N.A., 
Meyer H., Peebles W.A., Scannell R., Thornton A. and 
The MAST Team 2015 Dependence of intrinsic rotation 
reversals on collisionality in MAST Nucl. Fusion 
55 032003

	[19]	 Dorland W. et al 2000 Electron temperature gradient 
turbulence Phys. Rev. Lett. 85 5579–82

	[20]	 Dimits A.M. et al 2000 Comparisons and physics basis of 
tokamak transport models and turbulence simulations 
Phys. Plasmas 7 969–83

	[21]	 ITG: Cyclone base case (http://gs2.Sourceforge.net/PMP/itg.
html)

	[22]	 Ida K. et al and JT-60 Team 2008 Transition between internal 
transport barriers with different temperature-profile 
curvatures in JT-60U tokamak plasmas Phys. Rev. Lett. 
101 055003

	[23]	 Ince-Cushman A. et al 2008 Spatially resolved high resolution 
x-ray spectroscopy for magnetically confined fusion 
plasmas (invited) Rev. Sci. Instrum. 79 10E302

	[24]	 Chilenski M.A. et al 2015 Improved profile fitting and 
quantification of uncertainty in experimental measurements 
of impurity transport coefficients using Gaussian process 
regression Nucl. Fusion 55 023012

	[25]	 Chilenski M.A. 2016 Experimental data analysis techniques 
for validation of Tokamak impurity transport simulations 
PhD Thesis Massachusetts Institute of Technology (https://
markchil.github.io/pdfs/thesis.pdf)

	[26]	 O’Hagan A. 1978 Curve fitting and optimal design for 
prediction J. R. Stat. Soc. B 40 1–42

	[27]	 MacKay D.J.C. 1998 Introduction to Gaussian processes 
Neural Networks and Machine Learning (NATO ASI Series) 
ed C. M Bishop (Dordrecht: Kluwer) pp 133–66 (http://
inference.org.uk/mackay/gpB.pdf)

	[28]	 Stein M.L. 1999 Interpolation of Spatial Data (Springer 
Series in Statistics) (New York: Springer) (https://doi.
org/10.1007/978-1-4612-1494-6)

Nucl. Fusion 57 (2017) 126013

https://orcid.org/0000-0002-3616-8484
https://orcid.org/0000-0002-3616-8484
https://doi.org/10.1103/PhysRevLett.97.235003
https://doi.org/10.1103/PhysRevLett.97.235003
https://doi.org/10.1088/0029-5515/51/8/083005
https://doi.org/10.1088/0029-5515/51/8/083005
https://doi.org/10.1063/1.3695213
https://doi.org/10.1063/1.3695213
https://doi.org/10.1088/0029-5515/53/3/033004
https://doi.org/10.1088/0029-5515/53/3/033004
https://doi.org/10.1063/1.4803089
https://doi.org/10.1063/1.4803089
https://doi.org/10.1088/0029-5515/50/6/064007
https://doi.org/10.1088/0029-5515/50/6/064007
https://doi.org/10.1088/0029-5515/51/11/113001
https://doi.org/10.1088/0029-5515/51/11/113001
https://doi.org/10.1063/1.3586332
https://doi.org/10.1063/1.3586332
https://doi.org/10.1088/0029-5515/51/7/073039
https://doi.org/10.1088/0029-5515/51/7/073039
https://doi.org/10.1063/1.3699186
https://doi.org/10.1063/1.3699186
https://doi.org/10.1103/PhysRevLett.108.095001
https://doi.org/10.1103/PhysRevLett.108.095001
https://doi.org/10.1103/PhysRevLett.111.055005
https://doi.org/10.1103/PhysRevLett.111.055005
https://doi.org/10.1088/0029-5515/54/2/022002
https://doi.org/10.1088/0029-5515/54/2/022002
https://doi.org/10.1063/1.4872322
https://doi.org/10.1063/1.4872322
https://doi.org/10.1088/0741-3335/57/12/125006
https://doi.org/10.1088/0741-3335/57/12/125006
https://doi.org/10.1088/0741-3335/57/4/045002
https://doi.org/10.1088/0741-3335/57/4/045002
https://doi.org/10.1088/0029-5515/55/3/032003
https://doi.org/10.1088/0029-5515/55/3/032003
https://doi.org/10.1103/PhysRevLett.85.5579
https://doi.org/10.1103/PhysRevLett.85.5579
https://doi.org/10.1103/PhysRevLett.85.5579
https://doi.org/10.1063/1.873896
https://doi.org/10.1063/1.873896
https://doi.org/10.1063/1.873896
http://gs2.Sourceforge.net/PMP/itg.html
http://gs2.Sourceforge.net/PMP/itg.html
https://doi.org/10.1103/PhysRevLett.101.055003
https://doi.org/10.1103/PhysRevLett.101.055003
https://doi.org/10.1063/1.2968707
https://doi.org/10.1063/1.2968707
https://doi.org/10.1088/0029-5515/55/2/023012
https://doi.org/10.1088/0029-5515/55/2/023012
https://markchil.github.io/pdfs/thesis.pdf
https://markchil.github.io/pdfs/thesis.pdf
http://inference.org.uk/mackay/gpB.pdf
http://inference.org.uk/mackay/gpB.pdf
https://doi.org/10.1007/978-1-4612-1494-6
https://doi.org/10.1007/978-1-4612-1494-6


M.A. Chilenski et al

10

	[29]	 Rasmussen C.E. and Williams C.K.I. 2006 Gaussian 
Processes for Machine Learning (Cambridge, MA: MIT 
Press)

	[30]	 Press W.H. et al 2007 Numerical Recipes: the Art of Scientific 
Computing 3rd edn (Cambridge: Cambridge University 
Press)

	[31]	 Barber D. 2012 Bayesian Reasoning and Machine Learning 
(Cambridge: Cambridge University Press)

	[32]	 Murphy K.P. 2012 Machine Learning: a Probabilistic 
Perspective (Cambridge, MA: MIT Press)

	[33]	 Gelman A. et al 2014 Bayesian Data Analysis 3rd edn 
(Texts in Statistical Science) (Boca Raton, FL: CRC Press)

	[34]	 von Nessi G.T. et al 2012 Evidence cross-validation 
and Bayesian inference of MAST plasma equilibria 
Phys. Plasmas 19 012506

	[35]	 Li D. et al 2013 Bayesian soft x-ray tomography using non-
stationary Gaussian processes Rev. Sci. Instrum. 84 083506

	[36]	 Romero J.A. and Svensson J. 2013 Optimization of out-vessel 
magnetic diagnostics for plasma boundary reconstruction in 
tokamaks Nucl. Fusion 53 033009

	[37]	 von Nessi G.T., Hole M.J. and The MAST Team 2013 A 
unified method for inference of tokamak equilibria and 
validation of force-balance models based on Bayesian 
analysis J. Phys. A: Math. Theor. 46 185501

	[38]	 von Nessi G.T. and Hole M.J. 2013 Using Bayesian analysis 
and Gaussian processes to infer electron temperature and 
density profiles on the Mega-Ampere Spherical Tokamak 
experiment Rev. Sci. Instrum. 84 063505

	[39]	 Langenberg A. et al 2014 Forward modeling of a high 
resolution x-ray imaging crystal spectrometer for the 
Wendelstein 7-x stellarator 41st European Physical Society 
Conf. on Plasma Physics (Berlin, Germany, 23–27 June 
2014) (European Conf. Abstracts vol 38F) ed S. Ratynskaia 
et al p P1.074 (European Physical Society) (http://ocs.
ciemat.es/EPS2014PAP/pdf/P1.074.pdf)

	[40]	 Kwak S. et al and JET Contributors 2016 Bayesian modelling 
of the emission spectrum of the joint European torus 
lithium beam emission Spectroscopy system Rev. Sci. 
Instrum. 87 023501

	[41]	 Chilenski M.A. 2016 gptools: Gaussian processes with 
arbitrary derivative constraints and predictions (online 
documentation) (http://gptools.readthedocs.org/)

	[42]	 Chilenski M.A. 2016 gptools: Gaussian processes with 
arbitrary derivative constraints and predictions (https://
github.com/markchil/gptools)

	[43]	 Chilenski M.A. 2016 profiletools: classes for working with 
profile data of arbitrary dimension (online documentation) 
(https://profiletools.readthedocs.org/)

	[44]	 Chilenski M.A. 2016 profiletools: classes for working with 
profile data of arbitrary dimension (https://github.com/
markchil/profiletools)

	[45]	 Metropolis N. et al 1953 Equation of state calculations by fast 
computing machines J. Chem. Phys. 21 1087–92

	[46]	 Hastings W.K. 1970 Monte Carlo sampling methods  
using Markov chains and their applications Biometrika 
57 97–109

	[47]	 Chilenski M.A., Faust I.C. and Walk J.R. 2017 eqtools: 
Modular, extensible, open-source, cross-machine Python 
tools for working with magnetic equilibria Comput. Phys. 
Commun. 210 155–62

	[48]	 Chilenski M.A., Faust I.C. and Walk J.R. 2016 eqtools: tools 
for interacting with magnetic equilibria (http://eqtools.
readthedocs.org)

	[49]	 Chilenski M.A., Faust I.C. and Walk J.R. 2016 eqtools: python 
tools for magnetic equilibria in tokamak plasma (https://
github.com/PSFCPlasmaTools/eqtools)

	[50]	 Goodman J. and Weare J. 2010 Ensemble samplers with affine 
invariance Commun. Appl. Math. Comput. Sci. 5 65–80

	[51]	 Foreman-Mackey D. et al 2013 emcee: the mcmc hammer 
Publ. Astron. Soc. Pac. 125 306–12

	[52]	 Timm N.H. 2002 Applied Multivariate Analysis (Springer 
Texts in Statistics) (Berlin: Springer) (https://doi.
org/10.1007/b98963)

	[53]	 Howard N.T. et al 2014 Multi-scale gyrokinetic simulation 
of Alcator C-Mod tokamak discharges Phys. Plasmas 
21 032308

	[54]	 Howard N.T. et al 2013 Validation of the gyrokinetic model 
in ITG and TEM dominated L-mode plasmas Nucl. Fusion 
53 123011

	[55]	 Arfken G.B. and Weber H.J. 2005 Mathematical Methods for 
Physicists 6th edn (Burlington, MA: Elsevier)

	[56]	 NIST digital library of mathematical functions (dlmf.nist.gov/)
	[57]	 NIST digital library of mathematical functions: 18.5 explicit 

representations (dlmf.nist.gov/18.5)

Nucl. Fusion 57 (2017) 126013

https://doi.org/10.1063/1.3677362
https://doi.org/10.1063/1.3677362
https://doi.org/10.1063/1.4817591
https://doi.org/10.1063/1.4817591
https://doi.org/10.1088/0029-5515/53/3/033009
https://doi.org/10.1088/0029-5515/53/3/033009
https://doi.org/10.1088/1751-8113/46/18/185501
https://doi.org/10.1088/1751-8113/46/18/185501
https://doi.org/10.1063/1.4811378
https://doi.org/10.1063/1.4811378
http://ocs.ciemat.es/EPS2014PAP/pdf/P1.074.pdf
http://ocs.ciemat.es/EPS2014PAP/pdf/P1.074.pdf
https://doi.org/10.1063/1.4940925
https://doi.org/10.1063/1.4940925
http://gptools.readthedocs.org/
https://github.com/markchil/gptools
https://github.com/markchil/gptools
https://profiletools.readthedocs.org/
https://github.com/markchil/profiletools
https://github.com/markchil/profiletools
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1016/j.cpc.2016.09.011
https://doi.org/10.1016/j.cpc.2016.09.011
https://doi.org/10.1016/j.cpc.2016.09.011
http://eqtools.readthedocs.org
http://eqtools.readthedocs.org
https://github.com/PSFCPlasmaTools/eqtools
https://github.com/PSFCPlasmaTools/eqtools
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.1007/b98963
https://doi.org/10.1007/b98963
https://doi.org/10.1063/1.4869078
https://doi.org/10.1063/1.4869078
https://doi.org/10.1088/0029-5515/53/12/123011
https://doi.org/10.1088/0029-5515/53/12/123011
dlmf.nist.gov/
dlmf.nist.gov/18.5

