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1 Introduction

The metal-insulator transition is one of the oldest but not yet fully understood phenomena
in condensed matter physics [1–4]. In conventional metals, electrons are elastically scattered
by the atoms of the material but can move around quite freely. The electric conductivity
is governed by the Drude model, and resistivity has ρ ∼ T 2 behavior in a two-dimensional
system. As the electron-electron or electron-impurity interaction increases, the electric
conductivity is no longer accounted for by the Drude model. One such example is the
so-called strange metal whose electric resistivity increases linearly with temperature. This
strange metal phase is thought to be closely related to the high TC superconducting phase.

On the other hand, freely moving electrons are rarely present in an insulator. As
opposed to the phenomena in the metallic phase, the electric resistivity is very large at low
temperatures and the resistivity decreases with increasing temperature. This temperature
behavior is a main characteristic of insulators.

In condensed matter physics, there are several processes for the formation of the insu-
lating phase. One simple example is the ‘band insulator’. In quantum mechanics, electrons
in a periodic potential form a band structure. When the Fermi surface is in a gap between
two bands, the electrons in the lower band (valence band) need some amount of energy
to jump up to the upper band (conduction band). If the energy of electrons is not large
enough to overcome this gap, the system remains insulating phase, a so-called ‘band insu-
lator’. However, these band insulators cannot handle the correlation effect of electrons as
they are explained by single-particle-picture-based quantum mechanics.
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In this paper, we will focus on the insulating process induced by strong correlations,
especially the electron-electron interactions and the electron-impurity interactions. The
insulating process by the electron-electron interaction is known as the ‘Mott transition’ [5].
In this case, each lattice site is occupied by an electron, and the electric current is generated
by hopping electrons from one site to its nearest neighbor sites. When the electron-electron
interaction becomes strong, that is, when the on-site electron potentials have a large barrier,
the Coulomb repulsion is large, so that an electron in one site cannot hop to the next site.
Therefore, all electrons are confined to their site. This is called the ‘Mott insulator’.

The other type of insulating mechanism is known as the ‘Anderson localization’, which
is governed by electron-impurity interaction [6]. When the interaction between electrons
and impurities increases, the electrons return to their original positions scattered by im-
purities. This effect enhances the wave function to confine the electron state to its original
position. This type of insulator is called the ‘Anderson insulator’.

Due to the non-perturbative nature of the ‘Mott insulator’ or ‘Anderson insulator’, it
is very hard to analyze the insulating process in a perturbative manner. The insulating
process in the ‘Mott insulator’ can be understood through the Hubbard model. However,
if the system is complicated, it is very difficult to diagonalize the Hamiltonian matrix. The
process of the ‘Anderson insulator’ is much more complex because it depends on the details
of the disorder [3].

For this reason, there are several studies describing the metal-insulator transition using
gauge/gravity duality [7–10, 38–42]. The key physical quantity that determines a metal-
lic or insulating phase is electric conductivity. In holography, we usually obtain electric
conductivity by turning on the gauge field fluctuations around the background solution.
Considering the infalling and regularity condition near the black brane horizon, we can get
the boundary electric current and the electric conductivity [11–13]. This method has been
applied to various extensions, e.g. [14–32, 44–46].

Holographic DC conductivity is divided into the charge conjugation symmetric part
and the momentum dissipation part [14]. The former arises from the electron-hole pair
creation, and the latter is contributed from the momentum dissipation by impurities. The
momentum dissipation part of the electric conductivity is proportional to the square of the
charge-carrier density and inversely proportional to the impurity density. This term can be
suppressed when the impurity density is much greater than the charge-carrier density [4,
5, 15]. On the other hand, the charge conjugation symmetric part is proportional to
the gauge coupling which is a coefficient of the Maxwell term F 2 in the action. This
gauge coupling term is the lower bound of the DC electric conductivity [10]. If the gauge
coupling is constant, the DC conductivity cannot be lower than that value even at the zero
temperature limit [8, 15].

One way to relax this bound is to set the gauge coupling as a function of another field
or parameter so that the value can be small [7, 9]. In [7], the authors introduced a neutral
scalar field in the bulk theory and the gauge coupling is a function of this scalar field.
They also introduced Mexican hat-type scalar potential where the value of the scalar field
makes the gauge coupling to be zero. Similar behavior can be observed using the axion
field, which corresponds to the momentum relaxation in the boundary theory [9]. In this
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paper, we are using a neutral scalar field inspired by [7]. Instead of introducing a scalar
potential, we investigate dynamical condensation in the bulk through interaction with the
gauge field.

This paper is organized as follows. In section 2, we introduce a new interaction term
between the scalar and the gauge field, describing the order parameter and the charge-
carrier density. We get the background geometry numerically and find a phase transition
from RN-AdS black branes to hairy black branes. We also discuss an appearance of the
‘quantum phase transition’.1 In section 3, we calculate DC electric conductivity by using
a standard holographic method. We classify the phases based on the temperature depen-
dence of the electric conductivity. In section 4, we discuss our results and provide future
directions.

2 Background geometry and quantum phase transition

In this section, we will discuss the background geometry of Einstein-Maxwell-dilaton with
an axion field. We also introduce the dilation interaction term with the U(1) gauge field.
We find two possible solutions to the equations of motion. Comparing the free energy of
the solutions, we find phase transitions between the two solutions. We also discuss the
‘quantum phase transition’ of the system.

We start from Einstein-Maxwell-dilaton action with an axion field,

Stot = S0 + Sint + Sbd , (2.1)

where

S0 = 1
16πG

∫
d4x
√
−g

(
R− 2Λ−1

2

2∑
I=1

(
∂χI

)2
− 1

4F
2 − 1

2 (∂φ)2 − 1
2m

2φ2
)
, (2.2)

and the interaction term is

Sint = −
∫ √
−gγ4φ

2F 2 . (2.3)

Also, Sbd consists of the Gibbons-Hawking term and counter terms for the holographic
renormalization [43]. Here χI is the axion field which gives a momentum relaxation effect
on the boundary theory. In addition, the cosmological constant has been chosen as Λ = − 3

L2

for the asymptotic AdS geometry. The equations of motion of the action (2.1) are

RMN −
1
2gMNL −

1
2∂Mφ∂Nφ−

1
2

2∑
I=1

∂Mχ
I∂Nχ

I − 1
2
(
1 + γφ2

)
FMPF

P
M = 0 ,

∇2φ−
(
m2 + 1

2γF
2
)
φ = 0 ,

∇M
(
1 + γφ2

)
FMN = 0 ,

∇2χI = 0 ,

(2.4)

1We do not consider hairy black branes at zero temperature, which is very difficult to deal with using our
numerical method. However, we can find hairy solutions at very close to zero temperature. Our argument
is established in this sense.
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where L is a Lagrangian density of S0 and Sint. To solve the equations of motion, we take
an ansatz as follows;

ds2 = −U(r)e2(w(r)−w(∞))dt2 + r2

L2 (dx2 + dy2) + dr2

U(r) ,

A = At(r)dt , χ1 = kx , χ2 = ky , φ = ϕ(r) . (2.5)

With this ansatz, the equation of motion for the axion field χI is automatically satisfied
and k turns out to be the dissipation of momentum via scattering with impurities. In
addition, the Maxwell equation is integrable, so we define a conserved charge density as

Q ≡
√
−g
L

(1 + γφ2)F tr . (2.6)

We will regard this as a charge-carrier density below.
For the numerical computation, we rescale r, Q, U, k as

r̃ = r

rh
, Q̃ = L4

r2
h

Q, Ũ(r̃) = L2

r2
h

U(r), k̃ = L2

rh
k , (2.7)

such that all quantities are dimensionless. Then, the event horizon is located at r̃ = 1.
From here, we omit the tilde not to clutter but note that all r, Q, U, k are scaled variables.
Together with the Maxwell equation, the equations of motion for this hairy black brane
can be written as follows:

w′ − 1
4rϕ

′2 = 0 ,

ϕ′′ +

1
r
−

2k2r2 + Q2

γϕ2+1 − 2
(
ϕ2 + 6

)
r4

4U r3

ϕ′ + γQ2ϕ

U r4 (γϕ2 + 1)2 + 2ϕ
U

= 0 ,

U ′ + 1
4U rϕ

′2 + k2 + 2U −
(
ϕ2 + 6

)
r2

2r + Q2

4r3 (γϕ2 + 1) = 0 , (2.8)

where we set m2 = −2/L2. For ϕ(r) = 0, we get RN-AdS black hole solution as;

U(r) =
(

1− 1
r

)(
1 + r + r2 − Q4r −

k2

2

)
, w(r) = 0 . (2.9)

On the other hand, the entropy density and the temperature of hairy configuration are
given by

s = r2
h

4GL2 ,

T = rh
4πL2 e

w(1)−w(∞)U ′(1) ,
(2.10)

where U ′(1) can be written by using an equation of motion as follows:

U ′(1) = 6 + ϕ(1)2 − k2

2 − Q2

4 (1 + γϕ(1)2) . (2.11)
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Imposing the horizon regularity, ϕ′(1) is required to be

ϕ′(1) = 4ϕ(1)
(
γQ2 + 2(γϕ(1)2 + 1)2)

(γϕ(1)2 + 1)(Q2 + 2(k2 − ϕ(1)2 − 6)(γϕ(1)2 + 1)) . (2.12)

Hence, the solution of the equations of motion (2.8) can be parameterized by
(γ, k, Q, ϕ(1)).2 The asymptotic behavior of the scalar field near the boundary is

ϕ(r)|r→∞ ∼
Jϕ
r

+ < Oϕ >
r2 + · · · , (2.13)

where the coefficient of the leading term denotes the source of the boundary operator Oϕ.
In this work, we focus on the physics driven by the external electric field and dissipation
only. Accordingly, we will take boundary condition Jϕ = 0.3

In this work, we set γ = −0.2, which is a negative value for most calculations. As
shown in the bulk action, the coefficient of F 2 term becomes −1

4(1 + γφ2), which should
be negative for satisfying the null energy condition. Therefore, we have to check that the
coefficient of the gauge field kinetic term (1+γφ2) is positive for the given parameter range.
If the coefficient becomes negative, then the gauge field fluctuation becomes ghost which
leads to instability of the background geometry. In this paper, we focus on the ghost-free
region of the gauge field fluctuation and leave comments in the discussion section.

Similar to the holographic superconductor model, we find the appearance of scalar
condensation. At high temperatures, the background solution is the usual 4-dimensional
AdS Reissner-Nordstrom (RN) black brane without scalar field(red line in figure 1 (a)).
Since we checked that a black brane with scalar hair has smaller free energy than the RN-
AdS black brane as the temperature decreases, such a scalar-hairy black brane is preferred
at low temperatures. Hence, the hairy black brane geometry is adopted as a physical
solution shown as a blue line in figure 1 (a).

One interesting phenomenon of the model is the effect of momentum relaxation on
scalar condensation. Figure 1 (b) shows the momentum relaxation parameter k depen-
dence of the scalar condensation for a given charge density. As shown in the figure, as
the momentum relaxation parameter increases, the value of the scalar condensation also
increases. Therefore one can say that the momentum relaxation enhances the scalar con-
densation. In other words, the order parameter can be enhanced by impurities.

The enhancement of the scalar condensation by impurities appears to be non-trivial
in this model. From the bulk action point of view, there is no direct interaction between
the axion field and the real scalar field, which governs the order parameter. However, one

2We will denote the horizon value of scalar field ϕ(1) by ϕh.
3In particular, the case with Q = 0 leads to a boundary condition given by

U ′(1) = 6 + ϕ(1)2 − k2

2 , ϕ′(1) = 4ϕ(1)
k2 − ϕ(1)2 − 6 .

In this case, the system still undergoes a phase transition due to the momentum relaxation effect k2. In
addition, it is notable that γ disappears in the equations of motion and the horizon condition. Therefore
this vanishing Q makes the Maxwell field decoupled from the system at the background level. However,
the Maxwell field can interact with the other fields as a fluctuation.
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Figure 1. (a) Temperature dependence of the scalar condensation. (b) Momentum relaxation
parameter dependence of the scalar field condensation. In both cases, we set γ = −0.2. In this
calculation, we use the canonical ensemble and take rh = 1 simply due to the convenience of the
calculation.
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Figure 2. Temperature dependence of the horizon value of the scalar field with the source free
condition for (a) Q = 0 (b) Q = 0.01. The red dashed line indicates the sign change of the kinetic
term of the gauge field.

can find that there is complicated mixing between all fields in the equations of motion
level (2.4). In particular, the axion field and the real scalar field appear together in the
Einstein equation. See the first line in (2.4). Therefore, we can expect two fields to interact
through gravity. In the holographic description, this means that the order parameter can
interact with impurities via charge-carrier exchange.

This phenomenon can be understood by (2.10) and (2.11). From the equations, tem-
perature decreases as the momentum relaxation parameter k increases. The value of scalar
condensation increases as the temperature decreases. Therefore, the momentum relax-
ation parameter can enhance scalar condensation. We observed similar phenomena in the
different model [32] in which the momentum relaxation parameter similarly lowers the
temperature.

Figure 2 (a) shows the temperature dependence of the horizon value of the scalar
field, which satisfies the source-free condition. The red dashed line denotes −1/√γ. In
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Figure 3. The phase diagram of the system in a canonical ensemble with γ = −0.2.

the figure, the kinetic term of the gauge field changes sign at a certain temperature. This
phenomenon does not happen at finite charge density. See figure 2 (b). As temperature
decreases, the horizon value of the scalar field for the source-free condition increases. From
the boundary theory point of view, it corresponds to the increasing expectation value of the
scalar operator. However, the horizon value of the scalar field approaches −1/√γ. It does
not increase and remains a constant value as temperature decreases. It can be understood
as follows. For the finite charge density case, if the horizon value of the gauge field is
greater than −1/√γ, then the gauge field becomes tachyonic near horizon because of the
wrong sign of the kinetic term of the gauge field. Therefore, the solution is not allowed from
the equation of motion. On the other hand, zero charge density is obtained by vanishing
A′t(rh) from (2.6). In this case, the gauge field does not appear in the equations motion,
and any value of ϕh can be possible. To see the stability of the system, we have to take
into account gauge field fluctuation, which will be discussed in the next section.

The summarized phase diagram of the system in a canonical ensemble is shown in
figure 3. To make all parameters dimensionless, we scaled temperature and charge density
by momentum relaxation parameter k. In the figure, the system is divided into two regions.
At high temperatures with large charge density, the normal RN-AdS black brane geometry
without the scalar field is the only solution. On the other hand, at low temperatures
with a small charge density, the hairy black brane solution with scalar hair becomes a
preferable one. As we discussed earlier, k (dissipation of momentum via scattering with
impurities) enhances scalar condensation. In addition, the transition temperature between
RN-AdS black brane and hairy black brane solution increases as the momentum relaxation
parameter k increases. In figure 3, this behavior can be seen by decreasing Q/k2. The red
line in Q/k2 = 0 denotes the region where (1 + γϕ2

h) becomes negative. We will discuss
this region in the next section.

One interesting thing in the figure is that if the charge-carrier density is large enough
to the impurity density(or fast dissipation region), the hairy black brane solution cannot
exist at all temperatures. Therefore, the phase boundary is closed at zero temperature
with finite charge density

(
Q
k2

)
C
. This implies there exists a ‘quantum phase transition’

point in the phase diagram. This cannot be observed in the model by turning off the γ
parameter.
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In the absence of γ coupling, the hairy black brane solution is realized by violating the
Breitenlohner-Freedman (BF) bound in the IR region. In pure AdSd+1 geometry with a
radius L, the BF bound of the scalar field mass can be determined by the reality condition
for the scaling dimension of the scalar operator as

m2
BF ≥ −

d2

4L2 . (2.14)

In the extremal 4-dimensional RN-AdS black brane geometry, the asymptotic geometry is
AdS4 while the near horizon geometry becomes AdS2 × R2. If we set the scalar mass to
m2 = −2/L2, the system seems to be stable from the boundary theory point of view, but
it violates BF bound in deep IR and causes a transition to the hairy black brane solution.
This phenomenon only depends on the mass of the scalar field, and hence the hairy black
brane solution always exists at very low temperatures.

In our model, the effective mass of the scalar field near horizon is changed by γ inter-
action in (2.3) as follows

m2
eff = m2 + 1

2γF
2

=

 m2

m2 − γQ2L6

r4
h

(r →∞)
(r → rh)

,
(2.15)

where we use the extremal RN black brane solution as the background geometry. The
effective mass is the same as the original scalar mass at the boundary, so it describes the
same boundary system. However, the effective mass changes due to the charge density in
the near-horizon region. In the model, we set γ to be negative then the effective mass
increases as the charge density increases. It implies that the instability near horizon due to
the violation of the BF bound can be cured by increasing charge density. Therefore, the RN
black brane solution can be stable from a certain large value of the charge density at zero
temperature, and hence the ‘quantum critical point’ can appear. When the absolute value
of γ is large, the instability is cured by small charge density Q from (2.15). Therefore, the
hairy black hole region will shrink to increase the absolute value of γ. The γ dependence of
the phase diagram is shown in Appedix A. The detailed BF bound analysis on the extremal
RN black brane is discussed in appendix B.

3 DC conductivity and metal-insulator transition

In this section, we calculate the DC electric conductivity in the dual field theory using a
holographic method. From the analysis of the DC conductivity with varying temperatures,
we will discuss the electric properties of each phase.

3.1 Holographic DC conductivity

We can obtain holographic conductivities by solving fluctuation equations. To do this, we
turn on the small fluctuation of metric, gauge field, and axion field around the background
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solution:

ds2
(1) = 2λ

[
δgtx(r) dt dx+ δgty(r) dt dy + r2δhrx(r) dr dx+ r2δhry(r) dr dy

]
,

A(1) = λ [{−Ext+ δAx(r)} dx+ {−Eyt+ δAy(r)} dy] ,
χI(1) = λ (δχx(r), δχy(r)) ,

(3.1)

where λ is a formal expansion parameter. From the vector property of the fluctuation,
one can check that the fluctuation of the real scalar field ϕ is completely decoupled at the
linear level of λ. The linearized fluctuation equations are

δg′′ti(r)−
r

4ϕ
′(r)2δg′ti(r) +

(
1
2ϕ
′(r)2 − k2

r2U(r) −
2
r2

)
= 0 ,

δA′′i (r)−F(r)δA′i(r) + QeW (r)/2

r3U(r)(1 + γϕ(r)2)
(
rδg′ti(r)− 2δgti(r)

)
= 0 ,

δχ′′(r) +
(2
r
− 2γϕ(r)ϕ′(r)

1 + γϕ(r)2 −F(r)
)
δχ′(r)− k

r2U(r)δg
′
ti(r)−

kϕ′(r)2

4rU(r) δgti(r) = 0 ,

(3.2)

where

F(r)

= 4r2U(1 + γϕ2 − 3γrϕϕ′)− 2γr4ϕ4 − 2r2(r2 + 6γr2 − γk2)ϕ2 +Q2 − 12r4 + 2r2k2

4r3U(1 + γϕ2) ,

(3.3)

and i denotes x and y directions.
Together with the regularity and the ingoing condition at the horizon, the behavior of

the fluctuation of each field near horizon can be expressed as

δgti(r) ∼ δg0
ti + · · · , δhti(r) ∼

1
r2U(r)δg

0
ti + · · · ,

δAi(r) ∼ −
Ei

4πT log(r − rh) + · · · , δχI ∼ δχI0 + · · · . (3.4)

On the other hand, the gauge field fluctuation near the boundary can be expressed as

δAi(r) ∼ −Ei t+ J i

r
+ · · · , (3.5)

where the electric current Ji is a response to the external source Ei.
Now, we define conserved current J i as

J i =
√
−g(1 + γϕ2)F ir

= −U(r)(1 + γϕ(r)2)δA′i(r)− a′t(r)δgti(r) . (3.6)

This current J i is independent of radial direction according to the equation of motion and
it becomes electric current J i at the boundary. Therefore, we can obtain DC conductivity
in terms of the horizon data as

σDC =
(
1 + γϕ2

h

)
+ eW (∞)Q2

r2
hk

2 , (3.7)
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where ϕh is the horizon value of the scalar field. The first two terms in (3.7) are seemingly
independent of charge density. These terms are understood as a consequence of the electron-
hole pair creation by charge conjugation symmetry(σccs). The last term is proportional to
the square of the charge density and inverse of the impurity density which refers to current
dissipation by impurity or lattice(σdiss) [14]. Then, DC conductivity can be written as

σDC = σccs + σdiss . (3.8)

The dissipation part of the electric conductivity is the same as in usual holographic
models. But the charge conjugation symmetry part σccs contains the horizon value of the
scalar field which gives finite condensation of the scalar field. With a negative value of γ,
σccs term can be suppressed by scalar condensation. We will first discuss this suppression
of the charge conjugation symmetry part of the conductivity, and then we will consider the
full DC conductivity.

3.2 DC conductivity with zero charge-carrier density

In this section, we discuss DC conductivity without charge-carrier density (Q = 0). The
background solution now is nothing but the Schwarzschild black brane with momentum
relaxation. However, the interaction term between the U(1) gauge field and the real scalar
ϕ can exist at the fluctuation level and affects DC conductivity.

In the absence of charge-carrier density, there is no dissipation term in (3.7) and hence
only electron-hole pair creation contributes to the DC conductivity,

σDC
∣∣∣
Q=0

= 1 + γϕ2
h for hairy BH ,

σDC
∣∣∣
Q=0

= 1 for RN AdS BH .
(3.9)

Here, one can easily notice that the DC conductivity solution can be smaller than 1 with
a negative value of γ in the presence of scalar condensation(for the hairy black brane).
Moreover, the DC conductivity can be negative if γϕ2

h < −1. However, in this case, the
kinetic term of U(1) gauge field in the action changes the sign which implies that the gauge
field fluctuation becomes a ghost near the black brane horizon. This ghost fluctuation of
the gauge field causes instability near horizon and we speculate it leads to a geometrical
phase transition, which could have an important physical implication for this model. In
this work, we will not discuss this geometrical transition and postpone it to future work.

The temperature dependence of DC conductivity without charge-carrier density is
drawn in figure 4(a). The resultant DC conductivity can be divided into three regions.
At high temperatures(region C, T/k > (T/k)C), the DC conductivity shows the typical
behavior of the conductivity from the Schwarzschild black brane. This region continued to
the metallic phase when charge-carrier density is added which will be discussed in the next
section. In the intermediate temperature region (region B, (T/k)∗ < T/k < (T/k)C)), the
DC conductivity decreases as the temperature is lowering(dσDC/dT > 0) which indicates
that the region B is the insulating phase. At low-temperature region (region A, T/k <
(T/k)∗), DC conductivity becomes negative which leads to the instability of the background
as we discussed earlier.
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Figure 4. (a) DC conductivity with vanishing charge-carrier density and γ = −0.2. (b) Interpre-
tation of region A and B in the boundary system.

The presence of (T/k)∗ indicates that there is a gap in the electron state. The schematic
picture for regions A and B is drawn in figure 4(b). Since there is no charge-carrier density,
we assume that the lower band is filled with electrons and the upper band is empty. If
the temperature is lower than the gap energy, the corresponding DC conductivity vanishes
because no electron-hole pairs can be created by thermal fluctuations. On the other hand,
when the temperature reaches the gap energy and the thermal fluctuations overcome the
gap, electron-hole pairs are created. The electrons move in the direction of the electric field
and holes move in the opposite direction. Due to the opposite charges of electron and hole,
a current can be generated in the same direction of the electric field, thus a nonvanishing
DC conductivity can be obtained in the region B.

When γ coupling is turned on, a gap is created. As mentioned before, this can be
seen from the fact that the DC conductivity becomes zero at a certain energy scale. This
gap scale (T/k)∗ also increases as γ is increasing. In the region B, DC conductivity is
monotonically increasing to the temperature. This implies the resistivity is decreasing to
temperature, ∂ρ/∂T < 0, which is a typical characteristic of the insulator. Therefore, we
expect that the dual system of the hairy black brane solution with γ interaction is in the
insulating phase. The DC conductivity with different γ is discussed in appendix A.

3.3 DC conductivity at finite charge density

In the presence of the charge-carrier density, DC conductivity is consist of the charge
conjugation symmetry part and dissipation part as in (3.7) and (3.8),

σDC =
(
1 + γϕ2

h

)
+ eW (∞)Q2

r2
h
k2 for hairy BH ,

σDC = 1 + Q2

r2
h
k2 for RN AdS BH .

(3.10)

When the temperature is low enough(T/k < (T/k)C), the hairy black brane is a
physical solution. Also, the corresponding DC conductivity becomes the first line of (3.10).
On the other hand, RN-AdS black brane is a physical solution at high temperature and
hence we get standard DC conductivity for an RN black brane as the second line of (3.10).
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Figure 5. Temperature dependence of DC conductivity for Q/k2 = 0.1 and γ = −0.2.

In the case of the DC conductivity for a hairy black brane, we use a numerical solution
with a source-free condition for a real scalar field.

Figure 5 shows the temperature dependence of DC conductivity for given Q/k2 = 0.1
and γ = −0.2. The blue and red lines denote DC conductivities in hairy black brane
solution and RN-AdS black brane solution, respectively. There are two features for the
DC conductivity of hairy black branes. One is that the DC conductivity decreases as
the temperature is lowered. This indicates that the dual system of the hairy black brane
behaves like an insulator(∂ρ/∂T < 0) similar to the zero charge density case. The other
one is that the DC conductivity goes to a finite value when the temperature approaches
zero. It is due to the existence of charge-carrier density Q in the system.

After phase transition to RN-AdS black brane at (T/k)C , DC conductivity behaves
differently to the hairy black brane case. DC conductivity decreases as the temperature
increases. It is not visible clearly in figure 5 and 6. However, if we fix the ratio Q/k2 based
on these figures, the varying DC conductivity of the RN black brane can be written as

dσDC
d (T/k) = − 32πrhQ2

k
(
12r4

h + 2k2r2
h + 3Q2) , (3.11)

where we took L = 1 for simplicity. This expression shows the negative slope of the DC
conductivity with respect to the temperature.

The overall temperature dependence of DC conductivity in both the insulating and
metallic phases is shown in figure 6 (a). In the figure, blue lines correspond to the DC
conductivity for the insulating phase and red ones to the metallic phase. The charge
density corresponding to each line is shown in figure 6 (b). In the figure, DC conductivity
monotonically increases in the insulating phase while it decreases in the metallic phase.

To see the physical properties of each phase, we calculate DC conductivity near zero
temperature with γ = −0.2. See figure 7. In the figure, the dashed line denotes DC
conductivity in the metallic phase showing quadratic behavior in charge density. The
point where the conductivity line leaves the dashed line is the phase transition point to
the insulating phase. In the insulating phase, the DC conductivity decreases faster than in
the metallic phase as the impurity density becomes higher than the charge-carrier density.
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Figure 6. (a) Temperature dependence of the DC conductivity along fixed charge density lines.
(b) Fixed charge density lines correspond to (a). Here, we set m2 = −2/L2 and γ = −0.2.
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Figure 7. The charge density dependence of DC conductivity at zero temperature for γ = −0.2.
The dashed line indicates the DC conductivity in RN-AdS black brane solution.

In the fast dissipation limit(Q/k2 � 1), DC conductivity approaches zero for finite γ

interaction(The γ dependence of the conductivity is shown in appendix A). It implies that
not only the dissipative part in the DC conductivity (3.10) but also the charge conjugation
symmetry part of the DC conductivity are suppressed. Therefore, the low-temperature and
fast dissipation regions can be interpreted as an insulating phase driven by the impurity,
and this phase is speculated to be an Anderson insulator.

Figure 8 is the finally adopted phase diagram of the system. In the regime of high
temperature and high density(or low impurity density), the gravity system is RN-AdS
black brane. This geometry corresponds to the metallic phase, whose resistivity increases
with temperature. On the other hand, at low temperatures and high impurity density(or
low charge density), the geometry becomes a hairy black brane and the boundary system
shows insulating behavior. In the insulating phase, both charge conjugation symmetry and
dissipation parts of the electric conductivity are suppressed by impurity density which is
very similar to the Anderson localization. We speculate this insulating phase corresponds to
the Anderson insulating phase. The red line along the temperature axis in figure 8 denotes
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Figure 8. The finally adopted phase diagram of the metal-insulator transition.

the region where our analysis is not applicable due to the unitarity violation of the gauge
field fluctuation. We expect that there is another background phase transition leading to
a non-black brane geometry. Since the red line in this model indicates a pathology, one
might consider a singular geometry or a horizon-less geometry. Based on this speculation,
the resulting geometry may correspond to the Mott insulating phase. However, our present
study has not provided conclusive evidence to support this claim. In order to identify this
phase, it is necessary to incorporate a different metric ansatz or perform a fluctuation
analysis around this pathological region. We postpone these investigations to future work.

4 Discussion

In this paper, we study a boundary system that undergoes the metal-insulator transition
with an order parameter using the gauge/gravity duality setup. The corresponding gravity
system is the Einstein-Maxwell-Axion theory with a neutral scalar field. This scalar field
plays the role of the order parameter of the boundary system. We introduce a new inter-
action term between the scalar field and U(1) gauge field. We set interaction strength γ

to be a negative number such that the effective charge of the gauge field is reduced. With
this interaction term, we found a geometric phase transition between RN-AdS black brane
and the hairy black brane solution. One remarkable result is that there exists a phase
transition at zero temperature. This transition comes from the recovery of the BF bound
near the extremal black brane horizon with a charge density. From the boundary theory
point of view, the scaling dimension of the order parameter does not change. In other
words, the UV theory does not change as varying charge-carrier density. In contrast, such
a scaling dimension changes with charge-carrier density in the IR region. It leads to the
‘quantum phase transition’ in the boundary theory.

We also calculate DC conductivity using the standard holographic method. We found
that the electric conductivity in the hairy black brane phase increases with temperature.
This behavior is known as a typical characteristic of insulators. Moreover, the suppression
of the charge conjugation symmetry part and the dissipation part of the electric conduc-
tivity are induced by order parameter 〈O〉ϕ and impurity density k. The order parameter
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Physical origin Holographic realization

Band insulator Periodic structure Fermionic spectral function

Anderson insulator Impurity induced Hairy BH with scalar condensation

New Insulating Phase Interaction induced Horizonless geometry?

Table 1. Holographic realization of insulating phases.

〈O〉ϕ is also enhanced by impurity density. Therefore, we speculate that this insulating
phase corresponds to the Anderson insulator phase raised by the localization due to impu-
rity or disorder. We don’t have a clear interpretation of the order parameter in dual field
theory. However, this insulating phenomenon looks different from Mott insulator physics.
We need more study for the identification of this order parameter.

The phase diagram has a small window where the electrical conductivity becomes
negative. In this region, the U(1) gauge field becomes tachyonic near horizon, so the
obtained solutions are not physically meaningful. In this region, we expect that there
should be a geometric phase transition to non-black brane geometry. The red line in
figure 8 does not carry any charge-carrier density. It could correspond to a horizonless
geometry. Then, the corresponding phase can be identified with another insulator phase.
Our speculated identification for the insulating phase is shown in table 1.

We also study scaling behavior of the temperature dependence of resistivity in metallic
and insulating phase. See appendix C.

Now, let us mention possible future directions. We expected that there must be a
gravity dual to the Mott insulator in a region with small charge densities. A candidate
for this gravity dual is a horizonless geometry with the axion field. Therefore, finding this
solution can help us to understand the Mott insulation in a holographic study. In addition,
one may try to analyze AC conductivities on the hairy black branes for more concrete
evidence. Also, it is interesting to introduce a complex scalar rather than a real scalar.
There is a ‘quantum phase transition’ from the charge of the scalar field. See [20, 33, 34].
This consideration can show the metal-superconductor phase transition with a charged
order parameter. We hope to report such a study near future [37].

A Different γ case

The effect of γ on the phase diagram is shown in figure 9(a). In this figure, each line
denotes the phase boundary between the hairy black brane and RN-AdS black brane. As
γ goes to zero, the critical charge density of the ‘quantum phase transition’ increases, and
it seems to go to infinity when γ = 0, see figure 9(b).

Figure 10 (a) shows γ dependence of DC conductivity. Horizontal and vertical dashed
lines denote DC conductivity in the limit of |γ| → 0 and |γ| → ∞ respectively. In the
absence of γ coupling, DC conductivity is 1 in all temperatures, so it doesn’t show any
gap structure. But there still exists a phase transition from the hairy black brane to the
RN-AdS black brane at (T/k)C that is the red dot in the figure. The γ dependence of
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Figure 9. (a) The phase diagram of the system with different γ. (b) γ dependence of ‘quantum
phase transition’ point.
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Figure 10. (a) Temperature dependence of DC conductivity for different γ with Q = 0. (b) γ
dependence of (T/k)∗. Red dashed line denotes to (T/k)C .

(T/k)∗ is drawn in figure 10 (b). The gap scale (T/k)∗ seems to approach to (T/k)C in
the limit of γ →∞. In this limit, the gap fully occupies the insulating region completely,
so only the unstable region and metallic phases exist.

Figure 11 is a temperature dependence of DC conductivity in the insulating phase
for different γ interactions with fixed Q/k2. As the γ interaction increases, the transition
temperature to the metallic phase decreases. This observation is consistent with figure 9.

Figure 12 shows charge density dependence of DC conductivity at zero temperature
for different γ interactions. The dashed line denotes DC conductivity of the metallic phase
which has quadratic behavior of charge carrier density. In the figure, the decreasing ratio
increases as the γ interaction becomes strong.

B Quantum phase transition

This section shows that our system undergoes a phase transition at zero temperature.
This phenomenon can be regarded as a ‘quantum phase transition. To show this, we find
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Figure 11. Temperature dependence of DC conductivity in hairy black brane phase for different
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Figure 12. The charge density dependence of DC conductivity at zero temperature for different γ
interactions.

a parameter region where the black brane does not carry any hairy configuration at zero
temperature through the BF bound argument.

In order to consider the BF bound argument, we will take the probe approximation.
The equation of motion for the real scalar in the probe limit is(

∇2 −m2 − 1
2γF

2
)
φ = 0 . (B.1)

The background metric is the RN-AdS with the linear axion field given by

U(r) = r2

L2 −
k2L2

2 − ML2

r
+ Q

2L6

4r2 , w(r) = 0 , A =
(
µL− QL

3

r

)
dt . (B.2)

Since we consider a ‘quantum phase transition’ described by a hairy black brane, the
extremal black brane is suitable as the background geometry. The corresponding metric
function is

U(r) = U(r) = (r − rh)2

L2

(
1 + 2rh

r
+ QL8

4r2r2
h

)
, (B.3)
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where we use a zero temperature condition
(
k2 = 6r2

h
L4 − Q

2L4

2r2
h

)
. Thus our task is to find

the scalar configuration in this background. The scalar extends from the horizon to the
boundary of the extremal black brane.

The near horizon geometry of this metric is AdS2×R2. Since the BF bound argument
depends on the radius of AdS space, we need to know the effective radius of AdS2. The
effective AdS radius is given as follows:

L2
eff = L2

3 + Q2L8

4r4
h

= L2

6

(
1 + k2
√

12Q2 + k4

)
. (B.4)

The scalar field configuration as the lowest excitation in this probe limit is described by
φ = R(r)e−iωt. Then, the hairy configuration near horizon is effectively a two-dimensional
probe in the AdS2. In general, a scalar field has a mass bound dubbed BF bound. Only
for the following case, the scalar field is stable in AdSd+1 with the radius L:

m2 ≥ − d2

4L2 . (B.5)

Near horizon, the scalar field under consideration has an effective mass given by

m2
eff =

(
m2 + 1

2γF
2
)
r=rh

= m2 − γQ
2L6

r4
h

. (B.6)

Thus (B.5) implies that there is no hairy configuration for the following parameter region:

m2
eff L

2
eff = 1

6

(
1 + 1√

1 + 12Q2/k4

)m2L2 − γ 122Q2/k4(
1 +

√
1 + 12Q2/k4

)2

 > −1/4 . (B.7)

In particular, for the case with m2 = −2/L2 and γ = −0.2, the above condition becomes
Q/k2 ≥ 5

√
21/38 ∼ 0.60297. So we may say that geometries in this parameter region at

T = 0 is a non-hairy black brane.
By this reasoning, we claim that the ‘quantum phase transition’ really occurs in this

system. For more general cases, we plot the non-hairy black brane region where the hairy
configuration is not allowed. See figure 13. The result covers the upper region of figure 9(b).
Thus this BF bound argument provides the necessary condition successfully for the phase
transition. Notably, this argument is independent of the size of rh. In zero temperature
limit, the typical behavior of the hairy black brane requires vanishing rh. This limit of a
different model is investigated in [35]. It would be interesting to study the zero-temperature
hairy configuration in this model. We leave it as a possible future study.

C Scaling behavior of the resistivity

In this section, we discuss the scaling behavior of resistivity. The several cases of two-
dimensional electron systems showing metal-insulator transition have interesting scaling
behavior [3, 36]. The scaling property can be obtained by rescaling temperature and
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Figure 13. The gray region denotes the parameter space where any hairy configuration is not
allowed. See Figure 9. (b) lies in the white region.
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Figure 14. Scaling behavior of DC conductivity.

resistivity using critical charge density(QC) where ‘quantum phase transition’ appears and
critical temperature(TC) for metal-insulator transition as follows:

T ∗ = TC |Q − QC |δ , xρ∗ = ρT ν , (C.1)

where all quantities are scaled by impurity density k as used in the paper. Figure 14
shows the scaling behavior of resistivity for each phase. In the figure, the upper lines are
resistivity in the insulating phase which decreases with temperature and the lower lines
are resistivity in conducting phase which increases as the temperature increases. If we
choose (δ, ν) to be (−1/5, − 2/3), all resistivity lines in the insulating phase are on top
of each other. With the value of (−7/2, 1/4), all the resistivity lines in conducting phase
are overlapped. This scaling behavior appears to wide range around the ‘quantum phase
transition’ point.

The results are different from the experimental data of metal-insulator transition mate-
rials in [3, 36]. We speculate that the reason comes from the absence of critical temperature
in the experiment.
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