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Abstract
We study robust regularity estimates for local minimizers of nonlocal functionals with non-
standard growth of (p, q)-type and for weak solutions to a related class of nonlocal equations.
The main results of this paper are local boundedness and Hölder continuity of minimizers
and weak solutions. Our approach is based on the study of corresponding De Giorgi classes.

Mathematics Subject Classification 35B65 · 47G20 · 35D30 · 35B45 · 35A15

1 Introduction

The aim of this paper is to prove regularity properties of local minimizers and weak solutions
to a class of nonlocal problems with non-standard growth.

Let s ∈ (0, 1), � ≥ 1 and � ⊂ R
d be an open set. We study energy functionals of the

form

u �→ I f (u) = (1 − s)
∫∫

(�c×�c)c
f

( |u(x) − u(y)|
|x − y|s

)
k(x, y)

|x − y|d dy dx, (1.1)

where f : [0,∞) → [0,∞) is a convex increasing function and k : Rd × R
d → R is a

measurable function satisfying

k(x, y) = k(y, x) and �−1 ≤ k(x, y) ≤ � for a.e. x, y ∈ R
d . (k)

When f (t) = t p with p > 1 and � = 1, the functional (1.1) becomes the standard
fractional p-functional whose corresponding operator is the fractional p-Laplacian. The
regularity theory for this case is well established, see [17, 19, 20].
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Apparently the functional (1.1) is governed by the function f , which controls the growth
behavior for large and small values of |u(x) − u(y)||x − y|−s . To establish the regularity
theory, we need some growth conditions on f .

Let 1 ≤ p ≤ q . We say that f satisfies ( f qp ) if f is differentiable and satisfies for all t ≥ 0

p f (t) ≤ t f ′(t), ( f p)

t f ′(t) ≤ q f (t). ( f q)

Condition ( f qp ) can be interpreted as a (p, q)-growth condition since it implies that

f (1)(t p ∧ tq) ≤ f (t) ≤ f (1)(t p ∨ tq). (1.2)

For a detailed discussion of ( f qp ) we refer to Sect. 2.
To study local boundedness of minimizers, we work under the assumption that there exists

a constant c0 > 0 such that for all t ≥ 0

c0t
p ≤ f (t). ( f � t p)

Throughout the paper, wewill assumewithout loss of generality that f (0) = 0 and f (1) = 1.
Note that the assumption f (0) = 0 is required in order for I f (0) < ∞, while the second
assumption is not restrictive since u minimizes I f if and only if u minimizes I f / f (1).

In the following, we present the first main result of this paper. It is concerned with Hölder
estimates and local boundedness for local minimizers of (1.1).

Theorem 1.1 (Local minimizers) Let s0 ∈ (0, 1), 1 < p ≤ q, � ≥ 1, c0 > 0 and assume
s ∈ [s0, 1). Let f : [0,∞) → [0,∞) be a convex increasing function satisfying ( f q) and
let k : Rd × R

d → R be a measurable function satisfying (k). Let u ∈ V s, f (�|Rd) be a
local minimizer of (1.1).

(i) Assume that f satisfies ( f p). Then, there exist α ∈ (0, 1) and C > 0, depending on d,
s0, p, q and �, such that for any B8R(x0) ⊂ �

Rα[u]Cα(BR(x0))
≤ C‖u‖L∞(B4R(x0)) + Tail f ′(u; x0, 4R). (1.3)

(ii) Assume that sp < d, q < p∗ := dp/(d − sp) and that f satisfies ( f � t p). Then,
u ∈ L∞

loc(�). Moreover, for each B2R(x0) ⊂ � there exists C > 0, depending on d, s0,
p, q, p∗ − q, �, c0 and R, such that for every δ ∈ (0, 1)

sup
BR(x0)

|u| ≤ δTail f ′(u; x0, R)

+Cδ
−(q−1) p∗

p
1

p∗−q

(∫
—B2R(x0)|u(x)|q dx

) 1
p

p∗−p
p∗−q + δ

q−1
q . (1.4)

We refer to Sect. 3 for the definition of the function space V s, f (�|Rd) and the tail term
Tail f ′ . The proof of Theorem 1.1 and the definition of a local minimizer are given in Sect. 6.

The second main result of this paper is concerned with weak solutions to a related class
of nonlocal equations. To motivate our result, we first point out that the Euler–Lagrange
equation corresponding to the functional (1.1) is given by

(1 − s)p.v.
∫
Rd

f ′
( |u(x) − u(y)|

|x − y|s
)

u(x) − u(y)

|u(x) − u(y)|
k(x, y)

|x − y|d+s
dy = 0 in �. (1.5)
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For convex differentiable functions f , it is easy to see that weak solutions to the Euler–
Lagrange equation are minimizers of the functional (1.1). In this article, we consider a more
general class of equations

Lhu = 0 in � (1.6)

with nonlocal operators of the form

Lhu(x) = (1 − s)p.v.
∫
Rd

h

(
x, y,

u(x) − u(y)

|x − y|s
)

dy

|x − y|d+s
, (1.7)

where h : Rd × R
d × R → R is a measurable function satisfying the structure condition

h(x, y, t) = h(y, x, t), |h(x, y, t)| ≤ � f ′(|t |), h(x, y, t)t ≥ 1

�
f ′(|t |)|t | (h)

for a.e. x, y ∈ R
d and for all t ∈ R, and f : [0,∞) → [0,∞) is convex, increasing,

differentiable and satisfies f (0) = 0, f (1) = 1.
Note that in the special case h(x, y, t) = sign(t) f ′(|t |)k(x, y) for some k satisfying (k),

the Eqs. (1.5) and (1.6) coincide.
We are ready to state the second main result of this article, which establishes Hölder

estimates and local boundedness for weak solution to (1.6).

Theorem 1.2 (Weak solutions) Let s0 ∈ (0, 1), 1 < p ≤ q, � ≥ 1, c0 > 0 and assume
s ∈ [s0, 1). Let f : [0,∞) → [0,∞) be a convex increasing function satisfying ( f q) and
let h : Rd × R

d × R → R be a measurable function satisfying (h). Let u ∈ V s, f (�|Rd) be
a weak solution to (1.6).

(i) Assume that f satisfies ( f p). Then, there exist α ∈ (0, 1) and C > 0, depending on d,
s0, p, q and �, such that for any B8R(x0) ⊂ � the estimate (1.3) holds.

(ii) Assume that sp < d, q < p∗ and that f satisfies ( f � t p). Then, u ∈ L∞
loc(�).

Moreover, for each B2R(x0) ⊂ � there exists C > 0, depending on d, s0, p, q, p∗ − q,
�, c0 and R, such that for every δ ∈ (0, 1) the estimate (1.4) holds.

The proof of Theorem 1.2 and the definition of a weak solution are given in Sect. 7. Note
that we can assume without loss of generality that f (0) = 0, f (1) = 1 because a function u
solves Lhu = 0 if and only if it solves Lh/ f (1)u = 0.

In fact, we prove Hölder estimates and local boundedness for functions in De Giorgi
classes (see Sect. 3). The corresponding results, Theorems 4.2 and 5.1, are more general.
Theorems 1.1 and 1.2 follow by the observation that minimizers, as well as weak solutions,
belong to the corresponding De Giorgi classes, see Sects. 6 and 7.

Note that right-hand sides with suitable growth behaviors can be studied by an adequate
extension of De Giorgi classes in analogy to [17].

Remark 1.3 Our results are robust in the sense that the constants C and α stay uniform as
s → 1−, since they depend only on s0, not on s.

(1) Theorem 1.1 generalizes the results in [47] to nonlocal functionals. We work under
the same assumptions on the growth function f as in that article. In this sense, the
assumptions on f used in our results are natural.

(2) Theorem 1.2 can be linked to the paper [40]. Some assumptions on the regularity and
growth of the function f in [40] are more restrictive than our assumptions, but in return
allow Lieberman to proveC1,β regularity of weak solutions to the Euler–Lagrange equa-
tions.
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Our approach for studying local minimizers and weak solutions is based on so-called
De Giorgi classes. We show that minimizers of (1.1) and weak solutions to (1.6) satisfy
a suitable improved fractional Caccioppoli inequality, from which the definition of the De
Giorgi class emerges. This inequality together with an isoperimetric-type inequality allow us
to deduce the Hölder estimates for locally bounded minimizers and weak solutions following
the methods from [17, 47]. We emphasize that there is no restriction on the gap between p
and q for the Hölder estimates. Furthermore, we derive the local boundedness of functions in
De Giorgi classes under the assumption that 1 < p ≤ q < p∗. We would like to remark that
by modification of the proof of Theorem 5.1, it is possible to prove the local boundedness
without any restriction on the range of p and q and without the condition ( f � t p), see [16]
and also [5].

In the following, we discuss related literature and describe the novelty of our results.
We first comment on related results for local operators. For this purpose, we consider

functionals of the following form
∫

�

f (x, u,∇u) dx,

where f is a non-negative function which describes the growth behavior of the functional.
If the function f satisfies the so-called p-growth condition, that is

|ξ |p � f (x, z, ξ) � |ξ |p + 1 for p > 1,

the literature is very rich and many regularity results have been proved. We refer the reader
to the classical references [31, 33, 41] and for a more comprehensive treatment to the books
[34, 35].

Functionals with non-standard growth of (p, q)-type

|ξ |p � f (x, z, ξ) � |ξ |q + 1,

where 1 < p < q , are naturally connected to Orlicz–spaces. The analysis of regularity
of minimizers of functionals having non-standard growth of (p, q)-type was initiated by
Marcellini’s work [42], where he studies strictly convex C2-functions f satisfying (p, q)-
growth condition.

To the best of our knowledge, functionals with non-standard growth functions of the type
( f qp ) first appeared in the papers [40, 47] in the context of regularity results.

In the paper [40], Lieberman proves several regularity results for bounded weak solutions
to a class of elliptic operators in divergence form. Furthermore, he studies quasiminimizers
and proves regularity results for functions in corresponding De Giorgi classes.

In [47], Moscariello and Nania prove Hölder continuity of locally boundedminimizers for
growth functions satisfying ( f qp ) and local boundedness for functions with (p, q)-growth.
Their key idea is to introduce an auxiliary functionwhich is comparable to the growth function
f and to prove that any function in the DeGiorgi class corresponding to the auxiliary function
is Hölder continuous.We adapt this idea for the proof of Theorems 1.1 and 1.2 to the nonlocal
case, see Sect. 4.

There have been many important contributions to regularity for problems with non-
standard growth of (p, q)-type. Papers studying local operators with non-standard growth
of (p, q)-type are, among others, [3, 6, 12, 14, 23, 26, 28, 39, 43, 44, 48, 49, 54, 55, 58].
For a more detailed picture on problems with non-standard growth, including double-phase
problems, problems with variable exponents, and anisotropic problems, we refer the reader
to the surveys [45, 50].
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In the case of nonlocal operators, the energy functional is defined by (1.1). Local regu-
larity results for the fractional p-Laplacian, that is f (t) = t p , were first established in the
papers [19, 20] by Di Castro, Kuusi and Palatucci. Another important contribution to reg-
ularity is the work [17], where he studies minimizers to nonlocal energy functionals plus a
possibly discontinuous potential. The nonlocal energy has p growth for a class of symmetric
kernels comparable to (1 − s)|x − y|−n−sp . Furthermore, he studies weak solutions to the
Euler–Lagrange equation. He uses the nonlocality of the functional to prove an improved
Caccioppoli inequality with an additional term, which disappears as the fractional order s
goes to one. We follow Cozzi’s ideas at several points in the present paper and also make
use of some auxiliary results proved in [17] such as an isoperimetric inequality. It is worth
emphasizing that the fractional De Giorgi iteration has been first employed in the papers [18,
46]. For further results on the regularity of the fractional p-Laplacian, we refer the reader to
[7, 8, 53] and the references therein.

Lately, the interest in the analysis of nonlocal problems with non-standard growth has
increased. For instance, regularity results for nonlocal double phase equations and nonlocal
equation with variable exponents are proved in [10, 21, 32, 57], respectively [15, 56]. How-
ever, we would like to note that both, double phase equations and equations with variable
exponents, do not fall into our setup. See also [36–38] for further regularity results concerning
nonlocal operators with non-standard growth.

As far as we know, first regularity results for fractional order Orlicz–Sobolev spaces have
been proved in [13] by Fernández Bonder, Salort and Vivas. The authors establish regularity
results for weak solutions to the Dirichlet problem for the fractional g-Laplacian. They prove
interior and up to the boundary Hölder regularity to the corresponding Dirichlet problem.

See also [52], where qualitative properties of solutions such as a Liouville type theorem
and symmetry results are proved.

The present paper is substantially different from [13]. On the one hand, we do not only
study weak solutions but also local minimizers for the functional I f . The present paper also
allows for p > 1 and is not restricted to the case p ≥ 2. Furthermore, we use a completely
different approach via De Giorgi classes.

Notation

We write c and C for strictly positive constants whose exact values are not important and
might change from line to line. Furthermore, we use the notations c = c(·) and C = C(·) if
we want to highlight all quantities the constant depends on.

Outline

The paper consists of seven sections and is organized as follows. In Sect. 2.1, we introduce
an auxiliary growth function and prove several properties for convex functions satisfying
( f qp ). Moreover, in Sect. 2.2 we recall some functional inequalities. The fractional De Giorgi
classes with general convex functions with non-standard growth are introduced in Sect. 3.
Furthermore, we introduce fractional Orlicz–Sobolev spaces. In Sect. 4 we prove Hölder
continuity and in Sect. 5 local boundedness for functions in fractional De Giorgi classes.
Finally, in Sect. 6 resp. Section 7, we show that minimizers resp. weak solutions belong to
the fractional De Giorgi classes and prove Theorems 1.1 and 1.2.
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2 Preliminaries

In this section, we study properties of the growth functions f under consideration and collect
some functional inequalities.

2.1 Auxiliary results on growth functions

Let us collect several results in order to illustrate the assumption ( f qp ). The first two lemmas
provide equivalent conditions for the upper and lower bounds in ( f qp ), respectively.

Lemma 2.1 Let q ≥ 1 and f : [0,∞) → [0,∞) be a differentiable function. Then the
following are equivalent:

(i) ( f q),
(ii) t �→ t−q f (t) is decreasing,
(iii) f (λt) ≤ λq f (t) for all λ ≥ 1,
(iv) λq f (t) ≤ f (λt) for all λ ≤ 1.

Proof (i) ⇔ (ii) follows from the observation that d
dt (t

−q f (t)) = t−q−1(t f ′(t) − q f (t)). (i)
⇔ (iii) follows from the observation that (iii) can be rewritten as

f (λt)

(λt)q
≤ f (t)

tq
, for all λ ≥ 1. (2.1)

Since also (iv) can be rewritten as (2.1), the equivalence (iii) ⇔ (iv) is trivial. ��
Lemma 2.2 Let p ≥ 1 and f : [0,∞) → [0,∞) be a differentiable function. Then the
following are equivalent:

(i) ( f p),
(ii) t �→ t−p f (t) is increasing,
(iii) λp f (t) ≤ f (λt) for all λ ≥ 1,
(iv) f (λt) ≤ λp f (t) for all λ ≤ 1.

Proof The proof works exactly like the proof of Lemma 2.1. ��
The following lemma provides a useful property of convex functions.

Lemma 2.3 Let f : [0,∞) → [0,∞) be convex and f (0) = 0. Then, the function t �→
f (t)/t is increasing. If f is differentiable, then f satisfies ( f p) with p = 1.

Proof The assertions follow from f (λt) = f (λt + (1 − λ)0) ≤ λ f (t) + (1 − λ) f (0) and
Lemma 2.2 with p = 1. ��

As a consequence we obtain some doubling-type inequalities for f ′. These inequalities
play an important role for the tail estimates in the upcoming regularity theory.

Corollary 2.4 Let 1 ≤ p ≤ q and let f : [0,∞) → [0,∞) be a function satisfying ( f qp ).
Then,

p

q
λp−1 f ′(t) ≤ f ′(λt) ≤ q

p
λq−1 f ′(t) for all λ ≥ 1, (2.2)

p

q
λq−1 f ′(t) ≤ f ′(λt) ≤ q

p
λp−1 f ′(t) for all λ ≤ 1, (2.3)

123



Regularity for nonlocal problems... Page 7 of 31 227

and

1

2
f ′(t) + 1

2
f ′(s) ≤ f ′(t + s) ≤ q

p
2q−1( f ′(t) + f ′(s)) (2.4)

for all t, s ≥ 0.

Proof For the second inequality in (2.2), we compute using ( f qp ) and Lemma 2.1

f ′(λt) ≤ q
f (λt)

λt
≤ qλq−1 f (t)

t
≤ q

p
λq−1 f ′(t).

The first inequality in (2.2) and (2.3) can be proved in the same way. The first estimate in
(2.4) is a direct consequence of monotonicity of f ′. For the second estimate in (2.4), we may
assume that t ≤ s. Then, we obtain

f ′(t + s) ≤ q
f (t + s)

(t + s)p
(t + s)p−1 ≤ q

f (2s)

2s
≤ q2q−1 f (s)

s
≤ q

p
2q−1( f ′(t) + f ′(s))

by using ( f qp ), Lemmas 2.1 and 2.2. ��
Another useful property of convex functions is the following:

Lemma 2.5 Let f : [0,∞) → [0,∞) be convex and f (0) = 0. Let c > 1 and assume that
for some t, s > 0 it holds that f (t) ≤ c f (s). Then t ≤ cs.

Proof Let t, s > 0 be such that f (t) ≤ c f (s). We assume that t > cs. Then by Lemmas 2.3
and 2.2 with p = 1, we have

f (s)

s
≤ f (cs)

cs
≤ f (t)

t
≤ c f (s)

t
<

c f (s)

cs
= f (s)

s
.

This is a contradiction, so it must hold that t ≤ cs, as desired. ��
One of the key ideas of proving Hölder regularity in [47] is to construct F , which is

a convex increasing function satisfying some growth conditions and the comparability of
g(t) := F(t p) and f (t). These properties are important in our framework as well but we
also need the comparability of the derivatives of these functions for the regularity estimates.

Proposition 2.6 (c.f. [30]) Let 1 ≤ p ≤ q and f : [0,∞) → [0,∞) be a convex, increasing,
and differentiable function satisfying f (0) = 0. Define F, g : [0,∞) → [0,∞) by

F(t) =
∫ t1/p

0

f (s)

s
ds and g(t) = F(t p). (2.5)

If f satisfies ( f qp ), then F is a convex increasing function satisfying

F(t) ≤ t F ′(t) ≤ q

p
F(t) (2.6)

and g is an increasing function satisfying

1

q
f (t) ≤ g(t) ≤ 1

p
f (t) (2.7)

1

q
f ′(t) ≤ g′(t) ≤ 1

p
f ′(t). (2.8)

123



227 Page 8 of 31 J. Chaker et al.

Proof First of all, the function F is well-defined by Lemma 2.3. The functions F and g are
increasing by definition. Moreover, F is convex since

F ′′(t) = 1

p2
t
1
p −2 f ′(t

1
p ) − 1

p
t−2 f (t

1
p ) ≥ 1

p
t−2 f (t

1
p ) − 1

p
t−2 f (t

1
p ) = 0

by ( f p). Thus, the first inequality in (2.6) follows from Lemma 2.3. The second inequality
follows from

F(λt) =
∫ (λt)1/p

0

f (s)

s
ds =

∫ t1/p

0

f (λ1/ps)

s
ds ≤ λq/p

∫ t1/p

0

f (s)

s
ds = λq/pF(t)

for λ ≥ 1, where we used Lemma 2.1. By ( f qp ) we have

p
f (s)

s
≤ f ′(s) ≤ q

f (s)

s
,

and after integrating from 0 to t and using that f (0) = 0, we deduce (2.7). Finally, we

compute

pg′(t) = p
f (t)

t
≤ f ′(t) ≤ q

f (t)

t
= qg′(t),

using ( f qp ) from where (2.8) follows. ��
We close this subsection with two estimates for convex functions. Lemmas 2.7 and 2.8

are generalizations of [17, Lemma 4.1 and 4.2].

Lemma 2.7 Let f : [0,∞) → [0,∞) be convex, differentiable and f (0) = 0. Then, for any
θ ∈ [0, 1] and a, b ≥ 0:

f (a + b) − f (a) ≥ θ f ′(a)b + (1 − θ) f (b).

Proof The result is clear for θ = 0 by the superadditivity of convex functions with f (0) = 0.
For θ = 1, we compute

f (a + b) − f (a) =
∫ a+b

a
f ′(τ ) dτ ≥ f ′(a)b,

wherewe used the fact that t �→ f ′(t) is increasing since f is convex. The result for θ ∈ (0, 1)
follows by interpolation. ��
Lemma 2.8 Let f : [0,∞) → [0,∞) be convex, increasing and differentiable. Then, for
every μ ∈ [0, 1] and a, b ≥ 0:

f (|μa − b|) − f (|a − b|) ≤ f ′(b)a.

Proof Let us first assume that b ≥ a. Then

f (|μa − b|) − f (|a − b|) =
∫ b−μa

b−a
f ′(τ ) dτ ≤ f ′(b − μa)a(1 − μ) ≤ f ′(b)a.

If on the other hand μa ≤ b < a, then

f (|μa − b|) − f (|a − b|) =
∫ b−μa

a−b
f ′(τ ) dτ ≤ f ′(b − μa)(2b − (1 + μ)a) ≤ f ′(b)a.

It remains to consider the case b < μa, but then f (|μa − b|) − f (|a − b|) ≤ 0, so there is
nothing to prove. ��

123
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2.2 Functional inequalities

In this section, we collect some well-known functional inequalities which are useful for the
application of De Giorgi’s methods for nonlocal operators. While the first three results are
embeddings for fractional Sobolev spaces, the last proposition is a fractional isoperimetric
inequality.

Lemma 2.9 [17, Lemma 4.6] Let 0 < σ̃ < σ < 1 and 1 ≤ p̃ < p. Let �′ ⊂ � ⊂ R
d be

two bounded measurable sets, then for any u ∈ W σ,p(�)

(∫
�′

∫
�

|u(x) − u(y)| p̃
|x − y|d+σ̃ p̃

dy dx

)1/ p̃

≤ C |�′| p− p̃
p p̃ diam(�)σ−σ̃

(∫
�′

∫
�

|u(x) − u(y)|p
|x − y|d+σ p

dy dx

)1/p

,

where

C =
(

d(p − p̃)

(σ − σ̃ )p p̃
|B1|

) p− p̃
p p̃

.

Theorem 2.10 [17, Corollary 4.9] Let 0 < s0 ≤ s < 1 and p ≥ 1 be such that sp < d. Let
u ∈ Ws,p

0 (BR) and assume u = 0 on a set � ⊂ BR with |�| ≥ γ |BR | for some γ ∈ (0, 1].
Then, there exists a constant C > 0, depending on d, s0, p and γ , such that

‖u‖p
L p∗ (BR)

≤ C
1 − s

(d − sp)p−1

∫
BR

∫
BR

|u(x) − u(y)|p
|x − y|d+sp

dy dx .

Theorem 2.11 [4, 25, 51] Let 0 < s0 ≤ s < 1 and p ≥ 1 be such that sp < d. Let
u ∈ Ws,p(BR). Then, there exists a constant C > 0, depending on d, s0 and p, such that

‖u‖p
L p∗ (BR)

≤ C
1 − s

(d − sp)p−1

∫
BR

∫
BR

|u(x) − u(y)|p
|x − y|d+sp

dy dx + CR−sp‖u‖p
L p(BR).

Proposition 2.12 [17, Proposition 5.1] Let p > 1, C0 > 0 and γ, γ0 ∈ (0, 1). Then, there
exist constants s̄ ∈ (0, 1) and C > 0, depending on d, p, γ , γ0 and C0, such that if s ∈ [s̄, 1)
and if u ∈ Ws,p(BR) satisfies

|BR ∩ {u ≤ h}| ≥ γ |BR |, |BR ∩ {u ≥ k}| ≥ γ0|BR | and

‖u‖p
L p(BR) + (1 − s)Rsp[u]pWs,p(BR) ≤ C0R

d(k − h)p for k > h,

then

(k − h)
(
|BR ∩ {u ≤ h}||BR ∩ {u ≥ k}|

) d−1
d

≤ CRd−2+s(1 − s)1/p[u]Ws,p(BR)|BR ∩ {h < u < k}| p−1
p .

3 De Giorgi classes

In this section, we introduce fractional order Orlicz–Sobolev spaces and define fractional De
Giorgi classes governed by convex functions having non-standard growth.
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Fractional order Orlicz–Sobolev spaces have been introduced in [29] by Fernández Bon-
der and Salort. The authors prove several properties of the spaces including that the fractional
order Orlicz–Sobolev space approximates some Orlicz–Sobolev space as the fractional
parameter goes to 1. For further results concerning fractional Orlicz–Sobolev spaces, we
refer the reader to [1, 2, 9, 11, 24] and the references therein.

Let f : [0,∞) → [0,∞) be a convex increasing function satisfying ( f q) and f (0) = 0.
Let s ∈ (0, 1) and � ⊂ R

d be open. We define the Orlicz and Orlicz–Sobolev spaces by

L f (�) = {u : � → R measurable : 
L f (�)(u) < ∞},
Ws, f (�) = {u ∈ L f (�) : 
Ws, f (�)(u) < ∞},

V s, f (�|Rd) = {u ∈ L f (�) : 
V s, f (�)(u) < ∞},
where 
L f (�), 
Ws, f (�) and 
V s, f (�|Rd ) are modulars defined by


L f (�)(u) =
∫

�

f (|u(x)|) dx,


Ws, f (�)(u) = (1 − s)
∫

�

∫
�

f

( |u(x) − u(y)|
|x − y|s

)
dy dx

|x − y|d ,


V s, f (�|Rd )(u) = (1 − s)
∫∫

(�c×�c)c
f

( |u(x) − u(y)|
|x − y|s

)
dy dx

|x − y|d .

Under more restrictive assumptions on f (for instance f being an Orlicz function), L f (�),
Ws, f (�), and V s, f (�|Rd) are Banach spaces endowed with the norms

‖u‖L f (�) = inf{λ > 0 : 
L f (�)(u/λ) ≤ 1},
‖u‖Ws, f (�) = ‖u‖L f (�) + [u]Ws, f (�) = ‖u‖L f (�) + inf{λ > 0 : 
Ws, f (�)(u/λ) ≤ 1},

‖u‖V s, f (�|Rd ) = ‖u‖L f (�) + [u]V s, f (�|Rd ) = ‖u‖L f (�) + inf{λ > 0 : 
V s, f (�|Rd )(u/λ) ≤ 1}.
For details, see [1, 9, 29].

Let us next define nonlocal tails, which capture the behavior of functions u ∈ V s, f (�|Rd)

at large scales. For this purpose, we consider a convex and differentiable function f and a
generalized inverse function of its derivative f ′. There are several definitions of generalized
inverse functions in the literature, see [22, 27], but we use the following definition for a
generalized inverse of f ′:

( f ′)−1(y) = inf{t : f ′(t) ≥ y}. (3.1)

The advantage of this definition is that (3.1) enjoys the following properties, which play an
important role in the proof of regularity estimates.

Proposition 3.1 Let f : [0,∞) → [0,∞) be a convex and differentiable function. Then

( f ′ ◦ ( f ′)−1)(y) ≥ y for all y ≥ 0, (3.2)

(( f ′)−1 ◦ f ′)(t) ≤ t for all t ≥ 0. (3.3)

Proof To prove (3.2), let y ≥ 0 and t = ( f ′)−1(y). Then, there exists a sequence (tn)n≥1

such that tn ≥ t , tn → t , and f ′(tn) ≥ y. Since f ′ is continuous by Darboux’s theorem,
we obtain f ′(t) ≥ y by taking the limit n → ∞. Assertion (3.3) is obvious by definition of
( f ′)−1. ��
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We define the nonlocal f ′-Tail by

Tail f ′(u; x0, R) = Rs( f ′)−1
(

(1 − s)Rs
∫
Rd\BR(x0)

f ′
( |u(y)|

|y − x0|s
)

dy

|y − x0|d+s

)
.

(3.4)

Note that Tail f ′ coincides with the standard tail considered in [17, 19, 20] in the special
case f (t) � t p . Moreover, it is natural in the sense that the following scaling property is
satisfied:

Tail f ′(u; x0, R) = Tail f ′(·/Rs )(u(R·); x0/R, 1).

We claim that the nonlocal f ′-Tail is well-defined for functions in the fractional Orlicz–
Sobolev space V s, f (�|Rd). To this end, we define the Legendre transform f ∗ : [0,∞) →
[0,∞) by f ∗(s) = supt∈[0,∞)(st − f (t)). It is well known that

( f ∗( f ′))(t) = f ′(t)t − f (t) (3.5)

and that

st ≤ f (t) + f ∗(s), for all t, s ≥ 0. (3.6)

Inequality (3.6) is called Fenchel’s inequality.

Proposition 3.2 Let q > 1, s ∈ (0, 1) and � ⊂ R
d be open. Let f : [0,∞) → [0,∞)

be a convex increasing function satisfying ( f q) and f (0) = 0. If u ∈ V s, f (�|Rd) and
BR(x0) ⊂ �, then Tail f ′(u; x0, R) < ∞.

Proof Let u ∈ V s, f (�|Rd) and BR(x0) ⊂ �. We may assume that x0 = 0. In order to prove
finiteness of the tail, it is sufficient to show that

∫
Rd\BR

f ′
( |u(y)|

|y|s
)

dy

|y|d+s
< ∞. (3.7)

Since BR ⊂ � and |x − y| ≤ 2|y| for x ∈ BR , y ∈ Bc
R , we have

∞ > 
L f (�)(u) + 
V s, f (�|Rd )(u)

≥
∫
BR

f (|u(x)|) dx + C(1 − s)
∫∫

BR×Bc
R

f

( |u(x) − u(y)|
|y|s

)
dy dx

|y|d
(3.8)

by using ( f q) and Lemma 2.1. Our aim is to estimate the right-hand side of (3.8) from
below by the expression in (3.7). Note that by Lemmas 2.3, 2.2 and ( f q): f (|u(x)|)(|y|−s ∨
|y|−sq) ≥ f (|y|−s |u(x)|). Therefore,

f (|u(x)|)(|y|−s ∨ |y|−sq) + f

( |u(x) − u(y)|
|y|s

)
≥ C f

( |u(x)| + |u(x) − u(y)|
|y|s

)

≥ C f

( |u(y)|
|y|s

)
,

where we also used f (t+s) ≤ 2q( f (t)+ f (s)). This is a direct consequence ofmonotonicity
and ( f q). Since

∫
Bc
R

|y|−d(|y|−s ∨ |y|−sq) dy < ∞, we estimate the right-hand side of (3.8)
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227 Page 12 of 31 J. Chaker et al.

by ∫∫
BR×Bc

R

f (|u(x)|) dy dx

|y|d(|y|s ∧ |y|sq) + (1 − s)
∫∫

BR×Bc
R

f

( |u(x) − u(y)|
|y|s

)
dy dx

|y|d

≥ C
∫∫

BR×Bc
R

f

( |u(y)|
|y|s

)
dy dx

|y|d ≥ C
∫
Bc
R

f

( |u(y)|
|y|s

)
dy

|y|d .

Altogether, ∫
Bc
R

f

( |u(y)|
|y|s

)
dy

|y|d < ∞. (3.9)

Note that we have ( f ∗( f ′))(t) ≤ (q − 1) f (t) by (3.5) and ( f q). Therefore, we obtain∫
Bc
R

f ′
( |u(y)|

|y|s
)

dy

|y|d+s
≤

∫
Bc
R

f ∗
(
f ′

( |u(y)|
|y|s

))
dy

|y|d +
∫
Bc
R

f

(
1

|y|s
)

dy

|y|d

≤ C
∫
Bc
R

f

( |u(y)|
|y|s

)
dy

|y|d + C,

wherewe usedFenchel’s inequality (3.6). Combining the previous estimatewith (3.9) finishes
the proof. ��

Having defined the fractional order Orlicz–Sobolev spaces, we are ready to introduce De
Giorgi classes that are suitable to our setting.

Definition 3.3 Let q > 1, c > 0, s ∈ (0, 1), and let � be open. Let f : [0,∞) �→ [0,∞)

be convex and differentiable with f (0) = 0, f (1) = 1. We say that u ∈ G+(�; q, c, s, f )
if u ∈ V s, f (�|Rd) and if for every x0 ∈ �, 0 < r < R ≤ d(x0, ∂�), k ∈ R, it holds


Ws, f (Br (x0))(w+) + (1 − s)
∫
Br (x0)

∫
A−
k

f ′
(

w−(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d

≤ c

(
R

R − r

)q


L f (BR(x0))

(w+
Rs

)

+ c(1 − s)

(
R

R − r

)d+sq

‖w+‖L1(BR(x0))

∫
Rd\Br (x0)

f ′
(

w+(y)

|y − x0|s
)

dy

|y − x0|d+s
,

(3.10)

where w±(x) = (u(x) − k)± and A−
k = {y ∈ R

d : u(y) < k}. We say that
u ∈ G−(�; q, c, s, f ) if (3.10) holds true with w+, w− and A−

k replaced by w−, w+
and A+

k = {y ∈ R
d : u(y) > k}, respectively. Moreover, we denote by G(�; q, c, s, f ) =

G+(�; q, c, s, f ) ∩ G−(�; q, c, s, f ).

The De Giorgi classes under consideration will contain minimizers of (1.1) and weak
solutions for (1.7) under suitable additional assumptions on f , see Theorems 6.2 and 7.3.

The following proposition allows us to infer Hölder regularity of minimizers of I f from
regularity of functions in G(�; q, c, s, F(·p)), where F is as in Proposition 2.6.

Proposition 3.4 Let 1 < p ≤ q, s ∈ (0, 1) and � ⊂ R
d be open. Let f : [0,∞) �→ [0,∞)

be convex and increasing with ( f qp ). Then for every c1 > 0, there exists c2 = c2(c1, p, q) > 0
such that G±(�; q, c1, s, f ) ⊂ G±(�; q, c2, s, F(·p)).
Proof The proof follows directly from (2.7) and (2.8). ��
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4 Hölder estimate

In this section,weproveHölder estimates for functions in theDeGiorgi classG(�; q, c, s, g),
where g is the function given by (2.5). Let us first prove a growth lemma for functions in
G−(�; q, c, s, g).

Theorem 4.1 Let 1 < p ≤ q, c, H > 0, R > 0, s0 ∈ (0, 1) and assume s ∈ [s0, 1).
Let f : [0,∞) → [0,∞) be a convex increasing function satisfying ( f qp ). Suppose that
B4R = B4R(x0) ⊂ �. Let u ∈ G−(�; q, c, s, g) satisfy u ≥ 0 in B4R and

|B2R ∩ {u ≥ H}| ≥ γ |B2R | (4.1)

for some γ ∈ (0, 1). There exists δ ∈ (0, 1) such that if

Tail f ′(u−; x0, 4R) ≤ δH , (4.2)

then

u ≥ δH in BR . (4.3)

The constant δ depends only on d, s0, p, q, c and γ .

Proof Within the proof we use C > 0 to denote a constant depending on d , s0, p, q , c and
γ and whose value might change from line to line. We may assume that x0 = 0.

Let us assume

|B2R ∩ {u < 2δH}| ≤ γ0|B2R | (4.4)

for some γ0 ∈ (0, 2−d−1]. We first prove the assertion of the lemma under the assumption
(4.4) and then verify (4.4) using (4.1).

Let 0 < σ̃ := max{s0/4, 2s − 1} < σ := max{s0/2, (3s − 1)/2} < s. Then, we have

1 − σ̃ ≤ 2(1 − s), 1 − σ ≤ 3

2
(1 − s) and σ − σ̃ ≥ C(1 − s) (4.5)

for some C = C(s0) > 0. Indeed, for the last inequality in (4.5), we observe that

s0/4 ≥ 2s − 1 �⇒ σ − σ̃ ≥ s0
4

≥ s0
4(1 − s0)

(1 − s) and

s0/4 < 2s − 1 �⇒ σ − σ̃ ≥ 3s − 1

2
− (2s − 1) = 1

2
(1 − s).

Let δ ∈ (0, 1/8) to be determined later. Let δH ≤ h < k ≤ 2δH , R ≤ ρ < τ ≤ 2R and
define w± = (u − k)±, A−

k,R = {x ∈ BR : u(x) < k} = supp(w−) ∩ BR . By (4.4) we have

|Bρ ∩ {w− = 0}| ≥ |Bρ | − |B2R ∩ {u < 2δH}| ≥ |Bρ | − γ0|B2R |

=
(
1 − γ0

(
2R

ρ

)d
)

|Bρ | ≥ 1

2
|Bρ |.

Thus, we apply Theorem 2.10 to w to obtain

(k − h)|A−
h,ρ | d−σ̃

d ≤
(∫

Bρ

w−(x)
d

d−σ̃ dx

) d−σ̃
d

≤ C(1 − σ̃ )

∫
Bρ

∫
Bρ

|w−(x) − w−(y)|
|x − y|d+σ̃

dy dx .
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227 Page 14 of 31 J. Chaker et al.

Moreover, by (4.5) and Lemma 2.9 we have

(k − h)|A−
h,ρ | d−σ̃

d ≤ C(1 − s)
∫
A−
k,ρ

∫
Bρ

|w−(x) − w−(y)|
|x − y|d+σ̃

dy dx

≤ Cρσ−σ̃ |A−
k,τ |

p−1
p

(
(1 − s)

∫
A−
k,ρ

∫
Bρ

|w−(x) − w−(y)|p
|x − y|d+σ p

dy dx

)1/p

,

or equivalently,

(k − h)p|A−
h,ρ | d−σ̃

d p

C |A−
k,τ |p−1ρ(σ−σ̃ )pμ(A−

k,ρ × Bρ)
≤

∫
—A−

k,ρ×Bρ

|w−(x) − w−(y)|p
|x − y|sp μ(dX),

where μ(dX) = (1− s)|x − y|−d+(s−σ)p dy dx . Since F is increasing and convex, Jensen’s
inequality yields

F

⎛
⎝ (k − h)p|A−

h,ρ | d−σ̃
d p

C |A−
k,τ |p−1ρ(σ−σ̃ )pμ(A−

k,ρ × Bρ)

⎞
⎠ ≤

∫
—A−

k,ρ×Bρ
F

( |w−(x) − w−(y)|p
|x − y|sp

)
μ(dX)

≤ Cρ(s−σ)p

μ(A−
k,ρ × Bρ)


Ws,g(Bρ)(w−).

(4.6)

By definition of G−(�; q, c, s, g), we have


Ws,g(Bρ)(w−) + (1 − s)
∫
Bρ

∫
A+
k

g′
(

w+(y)

|x − y|s
)

w−(x)

|x − y|s
dy dx

|x − y|d

≤ c

(
τ

τ − ρ

)q


Lg(Bτ )

(w−
τ s

)

+ c(1 − s)

(
τ

τ − ρ

)d+sq

‖w−‖L1(Bτ )

∫
Rd\Bρ

g′
(

w−(y)

|y|s
)

dy

|y|d+s
,

where A+
k = {y ∈ R

d : u(y) < k}. Let us estimate the right-hand side of this inequality.
Using the assumptions that u ≥ 0 in B4R and the fact that F is increasing, we estimate
‖w−‖L1(Bτ ) ≤ C |A−

k,τ |k and


Lg(Bτ )

(w−
τ s

)
≤ C |A−

k,τ |F
((

k

Rs

)p)
.

Moreover, using (2.8) and (2.4), we obtain

(1 − s)
∫
Rd\Bρ

g′
(

w−(y)

|y|s
)

dy

|y|d+s
≤ C(1 − s)

∫
Rd\Bρ

(
f ′

(
k

Rs

)
+ f ′

(
u−(y)

|y|s
))

dy

|y|d+s
.

The first term is controlled by CR−s f ′(k/Rs). For the second term, we use (4.2), (3.2) and
δH < k to obtain

C(1 − s)
∫
Rd\Bρ

f ′
(
u−(y)

|y|s
)

dy

|y|d+s
≤ C

Rs
f ′

(
δH

Rs

)
≤ C

Rs
f ′

(
k

Rs

)
. (4.7)

Note that the integral over B4R \ Bρ vanishes since u− = 0 in B4R and f ′(0) = 0 by ( f p).
Furthermore, we have

1

Rs
f ′

(
k

Rs

)
≤ C

k
f

(
k

Rs

)
≤ C

k
F

((
k

Rs

)p)
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by ( f q) and (2.7). Therefore, we have estimated


Ws,g(Bρ)(w−) + (1 − s)
∫
Bρ

∫
A+
k

g′
(

w+(y)

|x − y|s
)

w−(x)

|x − y|s
dy dx

|x − y|d

≤ C

(
τ

τ − ρ

)d+q

|A−
k,τ |F

((
k

Rs

)p)
.

(4.8)

Combining (4.6) and (4.8), we can find a constant C > 0, depending on d , s0, p, q , c and
γ , such that

F

⎛
⎝ (k − h)p|A−

h,ρ | d−σ̃
d p

C |A−
k,τ |p−1ρ(σ−σ̃ )pμ(A−

k,ρ × Bρ)

⎞
⎠ ≤ Cρ(s−σ)p|A−

k,τ |
μ(A−

k,ρ × Bρ)

(
τ

τ − ρ

)d+q

F

((
k

Rs

)p)
.

Using Lemma 2.5, we deduce that

(k − h)|A−
h,ρ | d−σ̃

d ≤ C

(
τ

τ − ρ

) d+q
p k

Rσ̃
|A−

k,τ |. (4.9)

Note that Lemma 2.5 is applicable because μ(A−
k,ρ × Bρ) ≤ C |A−

k,ρ |ρ(s−σ)p and therefore

Cρ(s−σ)p|A−
k,τ |

μ(A−
k,ρ × Bρ)

(
τ

τ − ρ

)d+q

≥ C |A−
k,τ |

|A−
k,ρ | ≥ C .

We iterate inequality (4.9) with k = k j , h = k j+1, ρ = R j+1, and τ = R j , where

R j = (1 + 2− j )R and k j = (1 + 2− j )δH

for j ∈ N ∪ {0}. Let y j = |A−
k j ,R j

|/|BRj |, then
δH

2 j+1

(
y j+1|BRj+1 |

) d−σ̃
d ≤ C2

d+q
p j δH

Rσ̃
y j |BRj |.

In other words, we have y j+1 ≤ Cb j yd/(d−σ̃ )
j ≤ Cb j max{y1+β1

j , y1+β2
j }, where

β1 = 1

d − 1
, β2 = s0/4

d − s0/4
, and b = 2(

d+q
p +1) d

d−1 .

Thus, y j → 0 as j → ∞, provided that y0 ≤ min{C−1/β2b−1/β2
2 ,C−1/β1b−1/β2

1 }. See [15,
Lemma 4.4]. By taking γ0 ≤ min{C−1/β2b−1/β2

2 ,C−1/β1b−1/β2
1 }, we conclude (4.3) from

(4.4).
Let us next prove (4.4) by contradiction using the assumption (4.1). Suppose that (4.4)

does not hold, i.e.,

|B2R ∩ {u < 2δH}| > γ0|B2R |. (4.10)

Let s̄ be the constant given in Proposition 2.12. We distinguish two cases s ∈ [s̄, 1) and
s ∈ (0, s̄). For the first case, we let l be the unique integer such that 2−l−1 ≤ δ < 2−l

and set ki = 2−i H for i = 0, 1, . . . , l − 1. To apply Proposition 2.12 to (u − ki−1)− with
h = ki−1 − ki and k = ki−1 − ki+1, we check the following conditions: By (4.1) and (4.10)

|B2R ∩ {(u − ki−1)− ≤ h}| = |B2R ∩ {u ≥ ki }| ≥ |B2R ∩ {u ≥ H}| ≥ γ |B2R | (4.11)

123



227 Page 16 of 31 J. Chaker et al.

and

|B2R ∩ {(u − ki−1)− ≥ k}| = |B2R ∩ {u ≤ ki+1}| ≥ |B2R ∩ {u < 2δH}| > γ0|B2R |
for i = 1, . . . , l − 2. Moreover, we prove that there is a constant C > 0 such that

‖(u − ki−1)−‖p
L p(BR) + (1 − σ)Rσ p[(u − ki−1)−]pW σ,p(BR) ≤ CRd(ki − ki+1)

p.

Indeed, it follows from u ≥ 0 in B4R that

‖(u − ki−1)−‖p
L p(BR) ≤ CRdk pi−1.

The estimate

(1 − σ)Rσ p[(u − ki−1)−]pW σ,p(BR) ≤ CRdk pi−1 (4.12)

follows from (4.5) and the computation

F

(∫
—BR×BR

|(u(x) − ki−1)− − (u(y) − ki−1)−|p
|x − y|sp dμ(X)

)

≤ R(s−σ)p

μ(BR × BR)
(1 − s)

∫
BR

∫
BR

F

( |(u(x) − ki−1)− − (u(y) − ki−1)−|p
|x − y|sp

)
dy dx

|x − y|d

≤ C
R(s−σ)p

μ(BR × BR)
|B2R ∩ {u ≤ ki−1}|F

((
ki−1

Rs

)p)
, (4.13)

which can be obtained along the lines of the first part of this proof. Estimating |B2R ∩ {u ≤
ki−1}| ≤ CRd and applying Lemma 2.5, we obtain (4.12), as desired.

Therefore, by applying Proposition 2.12 and using (4.11) we have

(ki − ki+1)
p|B2R ∩ {u ≤ ki+1}| d−1

d p ≤ C(1 − σ)R(−1+σ)p[(u − ki−1)−]pW σ,p(B2R)|Di |p−1,

where Di = B2R ∩ {h ≤ (u − ki−1)− < k} = B2R ∩ {ki+1 < u ≤ ki }. Using (4.12) and
ki+1 ≥ 2δH , we obtain

|B2R ∩ {u ≤ 2δH}| d−1
d

p
p−1 ≤ CR

d−p
p−1 |Di |.

We sum up this inequality over i = 1, . . . , l − 2 to derive

(l − 2)|B2R ∩ {u ≤ 2δH}| d−1
d

p
p−1 ≤ CR

d−p
p−1 Rd ,

from which we conclude by definition of l

|B2R ∩ {u ≤ 2δH}| ≤ C |B2R || log δ|− d
d−1

p−1
p .

Therefore, we arrive at a contradiction by using (4.10) and taking δ sufficiently small. The
proof for the case s ∈ [s̄, 1) is finished.

For the case s ∈ (0, s̄), we use the estimate (4.8) with k = 4δH to obtain

CRd F

((
4δH

Rs

)p)
≥ (1 − s̄)

∫
B2R

∫
A+
4δH ,2R

g′
(

w+(y)

|x − y|s
)

w−(x)

|x − y|s
dy dx

|x − y|d

≥ C

Rd+s

(∫
B2R∩{u≥H}

g′
(
u(y) − 4δH

(2R)s

)
dy

) (∫
B2R∩{u<2δH}

(4δH − u(x)) dx

)

≥ C

Rd
2δ

H

4Rs
g′

(
H

4Rs

)
|B2R ∩ {u ≥ H}||B2R ∩ {u < 2δH}|.
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By (4.1) and (4.10), we obtain

δF

((
H

4Rs

)p)
≤ CF

((
4δH

Rs

)p)
,

where we also used (2.8), ( f p) and (2.7). Therefore, by Lemma 2.5 we obtain δ ≤ Cδ p .
Since p > 1, we arrive at a contradiction by taking δ sufficiently small. ��

Using Theorem 4.1, we prove Hölder estimates for functions in G(�; q, c, s, g).

Theorem 4.2 Let 1 < p ≤ q, c > 0, s0 ∈ (0, 1), and assume s ∈ [s0, 1). Let f : [0,∞) →
[0,∞) be a convex increasing function satisfying ( f qp ). Then, there exist α ∈ (0, 1) and
C > 0, depending on d, s0, p, q and c, such that for every u ∈ G(�; q, c, s, g) and any
B8R(x0) ⊂ �,

Rα[u]Cα(BR(x0))
≤ C‖u‖L∞(B4R(x0)) + Tail f ′(u; x0, 4R).

Proof Let B8R(x0) ⊂ �. We may assume that x0 = 0 and that ‖u‖L∞(B4R) < ∞. The idea
of the proof is to find a small constant α ∈ (0, 1) and to construct a non-increasing sequence
(Mj ) and a non-decreasing sequence (m j ) satisfying

m j ≤ u ≤ Mj in B4R j and Mj − m j = L4−α j , (4.14)

for all j ≥ 0, where R j = 4− j R and

L = C0‖u‖L∞(B4R) + Tail f ′(u; 0, 4R)

for someC0 > 0. Once we construct such sequences, the desired result follows by a standard
argument.

We set Mj = 4−α j L/2 and m j = −4−α j L/2 for j = 0, 1, . . . , j0 for some j0 ∈ N to be
determined later. Moreover, we take C0 sufficiently large so that C0 ≥ 2 · 4α j0 . This ensures
that Mj and m j satisfy (4.14) up to j0. Let us now fix j ≥ j0 and suppose that the sequences
(Mj ) and (m j ) have been constructed up to j . It is enough to construct Mj+1 and m j+1

satisfying (4.14). We first assume

|B2R j ∩ {u ≥ m j + (Mj − m j )/2}| ≥ 1

2
|B2R j |. (4.15)

In this case,we define v = u−m j and set H = (Mj−m j )/2 = 4−α j L/2. Then, 0 ≤ v ≤ 2H
in B4R j and

|B2R j ∩ {v ≥ H}| ≥ 1

2
|B2R j |.

To apply Theorem 4.1 to v, we let δ be the constant in Theorem 4.1 and verify (4.2). Indeed,
it is easy to see that

v(y) ≥ −2H

(( |y|
R j

)α

− 1

)

for y ∈ B4R \ B4R j and v(y) ≥ −|u(y)| − L/2 for y ∈ R
d \ B4R . Thus, using (2.4)∫

Rd\B4R j

f ′
(

v−(y)

|y|s
)

|y|−d−s dy

≤ C
∫
B4R\B4R j

f ′
(
2H((|y|/R j )

α − 1)

|y|s
)

dy

|y|d+s
+ C

∫
Rd\B4R

f ′
( |u(y)| + L/2

|y|s
)

dy

|y|d+s

=: J1 + J2.
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Using the change of variables, we obtain

J1 ≤ C

Rs
j

∫
Rd\B4

f ′
(
2H(|y|α − 1)

Rs
j |y|s

)
dy

|y|d+s
≤ C

Rs
j

∫ ∞

4
f ′

(
2H(ρα − 1)

Rs
jρ

s

)
dρ

ρ1+s
.

By (2.2) and (2.3) we have

f ′
(
2H(ρα − 1)

Rs
jρ

s

)
≤ q

p
max

{(
8(ρα − 1)

δρs

)q−1

,

(
8(ρα − 1)

δρs

)p−1
}

f ′
(

δH

(4R j )s

)
,

and hence

J1 ≤ C

(4R j )s

(∫ ∞

4

(ρα − 1)q−1

ρ1+s0 p
dρ

)
f ′

(
δH

(4R j )s

)
.

Taking α = α(d, s0, p, q) ∈ (0, 1) sufficiently small so that

C
∫ ∞

4

(ρα − 1)q−1

ρ1+s0 p
dρ ≤ 1

2
, (4.16)

we obtain

J1 ≤ 1

2
(4R j )

−s f ′
(

δH

(4R j )s

)
.

For J2, we use (2.4) to deduce

J2 ≤ C

(∫
Rd\B4R

f ′
( |u(y)|

|y|s
)

dy

|y|d+s
+

∫
Rd\B4R

f ′
(
L/2

|y|s
)

dy

|y|d+s

)
.

Since L ≥ Tail f ′(u; 0, 4R), it follows from (3.2) and the definition of H
∫
Rd\B4R

f ′
( |u(y)|

|y|s
)

dy

|y|d+s
≤ R−s f ′

(
L

Rs

)
= R−s f ′

(
2H4α j

Rs

)
.

Choosing j0 sufficiently large so that 8 ·4(α−s0) j0 ≤ δ̃, for some δ̃ < δ to be determined later,
we have

R−s f ′
(
2H4α j

Rs

)
≤ (4R j )

−s f ′
(

δ̃H

(4R j )s

)
.

Similarly, by (2.3)
∫
Rd\B4R

f ′
(
L/2

|y|s
)

dy

|y|d+s
= 1

Rs

∫
Rd\B4

f ′
(

L/2

Rs |y|s
)

dy

|y|d+s

≤ C1

(∫
Rd\B4

|y|−s(p−1) dy

|y|d+s

)
1

Rs
f ′

(
L

Rs

)

≤ C2(4R j )
−s f ′

(
δ̃H

(4R j )s

)

for some C1,C2 ≥ 1 depending on d , s0 and p. We now choose δ̃ = (2q+1C2)
− 1

p−1 δ > 0,
and obtain:

(1 − s)
∫
Rd\B4R j

f ′
(

v−(y)

|y|s
)

|y|−d−s dy ≤ J1 + J2 ≤ (4R j )
−s f ′

(
δH

(4R j )s

)
.
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This inequality together with (3.3) verify (4.2) and allow us to apply Theorem 4.1 to v.
Therefore, we obtain v ≥ δH in BRj , which implies

u ≥ m j + δH = m j + 4−α j δ

2
L ≥ m j + 4−α j (1 − 4−α)L in BRj ,

upon choosing α ∈ (0, 1) so small that it satisfies (4.16) and α < log4
(

2
2−δ

)
.

Therefore, we define Mj+1 = Mj and m j+1 = m j + 4−α j (1− 4−α)L in the case (4.15).
The other case can be proved in a similar way. ��

5 Local boundedness

The goal of this section is to prove local boundedness of functions u ∈ G(�; q, c, s, f ).
More precisely, we prove that a function u ∈ G+(�; q, c, s, f ) is locally bounded from
above. Similarly, one can prove that functions u ∈ G−(�; q, c, s, f ) are locally bounded
from below by considering −u.

Theorem 5.1 Let 1 ≤ p ≤ q < p∗, s0 ∈ (0, 1), c0, c1 > 0 and assume s ∈ [s0, 1). Let
f : [0,∞) → [0,∞) be a convex increasing function satisfying ( f q) and ( f � t p). If u ∈
G+(�; q, c1, s, f ), then u is locally bounded from above. Moreover, for each B2R(x0) ⊂ �,
there exists C > 0 such that for every δ ∈ (0, 1)

sup
BR(x0)

u ≤ δTail f ′(u+; x0, R) + Cδ
−(q−1) p∗

p
1

p∗−q

(∫
—B2R(x0)u

q
+(x) dx

) 1
p

p∗−p
p∗−q + δ

q−1
q .

The constant C depends on d, s0, p, q, p∗ − q, c0, c1 and R.

Note that p = 1 is allowed in the proof of local boundedness.

Proof Let x0 ∈ � and R > 0 be such that B2R(x0) ⊂ �. We assume without loss of
generality that x0 = 0. For j = 0, 1, . . . , let

R j = (1 + 2− j )R, k j = (1 − 2− j )k, and k̃ j = (k j + k j+1)/2,

where k is an arbitrary positive number that will be determined later. We define w j =
(u − k j )+, w̃ j = (u − k̃ j )+, A+

k,R = {x ∈ BR : u(x) > k}, and

Y j =
∫
—BR j

w
q
j (x) dx .

Since u ∈ G+(�; q, c1, s, f ), using the assumptions ( f q) and ( f � t p) we have

(1 − s)[w̃ j ]pWs,p(BR j+1 ) ≤ C2q j

⎛
⎝

∫
A+
k̃ j ,R j

(
w̃ j (x)

Rs

)q

dx + |A+
k̃ j ,R j

|
⎞
⎠

+ C(1 − s)2(d+sq) j‖w̃ j‖L1(BR j )

∫
Rd\BR j+1

f ′
(

w̃ j (y)

|y|s
)

dy

|y|d+s

=: J1 + J2
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for some C = C(d, q, c0, c1) > 0. Since

|A+
k̃ j ,R j

| ≤ 1

(k̃ j − k j )q

∫
A+
k̃ j ,R j

w
q
j (x) dx ≤ C

(
2 j

k

)q

Y j

and w̃ j ≤ w j , by assuming k ≥ δ
q−1
q we have

J1 ≤ Cδ−(q−1)22q j Y j

for some C = C(d, q, c0, c1, R) > 0. For J2, we observe

(2− j−2k)q−1w̃ j = (k̃ j − k j )
q−1w̃ j ≤ w

q
j

and Tail f ′(w̃ j ; 0, R j+1) ≤ Tail f ′(u+; 0, R). Fix δ ∈ (0, 1) and assume

k ≥ δTail f ′(u+; 0, R) + δ
q−1
q . (5.1)

Then, using (5.1), (3.2), (1.2) and f (1) = 1, we deduce

J2 ≤ C2(d+sq) j
Rd
j

(2− j−2k)q−1 Y j
1

Rs
j+1

f ′
(

k

δRs
j+1

)

≤ C2(d+sq) j 2
(q−1) j

kq−1

(1 + ( k
δRs )

q)

k
δRs

Y j ≤ C2(d+2q) jδ−(q−1)Y j

for some constant C = C(d, q, c0, c1, s0) > 0. Combining the estimates of J1 and J2, we
arrive at

(1 − s)[w̃ j ]pWs,p(BR j+1 ) ≤ C2(d+2q) jδ−(q−1)Y j .

Using Theorem 2.11 and the inequality w̃
p∗
j ≥ (k j+1 − k̃ j )p

∗−qw
q
j+1, we deduce

(k j+1 − k̃ j )
(p∗−q)p/p∗

Y p/p∗
j+1 ≤ C‖w̃ j‖p

L p∗ (BR j+1 )

≤ C

(
‖w̃ j‖p

L p(BR j+1 ) + (1 − s)[w̃ j ]pWs,p(BR j+1 )

)

≤ C2(d+2q) jδ−(q−1)Y j ,

or

Y j+1 ≤ Ckq−p∗
δ−(q−1)p∗/pb jY 1+β

j ,

where b = 2p
∗−q+(d+2q)p∗/p and β = p∗

p − 1. If Y0 ≤ (Ckq−p∗
δ−(q−1)p∗/p)−1/βb−1/β2

,
then Y j → 0 as j → ∞. Thus, if we assume

k p
∗−q ≥ Cδ

−(q−1) p∗
p b1/βY β

0 , (5.2)

then

sup
BR

u ≤ k.

We now take

k = δTail f ′(u+; 0, R) + C0δ
−(q−1) p∗

p
1

p∗−q

(∫
—B2R u

q
+(x) dx

) 1
p

p∗−p
p∗−q + δ

q−1
q
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with C0 = (Cb1/β)1/(p
∗−q), which is in accordance with (5.1) and (5.2). ��

6 Application tominimizers

In this section, we prove Theorem 1.1 by showing that local minimizers of (1.1) belong to
the De Giorgi class G(�; q, c, s, f ) under some assumptions on f and using several results
from previous sections.

Let us first define local minimizers of (1.1). We assume that f is a convex increasing
function and k satisfies (k), i.e.,

k(x, y) = k(y, x) and �−1 ≤ k(x, y) ≤ � for a.e. x, y ∈ R
d . (k)

Definition 6.1 [minimizer] We say that u ∈ V s, f (�|Rd) is a local subminimizer (supermin-
imizer) of (1.1) if for every measurable function v : Rd → R with v = u a.e. in R

d \ �

and v ≤ u (v ≥ u) a.e. in �, it holds that I f (u) ≤ I f (v). We call u ∈ V s, f (�|Rd) a local
minimizer of (1.1) if it is a subminimizer and a superminimizer.

Recall that we always assume f (0) = 0 and f (1) = 1.

Theorem 6.2 Let s ∈ (0, 1), q ≥ 1 and� ≥ 1. Let f : [0,∞) → [0,∞) be a convex increas-
ing function satisfying ( f q) and let k : Rd × R

d → R be a measurable function satisfying
(K ). Let u ∈ V s, f (�|Rd) be a local subminimizer of (1.1). Then, u ∈ G+(�; q, c, s, f ) for
some c = c(d, q,�) > 0.

It is worth emphasizing that the result of the theorem is true in the case q = 1.

Proof We follow the strategy carried out in [17, Proposition 7.5]. Let x0 ∈ �, 0 < r < R ≤
d(x0, ∂�) and k ∈ R. Without loss of generality, we take x0 = 0. Let r ≤ ρ < τ ≤ R and
let η ∈ C∞

c (Rd) be a cutoff function with 0 ≤ η ≤ 1, supp(η) = B τ+ρ
2
, η ≡ 1 in Bρ , and

‖∇η‖∞ ≤ 4
τ−ρ

. Let w±(x) and A±
k be as in Definition 3.3. We define A+

k,R = {x ∈ BR :
u(x) > k} and A−

k,R = {x ∈ BR : u(x) < k}.
We set v := u − ηqw+, then u ≡ v in R

d \ Bτ and u ≥ v a.e. in R
d . Since u is a local

subminimizer of (1.1), it holds that I f (u) ≤ I f (v), i.e.,

0 ≤ (1 − s)
∫
Bτ

∫
Rd

A(x, y)
k(x, y)

|x − y|d dy dx, (6.1)

where

A(x, y) = f

( |v(x) − v(y)|
|x − y|s

)
− f

( |u(x) − u(y)|
|x − y|s

)
.

To estimate A(x, y), we distinguish four different cases and prove the following.
If x ∈ A−

k or y ∈ A−
k , then

A(x, y) ≤ 0. (6.2)

Furthermore, if x, y ∈ A+
k,ρ , then

A(x, y) = − f

( |w+(x) − w+(y)|
|x − y|s

)
. (6.3)
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If x ∈ A+
k,ρ and y ∈ A−

k , then

A(x, y) ≤ −1

2

[
f ′

(
w−(y)

|x − y|s
)

w+(x)

|x − y|s + f

( |w+(x) − w+(y)|
|x − y|s

)]
. (6.4)

Finally, if x, y ∈ A+
k , then we have

A(x, y) ≤ f

( |w+(x) − w+(y)|
|x − y|s

)
+ c f

( |η(x) − η(y)|(w+(x) ∨ w+(y))

|x − y|s
)

(6.5)

for some c = c(q) > 0, where a ∨ b := max{a, b}. In the following, we prove (6.2)–(6.5).
The proof of (6.2) is a direct consequence of monotonicity of f . Namely, if x /∈ A+

k and
y ∈ A+

k , then

|v(x) − v(y)| = |(1 − ηq(y))w+(y) + w−(x)| ≤ |w+(y) + w−(x)| = |u(x) − u(y)|.
By symmetry, one can treat the case x ∈ A+

k and y /∈ A+
k . The remaining case is trivial.

To see (6.3), observe that for x, y ∈ A+
k,ρ it holds that η(x) = η(y) = 1, and therefore

|v(x) − v(y)| = |u(x) − u(y) − w+(x) + w+(y)| = 0.

Let us prove (6.4). For x ∈ A+
k,ρ and y /∈ A+

k it holds that

|v(x) − v(y)| = |(1 − ηq(x))w+(x) + w−(y)| = w−(y),

|u(x) − u(y)| = w+(x) + w−(y).

By application of Lemma 2.7 with θ = 1
2 , a = w−(y)

|x−y|s and b = w+(x)
|x−y|s , we obtain

A(x, y) ≤ −1

2

[
f ′

(
w−(y)

|x − y|s
)

w+(x)

|x − y|s + f

(
w+(x)

|x − y|s
)]

,

which implies (6.4) since w+(y) = 0.
To prove (6.5) let us take x, y ∈ A+

k . We compute

|v(x) − v(y)| = |(1 − ηq(x))w+(x) − (1 − ηq(y))w+(y)|
= |(1 − ηq(x))(w+(x) − w+(y)) + (ηq(y) − ηq(x))w+(y)|.

Let us assume without loss of generality that η(x) ≥ η(y). Then, we have |ηq(y)−ηq(x)| ≤
qηq−1(x)|η(y)−η(x)|. We estimate, using monotonicity and convexity of f , as well as ( f q)

f

( |v(x) − v(y)|
|x − y|s

)
≤ f

(
(1 − ηq (x))

|w+(x) − w+(y)|
|x − y|s + ηq (x)

qw+(y)|η(y) − η(x)|
η(x)|x − y|s

)

≤ (1 − ηq (x)) f

( |w+(x) − w+(y)|
|x − y|s

)
+ ηq(x) f

(
qw+(y)|η(y) − η(x)|

η(x)|x − y|s
)

≤ f

( |w+(x) − w+(y)|
|x − y|s

)
+ qq f

( |η(y) − η(x)|
|x − y|s w+(y)

)
,

which implies (6.5).
By putting together the information from (6.2)–(6.4) and using assumptions on k, we

deduce

(1 − s)
∫
Bρ

∫
Bρ

A(x, y)
k(x, y)

|x − y|d dy dx

≤ − 1

2�

Ws, f (Bρ)(w+) − 1

2�
(1 − s)

∫
Bρ

∫
A−

ρ,k

f ′
(

w−(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d .

(6.6)

123



Regularity for nonlocal problems... Page 23 of 31 227

Moreover, from (6.2), (6.4) and (6.5) we obtain

(1 − s)
∫∫

B2
τ \B2

ρ

A(x, y)
k(x, y)

|x − y|d dy dx

≤ �(1 − s)
∫∫

B2
τ \B2

ρ

f

( |w+(x) − w+(y)|
|x − y|s

)
dy dx

|x − y|d

+ c�(1 − s)
∫∫

B2
τ \B2

ρ

f

( |η(x) − η(y)|(w+(y) ∨ w+(x))

|x − y|s
)

dy dx

|x − y|d

− 1

2�
(1 − s)

∫
Bρ

∫
(Bτ \Bρ)∩A−

k

f ′
(

w−(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d .

(6.7)

Note that by monotonicity of f and Lemma 2.1, we have

(1 − s)
∫
BR

∫
BR

f

( |η(x) − η(y)|
|x − y|s w+(x)

)
|x − y|−d dy dx

≤ (1 − s)
∫
BR

∫
B2R(x)

f

(
4|x − y|1−s

τ − ρ
w+(x)

)
|x − y|−d dy dx

≤ (1 − s)

(
4R

τ − ρ

)q ∫
BR

∞∑
k=0

∫
B2−k+1R(x)\B2−k R(x)

f

(
(2−k+1)1−s w+(x)

Rs

)
(2−k R)−d dy dx

≤ c(1 − s)

(
R

τ − ρ

)q ∫
BR

∞∑
k=0

f

(
2−k(1−s) w+(x)

Rs

)
dx

for some c = c(d, q) > 0. We use Lemmas 2.3 and 2.2 to obtain

(1 − s)
∞∑
k=0

f

(
2−k(1−s) w+(x)

Rs

)
≤ (1 − s)

∞∑
k=0

2−k(1−s) f

(
w+(x)

Rs

)

≤ 1 − s

1 − 2−(1−s)
f

(
w+(x)

Rs

)
.

Since the map s �→ (1 − s)/(1 − 2−(1−s)) is bounded on (0, 1) from above, we have

(1 − s)
∫
BR

∫
BR

f

( |η(x) − η(y)|
|x − y|s w+(x)

)
|x − y|−d dy dx

≤ c

(
R

τ − ρ

)q


L f (BR)

(w+
Rs

)
(6.8)

for some c = c(d, q) > 0.
By combination of the estimates (6.6), (6.7) and (6.8), we get:

(1 − s)
∫
Bτ

∫
Bτ

A(x, y)
k(x, y)

|x − y|d dy dx

≤ c(1 − s)
∫∫

B2
τ \B2

ρ

f

( |w+(x) − w+(y)|
|x − y|s

)
dy dx

|x − y|d + c

(
R

τ − ρ

)q


L f (BR)

(w+
Rs

)

−c
Ws, f (Bρ)(w+) − c(1 − s)
∫
Bρ

∫
A−

τ,k

f ′
(

w−(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d . (6.9)
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Let us deduce two more estimates for A(x, y):

A(x, y) = 0 for x, y /∈ A+
k, τ+ρ

2
, (6.10)

A(x, y) ≤ f ′
(

w+(y)

|x − y|s
)

w+(x)

|x − y|s for x ∈ A+
k and y ∈ A+

k \ Bτ . (6.11)

The proof of (6.10) is trivial since supp(η) = B τ+ρ
2

and w+ = 0 on A−
k . To see (6.11), we

compute

A(x, y) = f

( |(1 − ηq(x))w+(x) − w+(y)|
|x − y|s

)
− f

( |w+(x) − w+(y)|
|x − y|s

)

and apply Lemma 2.8 with μ = 1 − ηq(x), a = w+(x)
|x−y|s and b = w+(y)

|x−y|s . Consequently, by
(6.2), (6.4), (6.10) and (6.11), it holds that

(1 − s)
∫
Bτ

∫
Rd\Bτ

A(x, y)
k(x, y)

|x − y|d dy dx

≤ �(1 − s)
∫
B τ+ρ

2

∫
Rd\Bτ

f ′
(

w+(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d

− 1

2�
(1 − s)

∫
Bρ

∫
(Rd\Bτ )∩A−

k

f ′
(

w−(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d .

(6.12)

Moreover, using Lemma 2.3 and (2.2) with p = 1 we observe that

(1 − s)
∫
B τ+ρ

2

∫
Rd\Bτ

f ′
(

w+(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d

≤ q(1 − s)

(
2R

τ − ρ

)d+sq ∫
B τ+ρ

2

∫
Rd\Bτ

f ′
(

w+(y)

|y|s
)

w+(x)

|y|s |y|−d dy dx

≤ c(1 − s)

(
R

τ − ρ

)d+sq

‖w+‖L1(BR)

∫
Rd\Br

f ′
(

w+(y)

|y|s
)

|y|−d−s dy.

(6.13)

By combining estimates (6.1), (6.9), (6.12), and (6.13), we derive


Ws, f (Bρ)(w+) + (1 − s)
∫
Bρ

∫
A−
k

f ′
(

w−(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d

≤ c
(

Ws, f (Bτ )(w+) − 
Ws, f (Bρ)(w+)

)
+ c

(
R

τ − ρ

)q


L f (BR)

(w+
Rs

)

+ c(1 − s)

(
R

τ − ρ

)d+sq

‖w+‖L1(BR)

∫
Rd\Br

f ′
(

w+(y)

|y|s
)

|y|−d−s dy

for some c = c(d, q,�) > 0. By setting

φ(ρ) = 
Ws, f (Bρ)(w+) + (1 − s)
∫
Bρ

∫
A−
k

f ′
(

w−(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d ,
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we can deduce from the above line that

φ(ρ) ≤ c(φ(τ) − φ(ρ)) + c

(
R

τ − ρ

)q


L f (BR)

(w+
Rs

)

+ c(1 − s)

(
R

τ − ρ

)d+sq

‖w+‖L1(BR)

∫
Rd\Br

f ′
(

w+(y)

|y|s
)

|y|−d−s dy.

We “fill the hole" by adding cφ(ρ) to both sides. After dividing by 1 + c, we get that

φ(ρ) ≤ γφ(τ) + c

(
R

τ − ρ

)q


L f (BR)

(w+
Rs

)

+ c(1 − s)

(
R

τ − ρ

)d+sq

‖w+‖L1(BR)

∫
Rd\Br

f ′
(

w+(y)

|y|s
)

|y|−d−s dy,

(6.14)

where γ ∈ (0, 1) and c = c(d, q,�) > 0. The desired result follows now from a standard
iteration argument, see Lemma 4.11 in [17]. ��

Remark 6.3 Similar to the proof of Theorem 6.2, it is possible to show that local super-
minimizer (minimizers, respectively) u ∈ V s, f (�|Rd) satisfies u ∈ G−(�; q, c, s, f )
(u ∈ G(�; q, c, s, f ), respectively) for some c = c(d, q,�) > 0.

Proof (Proof of Theorem 1.1)By Theorem 6.2, it follows that u ∈ G(�; q, c1, s, f ) for some
c1 = c1(d, q,�) > 0. According to Proposition 3.4, it holds that u ∈ G(�; q, c2, s, g) for
some c2 = c2(d, p, q,�) > 0. From Theorems 4.2 and 5.1 we deduce the desired result. ��

7 Application to weak solutions

In this section we aim to study weak solutions to nonlocal equations (1.6) and prove Theorem
1.2. Throughout this section we assume that f is a convex increasing function satisfying ( f q)
and h is a measurable function satisfying the structure condition (h), i.e.,

h(x, y, t) = h(y, x, t), |h(x, y, t)| ≤ � f ′(|t |), h(x, y, t)t ≥ 1

�
f ′(|t |)|t | (h)

for a.e. x, y ∈ R
d and for all t ∈ R. We define weak solutions to (1.6) as follows:

Definition 7.1 (Weak solution) We say that u ∈ V s, f (�|Rd) is a weak subsolution to (1.6)
if for every φ ∈ V s, f (�|Rd) with φ = 0 a.e. in R

d \ � and φ ≥ 0 a.e. in �, it holds that

(1 − s)
∫∫

(�c×�c)c
h

(
x, y,

u(x) − u(y)

|x − y|s
)

φ(x) − φ(y)

|x − y|d+s
dy dx ≤ 0. (7.1)

We say that u ∈ V s, f (�|Rd) is aweak supersolution if−u is a weak subsolution. A function
u ∈ V s, f (�|Rd) is called aweak solution if it is aweak subsolution and aweak supersolution.

Recall that we always assume f (0) = 0 and f (1) = 1. This assumption can be made
without loss of generality since u solves Lhu = 0 if and only if u solves Lh/ f (1)u = 0 and
one can always choose f (0) = 0.
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Remark 7.2 Let us prove that the weak formulation (7.1) is well-defined. Let u, φ ∈
V s, f (�|Rd). Then, by (h) and Fenchel’s inequality (3.6), we have

(1 − s)
∫∫

(�c×�c)c

∣∣∣∣h
(
x, y,

u(x) − u(y)

|x − y|s
)

φ(x) − φ(y)

|x − y|d+s

∣∣∣∣ dy dx

≤ �(1 − s)
∫∫

(�c×�c)c
f ′

( |u(x) − u(y)|
|x − y|s

) |φ(x) − φ(y)|
|x − y|s

dy dx

|x − y|d

≤ �(1 − s)
∫∫

(�c×�c)c

[
f ∗

(
f ′

( |u(x) − u(y)|
|x − y|s

))
+ f

( |φ(x) − φ(y)|
|x − y|s

)]
dy dx

|x − y|d
≤ �(q − 1)
V s, f (�|Rd )(u) + �
V s, f (�|Rd )(φ) < ∞,

where we used that by (3.5) and ( f q): f ∗( f ′(t)) ≤ (q − 1) f (t).

The following theorem yields that weak solutions to (1.6) belong to the De Giorgi classes
introduced in Sect. 3.

Theorem 7.3 Let s ∈ (0, 1), q ≥ 1 and� ≥ 1. Let f : [0,∞) → [0,∞) be a convex increas-
ing function satisfying ( f q) and let h : Rd×R

d×R → R be ameasurable function satisfying
(h). Let u ∈ V s, f (�|Rd) be a weak subsolution to (1.6). Then, u ∈ G+(�; q, c, s, f ) for
some c > 0 depending on d, q and �.

Note that the result remains true for q = 1.

Proof The desired result follows from a similar argument as in the proof of Theorem 6.2.
Let x0 ∈ �, 0 < r < R ≤ d(x0, ∂�), and k ∈ R. We may assume without loss of generality
that x0 = 0. Let r ≤ ρ < τ ≤ R and let η ∈ C∞

c (Rd) be a cutoff function with 0 ≤ η ≤ 1,
supp(η) = B τ+ρ

2
, η ≡ 1 in Bρ , and ‖∇η‖∞ ≤ 4

τ−ρ
. We define w±(x), A±

k and A±
k,R as in

Theorem 6.2. We set v = ηqw+. Since u is a weak subsolution to (1.6), we have

0 ≥ (1 − s)
∫∫

(�c×�c)c
B(x, y)

dy dx

|x − y|d , (7.2)

where

B(x, y) = h

(
x, y,

u(x) − u(y)

|x − y|s
)

v(x) − v(y)

|x − y|s .

Let us estimate B(x, y). If x, y ∈ A−
k , then

B(x, y) = 0. (7.3)

If x ∈ A+
k and y ∈ A−

k , then by (h)

h

(
x, y,

u(x) − u(y)

|x − y|s
)

= h

(
x, y,

w+(x) + w−(y)

|x − y|s
)

≥ 1

�
f ′

(
w+(x) + w−(y)

|x − y|s
)

.

Thus, we obtain

B(x, y) ≥ 1

�
f ′

( |w+(x) + w−(y)|
|x − y|s

)
w+(x)

|x − y|s ηq(x)

≥ 1

2�

[
f ′

(
w+(x)

|x − y|s
)

+ f ′
(

w−(y)

|x − y|s
)]

w+(x)

|x − y|s ηq(x)

≥ 1

2�
f

( |w+(x) − w+(y)|
|x − y|s

)
ηq(x) + 1

2�
f ′

(
w−(y)

|x − y|s
)

w+(x)

|x − y|s ηq(x),

(7.4)
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where we used (2.4) and Lemma 2.3.
If x, y ∈ A+

k , we prove

B(x, y) ≥ 1
�
f
( |w+(x)−w+(y)|

|x−y|s
)

(ηq(x) ∨ ηq(y)) − ε�(q − 1) f
( |w+(x)−w+(y)|

|x−y|s
)

−c� f
(

w+(x)∨w+(y)
|x−y|s |η(x) − η(y)|

)
(7.5)

for any ε ∈ (0, 1), where c = c(q, ε) > 0. It is enough to prove (7.5) for the case w+(x) ≥
w+(y). If η(x) ≥ η(y), then (7.5) follows from

B(x, y) ≥ h

(
x, y,

w+(x) − w+(y)

|x − y|s
)

w+(x) − w+(y)

|x − y|s ηq(x)

≥ 1

�
f

(
w+(x) − w+(y)

|x − y|s
)

ηq(x),

where we used (h) and Lemma 2.3. When η(y) ≥ η(x), we observe that

B(x, y) = h

(
x, y,

w+(x) − w+(y)

|x − y|s
) (

w+(x) − w+(y)

|x − y|s ηq (y) − w+(x)

|x − y|s (ηq (y) − ηq (x))

)

≥ 1

�
f

(
w+(x) − w+(y)

|x − y|s
)

ηq (y) − � f ′
(

w+(x) − w+(y)

|x − y|s
)

w+(x)

|x − y|s (ηq (y) − ηq (x)),

(7.6)

where we used Lemma 2.3 again. Note that

ηq(y) − ηq(x) ≤ qηq−1(y)(η(y) − η(x)) ≤ q(η(y) − η(x)).

Thus, for ε ∈ (0, 1) we use Lemma 2.1 and the Fenchel’s inequality (3.6) to obtain

f ′
(

w+(x) − w+(y)

|x − y|s
)

w+(x)

|x − y|s (ηq(y) − ηq(x))

≤ qε−q f ′
(

ε
w+(x) − w+(y)

|x − y|s
)

w+(x)

|x − y|s (η(y) − η(x))

≤ f ∗
(
f ′

(
ε
w+(x) − w+(y)

|x − y|s
))

+ f

(
qε−q η(y) − η(x)

|x − y|s w+(x)

)
.

By (3.5), ( f q) and Lemma 2.2 (iv) with p = 1, we deduce that

f ′
(

w+(x) − w+(y)

|x − y|s
)

w+(x)

|x − y|s (ηq(y) − ηq(x))

≤ ε(q − 1) f

(
w+(x) − w+(y)

|x − y|s
)

+ c f

(
η(y) − η(x)

|x − y|s w+(x)

) (7.7)

for some c = c(q, ε) > 0. Therefore, (7.5) follows from (7.6) and (7.7).
Combining (7.3), (7.4) and (7.5), we have

(1 − s)
∫
Bτ

∫
Bτ

B(x, y)
dy dx

|x − y|d

≥ 1

2�

Ws, f (Bρ)(w+) + 1

2�
(1 − s)

∫
Bρ

∫
A−
k,τ

f ′
(

w−(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d

− ε�(q − 1)
Ws, f (Bτ )(w+) − c�(1 − s)
∫
Bτ

∫
Bτ

f

( |η(x) − η(y)|
|x − y|s w+(x)

)
dy dx

|x − y|d .

(7.8)
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Let us now take into account the pairs (x, y) ∈ (Rd × R
d) \ (Bτ × Bτ ). Using (h) we

compute

(1 − s)
∫
Bτ

∫
Rd\Bτ

B(x, y)
dy dx

|x − y|d

≥ 1

�
(1 − s)

∫
A+
k,ρ

∫
{u(x)>u(y)}\Bτ

f ′
( |u(x) − u(y)|

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d

− 1

�
(1 − s)

∫
A+
k, τ+ρ

2

w+(x)
∫

{u(y)>u(x)}\Bτ

f ′
( |u(x) − u(y)|

|x − y|s
)

dy dx

|x − y|d+s
=: I1 − I2.

(7.9)

By monotonicity of f ′, we have that

I1 ≥ 1

2�
(1 − s)

∫
Bρ

∫
(Rd\Bτ )∩A−

k

f ′
(

w−(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d . (7.10)

Moreover, by (6.13) we obtain

I2 ≤ c(1 − s)

(
R

τ − ρ

)d+sq

‖w+‖L1(BR)

∫
Rd\Bτ

f ′
(

w+(y)

|y|s
)

dy

|y|d+s
. (7.11)

Therefore, it follows from (7.2), (7.8)–(7.11) and (6.8) that

1

2�

Ws, f (Bρ)(w+) + 1

2�
(1 − s)

∫
Bρ

∫
A−
k

f ′
(

w−(y)

|x − y|s
)

w+(x)

|x − y|s
dy dx

|x − y|d

≤ ε�(q − 1)
Ws, f (Bτ )(w+) + c

(
R

τ − ρ

)q


L f (BR)

(w+
Rs

)

+ c(1 − s)

(
R

τ − ρ

)d+sq

‖w+‖L1(BR)

∫
Rd\Br

f ′
(

w+(y)

|y|s
)

dy

|y|d+s
,

(7.12)

where c = c(d, q,�, ε) > 0. We take ε = (4�2(q − 1))−1 ∧ 2−1 ∈ (0, 1) so that (7.12)
boils down to (6.14) with γ = 1/2 and c = c(d, q,�) > 0. This finishes the proof. ��

Remark 7.4 Similar to the proof of Theorem 7.3, it is possible to show that weak solutions
u ∈ V s, f (�|Rd) to Lhu = 0 in � satisfy u ∈ G(�; q, c, s, f ) for some c > 0 depending
on d , q and �.

Proof (Proof of Theorem 1.2) By Theorem 7.3, it follows that u ∈ G(�; q, c1, s, f ) for
some c1 > 0 depending on d , q and �. According to Proposition 3.4, it holds that u ∈
G(�; q, c2, s, g) for some c2 = c2(d, p, q,�) > 0. From Theorems 4.2 and 5.1 we deduce
the desired result. ��
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