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Topological triplet-superconductivity in spin-1
semimetal
GiBaik Sim1,2, Moon Jip Park1,3 & SungBin Lee 1✉

Superconductivity in topological semimetals gives a new paradigm of unconventional

superconductors. Their exotic gap structures and topological properties have fascinated

searching for material realizations and applications. In this work, we focus on a triple point

semimetal where quasiparticle excitations, triple point fermions, carry the effective integer

spin-1 in two distinct valleys. Our work demonstrates that the triple point fermion stabilizes

inter-valley s-wave spin-triplet pairing. This is due to Fermi statistics, which strictly forbids

the formation of inter-valley s-wave spin-singlet pairings. This feature is clearly distinct from

the BCS and other multi-band superconductors. We find that two distinct inter-valley s-wave

spin-triplet superconductors are allowed which in principle can be controlled by tuning the

chemical potential: time-reversal symmetric (sz) state with topologically protected nodal lines

and time-reversal broken (sx+ isy) state with topologically protected Bogoliubov Fermi sur-

faces. Our study provides guidance in searching for spin-triplet superconductivity.
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The discovery of topological semimetallic phases has rea-
lized various types of quasiparticles, characterized by
topologically non-trivial band crossings1–11. In particular,

Bradlyn et al.12 show that topological triple-band crossings are
realizable in certain spin-orbit coupled materials. The quasi-
particle excitations of such a band crossing are referred to as
triple point fermions and carry the effective integer pseudospin
j= 1. This peculiar spin structure of triple point fermions is
possible because the condensed matter systems are not con-
strained by the fundamental spin-statistics theorem. It can have a
major impact on the nature of the correlated ground states in the
presence of many-body interactions. In particular, the possible
occurrence of unconventional superconducting states calls for
concrete theoretical understanding.

In general, Fermi statistics constrains the wavefunction of
Cooper pairs to be anti-symmetric under the exchange of two
identical electrons. As a result, the spatial parity and the spin
part of the superconducting order parameter are not indepen-
dent of each other13. For instance, if we consider a Cooper pair
of spin s= 1/2 electrons in the conventional superconductors,
the formation of even-parity (odd-parity) spin-singlet (spin-
triplet), such as s-wave spin-singlet and p-wave spin-triplet,
pairing is only allowed. This is due to the exchange symmetry of
spin s= 1/2 electrons. The pseudospin j= 1 fermions have the
opposite exchange symmetry of the spin s= 1/2 fermions. Thus,
if we consider the pairing of the pseudospin j= 1 electrons, the
spin-singlet (spin-triplet) selects the odd-parity (even-parity)
pairing which is clearly distinct from BCS and other multi-band
superconductors. This unique property of pseudospin j= 1
electrons motivates further investigation in the hunt for distinct
forms of superconductivity.

In this work, we investigate s-wave spin-triplet super-
conducting ground states in an interacting triple point semi-
metal. We start from the low-energy Hamiltonian near the triple-
band crossing points which can be realized in spin-orbit coupled
materials with space group 199. Adopting the Landau theory, we
establish the phase diagram of spin-triplet superconductivity in
this system and demonstrate the realization of two distinct states;
(i) (sz) state with a rotational symmetry along the z direction and
time-reversal symmetry. (ii) (sx+ isy) state with broken rota-
tional and time-reversal symmetry. We find (sz) state is energe-
tically favored when the chemical potential lies far below the
triple-band crossing point with the middle band having upward
dispersion. In this case, the state contains nodal lines, which are
topologically protected by the non-trivial winding number. On
the other hand, when the chemical potential lies near or above
the band crossing point, the system stabilizes the (sx+ isy) state.
In this case, the Bogoliubov Fermi surface emerges whose non-
trivial topological properties are revealed by calculating the
Chern number. In the limit of a perfectly flat middle, the system
selects the (sx+ isy) state regardless of other microscopic details.
The unusual form of this spin-triplet superconductor is a generic
feature of triple point fermions and can be controlled by tuning
the chemical potential.

Results
Triple point fermions in spin-orbit coupled materials with
space group 199. Bradlyn et al.12 verify that spin-orbit coupled
materials with time-reversal symmetry can realize topologically
protected triple-band crossings. As a representative example,
materials with space group 199 are demonstrated to host a pair of
triple-band crossings at two inequivalent high symmetry
points ± P, which are time-reversal partners. Close to the band
crossing points q= ±K+ k, the Hamiltonian can be expanded

up to the quadratic order as,

h± ðkÞ ¼ ψy
± ;k½ðck2 � μÞI3 þ vk � J�ψ ± ;k ð1Þ

which displays SO(3) and time-reversal symmetry. Note that we
only include ck2 among symmetry allowed quadratic terms, which
preserves SO(3) symmetry. Here, we define the three spinors as
ψ±,k= (ψ±,k,1, ψ±,k,0, ψ±,k,−1). The first subscript indicates the valley
degree of freedom and the third subscript indicates the spin degree
of freedom. J= (Jx, Jy, Jz) represents the j= 1 angular momentum
matrices and I3 is the three-dimensional identity matrix. v and μ
are the effective linear velocity of the band crossings and the
chemical potential respectively. Inversion symmetry is broken in
the case of finite v. The c∣k∣2 term represents a possible bending of
bands and we assume c > 0 without loss of generality. The corre-
sponding tight-binding model is given in Supplementary Note 114.
The Hamiltonian in Eq. (1) has two bands with the dispersion,
ϵ±1(k)= ± v∣k∣+ c∣k∣2− μ, having opposite spins, and the middle
band with the dispersion, ϵ0(k)= c∣k∣2− μ. These three bands can
be characterized by the monopole charge of the Berry curvature,
C±1=∓ 2 and C0= 0 respectively 12,15.

Possible pairing forms. Prior to the description of the interac-
tions, we first discuss the generic form of the allowed inter-valley
pairing order parameters for the above system. The pairing order
parameters can be expressed as the sum of the bilinear form

hψy
þ;kYLðK þ kÞMSγψ

�
�;�ki; ð2Þ

with spherical harmonics YL(K+ k) describing the orbital part of
the Cooper pair wavefunction. γ ¼ e�iπJy is the unitary part of
the time-reversal operator T ¼ γK (K is the complex conjugate
operator). Here, K indicates the position of the valley+ in
momentum space and the spin pairing matrices MS are the 3 × 3
multipole matrices of pseudospin j= 1 electrons and are listed in
Table 1 (see Supplementary Note 2 for the explicit form of MS).
The exchange symmetry of pseudospin j= 1 electrons can be seen
from the fact that MSγ with even (odd) S becomes symmetric
(anti-symmetric) which is exactly the opposite pattern as in the
case of electrons with half-integer spin.

The conjunction of the exchange symmetry and Fermi statistics
selects specific sets of the pairing order parameters. Fermi statistics
poses the relation: YLð�K � kÞðMSγÞT ¼ �YLðK þ kÞMSγ.
According to this condition, the even-parity pairings (even L) only
allow spin-triplet (S= 1) pairing while the odd-parity pairings (odd
L) allow spin-singlet (S= 0) and quintet (S= 2) pairings. As a
result, the orbital part of the Cooper pair condensate, which carries
the value of total spin S= 1, should be given by YL(K+ k) with
even L. The combination of the spatial parity and the total spin of
the Cooper pair wavefunction displays exactly the opposite pattern
from superconductors composed of electrons with half-integer spin.
This is the key observation of our work. Here and below, we focus
on inter-valley s-wave (L= 0) spin-triplet (S= 1) pairings. Other

Table 1 List of spin pairing matrices.

S MS Spatial Parity

0 I3 Odd
1

ffiffi
3
2

q
ðJx; Jy; JzÞ Even

2 ðΓx2�y2 ; Γ3z2�r2 ; Γyz; Γzx; ΓxyÞ Odd

Electrons with j= 1 can form a pair with the total spin S= 0, 1, 2. A Cooper pair with the total
spin S is created by the operator ψy

þ;kYLðK þ kÞMSγψ
�
�;�k where L describes the orbital part of

the Cooper pair. The spin and orbital part of the Cooper pair are not independent to each other:
Since the spin pairing matrices MS=1γ are anti-symmetric, the corresponding orbital part should
be described by YL(K+ k) with even L. While MS=0,2γ should be additionally multiplied by
YL(K+ k) with odd L to satisfy Fermi statistics. The third column indicates the spatial parity of
the corresponding superconducting order parameter.
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types of pairing are considered in ref. 16–18 which include the intra-
valley pairings (pair density wave states) and inter-valley d-wave
(L= 2) spin-singlet (S= 0) pairings.

Two distinct s-wave spin-triplet paired states. We now consider
the following form of the interaction,

hint ¼ g ∑
a¼x;y;z

ðψy
þ;kJaψþ;k0 Þðψy

�;�kJaψ�;�k0 Þ: ð3Þ

These terms constitute a complete set of momentum
independent interactions with SO(3) symmetry19 and we consider
the repulsive interactions, g > 0. In Supplementary Note 4, we
consider microscopic symmetry allowed interactions, on site
Hubbard repulsion and nearest neighbor interactions, and
investigate whether they can provide the terms given in Eq. (3).
It turns out that attractive spin independent nearest neighbor
interactions and antiferromagnetic nearest neighbor interactions
induce such repulsive interactions between triple point fermions.
Eq. (3) can be exactly rewritten in the following way using Fierz
identities for electrons with pseudospin j= 1 (see Supplementary
Note 3 for the details)19–22.

hint ¼ � g
2

∑
a¼x;y;z

ðψy
þ;kJaγψ

�
�;�kÞðψT

�;�k0 ðJaγÞyψþ;k0 Þ ð4Þ

This means that there exists a superconducting instability even
when the bare interactions are all repulsive (g > 0). Based on the
pairing terms given in Eq. (4), we now derive the

Ginzburg–Landau(GL) free energy, Fð Δ!;T; v; μ; gÞ, as a function
of the order parameter, Δ

! ¼ ðΔx;Δy;ΔzÞ, where Δa ¼
hψT

�;�kðJaγÞyψþ;ki corresponds to the s-wave spin-triplet pair.
By integrating out the electronic degrees of freedom, the free
energy functional can be written as

F ¼ rðT; v; μ; gÞj Δ!j2 þ q1ðT; v; μÞj Δ
!j4

þ q2ðT; v; μÞ ∑
3

a¼1
j Δ!

�
I a Δ

!j2;
ð5Þ

where the matrix elements of Ia are given as ðIaÞbc ¼ iϵabc using
the Levi-Civita symbol ϵabc23,24. We find that Eq. (5) can have the
two possible superconducting ground states solely depending on
the value of the coefficient q2 in the weak pairing limit. When
q2 > 0, the time-reversal symmetric state with the order parameter

Δ
! ¼ ð0; 0; 1Þ is stabilized. For q2 < 0 however, the time-reversal

broken state is stabilized with the order parameter Δ
! ¼ ð1; i; 0Þ.

We note that distinct complex order parameters are physically
equivalent if there exists an SO(3) rotation that can transform one

to the other. From now on, we label Δ
! ¼ ð0; 0; 1Þ and (1, i, 0)

states as (sz) and (sx+ isy) states respectively.
The (sz) and (sx+ isy) order parameters have distinct spin

textures. The MSγ for (sz) state is explicitly given by

Jzγ ¼
0 0 1

0 0 0

�1 0 0

0
B@

1
CA: ð6Þ

From the explicit form of the matrix, we can observe that the
(sz) state forms Cooper pairs with opposite spin components,
using inter-band pairing. On the other hand, the corresponding
matrix for (sx+ isy) state is written as

ðJx þ iJyÞγffiffiffi
2

p ¼
0 �1 0

1 0 0

0 0 0

0
B@

1
CA: ð7Þ

For (sx+ isy) state, if we consider an electron with jz= 1, it
forms an inter-band pairing with a jz= 0 electron. Similarly,
(sx− isy) state pairs a jz=− 1 electron with a jz= 0 electron.

By explicitly investigating the sign of q2 within the leading one-
loop calculation, one can determine the energetically favored state
(see Methods for details). Figure 1 shows the calculated phase
diagram as a function of the dimensionless parameters, μ/T and
v=

ffiffiffiffi
T

p
, while fixing a dimensionless parameter c= 1/10 with the

momentum cutoff Λ= μ/v. First of all, when the chemical
potential lies far below the band crossing point, we find that the
(sz) state is favored preserving time-reversal symmetry. However,
when the chemical potential approaches the band crossing point,
the contribution of the middle band to the free energy becomes
significant. We find that the (sx+ isy) pairing is stabilized when
the chemical potential lies near or above the band crossing point.
In the limit where the middle band is perfectly flat (c= 0), our
one-loop calculation with momentum cutoff Λ= μ/v shows that
q2 is always negative, favoring the (sx+ isy) state (see Methods for
details).

Gap structures and topological properties. After constructing
the Landau theory and phase diagram of the system, we now
discuss the Bogoliubov-de Gennes (BdG) quasiparticle spectrum
of the superconducting states. The BdG Hamiltonian reads
∑kΨ

y
kHBdGðkÞΨk with

HBdGðkÞ ¼ ĥðkÞ Δ̂

Δ̂
y �ĥ

T ð�kÞ;

 !
ð8Þ

where Ψy
k ¼ ðψy

þ;k;ψ�;�kÞ and ĥðkÞ ¼ ðck2 � μÞI3 þ vk � J. Here,
Δ̂ ¼ jΔjJzγ for the (sz) state and Δ̂ ¼ jΔjðJx þ iJyÞγ for the (sx+
isy) state, where Δ is a real constant. For the time-reversal symmetric
superconductor with (sz) pairing, HBdG(k) belongs to class BDI25 and
the spectrum is derived using a singular value decomposition of the
matrix ĥðkÞ þ ijΔjJz ¼ vðkx; ky; kz þ ijΔjÞ � J þ ðck2 � μÞI3. The
corresponding eigenvalues are given by

λs¼1;0;�1 ðkÞ ¼ cjkj2 � μ þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2jkj2 � jΔj2 þ 2ijΔjkz

q
: ð9Þ

For the momentum point k where λs(k)= 0 is satisfied, the
BdG energy spectrum become gapless. We find that λ±1(k)= 0 if
kz= 0 and cjkj2 � μ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2jkj2 � jΔj2

p
. These conditions

define the two nodal lines when μ > cΔ2/v2− v2/4c. Figure 2a
shows the two nodal rings which are represented by solid and

Fig. 1 Phase diagram of s-wave spin-triplet pairings. Within the leading
one-loop calculation, triple point semimetals selectively stabilize two
distinct paired states, depending on μ/T and v=

ffiffiffi
T

p
: time-reversal

symmetry broken state with (sx+ isy) pairing (green) and time-reversal
symmetric state with (sz) pairing (blue). μ, T, and v indicate chemical
potential, temperature, and effective linear velocity of the band crossings
respectively.
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dashed lines. The nodal rings are topologically protected by a
non-trivial winding number, ω 2 Z, thus they are stable against
any symmetry preserving perturbations. The winding number can
be calculated as ω ¼ 1

2π∑s

R 2π
0 ∂θ argðλsÞ, where the integration is

taken over the loop that encircles each nodal line25,26. We
immediately find that the winding number of each solid and
dashed nodal line is 1 and− 1 respectively. Similarly, the
condition λ0(k)= 0 defines the nodal surface, often referred to
as Bogoliubov Fermi surface27–36. Unlike the nodal lines, the
Bogoliubov Fermi surface, characterized by λ0(k)= 0, is topolo-
gically trivial. This can be seen by including the additional odd-
parity spin-singlet superconducting order parameter, which
instantly gaps out the system. As a consequence, we expect to
find topologically stable nodal lines for the time-reversal
symmetric (sz) phase.

We now consider the gap structure of the time-reversal broken
(sx+ isy) state. In this case our system belongs to class D25 and
the gapless region can be calculated by finding k points which
satisfy det½HBdGðkÞ� ¼ 0. This condition can be rewritten as

4jΔj2ðjΔj2 þ �μ2Þðv2k2z � �μ2Þ ¼ �μ2ðv2jkj2 � �μ2Þ2; ð10Þ

where �μ ¼ ck2 � μ. This condition generally defines the surface
in three-dimensional momentum space. It realizes the nodal
surface in the BdG energy spectrum (See Fig. 2b–d). This
Bogoliubov Fermi surface can be characterized by two distinct
topological invariants25. The first is the Z2 valued number of
occupied BdG bands. Each Bogoliubov Fermi surface is non-
degenerate since time-reversal symmetry is absent. This indicates
that these surfaces are all topologically protected as the Z2
number always changes by 1 when the energy level crosses a
single Bogoliubov Fermi surface in the momentum space. The
presence of a non-trivial Z2 number means that each Bogoliubov
Fermi surface is locally stable until two surfaces pair-annihilate.
In addition to the Z2 number, the surface can be also
characterized by a non-trivial Chern number29,37. In Fig. 2b–d,
the Bogoliubov Fermi surface with Chern number 1(−1) is
colored blue(red). Rather than simply presenting the numerical
results, we argue that the non-trivial Chern number is a necessary
consequence of the well-known parity anomaly for two-
dimensional Dirac fermions38,39. First of all, we consider the
adiabatic change from the (sx) state to the (sx+ isy) state by
slightly turning on an (sy) pairing. In the (sx) state, the kz= 0
plane can be viewed as a nodal point superconductor with two
Dirac nodal points per Bogoliubov Fermi surface. These Dirac
nodal points are pinned to the zero energy states and they are
time-reversal partners to one another. As the infinitesimal time-
reversal symmetry breaking (sy) pairing is turned on, the two
Dirac points gaps out and must carry the Chern number ± 1/2,
which is analogous to the parity anomaly for two-dimensional

Dirac fermions. Since the time-reversal symmetry is broken, the
effective mass gap of two Dirac points must be opposite to one
another, therefore the kz= 0 plane must be characterized by a
non-trivial Chern number. As a consequence, in full three-
dimensional momentum space, each topologically protected
nodal line is inflated into a couple of Bogoliubov Fermi surfaces
possessing non-trivial Chern number ± 1. In principle, the
inflation occurs for each nodal line, and the total Chern number
at the kz= 0 plane can vanish. However, each Bogoliubov Fermi
surface must carry a non-trivial Chern number until they pair-
annihilate.

Discussion
In conclusion, we have studied the spin-triplet superconductivity
of triple point fermions which are described by a pseudospin-1
representation. In the superconductor composed of pseudospin
j= 1 electrons, Cooper pairs which are even in spatial parity
should carry total spin S= 1. Furthermore, we have shown that
multi-band interactions open attractive inter-valley spin-triplet
pairing channels. Based on Landau theory, we find two distinct
inter-valley spin-triplet superconducting phases depending on
the chemical potential μ: the time-reversal symmetric (sz) state
and the time-reversal broken (sx+ isy) state. In particular, (sx+
isy) phase is favored when the chemical potential lies near or
above the triple-band crossing point in such a way that the
middle band plays a role in electron pairing. Moreover, we find
that the two states can be distinguished by the dimension of
nodes and their topological characteristics. Hence, we suggest
that the spin-triplet superconductor is naturally stabilized in
triple point semimetals with momentum independent interac-
tions. To illustrate our general idea, we also present an example
of triple point fermions in spin-orbit coupled materials with
space group 199 and derive the microscopic mechanism for the
realization of inter-valley spin-triplet superconductors. In gen-
eral, the superconducting instability is not limited to momentum
independent interactions, and therefore one may expect odd-
parity superconductivity in the presence of momentum depen-
dent interactions. In this case, we may expect the formation of p-
wave spin-singlet and quintet pairing states. The investigation of
possible odd-parity superconductivity would be an interesting
topic for future study.

Methods
Ginzburg–Landau free energy and one-loop calculation. Here, we compute the

coefficients of Ginzburg–Landau free energy Fð Δ!Þ. We first introduce the pro-
pagator

GðKÞ ¼ ðik0 þ ðck2 � μÞI3 þ vk � JÞ�1
: ð11Þ

Fig. 2 Gap structure of the superconducting states. a (sz) state with the chemical potential μ < 0−A solid(dashed) ring indicates the nodal ring which is
protected by the non-trivial winding number 1(− 1). Each gapless region in (sz) state have two-fold degeneracy protected by the chiral symmetry (b)
(sx+ isy) state with μ < 0, (c) (sx+ isy) state with μ= 0, and d (sx+ isy) state with μ > 0− Each surface indicates the non-degenerate Bogoliubov Fermi
surface and the color represents its Chern number. Green, red, and blue indicates 0, −1, and 1, respectively.
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Here K≡ (k0, k) and k0= 2π(n+ 1/2)T denotes Matsubara frequency. Then, the
free energy is written as

Fð Δ!Þ ¼ 1
g
j Δ!j2 þ T ∑

m;n

Z
jkj≤Λ

1
2m

tr ð�GðKÞΔGð�KÞTΔyÞmd3k; ð12Þ

where we introduce a momentum cutoff Λ and Δ=∑aJaγΔa. Let Fnð Δ
!Þ be the

contribution to the free energy that contains n-th power of Δa. We have

F2ð Δ
!Þ ¼ 1

g
j Δ!j2 � 1

2
∑
a;b

LabΔaΔ
�
b ; ð13Þ

F4ð Δ
!Þ ¼ 1

4
∑

a;b;c;d
LabcdΔaΔ

�
bΔcΔ

�
d ð14Þ

with

Lab ¼ T∑
n

Z
jkj ≤Λ

tr ðGðKÞJaγGð�KÞT ðJaγÞyÞd3k; ð15Þ

Labcd ¼T∑
n

Z
jkj ≤Λ

tr GðKÞJaγGð�KÞT ðJbγÞy
�

´GðKÞJcγGð�KÞT ðJdγÞy
�
d3k:

ð16Þ

Meanwhile, we can parametrize the general terms in Fnð Δ
!Þ accordingly.

F2ð Δ
!Þ ¼ rj Δ!j2; ð17Þ

F4ð Δ
!Þ ¼ q1j Δ

!j4 þ q2 ∑
a
j Δ!

�
I a Δ

!j2 ð18Þ

where the matrix elements of I a is given as ðI aÞbc ¼ iϵabc and ϵabc is the Levi-Civita
symbol. Taking the specific configurations

Δ
!1

¼ ð0; 0; 1Þ; Δ!
2
¼ 1ffiffiffi

2
p ð1; i; 0Þ ð19Þ

we apply Eq.(14) and

F4ð Δ
!1

Þ ¼ q1; F4ð Δ
!2

Þ ¼ q1 þ q2 ð20Þ

to get the coefficients q1 and q2. With introducing k̂0 ¼ k0=T; k̂ ¼ k=
ffiffiffiffi
T

p
, μ̂ ¼ μ=T ,

v̂ ¼ v=
ffiffiffiffi
T

p
, and Λ̂ ¼ μ̂=v̂ we find

q1 ¼
1

T3=2
∑
n

Z Λ̂

0
g1 ððμ̂� ck̂

2Þ
2
þ k̂

2

0Þ
2

ððk̂ðv̂ � ck̂Þ þ μ̂Þ2 þ k̂
2

0Þ
2

��

´ ððμ̂� k̂ðck̂þ v̂ÞÞ2 þ k̂
2

0Þ
2
��1

#
k̂
2
dk̂

ð21Þ

q2 ¼
1

T3=2
∑
n

Z Λ̂

0
g2 ððμ̂� ck̂

2Þ
2
þ k̂

2

0Þ
2

ððk̂ðv̂ � ck̂Þ þ μ̂Þ2 þ k̂
2

0Þ
2

��

´ ððμ̂� k̂ðck̂þ v̂ÞÞ2 þ k̂
2

0Þ
2
��1

#
k̂
2
dk̂

ð22Þ

where

g1 ¼
2
15

π
�
ðμ̂� ck̂

2Þ
4�
15c4k̂

8 þ 10c2k̂
6
v̂2 þ 10k̂

2
μ̂2ð9c2k̂2 þ v̂2Þ

� 20ck̂
4
μ̂ð3c2k̂2 þ v̂2Þ � 60ck̂

2
μ̂3 � k̂

4
v̂4 þ 15μ̂4

�
þ 5k̂

2
0

�
2ðμ̂� ck̂

2Þ2�6c4k̂8 � 24c3k̂
6
μ̂þ c2ð5k̂6 v̂2 þ 36k̂

4
μ̂2Þ

� 2cð5k̂4μ̂v̂2 þ 12k̂
2
μ̂3Þ � 5k̂

4
v̂4 þ 5k̂

2
μ̂2 v̂2 þ 6μ̂4

�
þ k̂
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��		
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g2 ¼
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2
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���

:

ð24Þ

Utilizing Eqs.(22) and (24), we investigate the sign of q2 varying μ̂ and v̂ while
keeping c= 1/10. Then we acquire the phase diagram as given in Fig. 1.

In the limit where the middle band is perfectly flat(c= 0), q1 and q2 can be
simplified as below with normalizing the field ψ such that v̂ becomes unity.

q1 ¼
1

T3=2

2π
15

∑
n

Z μ̂

0

�
10k̂

2ðk̂20 þ μ̂2Þ2ð3k̂20 þ μ̂2Þ þ 15ðk̂20 þ μ̂2Þ4
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4�� 50k̂

2

0μ̂
2 þ 15k̂

4

0 � μ̂4
�
��

k̂
2

0 þ μ̂2
�2��

μ̂� k̂
�2 þ k̂

2

0

�2
´
��
k̂þ μ̂

�2 þ k̂
2

0

�2
�1

k̂
2
dk̂;

ð25Þ

q2 ¼
1
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We observe that the free energy is stable (q1T3/2 > 0) and time-reversal broken
phase is energetically favored (q2T3/2 < 0) when the middle band is perfectly flat
(c= 0).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used to generate the data used in this study is available from the corresponding
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