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Featured Application: Ultrasonic cleaners are widely used in the cleaning of surgical instruments,
automobile parts, jewellery, fruits and vegetable, and in chemical synthesis.

Abstract: Over the past decade, ultrasonic cleaners have been widely used in many industries. Now,
this technology is finding its way into homes for vegetable, fruit, and clothes cleaning. In widely
used ultrasonic cleaners, piezoelectric transducers are externally attached to the steel tank to generate
ultrasonic waves inside the tank. Based on the impedance data of the piezoelectric transducers,
the driving circuit was tuned to generate the required frequencies inside the cleaning tank. This
paper discusses the design, development, and validation of an 800 mL tank capacity ultrasonic
cleaner driven with a piezoelectric disc actuator. To achieve an optimum cleaning action without
surface abrasion, several characteristics need to be considered in this complex relationship. The
placement of transducers has been investigated according to the pressure distribution inside the
liquid medium. The optimized ultrasonic cleaner design, along with a class-D half-bridge circuit,
was developed to drive the ultrasonic transducer in the resonance frequency range. To validate the
optimal design and driving frequency, the acoustic spectrum generated inside the tank was measured
using a piezoelectric sensor and FFT analysis was performed. To validate the cleaning effect, a
qualitative test based on aluminuim foil perforations was performed. The perforation area in the
foils was quantitatively measured using image processing based on the YOLO V5 technique. The
proposed image processing technique has an accuracy of 97% in the detection of perforation areas in
the aluminuim foil test.

Keywords: ultrasonic cleaner; piezoelectric; D-class inverter; YOLO V5; image processing

1. Introduction

The ultrasonic cleaner is a device in which ultrasound waves are generated inside a
liquid medium using an external source. This external source is usually a piezoelectric
material-based transducer which generates ultrasonic frequency when powered by alter-
nating voltage in its resonance frequency range. For decades, ultrasonic cleaners have
been used in metallurgy, industrial manufacturing, textile, automotive industries, chemical
laboratories, etc. Some common uses are cleaning glassware, jewellry, surgical instruments,
automotive parts, teeth, and enhancing chemical reactivity. Apart from the technical as-
pect, the industry is now using ultrasonic cleaning for other advantages as well. These
include a lesser cleaning time for the number of parts, more efficient cleaning as compared
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with conventional cleaning, increased productivity, and decreased cost of materials. New
applications of ultrasonic cleaners are in fruit, vegetable, and clothes cleaning at home [1].

Ultrasonic waves generated inside the cleaners are differentiated based on their
application, power, and frequency [2]. There are different types of transducers which
are used to generate ultrasonic waves inside an ultrasonic cleaner, which include Bolt-
clamped Langevin (BLT), piezoelectric ceramic (Lead Zirconate Titanate or PZT) disc, and
magnetostrictive-based transducers [3]. Electromagnetic transducers can also generate
ultrasonic frequencies, but the most widely used are the piezoelectric transducers in ultra-
sonic cleaning. Piezoelectric-based ultrasonic transducers have a slight advantage in terms
of small size, no noise, higher efficiency, and non-flammable over electromagnetic-based
ultrasonic transducers [4].

Piezoelectric transducers are used to convert alternating electrical energy into ultra-
sonic acoustic waves inside the steel tank of ultrasonic cleaners [5]. The negative phase
of these waves will create small bubbles and the positive phase results in bubble collapse,
creating very high local pressure and temperature [6]. With the help of high-amplitude
acoustic waves, a pressure tension change is induced inside the liquid medium (or cleaning
solvent). A result of this pressure tension change is cavitation, which is the formation of
bubbles at the microscopic level that grow and then explode. This explosion of bubbles
will remove particles (soils or adulterants) from the cleaning object’s surface [7].

There are different types of ultrasonic cleaners available in the market. They can be
differentiated based on their size, power, the number of transducers and their placement.
In this research, the design and development of an ultrasonic cleaner have been carried
out for optimum performance, and the design is validated using a proposed image-based
efficiency measurement technique. This work is an effort to combine the design, tuning,
and validation of the piezoelectric transducer-based ultrasonic cleaner.

To design an ultrasonic cleaner, acoustic simulations need to be performed to optimize
design parameters such as size, the number of transducers and their location [8,9]. In
COMSOL Multiphysics, we have performed acoustic simulations of the tank to determine
the pressure distributions of various designs. In an optimum tank design, the number and
location of the transducers were determined based on these simulations.

Piezoelectric transducer resonance frequency varies with the diameter. The generated
ultrasonic wave power depends on the thickness and layer of the piezoelectric disc [10,11].
Commercially available piezoelectric discs and BLT transducers have different thicknesses
and diameters based on the required cleaning frequency. First, a 40 kHz transducer was
chosen for general cleaning applications, and impedance analysis of transducers was
performed to determine their resonant and anti-resonant points by using an impedance-
frequency graph [12,13]. Based on these impedance graphs, transducer driving circuitry
was designed.

A piezoelectric transducer driving circuit is developed using a D-class inverter [14,15].
The circuit considers different parameters such as ease of control, high power output,
and variable frequency (so that different types of transducers can be actuated using a
single circuit). To test and tune the driving circuit, piezoelectric disc sensors (similar to
hydrophones) were used to acquire ultrasonic wave data inside the liquid tank [16]. These
hydrophones are used here to acquire the frequency response inside the liquid medium.
An FFT was performed on the time domain sensor voltage output to analyze the ultrasonic
waves generated between anti-resonance and resonance peaks.

Ultrasonic cleaners are widely used, but challenges remain in the determination
of their optimum working frequency and cleaning efficiency. To efficiently operate the
ultrasonic cleaner and its operating frequency, the voltage should be optimally selected.
In [16], researchers used a coated quartz crystal sensor to detect the movement of ultrasonic
waves inside the ultrasonic cleaning tank. This frequency output can be used as feedback
to optimally drive or tune the ultrasonic transducer.

Cavitation is responsible for cleaning in ultrasonic cleaners [17]. There are several
methods to measure and detect cavitation. These methods include the foil corrosion
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test [18,19], detecting cavitation with the help of hydrophone [20], portable cavitation
meter [21,22], optical methods [23], and particle counters [23]. Cavitation causes the pitting
of metal surfaces; therefore, ordinary aluminuim kitchen foil is commonly used to test the
working efficiency of ultrasonic cleaners. In ordinary kitchen foil, this pitting becomes
perforations [24]. The efficiency of ultrasonic cleaners depends on the size and number
of cavitation bubbles, temperature, viscosity, surface tension, and diffusion rate of the
liquid [1]. For this research, an aluminuim foil corrosion test was performed in room
conditions. After placing the foils in powered ultrasonic cleaner tanks, the corrosion area
of the foil due to perforation was then measured using image processing and converted
into quantifiable results.

The main objectives of this paper are to combine the design, tuning and validation
of ultrasonic cleaners as follows: (1) to design (placement and the number of ultrasonic
transducers) an ultrasonic cleaner based on the acoustic pressure distribution of the system
in a simulation environment, (2) to provide a gateway for how to design a driving circuit
for ultrasonic transducers based on the results of the impedance analysis of the transducer,
(3) to tune the system using replicated hydrophone technique so that we can have quantifi-
able results whether the ultrasonic cleaner is working in the resonance region or not, (4) to
provide a generic validation method for finding the efficiency of ultrasonic cleaners easily,
effectively, and cheaply.

This paper is organized as follows; in Section 2, a detailed methodology is discussed.
Section 3 includes a discussion on design parameters, boundary conditions, and acoustic
simulation, which are pre-requisite for the mechanical design of an ultrasonic cleaner.
Finally, experimental setup, testing, and results are shown in Section 4 of this paper
followed by the discussion in Section 5 and the conclusion in Section 6.

2. Ultrasonic Cleaner Design Methodology

The ultrasonic cleaner design methodology and process are presented in Figure 1, which
also gives an overview of the structure of the research. The research has been divided into
three parts. The first step in developing an ultrasonic cleaner was to find the optimum number
and location of the transducer placement. Different tank sizes were available, for this study
we selected a stainless-steel tank of 800 mL capacity, as it was readily available in the market.
The COMSOL Multiphysics, FEM software tool was used for acoustic simulation. By using
acoustic simulations, six different designs were evaluated based on pressure distribution.
One design was selected, based on the number and placement of ultrasonic transducers. The
selected design was manufactured, and a driving circuit was fabricated.

To validate the frequencies generated inside the tank and to optimize the driving
frequency, piezoelectric disc sensors were used to acquire the frequencies generated inside
the water-filled tank in the second phase of this research work. An oscilloscope was used to
obtain the time domain signal of these piezoelectric disc sensors, which was then converted
into a frequency domain signal by using FFT in MATLAB. This experimental campaign was
necessary to find the behaviour of the circuit, ultrasonic transducers, and waves induced
inside the ultrasonic tank.

In the third phase of this work, validation for this system was developed. For this
purpose, an aluminuim foil corrosion test combined with image processing is presented.
A total of 100 images were acquired for this purpose, and different image processing
techniques such as segmentation and thresholding were applied to obtain quantitative
results. The main purpose behind this phase was to find the perforation area in aluminuim
foils. The comparison of perforation areas in aluminuim foil at different locations inside the
tank, operating times, and transducer power can be used to compare different ultrasonic
cleaners and to identify the problem and tuning-related issues.
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This system was proposed to provide a generic pathway for the upcoming researchers,
as the literature cited shows that there are many articles which used the concept of foil
corrosion tests, but none presented a systematic way of finding and evaluating these
perforations quantitatively. So, we propose a system which can obtain a quantitative result
of perforation in terms of the perforation area of the foil. For the proposed image processing
system, the user does not need to care about the image pixels, surrounding environments,
or dimensions of the foils as it is a generic system, as explained in the later sections.

2.1. Ultrasonic Transducer Driving Circuit

This research was proposed to design an ultrasonic cleaning machine and its driving
electronics model after a comprehensive review of the design, fabrication, and driving
techniques for the ultrasonic cleaning machine. We proposed the Class-D Inverter topol-
ogy [25] to drive the Ultrasonics transducer with high frequency for ultrasonic waves, as
shown in Figure 2. The proposed Electronics circuit model is divided into three parts. The
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first part converts the main supply voltage to DC-Link voltage. The second part generates
the controllable 40 kHz frequency to drive the piezoelectric transducer for generating the
ultrasonic waves.
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Figure 2. Proposed System Block Diagram.

To drive the piezoelectric transducer in the ultrasonic cleaner, the square wave voltage
signal generated by the class-D inverter works with an LC resonant circuit to generate
a sine wave voltage signal [26]. The piezoelectric disc static capacitance (Co) works in
resonance with the inductor (Ls) as a low-pass filter to generate a sine wave signal. The
values in Table 1 were used for the equivalent model of the proposed scheme.

Fs =
1

2π
√

LC
(1)

Table 1. Electrical Properties of D Class Inverter.

Electrical Components Operating Values

Input Dc-Link Voltage Vin 170 V
Maximum Output Power of Circuit Pm 50 W
Maximum Current Im 100 mA
Maximum Output Voltage Vo 840 V
Magnetizing Inductor Lm 1.0 mH
Switching Frequency Fs 40 KHz (range)
MOSFET Model M1 and M2 6N80
Piezo Capacitance Co 8.35 nF
PZT Resistance Rp 310 Ω
PZT Disc Diameter mm 50 mm
PZT Disc Thickness mm 2.5 mm
PZT Material - PZT-4A
PZT Electrode Printing Type Wrap Around Feedback
PZT Disc Power watt 35 W
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Table 1 shows the electronic parameters for the UCT driving machine, and the piezo
disc parameters. The proposed circuit was designed for a maximum power output of
50 W and a maximum current of 100 mA. The magnetizing inductor is the core element to
adjust the transducer input voltage and current capacity (to get 35 W of power). As the
piezoelectric disc is made of Hard piezoelectric ceramic (PZT-4A), the driving voltage can
be set to a maximum value of about 750 V, which corresponds to 300 V/mm and is in a safe
range to not cause de-poling and excess heating.

3. Acoustic Simulation

While working with ultrasonic cleaning acoustic effects are very important, as these
effects are responsible for the induced shear forces inside the ultrasonic cleaner (UC). These
shear forces are responsible for generating cavitation inside of the ultrasonic tanks [27,28]. For
this research, acoustic simulation was carried out in COMSOL Multiphysics. There are six
different UC designs, with different numbers and placement of ultrasonic transducers used.

3.1. Design Consideration

A 2D acoustic simulation was carried out for this work. A tank with dimensions
140 mm × 140 mm × 152 mm (L × W × D) was simulated in FEM software COMSOL
Multiphysics as shown in Figure 3. The internal body of the geometry was selected as
water (liquid medium) and the external boundary was selected as stainless steel type 308
(tank of cleaner). The sole purpose of selecting all of these parameters is that we had a
stainless steel container with water as a liquid medium inside it, which had already been
selected and developed for this research work.
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Figure 3. Dimension and Material Selection in COMSOL Multiphysics.

3.2. Boundary Conditions

Six different designs were considered for simulations having different numbers and
placement of transducers. The boundary conditions were kept the same for all of the
designs/models. These boundary conditions are shown in Table 2.
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Table 2. Boundary Conditions for Acoustic Simulation.

Boundary Condition Selected at Reason/Comment

Sound Hard Boundary
All of the boundaries except the top of the
container (which is open), and the contact
point of the container and the PZT Disc

To avoid any external interference of waves.

Plane Wave Radiation Selected on top of the tank only. To allow the waves to leave the system with a
minimal angle of reflection.

Exterior Field Calculations Selected on top of the tank only Selected for scattered boundaries and waves.

3.2.1. Comparison of Different Designs of Ultrasonic Cleaner

Six different ultrasonic cleaner designs were simulated to find the optimum design.
According to the acoustic simulation results, a design developing the best results (both in
terms of pressure distribution and electrical energy consumption) was selected.

In Figure 4, six different design models and pressure distribution results are shown.
These results show positive–negative pressure change (or pressure–tension change) in
the tank along with their intensity. From the simulations, the following conclusions were
drawn for optimum design selection.
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1. Models c and e cannot be selected, as the intensity of pressure distribution values are
very low;

2. In model d, the pressure is dense near the transducers and lower when away from
transducers;

3. In models a and f, four transducers were used, which resulted in higher electrical
energy consumption than in model b, which used only two transducers but produced
the same pressure distribution and acoustic response;

4. Model b was selected and replicated for this research work.
5. For efficient cleaning, there is also a requirement of height distance from the transducer

to the bottom tip of the cleaning object; therefore, a basket was used in an ultrasonic
cleaner to provide the optimum height. By achieving this optimum height, better
cleaning can be achieved.

3.3. Fabrication of Ultrasonic Cleaner

Model b from Figure 4 was selected as optimum from the results of the FEM acoustic
simulation. The model has been replicated, and an outer body of the ultrasonic cleaner has
been manufactured with the help of stainless-steel material (308). The body of the cleaner
contains a timer, LED indicators, and hot air vents. A labelled figure of ultrasonic cleaner is
shown in Figure 5.
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Internal Structure and Transducers Placement

Transducer placement was determined using FEM acoustic simulation. From Sec-
tion 3.2.1, the location of the transducer (PZT disc) was identified. The results show that
the transducer gave the best performance when attached to the bottom of the tank. For
simulations, two stacked piezoelectric discs were used; the reason behind this configuration
is to produce maximum ultrasonic waves which can create more pressure–tension change
in the simulation. For experimental design. a single disc that was 2.5 mm thick with a
diameter of 50 mm was used. The attached PZT with the tank is shown in Figure 6. The size
of the tank used for this research work is 140 mm × 140 × 152 mm (L ×W × D). The piezo
disc details are listed in Table 1. The PZT disc was attached to the container using general
epoxy (available as steel epoxy in the market). Epoxy was applied only at the corner of the
PZT disc. The FR4 material was placed between the PZT disc and the steel tank.
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4. Experimental Section

Different experiments for finding the accuracy of the ultrasonic cleaner were performed
on the designed ultrasonic cleaner. Two different experimental techniques were used for
this research. One is an FFT analysis using a replicated hydrophone (PZT buzzer disc), and
the other is Image processing validation (foil corrosion test).

4.1. Experimental Setup

The experimental setup for the FFT Analysis and foil corrosion test is shown in
Figures 7 and 8, respectively. The setup shown in Figure 7 has an ultrasonic cleaner, which
is used to agitate a liquid medium with the help of which ultrasonic waves will generate
inside it. A piezoelectric buzzer disc (acting as a low-cost hydrophone) was used here to
measure the amplitude of ultrasonic waves being induced inside of the liquid medium of
the ultrasonic tank. In ultrasonic cleaning, hydrophones are used to find acoustic pressure
distribution at different frequency points in a frequency spectrum [29]. Different types of
hydrophones are available in the market, and the choice of hydrophone depends on the
frequency of the ultrasonic cleaner [30]. An oscilloscope was utilized for obtaining the
wave response in the time domain. The sample size of the oscilloscope was set at 100 KS/s
(kilo samples per second). According to the Nyquist Theorem states, the sample size must
be at least double the size of the maximum frequency (40 kHz in this case) being induced
in the system. To hold the piezoelectric buzzer disc firm inside the ultrasonic cleaning tank
a magnetic stand was used, as shown in Figure 7.
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Figure 7. FFT Analysis using Replicated Hydrophone.

For the second experimental campaign, i.e., foil corrosion tests, an experimental setup
was designed that consisted of two parts, as shown in Figures 8 and 9. The setup shown in
Figure 8 is used for obtaining corroded aluminuim foils. A large number of aluminuim foils
(100 in number) were dipped inside of the liquid medium in which ultrasonic waves were
produced. These foils were dipped one by one, and the ultrasonic cleaner was operated for
5 min for each cycle. In the end, 100 perforated foils were obtained.

For the second part of this experiment, the 100 perforated aluminuim foil images were
captured, and a dataset of 100 images was obtained. For obtaining the images of these
foils, a uniform background, lighting conditions and the height of the camera were fixed
as shown in the image acquisition setup in Figure 9. This setup depicts a stand made for
providing the uniform height of the camera to aluminuim foil (i.e., 13 cm), a black sheet
for providing proper background. An Infinix HOT10i camera (720 × 1600 pixels) was
used with a bulb for proper lighting conditions. This setup is for experimental purposes,
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the results show that these parameters did not affect the results when the researchers or
scientists used the system proposed in this article.
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Figure 9. Image Acquisition Setup.

4.2. Testing and Results

Using a Piezoelectric disc as a hydrophone and obtaining a frequency domain signal
will tell us about the amplitude of the frequencies in the agitated liquid medium. As
discussed in the previous section; i.e., Section 4.1., different diameter piezoelectric discs
were dipped inside of the liquid medium, and their related response was obtained with
the help of an oscilloscope. The oscilloscope time domain signal was converted into a
frequency domain signal using MATLAB, and the behaviour of the waves induced inside
of the system was observed. An FFT response of the system is shown in Figure 10; the
graphs show that other frequencies are negligible as compared with the driving frequency
inside the tank.



Appl. Sci. 2023, 13, 6991 11 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 19 
 

 

Figure 9. Image Acquisition Setup. 

4.2. Testing and Results 

Using a Piezoelectric disc as a hydrophone and obtaining a frequency domain signal 

will tell us about the amplitude of the frequencies in the agitated liquid medium. As dis-

cussed in the previous section; i.e., Section 4.1., different diameter piezoelectric discs were 

dipped inside of the liquid medium, and their related response was obtained with the 

help of an oscilloscope. The oscilloscope time domain signal was converted into a fre-

quency domain signal using MATLAB, and the behaviour of the waves induced inside of 

the system was observed. An FFT response of the system is shown in Figure 10; the graphs 

show that other frequencies are negligible as compared with the driving frequency inside 

the tank.  

 

Figure 10. The frequency response of the Ultrasonic Cleaner, obtained at a single operating fre-

quency (42 kHz) using Hydrophone. 

To efficiently drive the ultrasonic cleaner, a pulsed driving circuit is required, as ex-

plained by [31]. To achieve pulse driving, a small DC link capacitor of value (1 uF/400 V) 

was used, and the FFT result obtained inside of the tank is shown in Figure 11.  

Figure 10. The frequency response of the Ultrasonic Cleaner, obtained at a single operating frequency
(42 kHz) using Hydrophone.

To efficiently drive the ultrasonic cleaner, a pulsed driving circuit is required, as
explained by [31]. To achieve pulse driving, a small DC link capacitor of value (1 uF/400 V)
was used, and the FFT result obtained inside of the tank is shown in Figure 11.
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Figure 11. Frequency Response of Ultrasonic Cleaner using Proposed Circuit.

Artificial intelligence has been widely used to find the ultrasonic cleaner’s efficiency.
Zhong et al. [32], proposed a back propagation artificial neural network (BPANN) to find
the material removal from an object that has been cleaned using ultrasonic cleaning. For
the second series of experiments, a similar approach was used to find the efficiency of
ultrasonic cleaning. For this purpose, a total of 100 images of aluminuim foils were taken.
These 100 images were then augmented with gaussian noise, contrast, and brightness.
After the augmentations, the total number of images in the dataset reached 300. These
images were then labelled using labelling software with two different class labels; for pre-
mature perforation “low” label was assigned, and a “high” label was assigned to mature
perforations. The dataset was then trained on YOLOv5 using Google Collaborate, which is
an online cloud computing system which provides access to free GPUs. The overall results
obtained using YOLOv5 models were not satisfactory. The best results were obtained using
(YOLO v5s) weights, which are shown in Table 3.

Table 3. Precision and Recall of different Labels.

Sr no. Class Labels Precision Recall mAP 0.5 mAP 0.5:0.95

1 All 272 0.445 0.562 0.527 0.231
2 High 156 0.565 0.891 0.869 0.415
3 Low 116 0.326 0.233 0.185 0.0475
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Due to less accurate results, the above technique was terminated and another approach
was adopted. For this approach python, open cv, was used for image processing. The dataset
was the same as what was used for the YOLO V5 work. A GUI was also introduced for this
purpose as shown in Figure 12. The user must upload the corroded foil image to the GUI
and input the size of the foil in mm. The designed software then calculated the pixels of the
image. With the size of an image, as provided by the user and the image pixel read by the
software from the file, the software then calculates the total image area and pixel per square
mm. A GUI is shown in Figure 13 along with all of the results of the image. The image was
then converted into grayscale as shown in Figure 14, and thresholding was applied; i.e., the
pixels having values less than 127 were termed as perforated pixels and others were termed as
non-perforated pixels. In this way, the software calculated the perforated and non-perforated
pixels. Then. by having the ratio of the perforated and non-perforated pixels available, the
percentage of complete perforation in the foil was obtained.
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A perforated aluminuim foil is shown in Figure 12. Later on, this image was exported
to our GUI, which is the “Perforation Area Calculator”, with the help of which one can
obtain the perforation of the aluminuim foil. This perforation is obtained from the number
of pixels of the image and dimensions of the foil (provided by the user, so that if a user uses
a foil of different dimension the software adjusts itself accordingly).

The designed software also exported the results in the form of a text file which
includes the overall size of the image, perforation per pixel, perforation per square mm,
and perforation percentage. This technique has the following attributes; (1) any size of
foil can be tested using this software, (2) the results obtained are accurate because the
calculations work according to the number of pixels and size of the foil, (3) the results are
independent of the lightning conditions, (4) a low-cost technique to check the validity of
the ultrasonic cleaner.

5. Discussion

The proposed design of the ultrasonic cleaner was validated using two different
techniques (replicated hydrophone and foil corrosion using image processing). The first
technique (i.e., FFT results) was used to find the frequency response of the ultrasonic
cleaner in running conditions. To obtain the optimum efficiency of a piezoelectric disc,
the disc should have operated in the resonance region [33]. The results obtained from the
FFT experimental campaign shows that the system has pulsating, driving DC voltage. The
other peaks that can be observed in the FFT graphs inform us about the presence of other
noises in the ultrasonic waves such as cavitation, external disturbance, and some small
particles already present in the water.

Other technique will tell the user about the efficiency of the cleaner. The foil corrosion
test has been an efficient technique for measuring the efficiency of the ultrasonic cleaner.
For this research, image processing was introduced to the foil corrosion test to measure
the corrosion area of a foil. Tangsopha et al. [20], have also implemented this technique.
In this paper, the authors compared the results with the acoustic simulation in Ansys. In
the same way, Yuan et al. [34], have also proposed image processing with a foil corrosion
test. The results of these papers are improved, as the picture quality was low compared to
this research. Also, they did not measure the perforation pixel by pixel, so the quantitative
enhancement of the technique was also performed in this paper.

Table 4 shows the comparison between different works related to our proposed technique.
From Table 4, it can be observed that acoustic simulations were used either theoreti-

cally or for the behaviour at the contact point of the ultrasonic actuator and the ultrasonic
cleaning tank. In this paper, we have used acoustic simulation to find the pressure distri-
bution of acoustic waves when the number and placement of ultrasonic transducers have
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changed. The FFT section of this research shows the comparison of the harmonic frequency
of the ultrasonic transducer with the frequencies induced inside of the cleaning tank. For
this purpose, we have tuned our circuit accordingly, as mentioned in Section 2.1.

Table 4. Comparison of different techniques in Literature.

Refs. Acoustic Simulation FFT Foil Corrosion Test

[35]
Theoretical application of acoustic in an
ultrasonic cleaner. The analysis was
performed only at the contact point.

FFT analysis was used here to find the
magnitude of velocity in the x, y, and z direction -

[20]
An acoustic simulation has been done for
this paper to find the pressure distribution
points inside the tank.

- The pressure distribution points were
thus verified using foil corrosion tests

[9]

To validate the concept of acoustic
pressure with different parameters such as
the volume of liquid, the thickness of the
tank sheet, and the material properties of
the tank.

- This work was validated using a foil
corrosion test.

[36]

The concept of acoustic simulation has not
been done directly for this work, but they
have introduced the concept of harmonic
response analysis of fluid inside an
ultrasonic cleaning tank.

A foil corrosion test was used to
validate the results of the Harmonic
Response Analysis.

[37] - -

Aluminuim foil corrosion test was
used to compare temperature, nature
of the solvent, and cleaning time and
how these factors depend on the
cleaning efficiency.

As observed in the literature, the technique of using aluminuim foil corrosion to
find the efficiency of ultrasonic cleaning is not new. The only flaw we observed is that
for foil corrosion there is no quantitative measurement method which tells us about the
percentage area of the total perforation of the aluminuim foil when dipped inside of the
running ultrasonic cleaner. For this purpose, we have designed a system in which the
researcher, scientist, or worker does not need a specific dimension of foil, camera pixels, or
lightning condition as this system worked on the distribution of black and white pixels. To
validate this, consider the following aluminuim foils. These aluminuim foils have different
dimensions (120 mm × 30 mm) and (60 mm × 60 mm), respectively, and their lighting
condition and pixel ratios are also different. The results of these images are shown in the
next figures (i.e., from Figures 15–18) respectively.
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6. Conclusions

Ultrasonic cleaners have been widely used in different industries; they have played
their role in cleaning small metals to large automobile parts, and cleaning small jewelry to
large clothing items. In this work, the design methodology of an ultrasonic cleaner based
on acoustic simulation in COMSOL Multiphysics was proposed. The designed cleaner was
fabricated, and different experiments were performed. The transducer used was the PZT
disc, which is responsible for generating ultrasonic waves inside of the liquid medium. To
validate the efficiency of both transducers and ultrasonic cleaners, two different approaches
have been presented. The first approach is the low-cost hydrophone approach, which was
selected to validate whether the transducer was working in resonance mode and how much
noise was present. With the help of this technique, the driving circuit’s efficiency could also
be confirmed. The second approach used was an image processing technique on corroded
aluminuim foils. In this way, the efficiency of any ultrasonic cleaner can be obtained.
These two techniques are low-cost compared with other techniques for measuring and
quantifying cavitation inside of the ultrasonic cleaner.
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