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Background & aims: Lean muscle and fat mass in the human body are important indicators of the risk of
cardiovascular and metabolic diseases. Techniques such as dual-energy X-ray absorptiometry (DXA)
accurately measure body composition, but they are costly and not easily accessible. Multiple linear
regression (MLR) models have been developed to estimate body composition using simple demographic
and anthropometric measures instead of expensive techniques, but MLR models do not explore nonlinear
interactions between inputs. In this study, we developed simple demographic and anthropometric
measure-driven artificial neural network (ANN) models that can estimate lean muscle and fat mass more
effectively than MLR models.
Methods: We extracted the demographic, anthropometric, and body composition measures of 20,137
participants from the National Health and Nutrition Examination Survey conducted between 1999 and
2006. We included 13 demographic and anthropometric measures as inputs for the ANN models and
divided the dataset into training and validation sets (70:30 ratio) to build and cross-validate the models
that estimate lean muscle and fat mass, which were originally measured using DXA. This process was
repeated 100 times by randomly dividing the training and validation sets to eliminate any effect of data
division on model performance. We built additional models separately for each sex and ethnicity, older
individuals, and people with underlying diseases. The coefficient of determination (R2) and standard
error of estimate (SEE) were used to quantify the goodness of fit.
Results: The ANN models yielded high R2 values between 0.923 and 0.981. These values were signifi-
cantly higher than those of the MLR models (p < 0.001) in all cases. The percentage difference in R2

between the ANN and MLR models ranged between 0.40% ± 0.02% and 2.65% ± 0.27%. The SEE values of
the ANN models, which were below 2 kg for all cases, were significantly lower than those of MLR models
(p < 0.001). The percentage difference in SEE values between the ANN and MLR models ranged
between �5.67% ± 0.39% and �22.32% ± 1.98%.
Conclusions: We developed and validated an inexpensive but effective method for estimating body
composition using easily obtainable demographic and anthropometric data.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lean muscle and fat are major components of the human body
[1e3], and the mass of each serves as an important indicator of
physical function. In general, individuals with low muscle and
high fat mass are considered to be at an increased risk of
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cardiovascular and metabolic diseases, falls, and mortality [4e6].
Hence, it is crucial to accurately measure the amount of lean
muscle and fat mass in the human body. The two most accurate
human body composition measurement techniques are dual-
energy X-ray absorptiometry (DXA) and magnetic resonance
imaging (MRI) [7]. However, these techniques are expensive in
terms of cost, space, and time. The resulting limited accessibility
of these technologies has motivated researchers to explore less
expensive but effective methods to estimate lean muscle and fat
mass.
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A large body of literature has proposed simple demographic and
anthropometric measure-driven multiple linear regression (MLR)
models based on DXA or MRI body composition reference data to
estimate lean muscle and fat mass. In these studies, age, sex, and
ethnicity were generally used as demographic measures, whereas
height, weight, limb circumference, limb length, and skin thickness
were used as anthropometric measures. Ross et al. developed one
of the earliest demographic and anthropometric measure-driven
MLR models to estimate lean muscle and fat mass, with a high
goodness of fit [8]. Other studies have developed similar models to
estimate lean muscle and fat mass for specific age groups [9e11],
groups with different body mass indices [12], mono-ethnic pop-
ulations [13e15], and elite athletes [16] with a moderate to high
goodness of fit. However, the samples used to build these models
were either small (<1500 individuals) or limited to a homogeneous
population, diminishing the generalizability of the model.

To the best of our knowledge, Lee et al. developed and validated
MLR models to estimate lean muscle and fat mass with a high
goodness of fit using a (largest) sample size of 14,065 individuals
[17]. The body composition data used to develop the model were
recorded using DXA and collected through the National Health and
Nutrition Examination Survey (NHANES) [18]. The survey collected
a large population dataset with diverse demographics and a wide
anthropometric range, making the model developed by Lee et al.
the most generalizable to date. Nevertheless, the generalizability
and efficacy of the model can be improved even further if we can
detect any nonlinear interaction between input variables and
iterate themodel, tominimize the error between the estimated and
actual output values. An artificial neural network (ANN)model is an
effective option for actualizing this improvement [19e21]. ANN
models mimic the learning dynamics of the human brain by
formulating hidden layers that detect nonlinear interactions be-
tween input variables. Additionally, the back-propagation property
of the ANNmodel enables robust estimation of the output values by
reducing noisy input patterns and errors. Multiple studies have
shown that ANN models perform better than various regression
models in estimating physiological parameters [22,23] and clinical
outcomes [24,25]. However, to the best of our knowledge, no prior
study has used an ANNmodel to estimate lean muscle and fat mass
using demographics and anthropometry datasets of a large
population.

In this study, we analyzed the NHANES dataset and developed a
demographic and anthropometric measure-driven ANN model to
estimate lean muscle and fat mass. We found that the goodness of
fit of the ANN model was significantly higher than that of the
previous MLR model based on the same measures. This finding
shows that the developed ANN model is an enhanced, alternative
method for estimating lean muscle and fat mass when expensive
equipment is not available.

2. Materials and methods

2.1. Data source and study population

We extracted the demographic, anthropometric, and body
composition measures of participants from the NHANES conducted
between 1999 and 2006 by the Center for Disease Control and
Prevention and National Center of Health Statistics (NCHS) [18]. All
participants were non-institutionalized citizens of the United
States of America (USA). We did not merge the datasets in such a
manner that the participants could be identified. Sex, age, and
ethnicity were included as demographic variables. We excluded the
data of participants older than 84 years because such individuals
were uniformly coded as 85; including this group without infor-
mation on the actual age could reduce model performance.
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We included height; weight; length of the upper arm and leg;
circumference of the arm, waist, thigh, and calf; and the triceps and
subscapular skinfolds as anthropometric measures. Participants
with self-reported weight and height above 300 pounds and 6 feet
5 inches, respectively, were excluded because the measurement
table of DXA could not fit such participants. We also excluded
participants with incomplete data.

Additionally, we included lean muscle and fat mass recorded
using DXA as body composition measures. Five imputations were
performed for each participant. Complying with the guidelines
provided by the NHANES [26], we analyzed each imputation and
averaged the outcomes separately instead of combining the raw
data of the five imputations. Hence, we removed records of any
participant with missing body composition data in any of the im-
putations. Finally, we selected the data of 20,137 participants
(11,319 men and 8818 women) for further analysis.

2.2. Data collection

2.2.1. Demographic measures
Trained interviewers collected all demographic measures via

household interviews during the period of data collection. Sex was
coded as 1 for males and 2 for females. Their ages ranged from 8 to
84 years, and ethnicity was divided into five categories: Mexican
American, other Hispanic, white, black, and other ethnicities
(including multi-ethnic individuals), coded as 1 to 5, respectively.

2.2.2. Anthropometric measures
Following the guidelines provided by Loman et al. [27], trained

health technicians measured all anthropometric measures inside a
mobile examination center. A stadiometer was used to measure
participant height to the nearest 0.1 cm, and a Toledo digital scale
was used to measure their weights to the nearest 0.1 kg. The limb
length and circumference were measured using a measuring tape
to the nearest 0.1 cm. Arm and leg measurements were performed
on the right side of the body.

Upper arm length was measured as the length from the acro-
mion process to the tip of the olecranon process while asking
participants to stand up, keeping their back straight, and main-
taining a 90� elbow angle. The mid upper arm circumference was
measured at the midpoint of the upper arm length with the arm
fully extended on the side, while maintaining the standing position.
The circumference was then measured by wrapping the measuring
tape around the arm (without compressing the skin and the un-
derlying subcutaneous tissue) and keeping it perpendicular to the
long axis of the upper arm.

During the leg length measurement, participants were first
asked to sit on a chair while maintaining a 90� knee angle and a
straight back. Leg length was measured as the length from the
inguinal crease to the proximal border of the patella. During the
thigh circumference measurement, the participants were asked to
stand up and with their weight shifted on the left leg, lift their right
leg off the ground with the knee slightly flexed. The circumference
was then measured by wrapping the measuring tape around the
midpoint of the upper leg, perpendicular to the long axis of the
thigh (without compressing the skin).

During the calf circumference measurement, the participants
were asked to maintain the same sitting position as in the leg
length measurement. Calf circumference was measured by wrap-
ping a measuring tape around the calf perpendicular to the long
axis of the shank, at the site of maximal calf circumference. The site
was found by moving the measuring tape up and down until the
maximum calf circumference was detected. During the waist
circumference measurement, the participants were asked to stand
up, maintain a straight back, and extend their arms away from their



P. Pathak, S.B. Panday and J. Ahn Clinical Nutrition 41 (2022) 144e152
trunk. The circumference was then measured by wrapping the
measuring tape above the uppermost lateral border of the right
ilium and around the mid-axillary line of the body.

Holtain skinfold calipers were used to measure the triceps and
subscapular skinfold thickness to the nearest 0.1 mm. During the
measurement, the participants maintained a standing position
(with a straight back) with their arms extended away from the
trunk. The measurement site for triceps thickness was the same as
that for arm circumference measurement; that for subscapular
thickness was at the inferior angle of the scapula. During the
skinfold thickness measurement, the health technician first gently
grasped the fold of the skin and underlying subcutaneous adipose
tissue between the left thumb and index finger, and then grabbed
the skin 2.0 cm above the measurement site to form a distinct fold
that separates the skin from the muscle underneath. The skinfold
for the triceps measurement was taken parallel to the long axis of
the arm. The skinfold for the scapular measurement was taken so
that the skinfold formed a line approximately 45� toward the right
elbow. The thickness was then measured by placing the jaws of the
calipers perpendicular to the length of the fold. A more detailed
explanation of the protocols and sample videos of anthropometric
measurements can be found on the NHANES website [18].

2.2.3. Body composition measures
A Hologic QDR 4500A fan beam X-ray bone densitometer

(Hologic, Inc., Bedford, Massachusetts, USA) was used to perform
whole-body DXA inside a mobile examination center by trained
technologists. Before the scan, participants were asked to remove
any jewelry they had worn and to lay on their backs on the DXA
scan table. During the scan, the participants were asked to position
themselves at the center of the table with their legs pointing in-
ward and their toes touching. The technologist then tied a Velcro
strap around the ankle to reduce movement. They were then asked
to place their arms straight on their sides with palms facing
downward, without touching the thighs. A single scan took
approximately 3 min to complete. Five imputations were per-
formed for each participant to acquire a more accurate variance
estimate of body composition. The Hologic Discovery software
(version 12.1) was used to calculate the regional and whole-body
compositions, lean muscle mass, fat mass, and bone mineral den-
sity. We used whole-body lean muscle and fat mass for this study.
The NCHS field staff monitored the scans performed by the tech-
nologists in the field, and the NHANES quality control center at the
University of California checked the scan quality. A more detailed
explanation of the DXA device, scan protocols, and steps taken to
ensure quality control can be found on the NHANES website [18].

2.3. Development of lean muscle and fat mass estimation models

We built lean muscle and fat mass estimation models for data-
sets of ten categories of participants: all participants, separately for
male and female participants, elderly, patients, and separately for
five ethnic groups (Mexican American, Hispanic, White, Black, and
Other). Elderly are selected as participants older than 65 years.
Patients are selected as participants with any of the nine underlying
diseases that impair the cardiovascular and metabolic functions of
the participants (Anemia, Arthritis, Cancer, Congestive heart failure,
Coronary heart disease, Thyroid, Liver diseases, and Chronic bron-
chitis). The presence of any of these diseases was determined using
a survey assessing the medical conditions of the participants. For
the dataset of all participants, elderly, and patients, 13 demographic
and anthropometric measurement datasets were used as the input
variables to estimate the two output variables separately: lean
muscle and fat mass. Two demographic variables, sex and race,
were treated as ordinal variables, whereas age, all anthropometric
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measures, and body composition measures were treated as
continuous variables. For the models built separately according to
sex and ethnicity, the number of input variables was reduced to 12
by removing either sex or ethnicity. Using the minemax normali-
zation method, we rescaled all data to be between 0 and 1 before
building the model.

First, we divided the dataset into training and validation sets.
The training set was used to build a model that fits the measures to
estimate lean muscle and fat mass, and the validation set was used
as an independent set to evaluate the goodness of fit of the model.
Consulting a previous study, we determined the ratio of training to
validation set as 70:30 [17]. The training and validation sets were
divided randomly 100 times to evaluate any effect of data division
on the goodness of fit of each model. We evaluated the goodness of
fit of the model using the coefficient of determination (R2) and
standard error of estimate (SEE) for both the training and validation
sets. Following the NHANES guidelines on the analysis of multiple
imputations, the goodness of fit of each model was averaged for the
five imputations.

2.3.1. ANN model
We built a feed-forward, back-propagation ANN model

comprising three layers (input, hidden, and output) for each of the
five imputations. There were 13 nodes in the input layer for the
dataset of all participants, elderly, and patients, one node for each
demographic and anthropometric measure, and one node in the
output layer for either lean muscle or fat mass. For the sex- or
ethnicity-separated dataset, 12 nodes were used in the input layer.
The transfer function used for the hidden layer was based on the
LevenbergeMarquardt algorithm with Bayesian regularization
[28,29] and that used for the output layer was a linear function. The
algorithm used in the hidden layer served to determine the mini-
mum mean square error between the estimated and actual lean
muscle and fat mass, and to update the weight and bias values to
improve the model's generalizability. The maximum number of
iterations for the algorithm was set to 1000.

To determine the proper number of nodes in the hidden layer,
we evaluated the SEE of the validation dataset by increasing the
number of nodes from 1 to 25. For each set of nodes, we repeated
the analysis 100 times by randomly dividing the training and vali-
dation datasets. We then averaged the SEE over the five imputa-
tions. The averaged SEE for a specific number of nodes was
statistically compared with that for the next number of nodes. We
found that the number of nodes for the hidden layer does not
induce statistically significant differences between the neighboring
pairs of node numbers when the node number increases beyond a
specific value. We selected this specific value as the proper number
of hidden layer nodes. For the dataset of all participants, the node
numbers were selected as 6 and 7 for the models to estimate lean
muscle and fat mass, respectively. For the dataset of male partici-
pants, we selected the number of hidden layer nodes as 5 for both
lean muscle and fat mass estimation models. For the dataset of
female participants, the node numbers were 4 and 3 for the models
to estimate lean muscle and fat mass, respectively. For the elderly,
the node numbers were 2 for both lean muscle and fat mass esti-
mation models, whereas that for patients was 3 for both lean
muscle and fat estimation models. For participants separated ac-
cording to ethnicity, the number of nodes was selected as 3, 2, 5, 2,
and 2 for lean mass estimation models for Mexican American,
Hispanic, White, Black, and Other ethnic groups participants,
respectively. For fat mass estimation models, the number of nodes
was selected as 4, 3, 3, 4, and 3 for Mexican American, Hispanic,
White, Black, and Other ethnic groups, respectively. Amore detailed
explanation of the procedure for selecting the number of nodes for
the hidden layer is provided in the supplementary material.
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2.3.2. MLR model
We built MLR models that estimated the dependent variables of

lean muscle and fat mass using the independent variables of 13
demographic and anthropometric measures. For each of the sex- or
ethnicity-specific models, the number of independent variables
was set as 12 by removing either sex or ethnicity variable. The MLR
models were built for the same 100 randomly divided training and
validation datasets used for the ANN model, with the selected
hidden layer nodes for each dataset category.

2.4. Statistical analysis

We performed paired t-tests to compare the SEE and R2 of the
ANN and MLR models. The 100 randomly divided sets made the
sample size of each group 100. The paired t-test was conducted
separately for the training and validation sets. The level of statis-
tical significance (p) was set at <0.05. We also calculated the per-
centage difference (D) in the goodness of fit (SEE and R2) values
between the ANN and MLR models with respect to the baseline
goodness of fit values of the MLR models.

3. Results

The sample size, demographics, anthropometry, and body
composition of all ten categories of participants are summarized in
Table 1. Figs. 1e6 show the mean and standard deviation values of
the SEE and R2 of 100 repetitions of randomly divided training and
validation sets. The R2 values of 100 repetitions were all above 0.92
for both training and validation sets of the ten categories of par-
ticipants when ANNmodels were used, whereas the R2 values were
above 0.92 for all cases except the validation sets of elderly and
patients for fat mass estimation when MLR models were used. The
high R2 values indicate that both ANN and MLR models explain the
variability of a large portion of the dataset.

However, a notable difference exists between the twomodels. In
every case, the SEE calculated using ANN models was lower than
2 kg for both the training and validation sets for all cases except for
both sets of lean muscle and fat estimation models of elderly and
patients, and both sets of fat and muscle estimation models for
White and Black participants, respectively. On the other hand, the
SEE calculated usingMLRmodels was above 2 kg for all cases except
in the case of validation sets for female participants. The paired t-
tests revealed that ANN models always yielded lower SEE
(p < 0.001) and higher R2 (p < 0.001) values than the MLR models
for both the training and validation sets, regardless of whether the
datasets contained all participants, male, female, elderly, patients,
or only a specific ethnic groups. The better performance of the ANN
models was additionally quantified by the percentage difference
(D) in the goodness of fit (SEE and R2), which are shown in Figs. 1e6.

4. Discussion

Accurate measurement of lean muscle and fat mass in the hu-
man body is essential for the assessment of physical function and
risk of cardiovascular andmetabolic diseases, particularly in elderly
and obese individuals. We developed and validated the de-
mographic and anthropometric measure-driven ANN models to
estimate lean muscle and fat mass using the NHANES dataset. Our
models estimated these compartments of body compositions with
a high goodness of fit, even when we separated the dataset ac-
cording to sex or ethnicity. In addition, considering that body
composition analysis is particularly important in patients and older
adults, we further assessed the performance of the ANNmodels for
those groups and confirmed that the ANN models still perform
better thanMLRmodels for such populations. These results confirm
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the efficacy and generalizability of the ANN models that estimate
lean muscle and fat mass with simple inputs of easily obtainable
demographics and anthropometric data.

The improved goodness of fit of ANN models over regression
models has been observed in multiple previous studies. ANN
models that estimate clinical outcomes such as mortality after
traumatic brain injury [24], lung injury [30], and coronary artery
diseases [25] showed higher accuracy than regression models.
However, for the purpose of estimating lean muscle and fat mass
and relating each mass to the risk of diseases and clinical outcomes
caused by sarcopenia and obesity, previous studies depended on
the MLR models developed by Lee et al. [17]. The MLR models were
used to predict lean muscle and fat mass for independent pop-
ulations and relate the mass to the risk of cardiovascular events
[31], type-2 diabetes [32], and obesity-induced mortality hazard
[33]. These studies showed that the estimated lean muscle and fat
mass are good biomarkers for evaluating the risk of related diseases
in a specific population. The demonstrated high performance of the
ANN models developed in this study suggests that the models can
assess the risk of body composition-related physiological de-
ficiencies and the onset of metabolic diseases more reliably than
previous MLR models.

A few studies have developed MLR models that estimate muscle
and fat mass with similar goodness of fit to that of our models.
Kulkarni et al. developed an anthropometry measures-driven MLR
model using the data for Indian adults to estimate lean muscle and
fat mass with R2 values between 0.90 and 0.94 and SEE values be-
tween 1.47 and 1.92 kg [13]. Similar results were observed for
models developed using the data of Chinese [14] and Japanese [15]
adults with R2 values between 0.81 and 0.93 and SEE values be-
tween 1.02 and 1.75 kg. The SEE values reported in these studies are
lower than those reported in our models. However, the population
groups used in these previous studies were mono-ethnic and had a
small sample size; the lower SEE values can be partly due to the
smaller range of lean muscle and fat mass values. The dataset used
in this study contains data from a multi-ethnic population with a
wide range of ages, anthropometric data, and lean muscle and fat
mass values (Table 1). This diverse and large sample enhances both
the generalizability and relative accuracy of the model; a larger
sample size for training an ANN model can significantly improve
the accuracy of output variable estimation [34]. Despite the wide
range of output variables, the absolute SEE values of our models are
comparable to those of previous models that focused on small
samples of specific ethnic groups.

We observed that the improvement in the R2 values is always
smaller than that in the SEE values. Considering that the upper limit
of R2 values is 1, and the R2 values are already high (above 0.92 for
all cases) even for the conventional MLR models, any considerable
improvements in R2 values would be challenging. On the other
hand, the SEE values have a relatively larger room for improvement,
making it a more reasonable indicator to evaluate any improve-
ment in model performance. Several studies have also suggested
that the coefficient of determination may be an inadequate indi-
cator of the performance of nonlinear andmachine learningmodels
[35e37].

We used 12 or 13 demographic and anthropometric measures to
estimate lean muscle and fat mass, respectively. Previous studies
have proposed models that predict the same variables with fewer
anthropometric measures [8,12,17]. They simplified the model by
reducing the independent variables to age, race, height, andweight,
with the cost of increased SEE and decreased R2 values. Although
reducing the number of input parameters would reduce the time
required for anthropometric measurement and model computa-
tion, the cost of the simplification, which is the deterioration in
prediction performance, is critical. We additionally confirmed this



Table 1
Mean and standard deviations of the values of the demographic, anthropometric, and body composition measures.

Measures All Male Female Elderly Patients Ethnicity

Mexican
American

Hispanic White Black Other

n ¼ 20,137 n ¼ 11,319 n ¼ 8818 n ¼ 2358 n ¼ 3414 n ¼ 5462 n ¼ 804 n ¼ 8271 n ¼ 4791 n ¼ 809

Age (years) 33.033 ± 21.807 32.053 ± 21.392 34.290 ± 22.265 73.755 ± 5.505 60.237 ± 15.715 28.943 ± 20.277 31.909 ± 19.972 39.687 ± 22.719 26.903 ± 19.256 30.023 ± 19.868
Weight (kg) 67.264 ± 19.395 71.137 ± 20.558 62.292 ± 16.511 73.938 ± 14.875 76.542 ± 16.546 63.947 ± 18.413 65.370 ± 17.024 70.892 ± 19.125 65.947 ± 20.202 62.241 ± 19.586
Height (cm) 164.435 ± 13.259 168.946 ± 13.831 158.644 ± 9.814 165.244 ± 9.864 167.075 ± 10.024 160.376 ± 12.611 161.832 ± 12.122 167.450 ± 12.480 164.762 ± 14.000 161.666 ± 13.594
Upper leg length (cm) 39.908 ± 4.264 41.216 ± 4.279 38.170 ± 3.557 38.981 ± 3.800 39.397 ± 3.784 38.581 ± 4.158 39.169 ± 3.991 40.246 ± 3.957 41.118 ± 4.476 38.975 ± 4.273
Upper arm length (cm) 36.053 ± 3.567 37.083 ± 3.742 34.730 ± 2.822 37.272 ± 2.684 37.412 ± 2.792 35.100 ± 3.378 35.388 ± 3.218 36.730 ± 3.389 36.260 ± 3.816 34.989 ± 3.623
Arm circumference (cm) 29.532 ± 5.046 30.271 ± 5.136 28.584 ± 4.762 31.097 ± 3.712 31.745 ± 4.201 28.973 ± 4.932 29.551 ± 4.696 30.237 ± 4.841 29.131 ± 5.414 28.462 ± 5.018
Waist circumference (cm) 85.612 ± 15.496 87.067 ± 16.201 83.774 ± 14.326 97.888 ± 12.106 97.136 ± 13.283 85.434 ± 14.849 84.962 ± 13.559 88.858 ± 15.358 80.923 ± 15.501 82.034 ± 14.844
Thigh circumference (cm) 49.907 ± 6.901 50.300 ± 6.848 49.404 ± 6.937 49.061 ± 5.475 50.838 ± 6.036 48.596 ± 6.668 49.884 ± 6.676 50.313 ± 6.441 50.959 ± 7.632 48.404 ± 7.067
Calf circumference (cm) 36.093 ± 4.464 36.450 ± 4.523 35.634 ± 4.346 36.497 ± 3.589 37.446 ± 3.839 35.073 ± 4.329 35.926 ± 4.245 36.933 ± 4.292 35.926 ± 4.245 35.439 ± 4.627
Triceps skinfold (mm) 16.411 ± 7.856 13.056 ± 6.262 20.717 ± 7.591 17.847 ± 7.416 19.477 ± 8.207 16.252 ± 7.400 16.909 ± 7.990 17.214 ± 7.816 15.207 ± 8.308 15.900 ± 7.361
Subscapular

skinfold (mm)
16.706 ± 8.052 15.593 ± 7.745 18.134 ± 8.213 19.301 ± 6.973 20.483 ± 7.615 16.860 ± 7.767 17.494 ± 7.898 17.014 ± 7.856 15.877 ± 8.544 16.633 ± 8.105

Lean muscle
mass (kg)

1 44.762 ± 12.899 50.448 ± 13.287 37.464 ± 7.657 45.857 ± 10.216 47.588 ± 11.412 42.017 ± 12.107 43.231 ± 11.694 46.542 ± 12.805 45.580 ± 13.446 41.781 ± 13.108
2 44.763 ± 12.903 50.453 ± 13.291 37.460 ± 7.651 45.863 ± 10.218 47.605 ± 11.442 42.021 ± 12.113 43.226 ± 11.683 46.543 ± 12.811 45.578 ± 13.446 41.779 ± 13.097
3 44.764 ± 12.901 50.450 ± 13.293 37.466 ± 7.651 45.882 ± 10.219 47.625 ± 11.449 42.023 ± 12.110 43.230 ± 11.678 46.543 ± 12.805 45.578 ± 13.452 41.793 ± 13.112
4 44.760 ± 12.900 50.447 ± 13.289 37.459 ± 7.650 45.850 ± 10.207 47.612 ± 11.446 42.019 ± 12.109 43.222 ± 11.681 46.541 ± 12.807 45.570 ± 13.444 41.781 ± 13.109
5 44.762 ± 12.900 50.452 ± 13.288 37.459 ± 7.646 45.870 ± 10.222 47.615 ± 11.426 42.024 ± 12.109 43.216 ± 11.681 46.543 ± 12.807 45.575 ± 13.440 41.769 ± 13.109

Fat mass (kg) 1 20.972 ± 9.586 19.100 ± 8.898 23.493 ± 9.845 26.426 ± 8.262 27.217 ± 9.092 20.561 ± 8.968 20.718 ± 8.824 22.740 ± 9.522 18.760 ± 10.034 19.046 ± 8.865
2 20.970 ± 9.583 19.005 ± 8.892 23.493 ± 9.844 26.416 ± 8.257 27.212 ± 9.070 20.554 ± 8.957 20.718 ± 8.819 22.737 ± 9.518 18.760 ± 10.039 19.055 ± 8.870
3 20.972 ± 9.584 19.012 ± 8.896 23.487 ± 9.845 26.404 ± 8.258 27.193 ± 9.043 20.557 ± 8.960 20.720 ± 8.825 22.741 ± 9.521 18.761 ± 10.034 19.032 ± 8.855
4 20.975 ± 9.585 19.012 ± 9.898 23.494 ± 9.843 26.445 ± 8.266 27.202 ± 9.043 20.558 ± 8.962 20.724 ± 8.816 22.742 ± 9.518 18.768 ± 10.046 19.039 ± 8.847
5 20.975 ± 9.590 19.009 ± 8.895 23.499 ± 9.856 26.423 ± 8.276 27.206 ± 9.063 20.554 ± 8.961 20.728 ± 8.827 22.742 ± 9.524 18.769 ± 10.051 19.060 ± 8.881

Ethnicity Mexican
American (%)

27.124 27.856 26.185 18.999 13.533

Hispanic (%) 3.993 3.808 4.230 3.053 1.904
White (%) 41.074 39.544 43.037 62.595 65.788
Black (%) 23.792 24.949 22.307 13.062 14.968
Other (%) 4.017 3.843 4.241 2.290 3.808

Note: The number assigned from 1~5 for the lean muscle and fat mass refers to the imputation number. For ethnicity, data are presented in terms of the percentage of total sample size.
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Fig. 1. Mean and standard deviation of the standard error of estimate (SEE) values of
100 randomly divided repetitions for training and validation sets for estimation
models developed using artificial neural network (ANN) and multiple linear regression
(MLR) for all, male, and female participants. Among the total dataset, the training and
validation sets were divided into a 70:30 ratio. The bars denote standard deviations. D
denotes percentage differences in the SEE values between the ANN and MLR models
with respect to the baseline SEE values of MLR model.

Fig. 2. Mean and standard deviation of the coefficient of determination (R2) values of
100 randomly divided repetitions of training and validation sets for estimation models
developed using artificial neural network (ANN) and multiple linear regression (MLR)
for all, male, and female participants. Among the total dataset, the training and vali-
dation sets were divided into a 70:30 ratio. The bars denote standard deviations. D
denotes percentage differences in the R2 values between the ANN and MLR models
with respect to the baseline R2 values of MLR model.
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by building simplified versions of the ANN and MLR models using
only height and weight as anthropometric measures for all par-
ticipants’ datasets (supplementary material). As with the results of
previous studies, reducing the anthropometric measures resulted
in a significant reduction in the goodness of fit. On the other hand,
instruments such as stadiometers, digital weight scales, measure-
ment tapes, and skin calipers, used for anthropometric measure-
ments are inexpensive and readily available in various areas lacking
expensive infrastructure and equipment for body composition
measurement. The process of anthropometric measurement is also
straightforward. Hence, if we prioritize finding an inexpensive but
reliable alternative to DXA or MRI in estimating lean muscle and fat
mass, it would be beneficial to spend a short additional time
measuring limb circumferences and lengths to secure the reliability
of the estimation model.

Previous studies have reported that modulation of body
composition significantly impacts the survival probability and
mortality [38e40]. Demographic and anthropometric measures-
driven MLR models developed by Lee et al. [17] have been exten-
sively used in multiple epidemiological studies to estimate body
composition and establish its relationship with mortality of large
149
populations [31,33,41]. The same group of researchers have also
highlighted that the measurement error is a critical factor in
establishing an accurate relationship between body composition
andmortality [42]. Therefore, considering the improved accuracy of
the ANN model we developed, we postulate that using body
composition estimated by the ANN models would improve the
accuracy when establishing an association between body compo-
sition and mortality in epidemiological studies. However, the cur-
rent dataset does not allow directly comparison between ANN and
MLR models regarding the accuracy in estimating mortality
because NHANES is not a cohort study that regularly measures
demographic, anthropometric, and body composition measures
and mortality. The records of long-term changes in body compo-
sition and mortality are necessary to properly evaluate the associ-
ation between changes in body composition andmortality. A future
work of extensive cohort study with regular measurements of de-
mographic, anthropometric, body composition measures, and
mortality will enable researchers to assess the performance of ANN
models in predicting body composition-related modulation of
mortality.

Although the ANN models showed better performance than
MLRmodels, ANNmodels are inherently complex, frequently prone
to overfitting, and require larger computational power and



Fig. 3. Mean and standard deviation of the standard error of estimate (SEE) values of
100 randomly divided repetitions of training and validation sets for estimation models
developed using artificial neural network (ANN) and multiple linear regression (MLR)
for elderly and patients. Elderly are categorized as participants older than 65 years and
patients are categorized as participants with any underlying illness. Among the total
dataset, the training and validation sets were divided into a 70:30 ratio. The bars
denote standard deviations. D denotes percentage differences in the SEE values be-
tween the ANN and MLR models with respect to the baseline SEE values of MLR model.

Fig. 4. Mean and standard deviation of the coefficient of determination (R2) values of
100 randomly divided repetitions of training and validation sets for estimation models
developed using artificial neural network (ANN) and multiple linear regression (MLR)
for elderly and patients. Elderly are categorized as participants older than 65 years and
patients are categorized as participants with any underlying illness. Among the total
dataset, the training and validation sets were divided into a 70:30 ratio. The bars
denote standard deviations. D denotes percentage differences in the R2 values between
the ANN and MLR models with respect to the baseline R2 values of MLR model.

Fig. 5. Mean and standard deviation of the standard error of estimate (SEE) values of
100 randomly divided repetitions of training and validation sets for estimation models
developed using artificial neural network (ANN) and multiple linear regression (MLR)
separately for five ethnicities (Mexican American, Hispanic, White, Black, and Other).
Among the total dataset, the training and validation sets were divided into a 70:30
ratio. The bars denote standard deviations. D denotes percentage differences in the SEE
values between the ANN and MLR models with respect to the baseline SEE values of
MLR model.
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processing time. Fortunately, current advancements in computing
technology are sufficient for simple single-layered ANN models
(such as those used in our study) to estimate output variables
swiftly; the computation time required to build an ANN model to
estimate muscle and fat mass estimation using the largest dataset
(all participants) was between 7 and 8 s.We also pruned the hidden
layer parameters to determine the minimal number of nodes
without significantly compromising the estimation errors of the
model (supplementary material). This pruning process contributed



Fig. 6. Mean and standard deviation of the coefficient of determination (R2) values of
100 randomly divided repetitions of training and validation sets for estimation models
developed using artificial neural network (ANN) and multiple linear regression (MLR)
separately for five ethnicities (Mexican American, Hispanic, White, Black, and Other).
Among the total dataset, the training and validation sets were divided into a 70:30
ratio. The bars denote standard deviations. D denotes percentage differences in the R2

values between the ANN and MLR models with respect to the baseline R2 values of MLR
model.
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to reducing the complexity of the model and minimizing over-
fitting. This process and its result can serve as a reference when
other researchers set out to develop other ANN models using
NHANES data and need to decide the proper number of nodes.
5. Conclusion

We offer a cost-effective and straightforward demographic and
anthropometric-measure-driven ANNmodel that can estimate lean
muscle and fat mass with high precision. Although our method is
more complex than that adopted in previous studies, the resulting
151
estimation model significantly reduces prediction errors. We also
outline in detail the process of developing the ANN models. This
process can be implemented by researchers and medical pro-
fessionals for their datasets to build competent models that esti-
mate body composition using easily measurable parameters. We
expect that our method and results can be used in large population
epidemiological studies and contribute to addressing body
composition-related issues using minimal resources.
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