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Abstract: We study robust regularity estimates for a class of nonlinear integro-differential operators with
anisotropic and singular kernels. In this paper, we prove a Sobolev-type inequality, a weak Harnack
inequality, and a local Hölder estimate.
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1 Introduction

In this paper, we investigate regularity estimates for weak solutions to nonlocal equations

( )= = −f QLu in 1, 1 ,n (1.1)

where L is a nonlinear integro-differential operator of the form

�

( ) ∣ ( ) ( )∣ ( ( ) ( )) ( )∫= − −

−x u y u x u y u x μ x yLu PV , dp 2

n
(1.2)

for >p 1 and ( )∈f L Qq for some sufficiently large q. The operator L is clearly determined by the family of
measures �( ( ))

∈
μ x y, d x n. In the special case, when L is the generator of a Lévy process, ( )μ x A, measures the

number of expected jumps from x into the set A within the unit time interval. However, the class of
operators that we consider in this paper is more involved, and for that reason, we first take a look at an
important example. Let �∈n . For ( )… ∈s s, , 0, 1n1 , we define
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− −
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This family plays a central role in our paper since admissible operators resp. families of measures will be
defined on the basis of μaxes. Given �∈x n, the measure ( )⋅μ x,axes only charges differences that occur along
the axes

�{ ∣ } { }+ ∈ ∈ …x te t k nfor 1, , .k

Hence, we can think of the operator Lu for ( ) ( )⋅ = ⋅μ x μ x, ,axes as the sum of one-dimensional fractional
p-Laplacian in �n with orders of differentiability ( )… ∈s s, , 0, 1n1 depending on the respective direction. In
particular, ( )⋅μ x,axes does not possess a density with respect to the Lebesgue measure. An interesting
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phenomenon for the case =p 2 and = =⋯=s s sn1 is that on the one hand the corresponding energies for
the fractional Laplacian and L are comparable. On the other hand (for sufficiently good functions), both
operators converge to the Laplace operator as ↗s 1. It is known that the fractional p-Laplacian converges to
the p-Laplacian (see [11, Theorem 2.8] or [20, Lemma 5.1] for details), which is defined by

( ) (∣ ( )∣ ( ))= ∇ ∇

−u x u x u xΔ div .p
p 2

However, the operator L for ( ) ( )⋅ = ⋅μ x μ x, ,axes converges for any >p 1 and = =⋯=s s sn1 to the following
local operator (up to a constant depending on p only)

⎜ ⎟( )
⎛

⎝

( ) ( ) ⎞

⎠

( ( ( )))∑=

∂

∂

∂

∂

∂

∂

= ∇

=

−

A u x
x

u x
x

u x
x

a u xdivp

i

n

i i

p

i
loc

1

2
(1.3)

as ↗s 1, where � �→a : n n with ( ) (∣ ∣ ) { }=

−

∈ …
a z z zi

p
i i n

2
1, , . This convergence is a direct consequence of the

convergence for the one-dimensional fractional p-Laplacian and the summation structure of the operator
for μaxes. For details, we refer the reader to Proposition D.1. The operator A p

loc is known as orthotropic
p-Laplacian and is a well-known operator in the analysis (see, for instance, [41, Chapter 1, Section 8]). This
operator is sometimes also called pseudo p-Laplacian. Minimizers for the corresponding energies have been
studied in [6], where the authors prove Hölder continuity of minimizers. In [9], local Lipschitz regularity for
weak solutions to orthotropic p-Laplace equations for ≥p 2 and every dimension is proved. The case, when
p is allowed to be different in each direction, is also studied in several papers. For instance, in [3], the
authors introduce anisotropic De Giorgi classes and study related problems. Another interesting paper
studying such operators with nonstandard growth condition is [8], where the authors show that bounded
local minimizers are locally Lipschitz continuous. For further results, we refer the reader to the references
given in the previously mentioned papers.

The two local operators Δp and A p
loc are substantially different, as Δp is invariant under orthogonal

transformation, while A p
loc is not. One strength of our results is that they are robust, and we can recover

results for the orthotropic p-Laplacian by taking the limit.
One way to deal with the anisotropy of μaxes is to consider for given ( )… ∈s s, , 0, 1n1 a class of suitable

rectangles instead of cubes or balls. Hence, we define { }= …s s smax , , nmax 1 .

Definition 1.1. For >r 0 and �∈x n, we define

( ) ( )
( )

= × − + =

=

M x x r x r M M, and 0 .r
k

n
k k r r

1

s
sk

s
sk

max max

The advantage of taking these cubes is that they take the anisotropy of the measures resp. operators
into account and the underlying metric measure space is a doubling space. The choice of smax in the
definition of ( )M xr is not important. It can be replaced by any positive number ≥ς smax . We only need to
ensure that ( )M xr are balls in a metric measure space with radius >r 0 and center �∈x n. This allows us to
use known results on doubling spaces like the John-Nirenberg inequality or results on the Hardy-Littlewood
maximal function.

In the spirit of [15], for each { }∈ …k n1, , , we define �( ) { ∣ ∣ }= ∈ − <

/E x y x y r:r
k n

k k
s skmax . Note, that

( ) ( )= ⋂

=

M x E x .r
k

n

r
k

1
(1.4)

We consider families of measures ( )μ x y, d , which are given through certain properties regarding the
reference family ( )μ x y, daxes . Let us introduce and briefly discuss our assumptions on the families

�( ( ))⋅
∈

μ x, x n.

Assumption 1. We assume

�
�

(∣ ∣ ) ( )∫ − ∧ < ∞

∈

x y μ x ysup 1 , d ,
x

p
n

n
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and for all sets ��( )∈A B, n :

( ) ( )∫∫ ∫∫=μ x y x μ x y x, d d , d d .
A B B A

Assumption 1 provides integrability and symmetry of the family of measures. Furthermore, we assume
the following tail behavior of �( ( ))⋅

∈
μ x, x n.

Assumption 2. There is ≥Λ 1 such that for every �∈x n
0 , { }∈ …k n1, , and all >r 0

�( ( )) ( )⧹ ≤ −

−μ x E x s r, Λ 1 .n
r
k

k
ps

0 0 max

Note that Assumption 2 is a stronger assumption than an assumption on the volume on the complement
of every ( )M xr 0 . It gives an appropriate tail behavior for the family of measures in each direction separately
and allows us to control the appearing constants in our tail estimate in all directions. This is necessary to
prove robust estimates for the corresponding operators.

Note that by Assumption 2 and (1.4), we have

� �( ( )) ( ( )) ( )∑ ∑⧹ ≤ ⧹ ≤ − ≤

= =

− −μ x M x μ x E x s ρ nρ, , Λ 1 Λ .n
ρ

k

n
n

ρ
k

k

n

k
ps ps

0 0
1

0 0
1

max max (1.5)

Hence, (1.5) shows that Assumption 2 implies � �( ( )) ( ( ))⧹ ≤ ⧹μ x M x cμ x M x, ,n
ρ

n
ρ0 0 axes 0 0 for all �∈x n

0 .
Finally, we assume the local comparability of corresponding functionals. Hence, we define for any open

and bounded �⊂Ω n

� ( ) ∣ ( ) ( )∣ ( ( ) ( ))( ( ) ( )) ( )∫∫= − − −

−u v u y u x u y u x v y v x μ x y x, , d dμ p
Ω

Ω Ω

2

and
�

� �( ) ( )=u v u v, ,μ μ
n whenever these quantities are finite.

Assumption 3. There is ≥Λ 1 such that for every �∈x n
0 , ( )∈ρ 0, 3 and every ( ( ))∈u L M xp

ρ 0 :

� � �( ) ( ) ( )( ) ( ) ( )≤ ≤

− u u u u u uΛ , , Λ , .M x
μ

M x
μ

M x
μ1

ρ ρ ρ0 0
axes

0 (1.6)

Local comparability of the functionals is an essential assumption on the family of measures. It tells us
that our family of measures can vary from our reference family in the given sense of local functionals
without losing crucial information on �( ( ))⋅

∈
μ x, x n like functional inequalities, which we deduce for the

explicitly known family �( ( ))⋅
∈

μ x, xaxes n. This assumption allows us, for instance, to study operators of the
form (1.2) for μaxes in the general framework of bounded and measurable coefficients. We emphasize that
further examples of families of measures satisfying (1.6) can be constructed similarly to the case =p 2 (see
[15, Section 9]). In this paper, we study nonlocal operators of the form (1.2) for families of measures that
satisfy the previously given assumptions.

Definition 1.2. Let >p 1, ≥Λ 1, and [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 . We call a family of
measures �( ( ))⋅

∈
μ x, x n admissible with regard to �( ( ))⋅

∈
μ x, xaxes n, if it satisfies Assumptions 1–3. We denote

the class of such measures by �( )p s, , Λ0 .

It is not hard to see that the family �( ( ))⋅
∈

μ x, xaxes n is admissible in the aforementioned sense. Note that
Assumptions 1 and 3 are clearly satisfied. Furthermore, for every �∈x n

0 , { }∈ …k n1, , and all >r 0,

�( ( )) ( )
( )

∫⧹ = − =

−

∞

− − −

/

μ x E x s s h s
p

r, 2 1 2 1 ,n
r
k

k k

r

s p k s p
axes 0 0

1

s sk

k

max

max

which shows Assumption 2 for =Λ .p
2
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The purpose of this paper is to study weak solutions to nonlocal equations governed by the class of
operators L as in (1.2). In order to study weak solutions, we need appropriate Sobolev-type function spaces
that guarantee regularity and integrability with respect to μ.

Definition 1.3. Let �⊂Ω n open and >p 1. We define the function spaces

� � �

� � � �

�

�

( ∣ ) { ∣ ∣ ( ) ( ) }

( ) { ∣ }

( )

( )

= → ∈ < ∞

= → ≡ ⧹ ‖ ‖ < ∞

∣
V u u L u u

H u u u
Ω : meas. Ω , , ,

: meas. 0 on Ω, ,

p μ n n p
V

p μ n n n
H

,
Ω Ω

Ω
,

p μ n

p μ n

,

Ω
,

where

�

�

�

� �

( ) ∣ ( ) ( )∣ ( ( ) ( ))( ( ) ( )) ( )

∣ ( ) ( )∣ ( )

( )

( ) ( )

∫∫

∫∫

= − − −

‖ ‖ = ‖ ‖ + −

∣

−u v u y u x u y u x v y v x μ x y x

u u u y u x μ x y x

, , d d ,

, d d .

V
p

H
p

L
p p

Ω

Ω

2

Ω

p μ n

n

p μ n p

n n

,

Ω
,

The space �( ∣ )V Ωp μ n, can be seen as a nonlocal analog of the space ( )H Ωp1, . It provides fractional
regularity (measured in terms of μ) inside of Ω and integrability on� ⧹Ωn . The space �( ∣ )V Ωp μ n, will serve as

solution space. On the other hand, the space �( )H p μ n
Ω

, can be seen as a nonlocal analog of ( )H Ωp
0
1, . See [28]

and [24] for further studies of these spaces in the case =p 2.
We are interested in finding robust regularity estimates for weak solutions to a class of nonlocal

equations. This means that the constants in the regularity estimates do not depend on the orders of
differentiability of the integro-differential operator itself but only on a lower bound of the orders. Let us
formulate the main results of this paper. For this purpose, we define s̄ to be the harmonic mean of the orders
…s s, , n1 , that is,

⎜ ⎟
⎛

⎝

⎞

⎠

∑=

=

−

s
n s

¯ 1 1 .
k

n

k1

1

It is well known that the Harnack inequality fails for weak solutions to singular equations of the type (1.1).
Even in the case =p 2 and =⋯=s sn1 , the Harnack inequality does not hold (see, for instance, [4,7]). Our
first main result is a weak Harnack inequality for weak supersolutions to equations of the type (1.1).
Throughout the paper, we denote by ( )= / −

⋆
p np n ps̄ the Sobolev exponent, which will appear in

Theorem 2.7.

Theorem 1.4. (Weak Harnack inequality) Let ≥Λ 1 and [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 .
Let < < /p n s1 ¯ and ( )( )

∈

/f L Mq ps̄
1 for some >q n. There are ( ) ( )= ∈

⋆
p p n p p s q, , , , , Λ 0, 10 0 0 and =C

( ) >
⋆

C n p p s q, , , , , Λ 00 such that for each �( )∈μ p s, , Λ0 and every �( ∣ )∈u V Mp μ n,
1 satisfying ≥u 0 in

M1 and

�� ( ) ( ) ( )≥ - ∈u φ f φ for every non negative φ H, , ,μ
M
p μ n,

1

the following holds:

�

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎛

⎝

⎜
⎜

( ) ( )
⎞

⎠

⎟
⎟

( )

( )( )
∫≥ ⨏ − − ‖ ‖

/

∈

⧹

− −

/ −

/

/

/

/

/

u C u x x u z μ x z finf d sup 2 , d .
M M

p

p

x M
M

p

p

L M

1

1

1 1

n

q ps

1 4
1 2

0

0

15 16
1

¯
15 16

(1.7)

Although the weak Harnack inequality provides an estimate on the infimum only, it is sufficient to
prove a decay of oscillation for bounded weak solutions and therefore a local Hölder estimate.

Theorem 1.5. (Local Hölder estimate) Let ≥Λ 1 and [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 .
Let < < /p n s1 ¯ and ( )( )

∈

/f L Mq ps̄
1 for some >q n. There are ( ) ( )= ∈

⋆
α α n p p s q, , , , , Λ 0, 10 and =C

( ) >
⋆

C n p p s q, , , , , Λ 00 such that for each �( )∈μ p s, , Λ0 and every � �( ∣ ) ( )∈ ∩

∞u V M Lp μ n n,
1 satisfying

�� ( ) ( ) ( )= ∈u φ f φ for every φ H, , ,μ
M
p μ n,

1
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the following holds: ( )∈
/

u C Mα
1 2 and

�( )( ) ( ) ( )( )‖ ‖ ≤ ‖ ‖ + ‖ ‖
/

∞
/

/

u C u f .C M L L Mα n q ps1 2 ¯
15 16

Note that the result needs global boundedness of weak solutions. The same assumption is also needed
in the previous works [14,15,25]. Global and local boundedness of weak solutions to anisotropic nonlocal
equations are nontrivial open questions.

Furthermore, note that the general case, replacing M M M M, , , 11
4

1
2

15
16

by ( )M x0r
4

, ( )M x0r
2

, ( )M x ,0r15
16

( )M xr 0 ,

for �∈x n
0 and ( ]∈r 0, 1 follows by a translation and anisotropic scaling argument introduced in Section 4.

See also [14].
Let us comment on related results in the literature. The underlying ideas in developing regularity

results for uniformly elliptic operators in divergence form with bounded and measurable coefficients go
back to the influential contributions by De Giorgi, Nash, and Moser (see [19,45,46]). These works led to
many further results in various directions. Similar results for nonlocal operators in divergence form have
been obtained by several authors including these works: [1, 2,5,12,16–18,22,24,26,27, 33,34,38,42–44,54,55].
See also the references therein. For further regularity results concerning nonlocal equations governed by
fractional p-Laplacians, we refer the reader to [10,38,39,48–51].

In [22], the authors extend the De Giorgi-Nash-Moser theory to a class of fractional p-Laplace equations.
They provide the existence of a unique minimizer to homogenous equations and prove local regularity
estimates for weak solutions. Moreover, in [21], the same authors prove a general Harnack inequality for
weak solutions.

Nonlocal operators with anisotropic and singular kernels of the type μaxes are studied in various
mathematical areas such as stochastic differential equations and potential theory. In [4], the authors study
regularity estimates for harmonic functions for systems of stochastic differential equations ( )=

−
X A X Zd dt t t

driven by Lévy processes Zt with Lévy measure ( )μ y0, daxes , where =⋯= =s s α2 2 n1 and =p 2. See also
[13,56,52]. Sharp two-sided bounds for the heat kernels are established in [35,37]. In [36], the authors prove
the existence of transition density of the process Xt and establish semigroup properties of solutions. The
existence of densities for solutions to stochastic differential equations with Hölder continuous coefficients
driven by Lévy processes with anisotropic jumps has been proved in [30]. Such types of anisotropies also
appear in the study of the anisotropic stable JCIR process, see [29].

Our approach follows mainly the ideas of [14,25] and [15]. In [25], the authors develop a local regularity
theory for a class of linear nonlocal operators, which covers the case ( )= =⋯= ∈s s s 0, 1n1 and =p 2.
Based on the ideas of [25], the authors in [14] establish regularity estimates in the case =p 2 for weak
solutions in a more general framework, which allows the orders of differentiability …s s, , n1 to be different.
In [15], parabolic equations in the case =p 2 and possible different orders of differentiability are studied.
That paper provides robust regularity estimates, which means the constants in the weak Harnack inequality
and Hölder regularity estimate do not depend on the orders of differentiability but on their lower one, only.
This allows us to recover regularity results for local operators from the theory of nonlocal operators by
considering the limit.

The purpose of this paper is to provide local regularity estimates as in [14] for operators which are
allowed to be nonlinear. This nonlinearity leads to several difficulties like the need for a different proof for
the discrete gradient estimate (see Lemma 3.4). Since we cannot use the helpful properties of Hilbert spaces
(like Plancherel’s theorem), we also need an approach different from the one in [14] to prove the Sobolev-
type inequality. One strength of this paper is the robustness of all results. This allows us to recover
regularity estimates for the limit operators such as for the orthotropic p-Laplacian.

Finally, we would like to point out that it is also interesting to study such operators in nondivergence
form. We refer the reader to [53] for regularity results concerning the fractional Laplacian and to [40] for the
fractional p-Laplacian. See also [23] for the anisotropic case.

Even in the most simple case, that is, =p 2 and = = =⋯=s s s sn1 2 , regularity estimates for operators
in nondivergence form of the type (1.2) with =μ μaxes lead to various open problems such as an Alexandrov-
Bakelmann-Pucci estimate.

The authors wish to express their thanks to Lorenzo Brasco for helpful comments.
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Outline: This paper is organized as follows. In Section 2, we introduce appropriate cut-off functions and
prove auxiliary results concerning functionals for admissible families of measures. One main result of that
section is the Sobolev-type inequality (see Theorem 2.7). In Section 3, we prove the weak Harnack
inequality, and Section 4 presents the proof of the local Hölder estimate. In Appendix A, we prove some
auxiliary algebraic inequalities, and in Appendix B, we briefly sketch the construction of appropriate
anisotropic “dyadic” rectangles. In Appendix C, we use the anisotropic dyadic rectangles to sketch the
proof of a suitable sharp maximal function theorem.

2 Auxiliary results

This section is devoted to providing some general properties for the class of nonlocal operators that we
study in the scope of this paper. The main auxiliary result is a robust Sobolev-type inequality.

Let us first introduce a class of suitable cut-off functions that will be useful for appropriate localization.

Definition 2.1.We say that �( )( ) ⊂τ Cx r λ x r λ
n

, , , ,
0,1

0 0 is an admissible family of cut-off functions if there is ≥c 1
such that for all �∈x n

0 , ( ]∈r 0, 1 and ( ]∈λ 1, 2 , it holds that

⎧

⎨

⎪

⎩
⎪

( ) ( )

∥ ∥

( )

∥ ∥ ( ) { }

⊂

≤

≡

∂ ≤ − ∈ …

∞

∞

/ − − /

τ M x
τ

τ M x
τ c λ r k n

supp ,
1,

1 on ,
1 for every 1 .

λr

r

k
s s s s

0

0
1k kmax max

For brevity, we simply write τ for any such function from ( )τx r λ x r λ, , , ,0 0 , if the respective choice of x r,0

and λ is clear. The existence of such functions is standard.
Recall the definition of admissible families of measures �( )p s, , Λ0 from Definition 1.2.

Lemma 2.2. Let >p 1, ≥Λ 1, and [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 . There is ( )= >C C n p, , Λ 0
such that for each �( )∈μ p s, , Λ0 , every �∈x n

0 , ( ]∈r 0, 1 , ( ]∈λ 1, 2 and every admissible cut-off function τ,
the following is true:

�
�

⎜ ⎟∣ ( ) ( )∣ ( )
⎛

⎝

( )
⎞

⎠
∫ ∑− ≤ −

∈
=

/ − −τ y τ x μ x y C λ rsup , d 1 .
x

p

k

n
s s ps ps

1n
n

k kmax max

Proof. We skip the proof. One can follow the lines of the proof from [15, Lemma 3.1] and will get the same
result with the factor −np 1 instead of n. □

For future purposes, we deduce the following observation. It is an immediate consequence of the
foregoing lemma.

Corollary 2.3. Let >p 1, ≥Λ 1, and [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 . There is a constant
( )= >C C n p, , Λ 0 such that for each �( )∈μ p s, , Λ0 and every �∈x n

0 , ( ]∈r 0, 1 , ( ]∈λ 1, 2 and every admis-
sible cut-off function τ and every ( ( ))∈u L M xp

λr 0 , it holds true that

�

⎜ ⎟∣ ( )∣ ∣ ( )∣ ( )
⎛

⎝

⎞

⎠( ) ( )

( ( ))∫ ∫ ( )∑≤ − ‖ ‖

⧹

=

/ − −u x τ x μ x y x C λ r u, d d 1 .
M x M x

p p

k

n
s s ps ps

L M x
p

1
λr n λr

k k p
λr

0 0

max max
0

Note that the constants in Lemma 2.2 and Corollary 2.3 do not depend on s0. Therefore, the lower bound
≤s sk0 for all { }∈ …k n1, , can be dropped here.
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2.1 Functional inequalities

This section is devoted to the proofs of a Sobolev and a Poincaré-type inequality. We start our analysis by
first proving a technical lemma, see also [15, Lemma 4.1].

Lemma 2.4. Let >p 1, ( ]∈a 0, 1 , ≥b 1, �∈N , { }∈ …k n1, , , and ( )∈s 0, 1k . For any �( )∈u L p n

� �

� �

∣ ( ) ( )∣ (∣ ∣)

( )
∣ ( ) ( )∣

∣ ∣
(∣ ∣)

( ) [ )

( )
⎡⎣

∫ ∫

∫∫
)

− +

≤

− +

>

+

+ −

+

ρ
u x u x he h h x

a N u x u x he
h

h h x

1

1

sup 1 d d

2 d d .

ρ
ps b k

p
aρ aρ

ps p s k
p

ps ρ ρ

0
1 ,2

1 1
1 ,

n
k

b b

k k

n
k

a
N

b a
N

b2

Proof. Let [ )=I aρ aρ, 2a
b b . By the triangle inequality and a simple change of variables, we have

�

�

�

∣ ( ) ( )∣ (∣ ∣)

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

(∣ ∣)

∣ ( ( ) ) ( )∣ (∣ ∣)

∫

∫

∫

∑

∑

− +

≤ +

−

− +

= + − − +

−

=

=

/

u x u x he h h

N u x j
N

he u x j
N

he h h

N u x j he u x jhe h h

1

1

1

d

1 d

1 d .

k
p

I

p

j

N

k k

p

I

p

j

N

k k
p

I

1

1

1

a

a

a N

Since ∣ ∣ <h ρa
N

b2 , we obtain

� �

� �

∣ ( ) ( )∣ (∣ ∣)

⎛
⎝

⎞
⎠

∣ ( ( ) ) ( )∣

∣ ∣
(∣ ∣)

( )∫ ∫

∫∫∑

− +

≤

+ − − +

>

+

+

=

+
/

ρ
u x u x he h h x

N a
N

u x j he u x jhe
h

h h x

1

1

sup 1 d d

2 1 d d .

ρ
ps b k

p
I

p
ps

j

N
k k

p

ps I

0
1

1

1
1

n
k a

k

n
k a N

We change the order of integration by Fubini’s theorem and then use the change of variables = +y x
( )−j he1 k to conclude that

� �

� �

� �

� �

∣ ( ( ) ) ( )∣

∣ ∣
(∣ ∣)

∣ ( ( ) ) ( )∣

∣ ∣
(∣ ∣)

∣ ( ) ( )∣

∣ ∣
(∣ ∣)

∣ ( ) ( )∣

∣ ∣
(∣ ∣)

∫∫

∫∫

∫∫

∫∫

∑

∑

∑

+ − − +

=

+ − − +

=

− +

=

− +

=

+

=

+

=

+

+

/

/

/

/

u x j he u x jhe
h

h h x

u x j he u x jhe
h

h x h

u y u y he
h

h y h

N u y u y he
h

h h y

1

1

1

1

1 d d

1 d d

d d

d d . □

j

N
k k

p

ps I

j

N
k k

p

ps I

j

N
k

p

ps I

k
p

ps I

1
1

1
1

1
1

1

n
k a N

n
k a N

n
k a N

n
k a N

Using the foregoing result for = /b s skmax allows us to prove a robust Sobolev-type inequality. Robust
in this context means that the appearing constant in the Sobolev-type inequality is independent of …s s, , n1
and depends on the lower bound s0 only.

Before we prove a robust Sobolev-type inequality, we recall the definition of the Hardy–Littlewood
maximal function and sharp maximal function. For �( )∈u L n

loc
1 ,

( ) ( ) ( ) ∣ ( ) ( ) ∣
( ) ( )

( )= ⨏ = ⨏ −

>

♯

>

u x u y y u x u y u yM Msup d and sup d ,
ρ M x ρ M x

M x
0 0ρ ρ

ρ
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where ( ) ( )= ⨏u u z zdΩ Ω . We will use the maximal function theorem and the sharp maximal function theorem.
Note that�n is equipped with the metric induced by rectangles of the form ( )M xr and the standard Lebesgue
measure. Since ∣ ∣ ( ) ∣ ∣= ≤

/ /M r M2 2 2r
n ns s n s

r2
¯max 0 , this space is a doubling space with the doubling con-

stant /2n s0.

Theorem 2.5. [32, Theorem 2.2] Let [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 . Then, there is a constant
( )= >C C n s, 01 1 0 such that

� �∣{ ( ) }∣ ( )∈ > ≤ ‖ ‖x u x t C
t

uM:n
L

1 n1

for all >t 0 and �( )∈u L n1 . For >p 0, there is a constant ( )= >C C n p s, , 0p p 0 such that

� �( ) ( ) ( )‖ ‖ ≤ ‖ ‖u x C uM L p Lp n p n

for all �( )∈u L p n .

We were not able to find a reference for the sharp maximal function theorem for sets of the type Mρ.
Actually, we are not sure whether such a result is available in the literature. However, one can follow the
ideas of [31, Section 3.4], where the L p bound is established for the sharp maximal function with cubes
(instead of anisotropic rectangles). In order to prove the same result for the sharp maximal function with
anisotropic rectangles, dyadic cubes have to be replaced by appropriate anisotropic “dyadic” rectangles.
We construct the anisotropic dyadic rectangles in Appendix B and prove the following theorem in Appendix
C. See also Appendix C for the definition of the dyadic maximal function uMd .

Theorem 2.6. Let [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 and let < ≤ < ∞p p0 0 . Then, there is a
constant ( )= >C C n p s, , 00 such that for all �( )∈u L n

loc
1 with �( )∈u LMd

p n0 ,

� �( ) ( )‖ ‖ ≤ ‖ ‖

♯u C uM .L Lp n p n

We are now in a position to prove a robust Sobolev-type inequality by using Lemma 2.4 and Theorems
2.5 and 2.6.

Theorem 2.7. Let [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 . Suppose that < < /p n s1 ¯ and let
( )= / −

⋆
p np n ps̄ . Then, there is a constant ( )= >

⋆
C C n p p s, , , 00 such that for every � �( ∣ )∈u V p μ n n, axes

�

� �

∣ ( ) ( )∣ ( )
( ) ∫∫‖ ‖ ≤ −
⋆

u C u x u y μ x y x, d d .L
p p

axesp n

n n
(2.1)

Proof. Thisproof is basedon the techniqueof [47],whichuses themaximal andsharpmaximal inequalities.Note
that by definition of � �( ∣ )V p μ n n, axes and Hölder’s inequality, � � � � �( ∣ ) ( ) ( ) ( )⊂ ⊂ ⊂V L L Lp μ n n p n p n n,

loc loc
1axes .

Hence, the maximal and sharp maximal functions are well defined for every function � �( ∣ )∈u V p μ n n, axes . For
�∈x n and >ρ 0, we have

∣ ( ) ( ) ∣ ∣ ( ) ( )∣
( )

( )

( ) ( )

⨏ − ≤ ⨏ ⨏ −u y u y u y u z z yd d d .
M x

M x
M x M xρ

ρ

ρ ρ
(2.2)

Let us consider as in [14, Lemma 2.1] a polygonal chain �( ( ) ( )) ( )
ℓ = ℓ … ℓ ∈

+y z y z, , , ,n
n n

0
1 connecting y and

z with

( ) ( )
⎧

⎨
⎩

ℓ = … =

≤

>

y z l l l
z j k
y j k, , , , where

, if ,
, if ,k

k
n
k

j
k j

j
1

then ( )= ℓy y z,0 , ( )= ℓz y z,n , and ∣ ( ) ( )∣ ∣ ∣ℓ − ℓ = −
−

y z y z y z, ,k k k k1 for all = …k n1, , . By the triangle
inequality, we have
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∣ ( ) ( )∣ ∣ ( ( )) ( ( ))∣
( ) ( ) ( ) ( )

∑⨏ ⨏ − ≤ ⨏ ⨏ ℓ − ℓ

=

−
u y u z z y u y z u y z z yd d , , d d .

M x M x k

n

M x M x
k k

1
1

ρ ρ ρ ρ

(2.3)

For a fixed k, we set ( ) ( )= ℓ = … …
− −

w y z z z y y, , , , , ,k k k n1 1 1 and ( )= + − = … …
−

v y z w y y z z, , , , ,k k n1 1 , then
( ) ( )ℓ = + −y z w e v w,k k k k . By Fubini’s theorem, we obtain

∣ ( ( )) ( ( ))∣ ∣ ( ) ( ( ))∣
( ) ( ) ( )

⨏ ⨏ ℓ − ℓ ≤ ⨏ ⨏ − + −
−

−

+

/

/

u y z u y z z y u w u w e v w v w, , d d d d .
M x M x

k k
M x x ρ

x ρ

k k k k1
ρ ρ ρ k s sk

k s sk

max

max

(2.4)

Moreover, using the inequality ∣ ∣ ∣ ∣ ∣ ∣− ≤ − + − <

/v w v x w x ρ2k k k k k k
s skmax , we make the inner integral on the

right-hand side of (2.4) independent of x. Namely, we have

∣ ( ) ( ( ))∣ ∣ ( ) ( ( ))∣

∣ ( ) ( )∣

⨏ − + − ≤ ⨏ − + −

= ⨏ − +

−

+

−

+

−

/

/

/

/

/

/

u w u w e v w v u w u w e v w v

u w u w he h

d 2 d

2 d .

x ρ

x ρ

k k k k
w ρ

w ρ

k k k k

ρ

ρ

k

2

2

2

2
k s sk

k s sk

k s sk

k s sk

s sk

s sk

max

max

max

max

max

max
(2.5)

Combining (2.2)–(2.5), we arrive at

∣ ( ) ( ) ∣ ( )
( )

( )

( )

∑⨏ − ≤ ⨏

=

u y u y ρ F w wd d ,
M x

M x
k

n
s

M x
k

1ρ

ρ

ρ

max (2.6)

where the function Fk is defined by

( )
⎛

⎝
⎜

∣ ( ) ( )∣
⎞

⎠
⎟

≔ ⨏ − +

>

−

−

/

/

F w ρ u w u w he hsup 2 d .k
ρ

s

ρ

ρ

k
0 2

2

s sk

s sk

max

max

max

By Hölder’s inequality,

�

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎛

⎝
⎜

( )
⎞

⎠
⎟

⎛

⎝
⎜

( )
⎞

⎠
⎟

∣ ∣
⎛

⎝
⎜

( )
⎞

⎠
⎟

( ) ( ) ( )
( )

( )

⨏ ≤ ⨏ ⨏ ≤ ‖ ‖ ⨏

−
−

⋆

⋆
−

⋆
−

⋆F w w F w w F w w M F F w wd d d d .
M x

k

p

M x
k
p

M x
k

p

ρ k L
p p

M x
k

p

ρ ρ

p p
p

ρ

p p
p p n

ρ

(2.7)

Thus, it follows from (2.6) and (2.7) that

�

�

⎛

⎝
⎜

∣ ( ) ( ) ∣
⎞

⎠
⎟

⎛

⎝
⎜

( )
⎞

⎠
⎟

∣ ∣
⎛

⎝
⎜

( )
⎞

⎠
⎟

⎛

⎝
⎜

( )
⎞

⎠
⎟

( )

( )

( )

( )
( )

( )
( )

∑

∑

∑

⨏ − ≤ ⨏

≤ ‖ ‖ ⨏

≤ ‖ ‖ ⨏

−

=

−

=

−
−

−

=

−

⋆

⋆ ⋆

⋆

⋆ ⋆

⋆
−

⋆

⋆

⋆
−

⋆

u y u y n ρ F w w

n ρ M F F w w

n F F w w

d d

d

2
d .

M x
M x

p

p

k

n
p s

M x
k

p

p

k

n
p s

ρ k L
p p

M x
k

p

p

n
k

n

k L
p p

M x
k

p

1

1

1

1

1

1

ρ

ρ

ρ

p p
p p n

ρ

p p
p

p n

ρ

max

max

Taking the supremum over >ρ 0, we obtain

�
( ( )) ( ( ))

( )∑≤ ‖ ‖

♯

−

=

−

⋆

⋆

⋆
−

⋆u x n F F xM M
2

.p
p

n
k

n

k L
p p

k
p

1

1
p p

p
p n (2.8)

We now use Theorems 2.5 and 2.6. By (C.1) and Theorem 2.5, we know that �( )∈u LMd
p n . Thus, Theorem 2.6

yields that

� �( ) ( )
‖ ‖ ≤ ‖ ‖

♯

⋆

⋆

⋆

⋆u C uML
p

L
p

p n p n

for some ( )= >
⋆

C C n p s, , 00 . Moreover, assuming �( )∈F Lk
p n , we have by Theorem 2.5 and (2.8)
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� � �( ) ( ) ( )∑ ∑‖ ‖ ≤ ‖ ‖ ‖ ‖ ≤ ‖ ‖

♯

=

−

=

⋆

⋆ ⋆ ⋆u C F F C FM ML
p

k

n

k L
p p

k p
p

k

n

k L
p

1 1
p n p n p n

for some ( )= >
⋆

C C n p p s, , , 00 . Therefore, it only remains to show that

�

� �

( )
∣ ( ) ( )∣

∣ ∣( ) ∫∫‖ ‖ ≤ −

− +

+

F Cs s u x u x he
h

h x1 d dk L
p

k k
k

p

ps1p n

n
k (2.9)

for each = …k n1, , .
Let us fix k. By using Hölder’s inequality, we have

�

�

� �

∣ ( ) ( )∣

∣ ( ) ( )∣ (∣ ∣)

( )

( )

∫

∫ ∫∑

‖ ‖ ≤ ⨏ − +

= − +

>
−

=

∞

>

−

+ /

/

/

F
ρ

u x u x he h x

ρ
u x u x he h h x1

sup 2 d d

sup 2 d d ,

k L
p

ρ

p

ps
ρ

ρ

k
p

i ρ

p

ps s s k
p

I

0 2

2

0 0

2

1

p n

n s sk

s sk

n
k k i

max
max

max

max

where [ )=

− / − + /I ρ ρ2 , 2i
i s s i s s1k kmax max . For each i, let { }

=

∞βj i j, 0 be a sequence such that ∑ ≥β 1j j i, , which will be
chosen later. Then,

�

� �

∣ ( ) ( )∣ (∣ ∣)
( ) ( )∫ ∫∑‖ ‖ ≤ − +

=

∞

>

−

+ /

F β
ρ

u x u x he h h x1sup 2 d d .k L
p

i j
j i

ρ

p

ps s s k
p

I
, 0

,
0

2

1p n

n
k k imax

By Lemma 2.4 for =N 2j, ( ]= ∈

−a 2 0, 1i and = /b s skmax , we obtain

�

� �

∣ ( ) ( )∣

∣ ∣
(∣ ∣)

( )
( )( ) ( )

∫∫∑‖ ‖ ≤

− +

=

∞

− + + − + −

+
+

F β u x u x he
h

h h x12 d d .k L
p

i j

p ps i p s j
j i

k
p

ps I
, 0

2 1 1 1
, 1p n k k

n
k i j

We rearrange the double sums to have

�

� �

∣ ( ) ( )∣

∣ ∣
(∣ ∣)

( )
( )( ) ( )

∫∫∑∑‖ ‖ ≤

− +

=

∞

=

− + + − + + −

−
+

F β u x u x he
h

h h x12 d d .k L
p

i j

i
p ps i j p s j

j i j
k

p

ps I
0 0

2 1 1 1
, 1p n k k

n
k i

Let ( )( ) ( )
= −

− −β p slog2 1 2j i k
p s j

,
1 k , then

( )( )
( )

∑≤ =

−

−

≤ < +∞

=

∞

− −

β p s p1 log2 1
1 2

2 .
j

j i
k

p s
0

, 1 k

Since

( )( )

( )( )

( )

( )( ) ( ) ( )( ) ( )

( )( )
( )( )

( )

∑ ∑= −

= −

−

≤ −

=

− + + − + + −

−

− + + −

=

+

− + + −

+ +

+

+

β p s

p s

p s

2 log2 1 2 2

log2 1 2 2
2 1

1 2 ,

j

i
p ps i j p s j

j i j k
p ps i

j

i
ps j

k
p ps i

ps i

ps

k
p s

0

2 1 1 1
,

2 1 1

0

1

2 1 1
1 1

1

1

k k k k

k
k

k

k

we arrive at
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� �

� �
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∣ ( ) ( )∣

∣ ∣
(∣ ∣)

( )
∣ ( ) ( )∣

∣ ∣

( )
( )
∫∫
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− +

≤ −

− +

=

∞

+

+

+

F p s u x u x he
h

h h x

p s
s

s u x u x he
h

h x

11 2 d d

2 1 d d ,

k L
p

i
k

p s k
p

ps I

p k
k

k
p

ps

0

1
1

2

0
1

p n k

n
k i

n
k

which proves (2.9). □
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Next, we can make use of appropriate cut-off functions to prove a localized version of the foregoing
Sobolev-type inequality.

Corollary 2.8. Let ≥Λ 1 and [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 . Suppose that < < /p n s1 ¯. There is
( )= >

⋆
C C n p p s, , , , Λ 00 such that for each �( )∈μ p s, , Λ0 and every �∈x n

0 , ( ]∈r 0, 1 , ( ]∈λ 1, 2 and
�( )( )∈u HM x

p μ n,
λr 0

it holds

⎜ ⎟∣ ( ) ( )∣ ( )
⎛

⎝

( )
⎞

⎠
( ( ))

( ) ( )

( ( ))∫ ∫ ∑‖ ‖ ≤ − + − ‖ ‖

=

/ − −

⋆

u C u x u y μ x y x C λ r u, d d 1 ,L M x
p

M x M x

p

k

n
s s s p ps

L M x
p

1
p

r

λr λr

k k p
λr0

0 0

max max
0

where
⋆

p is defined as in Theorem 2.7.

Proof. Let � �→τ : n be an admissible cut-off function in the sense of Definition 2.1. For simplicity of
notation, we write ( )=M M xr r 0 .

By Theorem 2.7, there is a constant ( )= >
⋆

c c n p p s, , , 01 1 0 such that

�

⎛

⎝

⎜
⎜

∣ ( ) ( ) ( ) ( )∣ ( ) ∣ ( ) ( ) ( ) ( )∣ ( )
⎞

⎠

⎟
⎟

( )

( )

( )

∫ ∫ ∫ ∫‖ ‖ ≤ − + −

≕ +

⋆

uτ c u x τ x u x τ y μ x y x u x τ x u x τ y μ x y x

c I I

, d d 2 , d d

2 .

L
p

M M

p

M M

p
1 axes axes

1 1 2

p n

λr λr λr λr
c

We have

⎛

⎝

⎜
⎜

∣( ( ) ( ))( ( ) ( ))∣ ( )

∣( ( ) ( ))( ( ) ( ))∣ ( )
⎞

⎠

⎟
⎟

( )

∫ ∫

∫ ∫

≤ − +

+ + −

= +

−

−

I u y u x τ x τ y μ x y x

u x u y τ x τ y μ x y x

J J

1
2

2 , d d

2 , d d

1
2

.

p
M M

p p

M M

p p

1
1

axes

1
axes

1 2

λr λr

λr λr

Since ( ( ) ( ))+ ≤τ x τ y 2 for all ∈x y M, λr, we get

∣ ( ) ( )∣ ( ) ∣ ( ) ( )∣ ( )∫ ∫ ∫ ∫≤ − ≤ −J u y u x μ x y x u y u x μ x y x2 , d d Λ2 , d d ,p

M M

p p

M M

p
1 axes

λr λr λr λr

where we used Assumption 3 in the second inequality.
Moreover, since ∣ ( ) ( )∣ ∣ ( ) ( )∣ ∣ ( )∣ ∣ ( ) ( )∣ ∣ ( )∣ ∣ ( ) ( )∣+ − ≤ − + −

− −u x u y τ x τ x u x τ x τ x u y τ y τ x2 2p p p p p p p p1 1 , we
can again apply Assumption 3, and by Lemma 2.2, we get

�
�

⎜ ⎟

⎛

⎝

⎜⎜
∣ ( ) ( )∣ ( )

⎞

⎠

⎟⎟

⎛

⎝

⎞

⎠
( ) ( )( )∫ ∑≤ − ‖ ‖ ≤ − ‖ ‖

∈
=

−

−J τ y τ x μ x y u c λ r u2 sup , d 1p
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p
L M
p

k

n s
s

ps
ps

L M
p

2 2
1n

n

p
λr

k
k

p
λr

max
max

for some >c 02 , depending on n, p, s0, and Λ. Moreover, by Corollary 2.3, there is ( )= >c c n p, , Λ 03 3 such
that

⎜ ⎟
⎛

⎝

⎞

⎠
( )( )

∑≤ − ‖ ‖

=

−

−I c λ r u1 .
k

n s
s

ps
ps

L M
p

2 3
1

k
k

p
λr

max
max

Combining these estimates, we find a constant ( )= >
⋆

C C n p p s, , , , Λ 00 such that
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L M
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n s
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ps
ps

L M
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1

p
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p n
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k
k

p
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max
max

Applying the same method as in the proof of the Sobolev-type inequality Theorem 2.7, we can deduce a
Poincaré inequality.

Theorem 2.9. Let >p 1, ≥Λ 1,and [ )… ∈s s s, , , 1n1 0 begiven for some ( )∈s 0, 10 .There is ( )= >C C n p s, , , Λ 00
such that for each �( )∈μ p s, , Λ0 and every �∈x n

0 , ( ]∈r 0, 1 and ( ( ))∈u L M xp
r 0 ,

�( ) ( )( ) ( ( )) ( )‖ − ‖ ≤u u Cr u u, .M x L M x
p ps

M x
μ

r p
r r0 0

max
0

The proof is analog to the proof of the Poincaré inequality for the case =p 2, see [15, Theorem 4.2].

3 Weak Harnack inequality

In this section, we prove Theorem 1.4. The proof is based on Moser’s iteration technique. We first need to
verify a few properties for weak supersolutions to (1.1).

Lemma 3.1. Let ≥Λ 1 and [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 . Let < ≤ /p n s1 ¯, �∈x n
0 , ( ]∈r 0, 1 ,

and ( ]∈λ 1, 2 . Set ( )=M M xr r 0 and assume ( )( )
∈

/f L Mq ps
λr

¯ for some >q n. There is ( )= >C C n p s, , , Λ 00 such
that for each �( )∈μ p s, , Λ0 and every �( ∣ )∈u V Mp μ

λr
n, that satisfies

�� ( ) ( ) ( ) ( )≥ ∈ ≥ >u φ f φ for any nonnegative φ H u x ε a.e. in M for some ε, , , 0,μ
M
p μ n

λr
,
λr

the following holds:
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⎜ ⎟

∣ ( ) ( )∣ ( )

⎛

⎝

( )
⎞

⎠

∣ ∣

∣ ∣ ∣ ∣ ( ) ( )( )( )

( )

∫∫

∫
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−

≤ −

+ ‖ ‖ +

=

/ − −

− −

∈

⧹

−

−

/

−

+ /

u y u x μ x y x

C λ r M

ε f M ε M u y μ x y

log log , d d

1

2 sup , d .

M M

p

k

n
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λr

p
L M λr

p
λr

x M
M

p

1

1 1 1

r r

k k
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λr

q ps
q

λ r n λr

max max

¯
¯

1 2

Proof. Let τ be an admissible cut-off function in the sense of Definition 2.1, and let ( ) ( ) ( )=

−φ x τ x u xp p1 ,
which is well defined since ( ) ⊂τ Msupp λr. Then, we have

�

⎜ ⎟( ) ∣ ( ) ( )∣ ( ( ) ( ))⎛

⎝

( )

( )

( )

( )
⎞

⎠
( )

∣ ( ) ( )∣ ( ( ) ( ))
( )

( )
( )

∫ ∫

∫ ∫

≤ − − −

+ − −

≕ +

−

− −

⧹

−

−

f φ u x u y u x u y τ x
u x

τ y
u y

μ x y x

u x u y u x u y τ x
u x

μ x y x

I I

, , d d

2 , d d

.

M M

p
p

p

p

p

M M

p
p

p

2
1 1

2
1

1 2

λr λr

λr
n λr

(3.1)

Similar to the proof of [22, Lemma 1.3], we get the inequality

⎜ ⎟∣ ( ) ( )∣ ( ( ) ( ))⎛

⎝

( )

( )

( )

( )
⎞

⎠
∣ ( ) ( )∣ ( ) ∣ ( ) ( )∣− − − ≤ − − + −

−

− −

u x u y u x u y τ x
u x

τ y
u y

c u x u y τ y c τ x τ ylog log ,p
p

p

p

p
p p p2

1 1 1 2 (3.2)
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where >c c, 01 2 are constants depending only on p. Hence, by (3.2) and Lemma 2.2,

⎜ ⎟∣ ( ) ( )∣ ( )
⎛

⎝

( )
⎞

⎠

∣ ∣∫∫ ∑≤ − − + −

=

/ − −I c u x u y μ x y x C λ r Mlog log , d d 1 .
M M

p

k

n
s s ps ps

λr1 1
1

r r

k kmax max (3.3)

For I2, again by Lemma 2.2,
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=
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−

∈

⧹
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I u x u y τ x
u x

μ x y x

τ x τ y μ x y x u y τ x
ε

μ x y x

C λ r M M
ε

u y μ x y

12 , d d

2 , d d 2 , d d

1 2 sup , d ,

M M

p
p

p u x u y

M M

p

M M

p
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p

k

n
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p
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M

p

2
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1

1
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1
1

1
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n λr

λr
n λr λr

n λr

k k

λ r n λr

max max

1 2

(3.4)

where we assumed that ( ) ( )⊂
+ /

τ Msupp λ r1 2. Combining (3.1), (3.3), and (3.4), and using Hölder’s inequality,
we conclude that
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⎜ ⎟

∣ ( ) ( )∣ ( )

⎛

⎝
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⎠
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−
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−
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1

1 1

r r

k k q ps
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q ps
q

λ n λr

max max ¯
¯

1 2

The next theorem is an essential result to prove the weak Harnack inequality.

Theorem 3.2. Let ≥Λ 1 and [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 . Let < < /p n s1 ¯, �∈x n
0 , and

( ]∈r 0, 1 . Set ( )=M M xr r 0 and assume ( )( )
∈

/

/
f L Mq ps

r
¯

5 4 for some >q n. There are ( )= >C C n p s q, , , , Λ 00

and ( ) ( )= ∈p p n p s q¯ ¯ , , , , Λ 0, 10 such that for each �( )∈μ p s, , Λ0 and every �( ∣ )∈
/

u V Mp μ
r

n,
5 4 that satisfies

�� ( ) ( ) ( ) ( )≥ ∈ ≥
/
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u φ f φ for any nonnegative φ H u x ε a.e. in M, , , ,μ
M
p μ n

r
,

5 4r5 4

for
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⎜
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⎟
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⧹
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1
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−
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max , the following holds:
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M
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¯
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¯
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Proof. We only need to prove that ( )∈u Mlog BMO r . The rest of the proof is standard. The Poincaré
inequality (see Theorem 2.9) and Lemma 3.1 imply
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⎝
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p
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max
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where we used the bound on ε in the last inequality. Finally, by Hölder’s inequality, we obtain

⎛

⎝
⎜

∣ ( ) ∣
⎞

⎠
⎟( )‖ ‖ ≤ ⨏ − ≤

/

u u u x Clog log log d ,M
M

M
p

p

BMO

1

r

r

r

which shows that ( )∈u Blog BMO r . □

In order to apply Moser’s iteration for negative exponents, we prove the following lemma.

Lemma 3.3. Let ≥Λ 1 and [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 . Let < < /p n s1 ¯, �∈x n
0 , ( ]∈r 0, 1 ,

and ( ]∈λ 1, 2 . Set ( )=M M xr r 0 and assume ( )( )
∈

/f L Mq ps
λr

¯ for some >q n. For each �( )∈μ p s, , Λ0 and every
�( ∣ )∈u V Mp μ

λr
n, that satisfies
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M
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λr
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−
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⧹

−

−

/

/
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−
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the following is true for any > −t p 1,

⎜ ⎟∥ ∥
⎛

⎝

( )
⎞

⎠

∥ ∥
( ) ( )( ) ∑≤ −

−
− +

=

/ − − −
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− + − +
u C λ r u1 ,

L M
t p

k

n
s s s p s p

L M
t p1 1

1

1 1
t p γ

r
k k t p

λr
1

max max 1

where =

−

−δ ps
p

q n
q1

max , ( )= / −γ n n ps̄ , and ( )= >
⋆

C C n p p q t s, , , , , , Λ 00 is a constant that is bounded when t is
bounded away from −p 1.

To prove Lemma 3.3, we need the following algebraic inequality.

Lemma 3.4. Let >a b, 0, [ ]∈τ τ, 0, 11 2 , and > − >t p 1 0. Then,

∣ ∣ ( )( ) ∣ ∣ ( )− − − ≥ − − − +

− − −

− + − − + −

− + − − + −b a b a τ a τ b c τa τ b c τ τ a b ,p p t p t
t p

p
t p

p
p

p t p t p2
1 2 1 1

1
2

1
2 1 2

1 1

where ( )= >c c p t, 0i i , =i 1, 2, is bounded when t is bounded away from −p 1.

Note that Lemma 3.4 is a discrete version of

∣ ∣ ( ) ⎛
⎝

⎞
⎠

∣ ∣∇ ∇ ⋅∇ − ≥ ∇ − ∇

− −

− + −

− + −v v v τ c v τ c τ v .p t p
t p

p
p

p t p2
1

1
2

1

The proof of Lemma 3.4 is provided in Appendix A.

Proof of Lemma 3.3. Let τ be an admissible cut-off function in the sense of Definition 2.1. Since =τ 0
outside Mλr, the function = −

−φ τ up t is well defined. By using Lemma 3.4, we have

�

�( ) ( )

∣ ( ) ( )∣ ( ( ) ( ))( ( ) ( ) ( ) ( )) ( )

∣ ( ) ( )∣ ( ( ) ( )) ( ) ( ) ( )
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⧹
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f τ u u τ u
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, d d

2 , d d

p t p t

M M

p p t p t

M M

p p t

2

2

λr λr

λr
n λr
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where c1 and c2 are constants given in Lemma 3.4. By Theorem 2.8, we obtain
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For I2, we use Lemma 2.2 again to have
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For I3, assuming that ( ) ( )⊂
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τ Msupp λ r1 2 and using Lemma 2.2, we deduce
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Moreover, we estimate
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By using Lyapunov’s inequality and Young’s inequality, we have
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Combining all the estimates, we have

Fractional orthotropic p-Laplacians  1321



⎜ ⎟

⎜ ⎟

∥ ∥
⎛

⎝

( )
⎞

⎠

∥ ∥

⎛

⎝
∥ ∥ ∥ ∥ ⎞

⎠

( ) ( )

( )
( )

( )

∑≤ + −

+ +

−

− + − −

=

/ − − + −

− − + − − / − − + −

−

τ u Cr λ u

Cr n
q

ω τ u q n
q

ω τ u

1 1

.

p t p
L M

ps

k

n
s s s p t p

L M

ps p t p
L M

n q n p t p
L M

1

1

1

1 1

γ
λr

k k
λr

q n
q γ

λr λr

max max 1

max 1

Taking =

−

−

ω ε r ps
0

q n
qmax with >ε 00 small enough, we arrive at
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whereC depends on n, p,
⋆

p , t, s0, q, and Λ and is bounded when t is bounded away from −p 1. Since ≤λ 2,
we obtain
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from which the desired result follows. □

The standard iteration technique proves the following lemma, see [25,14].

Lemma 3.5. Under the same assumptions as in Lemma 3.3, for any >p 00 , there is a constant =C
( ) >

⋆
C n p p q p s, , , , , , Λ 00 0 such that

⎛

⎝
⎜

( )
⎞

⎠
⎟

≥ ⨏

−

− /

u C u x xinf d .
M M

p
p1

r
r2

0

0

(3.5)

The proof of Theorem 1.4 follows from Theorem 3.2, Lemma 3.5, and the triangle inequality.

4 Hölder estimates

This section is devoted to the proof of Theorem 1.5. The general scheme for the derivation of a priori interior
Hölder estimates from the weak Harnack inequality in the nonlocal setting has been developed in [25] and
applied successfully to the anisotropic setting [14]when =p 2. We extend the result presented in [14] to the
general case >p 1.

Recall that the rectangles in Definition 1.1 satisfy the following property. For >λ 0 and �⊂Ω n open, we
have

�� �( ) ( ) ( ∣ )( )
( )∘ ∘ = ∈

− − /u v λ u v u v VΨ, Ψ , for every , Ωμ n sp s s μ p μ n
Ω

¯ ¯
Ψ Ω

, axesaxes max axes

and

�( ) ( ) ( ) ( )( )
∘ ∘ = ∈ ∈

− / /f φ λ f φ f L φ HΨ, Ψ , for every Ω , ,ns s q ps p μ n¯ ¯
Ω

, axesmax

where � �→Ψ : n n is a diffeomorphism given by
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⎜⎜

⎞

⎠

⎟⎟
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⋯
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⋯

/

/

x
λ

λ
xΨ

0

0
.

s s

s sn

max 1

max

(4.1)

The rectangles from Definition 1.1 are balls in a metric space �( )d,n , where the metric � � [ )× → ∞d : 0,n n

is defined as follows:
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By the scaling property and covering arguments provided in [14], it is enough to show the following
theorem.
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1n q ps̄

15 16 for some >κ 0, which will be chosen later. It is
enough to construct sequences { }

=

∞ak k 0 and { }
=

∞bk k 0 such that ≤ ≤a u bk k in
/

M1 4k and − =

−b a 4k k
αk for some

>α 0. For =k 0, we set = − /a 1 20 and = /b 1 20 . Assume that we have constructed such sequences up to k
and let us choose

+
ak 1 and +

bk 1.
We assume

∣{ ( ) } ∣ ∣ ∣≥ + / ∩ ≥ /− −u b a M M2 2,k k 4 4k k1
2

1
2

(4.2)

and then prove that we can choose
+

ak 1 and +
bk 1. If (4.2) does not hold, then we can consider−u instead of u.

Let Ψ be the diffeomorphism given by (4.1) with =

−λ 4 k and define
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Then, ≥v 0 in M1 and � ( ) ( )=v φ g φ, ,M
μ

1
for every �( )∈φ HM

μ n
1

. Moreover, it is easy to see that ( )≥ −v 2 1 4αj

in M4j for every ≥j 0 by induction hypothesis. By applying Theorem 1.4, we obtain
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(4.3)

By taking <

−α ps q n
q0 , we have
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(4.4)

For ∈
/

x M15 16 and for each ≥j 1, we have � ( )⧹ ⊂ ⧹+M M M xn
4 4 4j j j1 . Hence, by (1.5),
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(4.5)

If we assume that
( )

<

−

α ps
p2 1

0 , then we can make the last term in (4.5) as small as we want by taking
( )=l l p s, 0 sufficiently large. Since the first term in (4.5) converges to 0 as →α 0, we have
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(4.6)

by assuming further that ( )=
⋆

α α n p p q s, , , , , Λ0 is sufficiently small.
On the other hand, it follows from (4.2) that
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Combining (4.3), (4.4), (4.6), and (4.7), and choosing >κ 0 sufficiently small, we arrive at ≥

/

v κinf
M

0
1 4

for
some κ0. We take ( )= + − /

+
a a κ b a 2k k k k1 0 and =

+
b bk k1 , and make α and κ0 small so that − / =

−κ1 2 4 α
0 .

Then, ≤ ≤
+ +

a u bk k1 1 in ( )− +M4 k 1 and ( )
− =

+ −

− +b a 4k k
α k

1 1
1 , which finishes the proof. □
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Appendix
A Algebraic inequalities

In this section, we prove Lemma 3.4 using the series of following lemmas.

Lemma A.1. Let >a b, 0 and > − >t p 1 0. Then,
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Proof. We may assume that >b a. Let ( ) = −
− + −

f x x
t p

p
1
and ( ) = − −g x x t, and then by using Jensen’s

inequality, we have
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which proves the lemma. □

Lemma A.2. Let >a b, 0 and > − >t p 1 0. Then,

⎜ ⎟∣ ∣ { } ⎛

⎝

⎞

⎠
{ }

− ≤

− +

−

− − −

−

− + − − + −
−

− + − − + −

b a a b p
t p

a b a bmin ,
1

min , .p t t
p t p

p
t p

p
p

1
1 1 1 1

t p
p

t p
p

1 1

Proof. We may assume that >b a. Let ( ) = −
− + −

f x x
t p

p
1
, then

⎜ ⎟

⎜ ⎟ ⎜ ⎟

( ) ( )
( ) ⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎞

⎠

−

−

= ⨏ ′ =

− +

⨏

≥

− +

⨏ =

− +

−

−
−

− −

−

−

− −

−
−

−

− + −

f b f a
b a

f x x t p
p

x x

t p
p

b x t p
p

b
b

d 1 d

1 d 1 ,

p

a

b p p

a

b t
p

p

p

a

b t
p

p p t

1 1 1 1
1

1 1
1 1

t p
p

1

which proves the lemma. □

Lemma A.3. Let [ ]∈τ τ, 0, 11 2 and >p 1. Then,
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1 2 1 2 1

1
2
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Proof. The desired inequality follows from the convexity of the function ( ) =f τ τp. □

Lemma A.4. Let >a b, 0, [ ]∈τ τ, 0, 11 2 , and > − >t p 1 0. Then,

{ } ∣ ∣ { }− ≥ − − −

− + − − + −

−

− + − − + −

− + − − + −τ τ a b τa τ b τ τ a bmin , 2 max ,p p t p
p

t p
p

p
p

t p
p

t p
p

p
p t p t p

1 2
1 1

1
1

1
2

1
1 2

1 1 (A.1)

and
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Proof. For (A.1), we assume that ≥τ τ1 2. Then, we obtain from
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from which (A.1) follows. The other case <τ τ1 2 can be proved in the same way.
For (A.2), we assume that ≥τ τ1 2. Then,
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The proof for the case <τ τ1 2 is the same. □

Proof of Lemma 3.4. We may assume that >b a. We begin with the equality
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By Lemma A.1 and (A.1), we have
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For B, we use Lemmas A.2, A.3, and Young’s inequality to obtain
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for any >ε 0. By using (A.2), we have

⎜ ⎟

⎜ ⎟

⎜ ⎟

( )⎛

⎝

⎞

⎠

⎛

⎝

( )⎛

⎝

⎞

⎠

⎞

⎠

∣ ∣ { }

( )

( )

≥ − −

− +

−

− −

− +

+ −

− / −

− + − − + −

− / − − + − − + −

B p p
t p

ε τa τ b

p p
t p

ε
ε

τ τ a b

2 1
1

2 1
1

1 max , .

p
p

p p
t p

p
t p

p
p

p
p

p p
p

p t p t p

1 1
1

1
2

1

1 1
1 2

1 1

(A.5)

Combining (A.3)–(A.5), and then taking ε so that ( )
=

− / − −ε2 2p p p p1 1 1 , we arrive at

∣ ∣ ( )( ) ∣ ∣ ( )− − − ≥ − − − +

− − −

− + − − + −

− + − − + −b a b a τ a τ b c τa τ b c τ τ a b ,p p t p t
t p

p
t p

p
p

p t p t p2
1 2 1 1

1
2

1
2 1 2

1 1

where

⎜ ⎟

( )
( ( ))⎛

⎝

⎞

⎠

( )
=

− +

= + −

− +

+

−

−

− −c p
t p

c t p p
t p

2
1

and 2 1
1

2 .
p p

p
p

p
p

1
1

1 2
1 2 1 2

Note that c1 and c2 are bounded when t is bounded away from −p 1. □

1328  Jamil Chaker and Minhyun Kim



B Anisotropic dyadic rectangles

Let us briefly sketch the construction of anisotropic “dyadic” rectangles. These objects can be used to prove
the lower bound in L p for the sharp maximal function ♯uM .

We construct anisotropic dyadic rectangles having the following properties:
(i) For each integer �∈k , a countable collection { }Qk α α, covers the whole space �n.
(ii) EachQk (=Qk α, for some α) has an interior of the form ( ) ( )= −Q M xInt k 2 k . We callQk an anisotropic dyadic

rectangle of generation k.
(iii) Every Qk α, is contained in

−
Qk β1, for some β. We call

−
Qk β1, a predecessor of Qk α, .

(iv) If …Q Q, ,k k,0 ,2n are +2 1n different anisotropic dyadic rectangles of generation k, then ∩ = ∅
=

Qi k i0
2 ,

n
.

(v) If +2 1n different anisotropic dyadic rectangles …Q Q, ,k k n0 2 , ≤⋯≤k k0 2n, have a nonempty intersection,

then ⊂Q Qj i for some ≤ < ≤i j0 2n.

Remark B.1.
(1) A predecessor may not be unique.
(2) 2n different anisotropic dyadic rectangles from the same generation may have a nonempty intersection.

Such a family of anisotropic dyadic rectangles can be easily constructed. Since the sets are rectangles, it
is sufficient to exemplify the construction in one dimension. Let [ )=Q 0, 10 . Then, a countable collection

�{ }+
∈

Q z z0 constitutes the zeroth generation. Let = ⌊ ⌋

/N 2s smax 1 . In order to construct the first generation, we
take a disjoint family of (left-closed and right-opened) N intervals inQ0 starting from 0 with length − /2 s smax 1

such that the following interval starts at the endpoint of the previous interval. If the right-endpoint of the
last interval is 1, then these intervals constitute the first generation, and there is nothing to do. Thus, we
assume from now on that �∉/2s smax 1 . In this case, we add an interval [ )−

− /1 2 , 1s simax so that

⎜ ⎟
⎛

⎝

⎞

⎠
= ⋃ ∪

=

−

Q Q Q ,
i

N
i N0

0

1
1, 1,

where

[ ( ) ) [ )= + = … − = −

− / − / − /Q i i i N Q2 , 1 2 for 0, , 1, 1 2 , 1 ,i
s s s s

N
s s

1, 1, imax 1 max 1 max

and = ⌊ ⌋

/N 2s smax 1 . Then, the collection �{ }+
≤ ≤ ∈

Q zi i N z1, 0 , forms the first generation of intervals satisfying
(i)–(iv) (Figure A1).

We continue to construct the intervals of generation 2 that fill inQ i1, for each ≤ ≤ −i N0 2. However, we
have to be careful in filling in

−
Q N1, 1 and Q N1, since ∩ ≠ ∅

−
Q QN N1, 1 1, . Suppose that we filled in

−
Q N1, 1 and

Q N1, as above, i.e.,

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
= ⋃ ∪ = ⋃ ∪

−

=

−

=

−

Q Q Q Q Q Qand ˜ ˜N
i

N
i N N

i

N
i N1, 1

0

1
2, 2, 1,

0

1
2, 2,

for some intervals Q i2, and Q̃ i2, , ≤ ≤i N0 , of length − /4 s smax 1. Let K be the smallest integer such that
∩ ≠ ∅Q QK N2, 1, . Then, we have

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
∪ = ⋃ ∪ ⋃ ∪

−

= =

−

Q Q Q Q Q˜ ˜N N
i

K
i

i

N
i N1, 1 1,

0
2,

0

1
2, 2,

and at most two different intervals among { }… …Q Q Q Q, , , ˜ , , ˜K N2,0 2, 2,0 2, can intersect. Therefore, these
intervals constitute the second generation satisfying (i)–(iv) (Figure A2).

Figure A1: This figure shows the construction of the family Q i1, .
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In this way, we construct intervals of generation k for all ≥k 0.
Let us now construct intervals of generation <k 0. It is easy to observe that a collection �{ }+

− ∈
Q Nz z1 of

intervals of generation −1 satisfies (i)–(iv), where

[ )=
−

/Q 0, 2 .s s
1 max 1

For the generation of−2, let K be the largest integer such that + ⊂
− −

Q NK Q1 2, where [ )=
−

/Q 0, 4s s
2 max 1 . Then,

the intervals ( )+ +
−

Q N K z12 , �∈z , form the generation of −2, which satisfying (i)–(iv). We continue this
process to construct intervals of all generations <k 0.

We show that the intervals constructed in this way satisfy the property (v) as well. Suppose that three
different intervals Q Q,k k0 1, and Qk2, ≤ ≤k k k0 1 2, have a nonempty intersection. If =k k1 2, then ⊂Q Qk k1 0 or

⊂Q Qk k2 0. If <k k1 2, then either ⊂Q Qk k2 1 or not. In the former case, we are done. In the latter case, ⊂Q Q̃k k2 1

for some ≠Q Q˜k k1 1, which reduces to the case =k k1 2.

C Sharp maximal function theorem

In this section, we prove Theorem 2.6 by using the anisotropic dyadic rectangles. For �( )∈u L n
loc
1 , we define

a dyadic maximal function uMd by

( ) ∣ ( )∣= ⨏

∈

u x u y yM sup d ,d
x Q Q

where the supremum is taken over all anisotropic dyadic rectangles Q. Since

≤u uM M ,d (C.1)

Theorem 2.5 also holds for the dyadic maximal function uMd . We first prove a good-lambda estimate using
the dyadic maximal function. See [31, Theorem 3.4.4].

Theorem C.1. Let [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 . There exists a constant ( )= >C C n s, 00 such
that

� �∣{ ( ) ( ) }∣ ∣{ ( ) }∣∈ > ≤ ≤ ∈ >

♯x u x λ u x γλ Cγ x u x λM M M: 2 , :n
d

n
d

for all >γ 0, >λ 0, and �( )∈u L n
loc
1 .

Proof. Let �{ ( )( ) }= ∈ >x M f x λΩ :λ
n

d . We may assume that ∣ ∣ < +∞Ωλ since otherwise there is nothing to
prove. For each ∈x Ωλ, we find a maximal anisotropic dyadic rectangle Qx such that

∣ ∣∈ ⊂ ⨏ >x Q f λΩ and .x
λ

Qx
(C.2)

Figure A2: This figure shows the construction of generation 2.
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There are at most 2n different maximal anisotropic dyadic rectangles of the same generation satisfying (C.2),
but we can still choose anyone of them. LetQj be the collection of all such rectanglesQx for all ∈x Ωλ. Then,
we have = ∪ QΩλ j j. Note that different rectangles Qj may have an intersection, but the intersection is
contained in at most 2n different maximal rectangles of the same generation. This is a consequence of
the properties (iv) and (v) of anisotropic dyadic rectangles. Hence,

∣ ∣ ∣ ∣∑ ≤Q 2 Ω .
j

j
n

λ

Therefore, the desired result follows once we have

∣{ ( ) ( ) }∣ ∣ ∣∈ > ≤ ≤

♯x Q u x λ u x γλ Cγ QM M: 2 ,j d j (C.3)

for some ( )=C C n s, 0 . Indeed, one can prove (C.3) by following the second paragraph of the proof of [31,
Theorem 3.4.4], using Theorem 2.5 for Md, and replacing [31, equation (3.4.8)] by

∣ ( ) ( ) ∣
∣ ∣

∣ ∣
∣ ( ) ( ) ∣ ∣ ∣ ( )∫ ∫− ≤

′

− ≤

/ /

♯

′

′

′λ
u y u y

λ
Q
Q

u y u y
λ

Q u ξM1 d 2 d 2

Q

Q
ns s j

j
Q

Q
n s

j j

¯

j

j

j

j

max 0

for all ∈ξ Qj j, where ′Qj is anyone of predecessors of Qj. □

Theorem C.2. Let [ )… ∈s s s, , , 1n1 0 be given for some ( )∈s 0, 10 , and let < ≤ < ∞p p0 0 . Then, there is a
constant ( )= >C C n p s, , 00 such that for all functions �( )∈u L n

loc
1 with �( )∈u LMd

p n0 , we have

� �( ) ( )‖ ‖ ≤ ‖ ‖

♯u C uM M .d L Lp n p n

Theorem C.2 can be proved in the same way as in the proof of [31, Theorem 3.4.5] except that we use
Theorem C.1 instead of [31, Theorem 3.4.4]. Finally, we combine the inequality

� �( ) ( )‖ ‖ ≤ ‖ ‖u uM ,L d Lp n p n

which comes from the Lebesgue differentiation theorem and Theorem C.2 to conclude Theorem 2.6. See [31,
Corollary 3.4.6].

D Pointwise convergence of the fractional orthotropic p-Laplacian
This section provides the proof of pointwise convergence of the fractional orthotropic p-Laplacian as ↗s 1.

Proposition D.1. Let � �( ) ( )∈ ∩

∞u C Ln n2 and �∈x n be such that ( )∂ ≠u x 0i for all = …i n1, , . Let =s si for
all = …i n1, , . Let L be the operator in (1.2) with =μ μaxes and A p

loc be as in (1.3). Then, ( ) ( )→x A u xLu p
loc as

↗s 1 up to a constant.

Proof. Let us fix a point �∈x n with ( )∂ ≠u x 0i . For each = …i n1, , , let us define � �→u :i by
( ) ( )= … …u x u x x x, , , ,i i i n1 as a function of one variable. Then, � �( ) ( )∈ ∩

∞u C Li
2 and ( )′ ≠u x 0i . We write

�

( ) ( )
∣ ( ) ( )∣ ( ( ) ( ))

∣ ∣
( ) ( )∫∑ ∑= −

− −

−

= − −∂

=

−

+

=

x s s
u y u x u y u x

x y
y u xLu 1 d ,

i

n
i i i

p
i i i i

i i
sp i

i

n

p
s

i i
1

2

1
1

2

which is the sum of one-dimensional fractional p-Laplacians. By [11, Theorem 2.8], we have

⎜ ⎟( ) ( )
⎛

⎝

( ) ( )
⎞

⎠

− −∂ →

−

u x
x

u
x

x u
x

xd
d

d
d

d
dp

s
i i

i

i

i
i

p
i

i
i

2
2

as ↗s 1, for each = …i n1, , , up to a constant depending on p only. Consequently, by summing up,
( ) ( )→x A u xLu p

loc as ↗s 1. □
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