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A B S T R A C T   

This research explores the association between the Viscous dissipation and joule heat effect for 
hybrid-nanofluids (HNfd) flow across absorbent surfaces. Expanding/contracting geometry with 
permeable factor advanced work for (HNfd), which are accumulated of Silver (Ag-Metallic) and 
copper (Cu-Metallic). The flow passes through the orthogonally moving porous disks with a 
magnetic field. Comparison and critical study of the bottom and top porous surfaces of the discs 
are also shown here. Comparability transformations, the prime PDEs of the current model are 
transformed into high-order nonlinear ODEs, which are subsequently resolved numerically using 
the “Shooting Method.” As discussed graphically the characterization of the flow, and thermal are 
demonstrated in detail, while the numerical result calculate in the upper and lower porous disk of 
a physical parameter such as skin friction coefficient (Cf ) and Nusselt number (Nu) at lower and 
upper disks are respectively discussed.   

1. Introduction 

Viscous dissipation is the process by which the mechanical energy of a fluid is converted into heat due to internal frictional forces. 
This phenomenon is important in high-speed fluid flows, as it can significantly affect the temperature distribution and overall energy 
balance of the system. In contrast, Joule heating is the process by which electrical energy is converted into heat when an electric 
current flows through a conductor. This is an important consideration in systems that involve the flow of electrically conducting fluids, 
such as liquid metal cooling systems in nuclear reactors. Both of these phenomena have numerous applications in various fields, 
including heat exchangers, lubrication of mechanical systems, and electronic cooling systems. Understanding the effects of viscous 
dissipation and Joule heating (VD&JH) is critical in optimizing the performance of such systems. Most investigators also did some work 
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considering the heating impact of viscous dissipation and joule. For instance, Hayat [1] Sequential impacts of viscous dissipation and 
Joule flow insulation have been evaluated using vertical porous revolving disks. Consideration is provided to radiative flow saturating 
porous space. For the situation of strong, suction that is uniform, Borisevich [2] studied the flow of heat transfer time-dependent 
moving disk in such a velocity electric field. With a (VD&JH) allowance, the temperature transfer rate at the disc surface is moni
tored in proportion to the magnetic field’s amplitude and the rotational speed of the disks. The impacts of VD&JH combined with 
stable MHD are examined in OSALUSI [3], as well as the slip-flow of the electricity conducted incompressible viscous non-Newtonian 
Bingham liquid across porosity spinning disks. Iqbal [4] investigated the heat and mass transfer across 2 orthogonally rotating 
permeable coaxial disks, together with the impacts of suction and viscous dissipation, in an unsteady hydromagnetic viscosity elec
trically transmitting incompressible liquid (Nfd) (including titanium dioxide NPs). Hayat [5] this paper aims at studying second-grade 
nano liquid flow through a revolving disk. (Nfd) is heavily dependent upon Brownian motion and thermophoresis under investigation. 
Energy transfer under dissipation and Joule heating are studied. Chamkha [6] the researchers are studying the thermal boundary layer 
and MHD flow of (HNfd) among double surfaces in a rotating both porous surface.Reddy [7] existence of heat transfer characteristics, 
for laminar nanoparticle concentration and temperature transformation a 2-D mathematical analysis of thermally conducting, viscous, 
and Joule (Ohmic) heat source across an able adsorption a porous surface. The impacts of heating from the thermal radiation and Joule 
are considered. Khader [8] experiment was carried out to look into the consequences of continuous thermal conduction on Newtonian 
fluid flow and energy transmission through a constantly growing porous layer, (VD&JH), MHD, and current radioactivity. 

Currently, due to its comprehensive technological, Production, and research purposes such as exchange, Micronutrition, Medical 
fabrication, Cooling motor, acoustics protection, naval constructions, solar heating, and lubricating, among other things Engineers, 
scientists, and researchers have responded positively to a new group of active thermal effective fluids known as HNfd. Hybrid nano
fluids are a type of engineered fluids that combine 2 kinds of NPs in a base fluid (size smaller than 100 nm) [9,10]. They possess 
enhanced thermal conductivity, electrical conductivity, and mechanical properties, making them useful in applications such as 
electronics cooling, energy storage, and biomedical engineering. In electronics cooling, hybrid nanofluids can improve heat transfer 
rates, leading to better device performance and reliability. In energy storage, hybrid nanofluids can be used to improve the thermal 
management of energy storage systems, resulting in increased efficiency and longer lifespan. In biomedical engineering, they have 
potential applications in drug delivery, tissue engineering, and medical imaging. Due to spinning discs, Xu [11] unsteady combined 
convective of a (HNfd) is investigated. To model, the problem is developed the generalized uniformly system of flow which explains 
(HNfd) comprising multiple types of NPs. Nilankush [12] literature displays Hall existing features over a spinning disk on (HNfd) flow. 
This also included the impacts of heat particles and the magnetosphere to research the fine points of the flow. (Nfd) flow across flexible 
retardation moving disks was demonstrated by Fang and Tao [13]. Here, he gave unstable viscous fluid flow some thought. Tur
kyilmazoglu [14] researched the heat transfer of nano liquid passing through a spinning disc. Yin [15] investigated the heat transfer of 
(Nfd) on a rotating disc that is being stretched radially. In the study by Ashwini [16], laminar, incompressible, and 2-D micropolar 
liquid stream among permeable disks is taken into account. Ghaffar [17] investigated inviscid unstable laminar fluid movement among 
two orthogonally traveling coaxial disks is called quantitatively. The goal of this work, according to Behnam [18], is to 
semi-analytically examine when a (SiC–TiO2/DO) (HNfd) flows across porosity revolving disks that are visible to a continuous vertical 
magnetic field.Hayat [19] addressed the flux of thermal radiation and nonlinear convection of silver and copper water nano liquids. 
Kumar [20] produced in-situ copper-zinc (Cu–Zn) hybrid NPs for temperature profile, standard cutting fluids are employed. Qureshi 
[21] investigated the flow of heat transfer in MHD, unsteady, serval shape and size factor, different types of NP’s effect in permeable 
coaxial disks in magnetized (HNfd) flow. The impact of various magnetized 3D nanomaterials on the liquid flow among two orthogonal 
spinning discs was examined by Abdulmalek [22]. Bachok [23] examined the movement of a (Nfd) across spinning permeable disks in 
terms of thermal transmission. Qureshi [24] looked into the temperature and mass transfer evaluation of a non-Newtonian fluid flow 
across permeable sides when magnetic nanoparticles were present. Bilal [25] conducted the numerical methods of magnetic and 
metallic NP’s in porous materials utilizing the Darcy-Forchheimer correlation. Gangadhar [26] conducted a numerical analysis of 
thermal transfer (HNfd) with two different magnetic and metallic NP’s (MgO–Au) and base fluid water used. Bhargavi [27] considered 
both linear and nonlinear thermal radiation effects when investigating the thermal transport of the flow. Several researchers have 
conducted numerical analyses of hybrid nanofluids, as evidenced by studies cited in Refs. [28–36]. 

Magnetohydrodynamics, in which polar rises a flowing conducting fluid, describes its flow characteristics. Magnetic field in
fluences are investigated in a variety of industrial processes, including fuel manufacture, electrical generators, crystal creation, nuclear 
power plants, and aerodynamics. Alfven [37] created the MHD field. A hybrid magnetized nanocomposite in a permeable stretched 
solution has been given a numerical treatment by Emad [38]. Chamkha [39] premeditated the impact of MHD (Nfd) convective thermal 
transmission on heat radiation utilizing the regulated volume-based. Dogonchi and Ganji [40] investigated the models for temperature 
distribution in an axially symmetric tube with porous walls for a non-Newtonian flowing fluid for turbine cooling systems. Krishna [41] 
investigated the thermal performance of aluminum oxide and copper nanofluids moving in a steady MHD flow via an extended 
porosity layer. Devi and Devi [42] investigated the MHD flow of heat transfer in (HNfd) of movable porous surfaces from metallic (Cu) 
and non-metallic (Al2O3) nanoparticles are used with the base fluid water. Krishna [43] has recently been investigated at radiative 
MHD Casson (HNfd) flow through a massively enhanced perpendicular porous medium. MHD flow investigated by many researchers 
Ref [44–59]. 

This study’s main objective is to examine the effects of joule heating and viscous dissipation on the 2-D HNfd the flow of thermal 
transfer among two orthogonally moving porous disks. As previously stated, there has been no research on the analysis of metallics 
used by NP’s dispersion to measure thermal conductivity within fluid areas. As a result, the main objective of this article is to examine 
the flow of heat transfer of metallic hybrid nanofluid (Ag–Cu/H2O) behavior graphically in velocity and temperature profiles. 
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Considering governing PDEs, the dimensionless ordinary differential equations (ODEs) model is developed. The architecture of the 
ODEs was mathematically computed by the 4th-RK integration approach and the “shooting technique.” Tables and graphs are used to 
investigate the physical variable data. 

2. Mathematical formulation 

Consider a 2-D hybrid MHD nanofluid flow that is Time-dependent, laminar, incompressible, and contains (Ag–Cu/water) NP’s 
among two orthogonally movable permeable coaxial disks under the influence of viscous dissipation and joule heating with perme
ability in the existence of a magnetic field that is generated with amplitude in the z-direction. The boundary disks of diameter 2r, 
upward and downward with uniform velocity l(t) and are at a variable distance 2 l(t). Based on the assumption that the Reynolds 
number is minimal, the produced magnetic field is disregarded. The liquid has a velocity distribution of v=(u(r, z, t),0, w(r, z, t)) show 
in Fig. 1. The law of conservation of mass, momentum, and energy has the following form for the aforementioned problem Ref [60]: 
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Where B2
0 stand for magnetic field, p, σe, T represented by pressure, electrical conductivity Pressure and temperature, while αhnf ,ρhnf 

and υhnf show the thermal diffusivity, density, and υhnf is its kinematic viscosity of HNfd . 

υhnf =
μhnf

ρhnf
and αhnf =

khnf(
ρcp

)

hnf

,Pr =

(
μCp

)

bf

kbf
(5) 

Here solid and liquid NP’s density is demonstrated by ρs, and ρf . Furthermore, specific heat capacity, dynamic viscosity and thermal 
conductivity of HNfd are denoted by (ρcp)hnf , μhnf and khnf . 

The flow situation for boundary conditions are: 

z1 = − l(t) u = 0 w = − A1l′ (t) T = T1 and 

Fig. 1. Physical model.  
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z1 = l(t) u = 0 w = A1l
′

(t) T = T2 (6) 

The dash represents the derivative for time t, and A1 is the measurement of split porosity. 
Similarity transformations (7) apply to above equations (1)–(4) and remove the pressure term. 

η= z
l

u= −
rυf

l
Fη(η, t) w=

2υf

l
F(η, t) θ=

T − T2

T1 − T2
, (7)  

and result 

υhnf

υf
Fηηηη + α(3Fηη + ηFηηη) − 2FFηηη −

a2

υf
−

ρf

ρhnf
M Fηη = 0 (8)  
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αhnf
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2 +MFη
2]EcPr

κf

κhnf
−

a2

αnf
θt = 0 (9) 

Using the boundary condition 

η= − 1,F = − Re,Fη = 0, θ = 1,

and η= 1,F = Re,Fη = 0, θ = 0. (10) 

The bottom and top disk are constant temperatures T1 and T2 (with T1 > T2) (with T1 greater than T2)respectively, α =
ll′ (t)

υf 
is the 

wall expansion ratio, Re =
A1 ll′ (t)

2υf 
is the absorptivity Reynolds number ,M =

σeB2
0 l2

μhnf 
is the magnetic parameter, Pr =

(μcp)f
κf 

is the Prandtl 

number and the Eckert number is denoted by Ec = U2

(T1 − T2)(ρcp)f
. 

Putting F = f Re in the above equations (8) and (9) and investigating the described by Majdalani [61] where α is a constant, f = f 
(η), and θ = θ(η), as a result of which θt = 0 and fηηt = 0. As a result, we obtain the following equations. 
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]

EcPr
κf
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= 0 (12)  

η= − 1; f = − 1, fη = 0, θ = 1, and  

η= 1; f = 1, fη = 0, θ = 0.

3. Practical and engineering interests 

3.1. Skin friction coefficients (Cf )

Cf(η=1) and Cf(η=− 1) denoted for both porous disks, which are given as 

Cf (η=− 1) =
ξzr|z=− k

ρf (l
′A1)

2 =
1
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2.5 f ′′(− 1), (13)  
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Where Rer = 4
( l

r
)( 1
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)2 represent for local Reynolds number, and ξzr are shear stresses in the radial direction at the bottom and upper 

disk are express as 
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4. Nusselt numbers 

The heat transmission rate is calculated at the bottom and top disk (Nusselt numbers) Nuz− 1 and Nuz1 are given as 
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Where Here heat flux is denoted as sz which follows as, 
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5. Result and discussion 

The numerical computing process produces graphical representations (2–6) that illustrate the effects of α, Re,M, φ1, φ2 Pr, and Ec 
on the velocity and temperature profiles of the fluid. Table 1 provides an in-depth analysis of the thermophysical properties of the 
hybrid nanofluid (HNfd), while Table 2 presents the characteristics of the base fluid and metallic NPs. Table 3 displays that the values of 
the expansion ratio parameter (α) are greater than zero. This results in a reduction in the flow of shear stress and heat transfer in both 
the Ag-water and Cu-water cases. However, the values of the Re increase, and as a result, the flow of f’’(− 1) and θ′(− 1) are enhanced. A 
much better numerical outcome is measured in Cu-water as compared to Ag-water for the lower porous disk. Moreover, magnetic 
parameter and volume friction are greater than zero, then the shear stress and flow of heat transfer act vice versa in both cases. If we 
increase the values of the expansion ratio parameter α in the hybrid nanofluid of the lower porous disk shown in Table 4, the flow of 
shear stress and thermal transfer is reduced. On the other hand, if we enhance the values of the Reynolds number Re, the shear stress 
and flow of heat transfer rate are increased. However, if we increase the values of the magnetic parameter, the volume of friction M, 
and both φ1 and φ2, the shear stress and flow of heat transfer act opposite in the lower porous disk. Upon comparing Tables 3 and 4, we 
analyzed that the numerical accuracy of shear stress is much better in the nanofluid (Cu-Water). However, the flow of thermal con
ductivity is much better in the hybrid nanofluid (Ag–Cu/water). Table 5 displays that the expanding/contracting α increases the values 
of φ1 and φ2 effect shear stress and heat transfer flow in metallic (HNfd) (Ag–Cu/water). While thermal transmission and shear force 
flow (measured as the Nusselt number) is increased in situations of contraction, they are decreased in circumstances of lower disc 
expansion. Table 6 demonstrated that the permeable Re is effect expansion ratio varies from -ve to + ve in thermal transmission and 
shear force decreases in lower disks. Table 7 demonstrates that when the Re and M values are less than zero, shear force and the rate of 
thermal transference rise, but when these values are more than zero, the impact of decreased disc momentum and the rate of thermal 
transfer is lessened. In a metallic (HNfd), Table 8 displays the impact of several dimensions on the Cf and Nu for each porosity disk. 
Furthermore, the Cf and Nu rise with increasing values of the permeability ,M, φ1 and φ2, while they decrease with increasing values 
of the α, Pr, and Ec in either permeable disk. Before visualizing the results, we cross-checked our findings with previously published 
research papers using Table 7. As demonstrated in Fig. 2(a) and 3(a), the α fluctuates between negative and positive values, increasing 
the volume friction impact of the AVP. The thickness of the center of the barrier velocity porous medium increases as the disk size 
increases. as seen in Fig. 2(a) and 3(a). Figs. 2(b) and 3(b) showed that the RVP had a greater impact on the φ1,φ2 and α than the center 
of the wall layer, but less of an impact on the thickness of the velocity porous medium. Fluid motion is symmetrically drawn. Fig. 2(c) 
and 3(c) presented there are decreased thermal boundary layer thicknesses for TP in expanding/contracting expansion ratio and 
increased values of volume friction. Because this temperature inversion impact is considered, the efficient thermal variation 
throughout the layer and the external fluid is minimized, resulting in less temperature. Physically, the volume friction parameter 
(φ1,φ2) for nanoparticles refers to the resistance experienced by the fluid flow due to the presence of the nanoparticles within the 
porous disk. The value of this parameter for the first and second nanoparticles can have a significant impact on the overall flow 
dynamics and heat transfer characteristics of system. A higher value of this parameter indicates greater resistance to fluid flow and can 
result in reduced heat transfer rates. The influence of the M on the AVP and RVP was seen in Fig. 4(a) and (b). As the M strength in
creases, the thickness of the velocity porous medium also reduces in the AVP, but it grows in the wall domain where the RVP is lower. 
The application of a transverse magnetic field orthogonal to the flow direction produces a drag force called the Lorentz force, which 
attempts to resist the liquid motion and so reduce its velocity. Fig. 5 shows that the effect of Pr for TP impact of fixed parameter α = 5 
,Re = 1,φ1 = φ2 = 0.05, Ec = 0.00068,M = 1. Increases values of Pr than thermal boundary layer are increases. Physically, the 
Prandtl number is an important parameter in porous disk systems as it determines the efficiency of heat transfer relative to the mo
mentum transfer. A higher Prandtl number implies that the fluid has a lower capacity to transfer heat compared to momentum, and 

Table 1 
Thermophysical properties of (HNfd).  

Title H2 O (f) Ag(φ1) Cu (φ2) 

ρ( kg m− 3) 997.0 19 300 8933 
Cp (J k g− 1k− 1) 4180 129 385 
κ(wm− 1k− 1) 0.6071 317 400  
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vice versa. This parameter significantly impacts the flow behavior and heat transfer characteristics of the system. Fig. 6 indicates that 
when the Ec in the TP for α and Re are higher than zero, the temperature boundary layer thickness rises in the center of the wall and 
both permeable disks. The Eckert number is a dimensionless quantity that characterizes the relative strength of thermal energy and 
kinetic energy in a fluid. In the context of a porous disk system, it determines the amount of thermal energy that is converted into 
kinetic energy due to the presence of the disk. This parameter plays a critical role in determining the heat transfer rate and flow 
behavior of the system, particularly in high-speed flow regimes. A higher Eckert number indicates that kinetic energy dominates over 
thermal energy, and vice versa for a lower Eckert number (see Table 9). 

Table 2 
Density (ρhnf ), viscosity (μhnf ), Heat Capacity (ρcp)hnf , and Thermal Conductivity (khnf ) Hybrid nanofluid thermophysical properties.  

Properties Hybrid Nanofluid (Ag–Cu-water) 

Density (ρ) ρhnf = φ1ρs1
+ φ2ρs2

− (1 − φ1 − φ2) ρbf 

Viscosity (μ) μhnf =
μbf

(1 − φ1 − φ2)
2.5 

Heat Capacity (ρCP) (ρcp)hnf = φ1(ρcp)s1
+ φ2(ρcp ) + (1 − φ1 − φ2) (ρcp)bf 

Thermal Conductivity (K) 
khnf =

ks2 + (N − 1)knf − (N − 1)φ2(knf − ks2)

ks2 + (N − 1)knf + φ2(knf − ks2)
knf 

Where knf =
ks1 + (N − 1)kbf − (N − 1)φ1(kbf − ks1)

ks1 + (N − 1)kbf + φ1(kbf − ks1)
kbf   

Table 3 
Numerical impact of serval parameter in shear stress (f ′′( − 1)) and heat transfer θ

′

(− 1) for different Nanofluids (Ag-water) and (Cu-water).   

Ag-water Cu-water 

α Re M φ |f ′′( − 1)| |θ
′

( − 1)| |f ′′( − 1)| |θ
′

( − 1)|

0.3 0.1 2 0.02 3.1308 0.44407 3.1664 0.44365 
0.6 2.8308 0.23988 2.9120 0.23874 
0.9 2.5383 0.12309 2.6629 0.12197 
1.2 2.2537 0.06072 2.4194 0.05987  

0.3 0.2   3.2017 0.69172 3.2270 0.69238 
0.3 3.2772 1.0213 3.2909 1.02391 
0.4 3.3574 1.4271 3.358 1.43261  
0.2 4  3.4750 0.44234 3.5081 0.44194 

6 3.7898 0.44084 3.8208 0.44045 
8 4.0806 0.43952 4.1101 0.43914   
2 0.03 3.09671 0.44596 3.14905 0.44536 

0.04 3.06415 0.44778 3.13239 0.44701 
0.05 3.03293 0.44952 3.11639 0.44859  

Table 4 
Numerical values for Hybrid Nanofluids impact on Shear Stress and Nusselt Number (heat transfer).   

Ag–Cu/water 

α Re M φ1 φ2 |f ′′( − 1)| |θ
′

( − 1)|

0.3 0.1 2 0.02 0.02 3.0983 0.44745 
0.6 2.7797 0.2515 
0.9 2.4694 0.13501 
1.2 2.1681 0.05988 
0.3 0.2    3.17301 0.67901 

0.3 3.2527 1 0.98319 
0.4 3.3377 1.3555  
0.1 4   3.4285 0.44586 

6 3.7315 0.44448 
8 4.012 0.44326   
2 0.03  3.0664 0.44922 

0.04 3.0359 0.45093 
0.05 3.0067 0.45256    
0.02 0.03 3.0831 0.44904 

0.04 3.0685 0.45057 
0.05 3.0546 0.45204  
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6. Conclusion 

The study investigates the heat transfer characteristics of a metallic HNfd (Cu–Ag/H2O) in a 2-dimensional, time-dependent, 
Viscous dissipation and joual heating effect flow. The fluid flow occurs between orthogonally moving porous coaxial disks and 
comprises MHD, and Newtonian fluids, with water as the base fluid. Two different types of metallic NPs are used for this purpose. The 
study examines the impact of several non-dimensional parameters, such as Re, Ec, Pr, α φ1 and φ2 on the temperature profile and 
velocity profile of the fluid flow. The results of the study, including the shear stress, skin friction coefficient, Nusselt number, and 
comparison of the flow of heat transfer in nanofluid and hybrid nanofluid, are presented both graphically and numerically. The 
following are the study’s key findings:  

• An increase in the values of the expanding/contraction ratio parameter α results in a reduction of the flow of skin friction coefficient 
and Nusselt number in the lower porous disk for the HNfd (Cu–Ag/H2O).  

• Increasing the volume fraction of the first and second nanoparticles results in an increase in the momentum boundary layer 
thickness at the middle of the wall. However, there is a decrease in the boundary layer thickness in both porous disks along the 
radial velocity profile.  

• If we increase the values of the Eckert number and Prandtl number, the thermal boundary layer thickness will also increase on the 
temperature profile in both porous disks.  

• Augmenting the values of the M leads to an augmentation in the momentum boundary layer thickness in both permeable disks for 
the radial velocity profile.  

• The numerical analysis indicates that the shear stress flow is significantly better in the nanofluid (Cu-Water), while the thermal 
conductivity is higher in the HNfd.  

• Enhancing the values of the Permeable Reynolds number results in a rise in both the shear stress flow and heat transfer rate in the 
lower porous disk. 

Author statement 

All authors contributed equally to this work. 

Table 5 
Expanding/contractions impact of volume fraction for Re = − 1,Pr = 6.2,M = 1,Sc = 0.00068.  

φ1 = φ2 α = 2 α = − 2 

|f ′′( − 1)| |θ
′

( − 1)| |f ′′( − 1)| |θ
′

( − 1)|

0.01 = 1% 1.5144769 0.0004847451 4.2231765 0.2264021 
0.02 = 2% 1.3868956 0.0004411569 4.3458779 0.241936 
0.03 = 3% 1.2943281 0.0004128910 4.4490523 0.256353 
0.04 = 4% 1.2265624 0.0003924690 4.5350458 0.2697399 
0.05 = 5% 1.17650773 0.0003728408 4.6057507 0.2821776  

Table 6 
Expanding/contractions effect of permeable Reynold number for φ1 = φ2 = 0.02,Pr = 6.2,Ec = 0.00068,M = 1.  

α Re = 1 Re = − 1 

|f ′′( − 1)| |θ
′

( − 1)| |f ′′( − 1)| |θ
′

( − 1)|

− 2 7.09276800 153.6655 4.3458779 0.2419364 
− 1 5.65462238 7.997268 3.4385043 0.0174583 
0 4.20163944 3.424350 2.6366499 0.0008259 
1 2.7238269 2.541335 1.9512178 0.0009660 
2 1.1937794 0.985217 1.3868956 0.0004411  

Table 7 
Permeable Reynold number effect of magnetic parameter for φ = 0.02,Pr = 6.2,Ec = 0.00068,M = 1.  

M Re = − 1 Re = 1 

|f ′′( − 1)| |θ
′

( − 1)| |f ′′( − 1)| |θ
′

( − 1)|

1 4.34587793 0.2419364 7.09276800 153.665571 
2 4.46768005 0.2429469 6.96600219 273.059920 
3 4.58621101 0.2437763 6.66310461 329.410934 
4 4.70168846 0.2444371 6.41950094 362.840044 
5 4.81430907 0.2449402 5.55019746 269.463363  
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Table 8 
Numerical compute the impact of different nano dimensional parameters on the Cf and the Nu.  

α Re M φ1 φ2 Pr Ec 
⃒
⃒Cf

⃒
⃒ |Nu|

− 2 − 1 1 0.01 0.01 6.2 0.00068 4.223176 0.2264021 
− 1 3.418333 0.0128129 
0 2.693457 0.0013296 
1 2.057089 0.0010392 
2 1.514476 0.0004847 
− 2 − 1 1 0.01 0.01 6.2 0.00068 3.418333 0.0128129 

− 0.5 3.745685 0.3406023 
0 4.158208 0.2563534 
0.5 4.666706 0.2697399 
1 5.277397 0.2821776 

− 2 − 1 1 0.01 0.01 6.2 0.00068 3.418333 0.0128129 
3 3.690268 0.0127519 
5 3.946125 0.0125918 
7 4.188123 0.0123441 
9 4.418055 0.0120187 

− 2 − 1 1 0.01 0.01 6.2 0.00068 4.223176 0.2264021 
0.02 4.322086 0.2354093 
0.03 4.412592 0.2439744 
0.04 4.495423 0.2521268 
0.05 4.571203 0.2598936 

− 2 − 1 1 0.01 0.01 6.2 0.00068 4.223176 0.2264021 
0.02 4.251841 0.2331789 
0.03 4.277908 0.2397446 
0.04 4.301496 0.2461054 
0.05 4.322714 0.2522677 

− 2 − 1 1 0.01 0.01 5.5 0.00068 4.2231765 0.2503563 
5.9 4.2231765 0.2364647 
6.2 4.2231765 0.2264021 
6.5 4.2231765 0.2166398 
7.7 4.2231765 0.2102962 

− 2 − 1 1 0.01 0.01 6.2 0.00051 4.2231765 0.2297354 
0.00055 4.2231765 0.2289511 
0.00060 4.2231765 0.2279707 
0.00064 4.2231765 0.2271864 
0.00068 4.2231765 0.2264021  

Table 9 
Presents a comparative analysis of the f ′′(− 1) and θ

′

( − 1) flow at the lower disk for fixed parameter values of α = 2,Re = − 10,φ1 = φ2 = 0.1.  

M Ali et al. [60] Present Results 

|f ′′( − 1)| |θ
′

( − 1)| |f ′′( − 1)| |θ
′

( − 1)|

0 1.8580 2.9180 1.8582 2.9182 
2 1.9009 3.0519 1.9011 3.0521 
4 1.9439 3.1893 1.9441 3.1895 
6 1.9871 3.3300 1.9873 3.3302 
8 2.0303 3.4740 2.0305 3.4742  

Fig. 2(a). Influence in AVP of α for φ1 = φ2 = 0.01,Re = − 1,M = 1,Ec = 0.00068,Pr = 6.2.  
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Fig. 2(b). Influence in RVP of α for φ1 = φ2 = 0.01,Re = − 1,M = 1,Ec = 0.00068,Pr = 6.2.  

Fig. 2(c). Influence in TP of α for φ1 = φ2 = 0.01,Re = − 1,M = 1,Ec = 0.00068,Pr = 6.2.  

Fig. 3(a). Influence in AVP of volume fraction for = 2 ,Re = 2,M = 1,Ec = 0.00068,Pr = 6.2.  
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Fig. 3(b). Influence in RVP of volume fraction for α = 2 ,Re = 2,M = 1,Ec = 0.00068,Pr = 6.2.  

Fig. 3(c). Influence in TP of volume fraction for α = 2 ,Re = 2,M = 1,Ec = 0.00068,Pr = 6.2.  

Fig. 4(a). Influence in RVP of M for = 1 ,Re = − 1,φ1 = φ2 = 0.01,Ec = 0.00068,Pr = 6.2.  
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Fig. 5. Influence in TP of Pr for α = 5 ,Re = 1,φ1 = φ2 = 0.05,Ec = 0.00068,M = 1.  

Fig. 4(b). Influence in AVP of M for = 1 ,Re = − 1,φ1 = φ2 = 0.01,Ec = 0.00068,Pr = 6.2.  

Fig. 6. Influence in TP of Ec for α = 5 ,Re = 1,φ1 = φ2 = 0.03, M = 1, Pr = 6.2.  
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Nomenclature  

Bo Uniform magnetic field [T] 
Cf skin friction coefficient 
Cp Specific heat at constant pressure 
k Dimensionless parameter 
M Magnetic parameter 
Pr Prandtl number 
r z Cylindrical coordinates system 
Re Reynolds number 
w Mass or velocity component along z axis [gr or m/s] 
Nu Nusselt number 
ρhnf density for (HNfd) 
ρs2 density for second solid NP’s 
ks1 Thermal conductivity for first solid fraction 
kmbf thermal conductivity for shape base fluid 
kbf thermal conductivity for base fluid 
μbf viscosity base fluid 
Fη The dimensionless radial velocity profile 
θη Dimensionless temperature profile 
σ Electrical conductivity [(m3A2)/kg] 
υ Kinematic viscosity [m2/s] 
μDynamic viscosity [Pa.s]ρ Dynamic viscosity [Pa.s]ρDensity [kg/ m3]

ρCP Volumetric heat capacity [J/(m3 K)] 
T Temperature [K] 
(ρcp)hnf specific heat capacity for (HNfd) 
ρs1 density for first solid NP’s 
khnf Thermal conductivity for (HNfd) 
ks2 Thermal conductivity for second solid fraction 
p Pressure 
Ec Eckert number 
υhnf kinematics viscosity for (HNfd)  

Subscripts 
(bfd) base fluid 
(HNfd) Hybrid Nanofluid 
1 First nanoparticle(Ag)
AVP Axial Velocity profile 
TP Temperature Profile 
(Nfd) Nanofluid 
2 second nanoparticle (Cu) 
RVP Redial velocity profile  

Greek symbols 
α Thermal diffusivity [m2/s] 
φ Equivalent nanoparticles volume fraction 
φ1 The equivalent first nanoparticles volume fraction 
η Independent similarity variable 
φ2 The equivalent first nanoparticles volume fraction 
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