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ABSTRACT Transformer-based networks using attention mechanisms have shown promising results in
low-level vision tasks, such as image super-resolution (SR). Specifically, recent studies that utilize window-
based self-attention mechanisms have exhibited notable advancements in image SR. However, window-
based self-attention, results in a slower expansion of the receptive field, thereby restricting the modeling
of long-range dependencies. To address this issue, we introduce a novel dilated window transformer,
namely DWT, which utilizes a dilation strategy. We employ a simple yet efficient dilation strategy that
enlarges the window by inserting intervals between the tokens of each window to enable rapid and effective
expansion of the receptive field. In particular, we adjust the interval between the tokens to become wider
as the layers go deeper. This strategy enables the extraction of local features by allowing interaction
between neighboring tokens in the shallow layers while also facilitating efficient extraction of global
features by enabling interaction between not only adjacent tokens but also distant tokens in the deep layers.
We conduct extensive experiments on five benchmark datasets to demonstrate the superior performance of
our proposed method. Our DWT surpasses the state-of-the-art network of similar sizes by a PSNR margin
of 0.11dB to 0.27dB on the Urban100 dataset. Moreover, even when compared to state-of-the-art network
with about 1.4 times more parameters, DWT achieves competitive results for both quantitative and visual
comparisons.

INDEX TERMS Image super-resolution, self-attention mechanism, transformer, window-based self-
attention.

I. INTRODUCTION
Image super-resolution (SR) is a well-known problem in low-
level vision tasks, which aims to reconstruct a high-resolution
(HR) image from its low-resolution (LR) counterpart. Recent
advancements in deep learning have enabled image SR using
deep convolutional neural networks such as residual learn-
ing [1], [2], dense blocks [3], attention mechanisms [4], [5],
[6], and adversarial learning [7], [8], [9]. Due to improved
results, convolutional neural networks have become the de
facto standard for this field.
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In recent years, inspired by the remarkable success
of Transformer [10] in the field of natural language
processing, several researchers have attempted to adopt
transformer-based networks for high-level vision tasks with
promising results across high-level vision tasks, such as
image classification [11], [12], [13], object detection [14],
[15], [16], and dense prediction [17], [18]. Following
the success of this approach, researchers have also intro-
duced transformer-based networks for low-level vision tasks,
including SR [19], [20], [21]. In particular, SwinIR [21],
which adopts window-based self-attention of Swin Trans-
former [15], has achieved breakthrough performance in the
SR task.
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FIGURE 1. SR results of SwinIR. SwinIR fails to accurately restore textures even for images with self-repeating patterns. These findings indicate that
SwinIR cannot utilize the complete global information of the image.

However, window-based self-attention leads to slower
growth of receptive field, which limits the potential of
modeling long-range dependencies [16]. Window-based self-
attention is effective at capturing local context, but it falls
short in capturing global context. This limitation affects the
image quality reconstructed by SR networks using window-
based self-attention. As shown in Fig. 1, SwinIR restores
unclear textures even for images with repetitive patterns.
Due to the lack of global information, SwinIR cannot utilize
information of similar patterns located at a farther distance.
To solve this problem, some recent studies have achieved
outstanding performance compared to SwinIR by proposing
pre-trainingmethods on large-scale datasets [22] such as Ima-
geNet [23] or by combining CNN-based channel attention [4]
and window-based self-attention to use their complementary
advantages [24]. However, these gains have come at the cost
of additional large-scale training data and a greater number
of parameters compared to SwinIR.

In this work, we propose a dilated window transformer
(DWT) that complements the limitations of SwinIR with-
out introducing additional training data and parameters. Our
DWT introduces two types of window-based multi-head self-
attention blocks, named the window attention block (WAB)
and the dilated window attention block (DWAB). We adopt a
structure that alternates betweenWAB andDWAB. TheWAB
is responsible for extracting local features using standard
window attention, while the DWAB uses a dilation strategy
to extract global features. Similar to dilated convolution [25],
DWAB places intervals between the tokens in each win-
dow to expand the receptive field. In contrast to SwinIR’s
window-based self-attention, which only interacts with adja-
cent tokens at all layers, we use the dilation strategy in an
effective way to allow each token to interact with tokens that
are farther away as the layers become deeper. As a result, our
DWT effectively utilizes both local and global context when
restoring images. Experimental results show that our DWT
achieves better performance than the state-of-the-art models
of similar sizes on five benchmark datasets.

To summarize, the main contributions of our DWT are as
follows:

• We introduce a DWT, which leverages a dilation strategy
to effectively extract both local and global features, address-
ing the limitations of window-based self-attention.

• We propose a dilation strategy that is adopted in the
DWAB of our DWT. This strategy efficiently widens the
receptive field, allowing for improved modeling of long-
range dependencies.

• By conducting extensive experiments, we demonstrate
that our DWT achieves promising results compared to other
state-of-the-art methods, while the number of parameters and
computational cost are competitive in comparison with con-
ventional methods. The superior performance of our model
highlights the effectiveness of our proposed dilation strategy
for image SR.

The rest of the paper is organized as follows.
In Section II, we summarize the related work. Then,
we describe our proposed method in Section III. Section IV
presents the experimental results and analysis. Finally, con-
clusions are drawn in Section V.

II. RELATED WORK
A. IMAGE SUPER-RESOLUTION
Since the introduction of SRCNN [26], [27], which applied
the deep convolutional neural network to image SR for the
first time, various deep neural networks with different designs
have been proposed. Kim et al. [2] utilized residual learn-
ing to build a deeper network and speed up convergence.
Ledig et al. [7] introduced adversarial learning to improve the
texture details of the reconstructed images. Several methods
using attention mechanisms, such as channel attention [5],
[28] and non-local attention [6], [29] have significantly
improved the performance of the SR task. In addition, net-
works using recurrent neural networks [6], [30] and graph
neural networks [31] have also been proposed. Recently,
transformer-based networks [19], [32] have been applied to
the SR task and have shown remarkable performance. These
networks take advantage of their ability to model long-range
dependencies to improve the quality of reconstructed
images.
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FIGURE 2. (a) Overall architecture of DWT. The input image goes through a shallow feature extraction module, and the shallow features are fed into
deep feature extraction module to extract deep features. Finally, the shallow features and deep features are fused by a skip connection, and an image
reconstruction module is utilized to generate the SR result. (b) The inner structure of two successive multi-head self-attention blocks. The WAB and the
DWAB are alternately applied in a pair of multi-head self-attention blocks.

B. VISION TRANSFORMER
Inspired by the success of Transformer [10] in machine
translation tasks, transformer-based networks have been
introduced in computer vision community. Dosovitskiy et
al. [11] introduced VIT, which was the first application
of a transformer architecture in computer vision to non-
overlapping medium-sized image patches. The ability of
transformer-based networks to model long-range dependen-
cies through self-attention has shown impressive performance
in high-level vision tasks, such as image classification [11],
[12], [13], [33], object detection [14], [15], [34], [35], [36],
and dense prediction [17], [18], [37], [38]. Transformer-based
architectures have also been applied to low-level vision tasks.
Chen et al. [19] proposed a standard transformer architec-
ture called IPT for various low-level vision tasks, includ-
ing image SR, denoising, and deraining. Liang et al. [21]
proposed SwinIR, which introduced window-based self-
attention of the Swin Transformer [15] instead of standard
self-attention, leading to tremendous growth in the SR task.
However, SwinIR has a structural limitation that it cannot
model long-range dependencies in input images, despite its
advantage of efficient local feature extraction using window-
based self-attention. Zhang et al. [39] proposed an attention
retractable transformer named ART for low-level vision tasks
to compensate for the limitations of dense attention used in
window-based self-attention. ART introduced a sparse atten-
tion strategy similar to the dilation strategy we proposed.
In this paper, we propose a DWT that uses a dilation strategy
more efficiently than ART to successfully extract both local
and global features for improved performance in image SR.

III. PROPOSED METHOD
A. MOTIVATION
SwinIR [21], which applied the Swin Transformer archi-
tecture [15], has demonstrated the significant potential of
transformer-based networks in image SR. SwinIR extracts

deep features using window-based self-attention and shifted
window-based self-attention, which demonstrates robust
capabilities in local feature extraction.

However, SwinIR’s window-based self-attention has a
structural limitation that falls short of capturing global con-
text. This is due to the use of a smaller and slowly growing
receptive field in comparison to the full-sized receptive field
used in standard self-attention. This limitation leads to serious
defects that cannot produce high-quality output images in
image SR. For instance, SwinIR restores incorrect textures,
even for images with self-repeating patterns, as shown in
Fig. 1. This phenomenon indicates that SwinIR does not fully
leverage the global information of the image, and extracting
both local and global information is important to achieve
better performance in image SR. Thus, effectively utilizing
global information to reconstruct HR images may overcome
the limitations of SwinIR. Based on this motivation, we pro-
pose a DWT, which can effectively enlarge the receptive field.

B. THE OVERALL ARCHITECTURE
As shown in Fig. 2(a), our DWT consists of three mod-
ules, including shallow feature extraction, deep feature
extraction, and image reconstruction. Given a LR image
IL R ∈ RH×W×Cin (H, W , and Cin are the image height,
width, and the input channel number, respectively), we apply
a single 3 × 3 convolutional layer HSF (·) to obtain shallow
features FSF ∈ RH×W×C as:

FSF = HSF (IL R), (1)

where C is the channel number of the feature. According
to [40], a convolutional stem can result in more reliable
optimization. Additionally, it can effectively map an input
image from a low-dimensional space to a high-dimensional
space. Then, deep features FDF ∈ RH×W×C are extracted as:

FDF = HDF (FSF ), (2)
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FIGURE 3. Illustration of two types of attention blocks in RTG. The sizes of the baby picture and window are 16 × 16 and 4 × 4, respectively. A small
square represents one pixel, and pixels of the same color belong to the same window. The dilation value depends on the depth of the network: smaller
values for shallow layers, and larger values for deep layers. A larger dilation value encourages the model to capture long-range dependencies.

where HDF (·) is a deep feature extraction module consisting
of M residual transformer groups (RTG) and one 3 × 3 con-
volutional layer. The intermediate features of the deep feature
extraction module are sequentially extracted as:

Fi = HRTGi (Fi−1), i = 1, 2, . . . ,M ,

FDF = HConv(FM ), (3)

where HRT Gi (·) denotes the i-th RTG and HConv(·) denotes
the last convolutional layer at the end of the deep feature
extraction module. This last convolutional layer can bring
the inductive biases into the transformer-based network and
lead to better aggregation of deep features [21]. Shallow
features FSF and deep features FDF are fused by a long
skip connection and passed through the image reconstruction
module HRec(·) to generate a HR image IS R as:

ISR = HRec(FSF + FDF ). (4)

Specifically, we use the sub-pixel convolutional layer [41] to
upscale the feature. We optimize our model parameters with
L1 pixel loss, which is known to be effective in image SR.

C. RESIDUAL TRANSFORMER GROUP (RTG)
As shown in Fig. 2(a), the RTG is a residual group consisting
of N pairs of multi-head self-attention blocks and one 3 ×

3 convolutional layer. For the i-th RTG, it is formulated as:

Fi,j = HMHSABij (Fi,j−1), j = 1, 2, . . . ,N ,

Fi,out = HConv(Fi,N ) + Fi,0, (5)

where HM H S ABi j (·) is the j-th pair of multi-head self-
attention blocks in the i-th RTG. Following [21], at the end
of the RTG, we employ a single 3 × 3 convolutional layer
HConv(·) and the residual connection is also added.

D. SUCCESSIVE MULTI-HEAD SELF-ATTENTION BLOCKS
We introduce two types of window-based multi-head self-
attention blocks: WAB and DWAB. Commonly, window-
based self-attention proceeds as follows. Given an input fea-
ture of size H × W × C , it is first partitioned into H

M ×
W
M

non-overlapping windows of size M × M . Note that we treat
each pixel as a token so that our DWT can learn pixel-level
information. Then, self-attention is calculated separately for
each window. For a local window feature X ∈ RM2

×C , the
query, key, and value metrics Q, K , and V are computed
by linear projection as:

Q = X WQ, K = X WK , V = X WV , (6)

where WQ, WK , and WV denote the weight metrics for linear
projection. Then, the attention matrix is computed by the
window-based self-attention as:

Attention(Q, K , V ) = SoftMax(QK T /
√

d + B)V, (7)

where d is the dimension of the query/key and B is the
learnable relative positional encoding.

As shown in Fig. 2(b), WAB and DWAB are alternately
applied in a pair of successive multi-head self-attention
blocks. Both WAB and DWAB are based on the window-
based self-attention of the Swin Transformer [15]. The key
difference between the two lies in the dilation strategy
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employed in DWAB. Different from SwinIR, we use the dila-
tion strategy with the shifted window mechanism in DWAB
to obtain a wider receptive field. As shown in Fig. 3, for
WAB, every M × M token of each window is adjacent.
In contrast, for DWAB, M × M tokens of each window
are sampled with a dynamic interval size. Therefore, while
WAB can extract local features through interactions with
adjacent tokens, DWAB can extract global features through
interactions with tokens that are further away. With the dila-
tion strategy, consecutive multi-head self-attention blocks are
computed as:

x̂ l = W-MSA(LN(x l−1)) + x l−1,

x l = MLP(LN(x̂ l )) + x̂ l ,

x̂ l+1
= DW-MSA(LN(x l )) + x l ,

x l+1
= MLP(LN(x̂ l+1)) + x̂ l+1, (8)

where x̂ l and x l denote the output feature of the (D)W-
MSA and theMLP for l-th attention block, respectively. MLP
denotes a multi-layer perceptron that has two fully-connected
layers with GELU activation function between them, and
LN denotes the layer normalization. W-MSA and DW-MSA
denote window-based multi-head self-attention and dilated
window-based multi-head self-attention, respectively.

1) WINDOW ATTENTION BLOCK (WAB)
As shown in Fig. 3, in a WAB, multi-head self-attention is
computed within non-overlapping windows. Each token can
interact with neighboring M × M tokens, including itself.

2) DILATED WINDOW ATTENTION BLOCK (DWAB)
In this section, we elaborate on the key design element of
DWT, the DWAB.

Inspired by dilated convolution [25], we introduce a dila-
tion strategy. Dilated convolution is a type of convolution that
enlarges the kernel by inserting holes between the kernel ele-
ments. In a similarmethod, we employ a dilation strategywith
the shifted window mechanism to even-numbered attention
blocks in every RTG. Similar to SwinIR [21], DWAB utilizes
a shifted window mechanism for cross-window connections.
As illustrated in Fig. 3, the dilation value depends on the depth
of the network and the input image size. The dilation value
indicates the interval between the tokens of each window.
Thus, in DWAB, as the dilation value increases, the tokens
within each window interact with tokens located at a greater
distance. In the first two RTGs, we set the dilation value as
1 to sufficiently extract local features in the early stages of
deep feature extraction. Therefore, the DWAB of the first two
RTGs is exactly the same as the shifted window-based self-
attention of SwinIR [21]. In the third and fourth RTGs, DWT
extracts M × M tokens for a window from the 1

4 area of the
shifted input image, while in the last twoRTGs, DWT extracts
M×M tokens for a window from the entire area of the shifted
input image. The dilation value increases with depth of the
network, allowing each token to interact with a wider area as
the layers become deeper.

In Fig. 3, we illustrate an example where the height and
width of the input image are both 16 and the window size
is set to 4 × 4. For this example, the dilation values of the
height and width are computed as 16

2 ×
1
4 = 2 in the third

and fourth RTGs, while in the last two RTGs, the dilation
values of the height and width are computed as 16

4 = 4. The
proposed DWAB enables the receptive field to be widened
faster and more efficiently than the standard shifted window-
based self-attention. Specifically, local features are extracted
in the shallow layers through interactions between adjacent
tokens, while global features are extracted in the deep layers
by interacting with neighboring and distant tokens.

In summary, our DWAB provides an effective means of
widening the receptive field and improving local and global
feature extraction.

E. DIFFERENCES FROM RELATED WORK
In this section, we provide a detailed comparison between our
proposed DWT and the ART [39] introduced in Section II.
ART is an attention retractable transformer that uses sparse
attention, which is similar to our dilation strategy. However,
there are several differences between thesemethods.We com-
pare the differences in two aspects.

1) WINDOW SIZE IN THE ATTENTION BLOCK
In our proposed DWT, the window size in DWAB is always
fixed to 16 × 16, irrespective of the input image size. How-
ever, in ART’s sparse attention block (SAB), the window
size varies depending on the input image size. ART uses a
fixed interval size of 4, meaning that as the input image size
increases, the window size also increases, leading to a higher
computational cost. For example, if the height and width of
the input image are both 160, the window size in SAB of ART
is 40 × 40, while the window size in DWAB of our DWT is
16 × 16.

2) DESIGN OF THE ATTENTION BLOCK
As explained in Section III-D2, our proposed DWT employs
a simple yet efficient dilation strategy to gradually expand
the receptive field. In contrast to ART, which has a fixed
interval size for all layers, our DWT increases the dilation
value as the layers become deeper, allowing for a wider
area where dilation is applied. As a result, our DWT can
extract both local and global features efficiently in the shallow
and deep layers, respectively. We provide a detailed analy-
sis of the effectiveness of our proposed dilation strategy in
Section IV-B.

IV. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL SETUP
1) IMPLEMENTATION DETAILS
For DWT implementation, the RTG number is set to 6. Both
the WAB and DWAB number of each RTG are set to 3 and
attention head is set to 6. Therefore, each RTG is composed
of three pairs of multi-head self-attention blocks. Since the
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FIGURE 4. LAM comparison results. The LAM results represent the importance of each pixel in the input LR image with respect to the SR results of the
patch marked with a red box [42]. The higher DI provided below the LAM results indicates a wider range of pixels used.

TABLE 1. Ablation study on the design of DWAB (×2 SR).

DWAB uses shifted windowmechanism, we adopt a masking
strategy in DWAB to restrict self-attention between the non-
adjacent areas, similar to the Swin Transformer [15] and
SwinIR [21]. The channel number for all the modules except
the image reconstruction module is set to 180, while in the
image reconstruction module, it is set to 64. All convolutional
layers in DWT have 3 × 3 kernel, stride of length 1, and
padding of length 1, so the height andwidth of the featuremap
remain the same as the input size before upsampling. In [22]
and [24], the authors showed the effectiveness of using a large
window size. Therefore, we set the window size to 16 × 16.
To ensure fair comparison, we also provide a smaller version
of DWT, which we refer to as DWT-S. In DWT-S, we set the
window size to 8 × 8, while keeping the other settings the
same as DWT.

2) DATASETS
Following previous work [21], [39], we use DF2K as
the training dataset, which consists of 800 images from
DIV2K [1] and 2560 images from Flicker2K [48].

We evaluate our model on Set5 [43], Set14 [44],
BSD100 [45], Urban100 [46], and Manga109 [47] datasets.

3) EVALUATION METRICS
For evaluation of the SR result, we use PSNR and SSIM [49]
computed on the Y channel of the YCbCr color space. The
PSNR and SSIM are commonly used full-reference image
quality assessment (FR-IQA) metrics for image SR. These
metrics evaluate the fidelity of the reconstructed image, with
higher values indicating better image fidelity. In addition,
for the comparison of the perceptual quality, we also utilize
no-reference image quality assessment (NR-IQA) metrics,
NIQE [50] and BRISQUE [51]. A lower value of both NIQE
and BRISQUE indicates higher perceptual quality.

4) TRAINING DETAILS
We generate LR images by downsampling the ground truth
images using the ‘‘bicubic’’ method in MATLAB. During
the training phase, we randomly crop the LR images into
input patches of size 64 × 64 and apply data augmentation
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TABLE 2. FR-IQA results comparison with numerous state-of-the-art SR methods. The best and the second-best values are highlighted with red and blue,
respectively.

TABLE 3. Model resource comparison with numerous transformer-based SR methods (×4 SR). Input size is 3 × 160 × 160 for Mult-Adds calculation.

techniques such as horizontal flip and random rotation. How-
ever, during the evaluation phase, the input image size is not
fixed. Therefore, we employ a reflection padding strategy
on the input image to ensure that the number of windows is
always an integer. We use a mini-batch size of 32 and train
for a total of 500K iterations, with the learning rate initialized
at 2e-4 and reduced by half at [250K,400K,450K,475K]. For
×3 and ×4 SR, we initialize the model with pre-trained ×2
SR model weights and reduce both the iterations for each
learning rate decay and total iterations by half. We adopt
the Adam [52] optimizer with β1 = 0.9, β2 = 0.999 and
zero weight decay to optimize our model. DWT is imple-
mented on the PyTorch [53] framework with 4 NVIDIA
RTXA5000 GPUs.

B. ABLATION STUDY
1) EFFECTIVENESS OF DWAB DESIGN
As described in Section III-D2, we use the dilation strategy
to extract both local and global features effectively. In our
DWAB, the dilation value increases as the layers become
deeper, resulting in a wider receptive field.

To demonstrate the effectiveness of our proposed dilation
strategy, we conduct an ablation study. We compare the
dynamic dilation value strategy, which gradually increases
the dilation value and expands the area where dilation is
applied as the layers become deeper, with the strategy that
uses a fixed dilation value for all layers. In the fixed dilation
strategy, the dilation values of the height and width are set to
H
M , and W

M , respectively for all DWAB, the same as the fifth
and sixth RTGs in Fig. 3.

We evaluate the quantitative performance of both strategies
on five benchmark datasets for ×2 SR. These results are
shown in Table 1. The results demonstrate that the strategy
of gradually increasing the dilation value yields better perfor-
mance on all benchmark datasets. This implies that, in order
to achieve good performance in SR, extracting both local and
global features are important and the design of our DWT
makes it possible to achieve this.

C. LAM RESULTS COMPARISON
We propose a dilation strategy to exploit global information
in image reconstruction by gradually expanding the receptive
field.
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TABLE 4. NR-IQA results comparison with numerous transformer-based SR methods. The top three values are highlighted with red, blue and purple,
respectively.

To analyze whether our dilation strategyworks as intended,
we use LAM [42]. LAM is a sophisticated attribution method
for SR that identifies the input pixels that significantly affect
the SR results and quantifies the results into a diffusion
index (DI) that evaluates the extraction and utilization of
information from the LR image. A LAM result with a higher
DI means more pixels are involved in restoring images in
a specific area. Fig. 4 shows the LAM results (DI) and SR
results (PSNR/SSIM) for SwinIR, ART, and our DWT. In the
LAM results, the contribution areas are illustrated in red.
As we can see, among the three models, our DWT has the
highest DI, PSNR, and SSIM values, and achieves better
visual results. Furthermore, we can observe that the red area
of the DWT’s LAM result is more widely spread than that of
other models (Fig. 4). This means that DWT can leverage a
wider range of information than SwinIR and ART. Therefore,
these results demonstrate the efficiency of our DWT, which
can effectively utilize both local and global information to
improve SR performance.

D. QUANTITATIVE COMPARISON
1) FR-IQA RESULTS
Table 2 presents the FR-IQA results comparison between
our proposed DWT and other state-of-the-art methods,
including EDSR [1], RCAN [4], NLSA [29], SwinIR [21],
EDT [22], ART-S [39], and ART [39]. As illustrated in
Table 2, our DWT achieves the best or second-best per-
formance across all scale factors. Especially, DWT shows
greater performance improvement in SSIM metric than in
PSNR. Since SSIM is a metric that considers the human
visual perception system, these results imply that our
DWT generates higher quality images in terms of human
perception.

We also provide a comparison of the parameter numbers
and Mult-Adds for transformer-based networks in Table 3.

The Mult-Adds are calculated assuming a 3×160×160 input
size for ×4 SR. As indicated in Table 3, ART has about
1.4 times more parameters and computational cost than our
DWT. However, DWT exhibits superior or competitive per-
formance than ART. The small version of DWT, DWT-S, also
shows competitive results with less or similar computational
cost compared to SwinIR and ART-S. When compared to
state-of-the-art models of similar sizes, with the exception
of ART, DWT outperforms all of them in terms of PSNR
and SSIM. Specifically, while DWT and ART-S have simi-
lar computational cost, DWT surpasses ART-S by a PSNR
margin of up to 0.11dB to 0.27dB on the Urban100 dataset.
Furthermore, in the ×4 SR results of the Urban100, it can be
observed that DWT achieves superior performance not only
compared to ART-S but also to ART. The Urban100 dataset
exhibits a higher disparity in performance compared to other
datasets due to its abundance of repeated patterns. These char-
acteristics of the Urban100 are advantageous for our dilation
strategy that enable access distant features. Considering the
fact that the resolution of the Urban100 is relatively higher
than that of Set5 and Set14, it can be inferred that our model
is much more efficient than ART.

All of these results collectively demonstrate the effective-
ness of the DWT, which achieves superior performance with
a competitive number of parameters and acceptable compu-
tational cost.

2) NR-IQA RESULTS
For a more comprehensive comparison between our DWT
and other transformer-based networks, we also provide
NR-IQA results comparison in Table 4. The goal of NR-IQA
is to estimate the perceptual quality of the image rather
than the image fidelity. However, it is debatable whether the
NR-IQA metrics precisely reflect human perceptual qual-
ity [54], [55]. Hence, we use these two metrics solely
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FIGURE 5. Visual comparison (x4) with numerous state-of-the-art SR methods on Set14 and Urban100 datasets. The red boxed areas have been cropped
from the results and enlarged for better visibility.

as a rough reference. Unlike the FR-IQA results, the
NR-IQA results show inconsistent performance across meth-
ods, datasets, and scales. However, our DWT shows com-
petitive performance in ×4 SR results, particularly in terms
of the BRISUQE. Especially, unlike the FR-IQA results, the

BRISQUE of DWT on the Manga109 dataset is the best at all
scales. Although DWT is not the best in both scores, as can
be seen from the visual comparison results in the Fig. 5 and
Fig. 6, our DWT shows impressive results in terms of human
visual perception.
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FIGURE 6. Visual comparison (×4) with numerous state-of-the-art SR methods on Urban100 dataset. The red boxed areas have been cropped from the
results and enlarged for better visibility.

E. VISUAL COMPARISON
We also provide visual comparison with state-of-the-art
methods in Fig. 5 and Fig. 6. These results demonstrate that
DWT generates clearer textures and restores high-frequency
details, leading to sharper edges when compared to other
methods.

In particular, the Urban100 dataset’s ‘‘img_004’’,
‘‘img_024’’, and ‘‘img_073’’ images serve as excellent exam-
ples that highlight the strengths of our DWT. We observe that
these images contain comparable patterns that can be used as
points of reference when restoring the areas marked with a
red box. Despite containing repetitive patterns in the image,
most other methods struggle to recover clear structures and
tend to generate blurry outcomes. In comparison, our DWT
recovers more details while reducing blurring artifacts. For
‘‘img_004’’, DWT utilizes information from both neighbor-
ing and distant regions through its dilation strategy to produce
results almost identical to the original. We can find similar
behavior on ‘‘img_024’’ in the Urban100 dataset. The red
boxed area in ‘‘img_024’’ is composed of repeated vertical

lines. However, it can be observed that SwinIR generates
blurry results by failing to accurately restore most of the
vertical lines. In contrast, DWT is able to restore the vertical
lines relatively sharply. The result of ‘‘image_073’’ also
highlights that DWT restores the building’s windows more
clearly than other models. Overall, our findings demonstrate
the superiority of the proposed dilation strategy in producing
high-quality SR results.

V. CONCLUSION
In this paper, we propose a novel dilated window transformer,
DWT, for image SR that aims to address the limitations of
window-based self-attention. Without introducing additional
computational cost, we employ a dilation strategy to expand
the receptive field more quickly and effectively. This sim-
ple yet efficient strategy enables our DWT to extract both
local and global features, leading to improved performance
in image SR. Extensive experiments under numerous bench-
mark datasets show the effectiveness of our proposed DWT.
Notably, DWT records the state-of-the-art SR performance in
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terms of both quantitative and qualitative evaluations with a
competitive number of parameters and reasonable computa-
tional cost.
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