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The Link module of human TSG-6 (Link_TSG6) promotes wound healing, 
suppresses inflammation and improves glandular function in mouse models 
of Dry Eye Disease 
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A B S T R A C T   

Purpose: To investigate the potential of the Link_TSG6 polypeptide comprising the Link module of human TSG-6 
(TNF-stimulated gene/protein-6) as a novel treatment for dry eye disease (DED). 
Methods: We analyzed the therapeutic effects of topical application of Link_TSG6 in two murine models of DED, 
the NOD.B10.H2b mouse model and the desiccating stress model. The effects of Link_TSG6 on the ocular surface 
and DED were compared with those of full-length TSG-6 (FL_TSG6) and of 0.05% cyclosporine (Restasis®). 
Additionally, the direct effect of Link_TSG6 on wound healing of the corneal epithelium was evaluated in a 
mouse model of corneal epithelial debridement. 
Results: Topical Link_TSG6 administration dose-dependently reduced corneal epithelial defects in DED mice 
while increasing tear production and conjunctival goblet cell density. At the highest dose, no corneal lesions 
remained in ~50% of eyes treated. Also, Link_TSG6 significantly suppressed the levels of inflammatory cytokines 
at the ocular surface and inhibited the infiltration of T cells in the lacrimal glands and draining lymph nodes. 
Link_TSG6 was more effective in decreasing corneal epithelial defects than an equimolar concentration of 
FL_TSG6. Link_TSG6 was significantly more potent than Restasis® at ameliorating clinical signs and reducing 
inflammation. Link_TSG6 markedly and rapidly facilitated epithelial healing in mice with corneal epithelial 
debridement wounds. 
Conclusion: Link_TSG6 holds promise as a novel therapeutic agent for DED through its effects on the promotion of 
corneal epithelial healing and tear secretion, the preservation of conjunctival goblet cells and the suppression of 
inflammation.   

1. Introduction 

Dry eye disease (DED) is the most prevalent ocular surface disorder, 
affecting up to 50% of some populations [1], and is characterized by a 

loss of homeostasis of the tear film [2]. Multiple mechanisms are 
involved in the maintenance of tear film homeostasis at the ocular sur-
face, which is constantly exposed to desiccating stress. In particular, 
ocular surface inflammation plays a critical role in disrupting 
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homeostatic mechanisms and perpetuating DED [3]. Thus, in recent 
years, strategies targeted at controlling ocular surface inflammation 
have been the focus of the development of novel DED therapeutics. 

In previous studies, we found that topical administration of TSG-6, 
the secreted protein product of the TNFAIP6 gene, had profound ef-
fects on the treatment of DED by suppressing inflammation and pro-
moting corneal epithelial cell migration [4,5]. TSG-6 is an endogenous 
multifunctional protein that is constitutively expressed in some tissues, 
especially those that provide a barrier to the environment such as am-
niotic membrane, lung and skin [6]; TSG-6 immunoreactivity has been 
observed in the extracellular matrix of the human corneal epithelium 
[7]. During inflammation, TSG-6 is upregulated in most cells and pro-
tects tissues by modulating inflammation and enhancing repair [6]. 
Moreover, it has been shown that TSG-6 mediates many of the immu-
nomodulatory and reparative functions of mesenchymal stem/stromal 
cells (MSCs) in various disease models of the eye and other tissues [6,8]. 
Given its homeostatic role as an intrinsic protective protein, TSG-6 has 
the potential to be developed as a novel biological drug for DED. 

However, there are several problems with translating the full-length 
TSG-6 protein (FL_TSG6) into clinical use. Firstly, FL_TSG6 is difficult to 
make in significant amounts. Secondly, the protein has poor solubility 
and stability due to aggregation, giving rise to inconsistent efficacies of 
the recombinant FL_TSG6 in experimental models. Importantly, these 
disadvantages are not associated with the recombinant Link module 
from human TSG-6 (Link_TSG6); this independently folded domain [9] 
is easier to make than FL_TSG6 and is highly soluble and stable in so-
lution. Furthermore, we have previously shown that Link_TSG6 is as 
potent as the full-length protein at inhibiting neutrophil migration in 
both in vivo and in vitro assay systems [10,11] and is more potent than 
FL_TSG6 at suppressing inflammatory pathways in models of osteoar-
thritis (https://doi.org/10.1101/2021.03.23.21254102). 

In this study, we investigated the therapeutic potential of topical 
Link_TSG6 administration in two murine models of DED, 1) the NOD. 
B10.H2b mouse model exhibiting ocular Sjögren’s syndrome (SjS)-like 
phenotype and 2) the desiccating environmental stress model induced 
by exposure to low humidity and increased airflow along with musca-
rinic blockade. Furthermore, we compared the therapeutic effects of 
Link_TSG6 on DED with those of FL_TSG6 and of 0.05% cyclosporine 
(Restasis®). The direct effects of Link_TSG6 on corneal epithelial wound 
healing were also evaluated in a murine corneal epithelial debridement 
model. 

2. Materials and methods 

2.1. Animals and animal models 

The experimental protocols were approved by the Institutional 
Animal Care and Use Committee of Seoul National University Hospital 
(IACUC No.15-0051, 16–0142, 17–0067, 18–0042, 19–0068) and 
adhered to the ARVO Statement for the Use of Animals in Ophthalmic 
and Vision Research. 

C57BL/6 and BALB/c mice were purchased from OrientBio Inc. 
(Seongnam, Korea), and breeding pairs of NOD.B10.H2b mice were 
obtained from the Jackson Laboratory (Bar Harbor, ME). Mice were bred 
and maintained at the facility in the Biomedical Research Institute of 
Seoul National University Hospital accredited by AAALAC. 

For an autoimmune-mediated DED model, 12-week-old NOD.B10. 
H2b mice were used because this strain spontaneously develops an 
ocular phenotype similar to human SjS such as dacryoadenitis and 
aqueous deficient dry eye (ADDE) [12,13]. In experiments using NOD. 
B10.H2b mice, 12-week-old C57BL/6 mice were used as negative 
controls. 

For induction of desiccating stress, 7-week-old C57BL/6 mice were 
housed in a perforated cage in a dry cabinet with an electric fan and 
dehumidifier. The airflow from the fan was continuously allowed into 
the cage for 24 h a day for the entire study period, and the humidity was 

maintained at 30–35% inside the cage. In addition, mice received 
intraperitoneal (IP) injections of scopolamine hydrobromide (0.5 mg/ 
0.2 mL, Sigma-Aldrich, St. Louis, MO) TID. This evaporative dry eye 
(EDE) model was modified from a previously described method [14]. 

For creation of corneal epithelial wounding, 8-week-old BALB/c 
mice were anesthetized with IP injection of zolazepam-tiletamine 
(Zoletil®, Virbac, Carros, France) and topical administration of prop-
aracaine ophthalmic solution; then a central corneal area was demar-
cated with a 2-mm-diameter trephine, and the epithelium in the area 
was removed by scraping with a No.13 surgical blade. 

2.2. Reagents and treatment 

The recombinant human Link_TSG6 protein was prepared essentially 
as described previously [15,16], lyophilized and stored at -20 ◦C. 
Endotoxin levels for the protein were determined to be below 0.1 EU/mg 
using a Pierce LAL assay (Thermofisher, Altrincham, UK). Residual tri-
fluoracetic acid (TFA) arising from the final HPLC purification was 
removed by treatment with endotoxin free AG 1-X2 resin (BioRad, 
Watford, UK) and quantified by 19F NMR spectroscopy relative to a TFA 
calibration curve (data not shown; S.E. Powell, R.J. Dodd, G.A. Hassall, 
N. Kouvatsos, C.M. Milner and A.J. Day, unpublished method). 

The freeze-dried Link_TSG6 was dissolved in sterile phosphate- 
buffered saline (PBS) at desired concentrations (0.01, 0.1, 1.0 or 10 μg 
in 5 μL PBS corresponding to concentrations of 0.18, 1.8, 18 and 180 μM, 
respectively) prior to topical administration to the eye. 

The lyophilized form of recombinant human FL_TSG6 was purchased 
from R&D Systems (Cat No. 2104-TS, Minneapolis, MN) and was 
reconstituted in sterile PBS at desired concentrations (0.0327–3.27 μg in 
5 μL PBS) prior to in vivo use. 

Restasis® (cyclosporine ophthalmic emulsion 0.05%) was purchased 
from Allergan (Irvine, CA). 

Link_TSG6, FL_TSG6, Restasis® or PBS were topically applied to the 
ocular surface of mice BID or QID for the pre-determined treatment 
period. 

2.3. Phenol red thread test and corneal vital staining 

The volume of tear secretion was quantified by the phenol red thread 
test (Zone-Quick™, Showa Yakuhin Kako Co. Ltd, Tokyo, Japan). The 
folded end of a phenol red-impregnated cotton thread was hooked over 
the temporal one-third of the lower eyelid margin. After 15 s, the length 
of tear wetting (red portion) was measured. 

Punctate epithelial erosions were observed in DED mice after corneal 
vital staining with 3% (v/v) lissamine green dye (NOD.B10.H2b mice) or 
0.25% (v/v) fluorescein dye (C57BL/6 mice with desiccating stress; with 
fluorescein being used because of the dark eye color), before and after 
treatment, and the extent of staining was graded independently by two 
individuals (J.Y.O. and Y.J.K.) in a blinded manner using the stan-
dardized scale system (score 0: no staining; score 0.5: trace; score 1: less 
than one-third; score 2: less than two-thirds; and score 3: more than two- 
thirds staining of the cornea) [17]. 

The area of the corneal epithelial defect was measured in a corneal 
epithelial debridement wound model after staining with 0.25% (v/v) 
fluorescein dye. Photographs of each cornea were taken at the same 
magnification under a cobalt blue light, and the proportion of the 
stained area to the total corneal surface was calculated using ImageJ 
software (NIH). 

2.4. Histopathology 

After mice were humanely sacrificed by cervical dislocation under 
general anesthesia, the whole eyeball (including the forniceal conjunc-
tiva and the cornea) and the lacrimal glands (both extraorbital and 
intraorbital glands) were excised and subjected to histologic or molec-
ular assay. For histologic examination, the tissues were fixed in 10% (v/ 
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v) formaldehyde. Then, 4-μm-thick sections were cut and subjected to 
hematoxylin-eosin staining, Periodic Acid-Schiff (PAS) staining 
(ab150680, Abcam, Cambridge, MA) or CD3 immunostaining (ab5690, 
Abcam). 

For evaluation of conjunctival goblet cells, the number of PAS- 
stained cells was counted in 4 different sections through the superior 
and inferior conjunctival fornices in each eye by two independent re-
searchers (J.S.R. and H.J.K.); the average number per section in each eye 
was determined as the goblet cell count. The numbers of inflammatory 
foci in the extraorbital glands, defined as independent areas of lym-
phocytic infiltration with >50 cells [12], were also counted in 
hematoxylin-eosin- or CD3-stained sections in a similar manner. 

2.5. Real-time reverse transcription quantitative polymerase chain 
reaction (RT-qPCR) 

The excised tissues were lysed in RNA isolation reagent (RNA-Bee, 
Tel-Test Inc., Friendswood, TX) and homogenized with an ultrasound 
sonicator (Cole Parmer Instruments, Vernon Hills, IL). Total RNA was 
extracted using RNeasy Mini kit (Qiagen, Valencia, CA) and converted to 
first-strand cDNA by reverse transcription (High Capacity RNA-to-cDNA 
Kit, Applied Biosystems, Carlsbad, CA). Then reverse transcription 
quantitative PCR (RT-qPCR) amplification was performed using TaqMan 
Universal PCR Master Mix (Applied Biosystems) in an ABI 7500 Real- 
Time PCR System (Applied Biosystems). All PCR probe sets were 

Fig. 1. Topical Link_TSG6 dose-dependently alleviates DED in NOD.B10.H2b mice. 
A. Treatment protocol. 12-week-old NOD.B10.H2b mice were treated topically with Link_TSG6 (0.01–10 μg in 5 μL PBS) or vehicle (5 μL PBS) QID for 7 days. C57BL/ 
6 (B6) mice were used as a negative control. 
B. Representative photographs of corneas with lissamine green vital dye staining pre-treatment (post-natal day (PND) 12 weeks) and post-treatment (after 7 days of 
treatment; PND 13 weeks). The green-stained area reflects the parts of the cornea with epithelial damage. 
C. Quantification of corneal epithelial defects as graded by the standardized scoring system (0–3) pre- and post-treatment (n = 40 eyes for C57BL/6 (B6) control 
group; n = 52 eyes for PBS group; n = 12 eyes for Link_TSG6 0.01 μg group; n = 22 eyes for Link_TSG6 0.1 μg group; n = 34 eyes for Link_TSG6 1 μg group; n = 30 
eyes for Link_TSG6 10 μg group). 
D. The amount of tear secretion as measured by a phenol red thread test pre- and post-treatment. 
E. The levels of pro-inflammatory cytokine mRNAs in the ocular surface (both cornea and conjunctiva) and the intraorbital lacrimal gland as analyzed by RT-qPCR. 
Values are shown relative to those in C57BL/6 (B6) control eyes. 
F. Representative microphotographs of the forniceal conjunctiva with PAS staining of mucin-secreting conjunctival goblet cells. The number of conjunctival goblet 
cells was quantified in PAS-stained slides; cell counts per eye are shown. Scale bar: 100 μm. 
In C–F mean values ± SD are shown, where each circle depicts the data from an individual eye. Data are pooled from 3 to 6 independent experiments each containing 
3–5 animals (6–10 eyes) per group. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: not significant, as analyzed by one-way ANOVA and Tukey’s test (C, D, 
F, IFN-γ and IL-1β in E), Kruskal–Wallis test and Dunn’s multiple-comparison test (TNF in E) or by paired t-test (for comparison between pre- and post-treatment eyes 
in C, D). 
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purchased from Applied Biosystems (TaqMan Gene Expression Assay 
kits). The assays were performed in dual technical replicates for each 
biological sample. Data were normalized to GAPDH and expressed as 
fold changes relative to controls. 

2.6. Flow cytometry 

Single-cell suspensions were prepared by mincing cervical lymph 
nodes (CLNs) between two frosted ends of glass slides and filtering 
through a cell strainer; cells were stained with fluorescent dye- 
conjugated antibodies against CD4 (Cat No. 25–0041, eBioscience, 
Waltham, MA), IFN-γ (Cat No. 11–7311, eBioscience) and IL-17 (Cat No. 
17–7177, eBioscience). The stained cells were assayed using a flow cy-
tometer (S1000EXi Flow Cytometer, Stratedigm, San Jose, CA) and data 
were analyzed using FlowJo software (Tree Star, Inc., Ashland, OR). 

2.7. Statistical analysis 

Prism software (GraphPad, San Diego, CA) was used for statistical 
tests and generation of graphs. D’Agostino and Pearson test or Shapiro- 
Wilk test were used to test for a normal distribution of data in each 
group. One-way ANOVA with Tukey’s test or Kruskal–Wallis test with 
Dunn’s multiple-comparisons test were applied for comparison of mean 
values from more than two groups. Mann–Whitney U test was used for 
comparison of the means of two groups. A paired t-test was used to 
compare the means of the pre- and post-treatment values in the same 
animal. Data are presented as mean ± SD. Differences were considered 

significant at p < 0.05. 

3. Results 

3.1. Therapeutic effects of Link_TSG6 in the NOD.B10 mouse model of 
DED 

First, we evaluated the dose-dependent effects of Link_TSG6 in the 
NOD.B10.H2b mouse model. Twelve-week-old NOD.B10.H2b mice were 
treated with either topical administration of Link_TSG6 (0.01, 0.1, 1, 10 
μg in 5 μL PBS) or PBS (5 μL) QID for 7 days (Fig. 1A). C57BL/6 mice 
without any treatment were used as negative controls. After 7 days of 
treatment, the cornea was clinically observed, and tear volume was 
measured. The ocular surface (including the cornea and the conjunctiva) 
and the lacrimal glands (both the extraorbital and intraorbital glands) 
were subjected to molecular and histologic assays. 

Link_TSG6 treatment significantly reduced punctate epithelial ero-
sions in the cornea and increased tear production, as compared to pre- 
treatment, whereas PBS had no effects on corneal epithelial erosions 
or tear secretion (Fig. 1B–D). The effects of Link_TSG6 on corneal 
epithelial defects and tear production were dose-dependent (Fig. 1C and 
D) and at the highest dose, ~50% of treated eyes had no corneal lesions 
remaining (Fig. 1C). Link_TSG6 also significantly suppressed mRNA 
levels of TNF, IFN-γ and IL-1β in the ocular surface and in intraorbital 
lacrimal glands in a dose-dependent manner (Fig. 1E); eyes treated with 
1 or 10 μg doses of Link_TSG6 had similar levels of inflammatory cyto-
kines to those seen in control C57BL/6 mice. In the extraorbital glands 

Fig. 2. Link_TSG6 suppresses CD3+ T cell infiltration in the lacrimal glands. 
A. Hematoxylin-eosin (H&E) staining of the extraorbital lacrimal glands in C57BL/6 control mice and NOD.B10.H2b mice receiving 7 days of PBS or Link_TSG6 
treatment (QID). Scale bar: 200 μm. 
B. CD3 immunostaining of the extraorbital lacrimal glands in C57BL/6 control mice and NOD.B10.H2b mice receiving PBS or Link_TSG6 for 7 days (QID). Scale bar: 
200 μm. 
C. Quantification of the number of inflammatory foci (an independent area of lymphocytic infiltration with >50 cells) in the extraorbital lacrimal glands. Each circle 
depicts the data from a single eye. Data (mean ± SD) were pooled from 3 independent experiments containing 3–5 animals per group in each experiment. **p < 0.01, 
****p < 0.0001, ns: not significant, as analyzed by Kruskal-Wallis test and Dunn’s multiple-comparison test. 
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the expression was not significantly up-regulated for any of the cytokine 
genes (data not shown) meaning that it was not possible to come to any 
conclusions regarding the effect of Link_TSG6. 

Furthermore, PAS staining showed that conjunctival goblet cell 
numbers were preserved by 1 or 10 μg Link_TSG6 treatment, while PBS 
or 0.1 μg Link_TSG6 did not affect the goblet cell density (Fig. 1F). CD3 
immunostaining revealed that T cell infiltration, which was markedly 
increased in the extraorbital lacrimal glands of NOD.B10.H2b mice, was 
significantly suppressed by Link_TSG6 treatment (Fig. 2). 

Therefore, these data demonstrated that topical Link_TSG6 admin-
istration dose-dependently alleviated corneal epithelial erosions, 
improved tear secretion and conjunctival goblet cell numbers, and 
repressed inflammation in the ocular surface and the lacrimal glands of 
NOD.B10.H2b mice, a model of primary ocular SjS. 

3.2. Comparison of the effects of Link_TSG6 and FL_TSG6 in the NOD. 
B10 model 

We next compared the therapeutic effects of Link_TSG6 with those of 
equivalent molar doses of FL_TSG6, where the proteins were adminis-
tered BID. Twelve-week-old NOD.B10.H2b mice were topically treated 
with either Link_TSG6 (0.01, 0.1, 1 μg in 5 μL PBS) or FL_TSG6 (0.0327, 
0.327, 3.27 μg in 5 μL PBS) or PBS (5 μL) BID for 7 days (Fig. 3A). The 
molecular weight of recombinant human TSG-6 (R&D Systems) was 
determined to be 35.7 kDa by mass spectrometry, based on which we 
calculated equimolar doses of 0.0327, 0.327, 3.27 μg of FL_TSG6 cor-
responding to 0.01, 0.1, 1 μg of Link_TSG6, respectively. It should be 

noted that given FL_TSG6’s poor solubility [18] (N. Kouvatsos, C.M. 
Milner and A.J. Day, unpublished data), it was not possible to compare 
the full-length protein directly with the 10 μg dose of Link_TSG6. 

Before treatment, there were similar levels of corneal epithelial 
erosions and impaired tear production in all NOD.B10.H2b mice. Seven 
days after treatment, both Link_TSG6 and FL_TSG6 induced significant 
reductions in the epithelial erosions and improvements in tear produc-
tion (Fig. 3B–D). Notably, Link_TSG6 was significantly more potent than 
equimolar concentrations of FL_TSG6 at attenuating corneal epithelial 
erosions (Fig. 3C). 

Link_TSG6 1 μg and FL_TSG6 3.27 μg were equally effective at 
increasing the number of conjunctival goblet cells, while lower doses of 
Link_TSG6 and FL_TSG6 failed to impact the goblet cell density (Fig. 3E). 
Similarly, the number of CD3-stained inflammatory foci (areas with >50 
lymphocytes) in the extraorbital lacrimal glands was significantly 
decreased by Link_TSG6 1 μg and FL_TSG6 3.27 μg (Fig. 3F). 

These results indicated that Link_TSG6 was more effective than 
FL_TSG6 at promoting healing of corneal epithelial lesions in the NOD. 
B10 mouse. Moreover, 1 μg Link_TSG6 was found to have similar ther-
apeutic effects when given 2-times per day (Fig. 3) compared to 
Link_TSG6 administered 4-times per day (Figs. 1 and 2), so BID dosing 
was used in all subsequent experiments. 

3.3. Comparison of the therapeutic effects of Link_TSG6 with Restasis® 

We compared the therapeutic effects of Link_TSG6 with those of 
0.05% cyclosporine (Restasis®) in the NOD.B10.H2b mouse model. 

Fig. 3. Comparison of Link_TSG6 and FL_TSG6 in NOD.B10.H2b model of DED. 
A. Experimental protocol. 12-week-old NOD.B10.H2b mice were treated topically with equimolar doses of Link_TSG6 (0.01–1 μg in 5 μL PBS) and FL_TSG6 
(0.0327–3.27 μg in 5 μL PBS) or with PBS (5 μL) BID for 7 days; C57BL/6 (B6) mice served as a negative control. 4 animals (8 eyes) were used per group except for 2 
animals (4 eyes) in the FL_TSG6 3.27 μg group. After 7 days of treatment assays were performed. 
B. Representative photographs of corneas following lissamine green staining pre-treatment and after 7 days of treatment (post-treatment). 
C. Corneal staining scores as an indicator of the amount of corneal epithelial damage pre- and post-treatment. 
D. Quantification of tear production using the phenol red thread test pre- and post-treatment. 
E. The number of conjunctival goblet cells per eye as counted in PAS-stained sections. 
F. The number of inflammatory foci in the extraorbital lacrimal gland per eye as determined in CD3-stained sections. 
In C–F mean values ± SD are shown, where each circle indicates the data from an individual eye. */§p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: not 
significant, Mann–Whitney U test (C) or by one-way ANOVA and Tukey’s multiple-comparison test (D–F). The asterisks in C and D indicate the values relative to PBS- 
treated group. 
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Either Link_TSG6 (0.1, 1, 10 μg in 5 μL PBS) or the same volume of 
Restasis® were instilled BID onto the eyes of 12-week-old NOD.B10.H2b 

mice for 7 days (Fig. 4A). 
Results revealed that Link_TSG6 (1 and 10 μg) was considerably 

more effective in reducing corneal epithelial erosions than Restasis® 
(Fig. 4B and C), although the effects of Link_TSG6 and Restasis® on tear 
production were similar (Fig. 4D). 

Likewise, Link_TSG6 (1 and 10 μg) caused a significant increase in 
the number of conjunctival goblet cells, whereas Restasis® did not have 
any effect on the goblet cell counts (Fig. 4E). Both Link_TSG6 (0.1, 1 and 
10 μg) and Restasis® significantly decreased the number of CD3+ in-
flammatory foci in the extraorbital lacrimal glands (Fig. 4F). 

Hence, Link_TSG6 was more effective in attenuating corneal 
epithelial defects and preserving conjunctival goblet cells, and was 
equally effective in inhibiting lacrimal gland inflammation when 
compared directly with Restasis®. 

3.4. Preventive and therapeutic effects of Link_TSG6 in the desiccating 
stress model and comparison with Restasis® 

Having demonstrated the efficacy of Link_TSG6 in the NOD.B10.H2b 

mouse model of ocular SjS, we went on to test whether Link_TSG6 might 
also be effective in the treatment of a more prevalent form of DED, i.e. 
EDE. For this purpose, we utilized the desiccating environmental stress 
model that emulates EDE, in which 7-week-old C57BL/6 mice were kept 
in a dry chamber with forced airflow and low humidity while receiving 

muscarinic blockade for 10 days. Simultaneously with desiccating 
injury, Link_TSG6 (0.1, 1, 10 μg in 5 μL PBS) or Restasis® were topically 
administered to the eyes of the C57BL/6 mice BID for 10 days (Fig. 5A). 
The same volume of PBS was applied in the positive control group, and 
C57BL/6 mice without desiccating injury served as negative controls. 

Consistent with previous observations [14,19–21], desiccating injury 
induced corneal epithelial defects, impaired tear production, and 
increased the percentages of IFN-γ+CD4+ Th1 cells and IL-17+CD4+

Th17 cells in draining CLNs (Fig. 5B–D). Treatment with Link_TSG6 (1 or 
10 μg) significantly prevented the development of DED as reflected by 
decreased corneal epithelial erosions and/or enhanced tear production, 
as compared to Link_TSG6 0.1 μg- or PBS-treated mice (Fig. 5B and C). 
Similarly, the percentages of IFN-γ+CD4+ Th1 cells and IL-17+CD4+

Th17 cells in CLNs were significantly lowered by 1 or 10 μg Link_TSG6 
(Fig. 5D). Link_TSG6 (1 μg) was more effective than Restasis® in 
reducing corneal epithelial erosions, preserving tear production and 
suppressing Th1 cells (Fig. 5B and C); in this model, Restasis had no 
significant effect on corneal epithelial lesions or infiltration of Th1 cells 
into CLNs. 

In addition, we investigated the therapeutic effects of Link_TSG6 on 
the ocular surface that had already been exposed to desiccating injury. 
To this end, 7-week-old C57BL/6 mice were subjected to desiccating 
stress (induced by dry chamber housing and muscarinic blockade) for 14 
days; from day 7 to day 14 the mice were treated topically with 
Link_TSG6 (0.1, 1, 10 μg in 5 μL PBS) or PBS (5 μL) BID (Fig. 5E). Assays 
showed that Link_TSG6 (0.1, 1 or 10 μg) significantly reversed corneal 

Fig. 4. Topical Link_TSG6 is more effective in treating DED than Restasis® in NOD.B10.H2b mice. 
A. Treatment protocol. 12-week-old NOD.B10.H2b mice were treated with topical administration of Link_TSG6 (0.01–10 μg in 5 μL PBS), Restasis® (5 μL) or PBS (5 
μL) BID for 7 days; C57BL/6 (B6) mice served as a negative control. 4 animals (8 eyes) were used per group except for 2 animals (4 eyes) in C57BL/6 (B6) negative 
control. 
B. Representative photographs of corneal lissamine green staining pre-treatment and after 7 days of treatment (post-treatment). 
C. Corneal staining scores following lissamine green staining pre- and post-treatment. 
D. Measurement of tear production pre- and post-treatment. 
E. Conjunctival goblet cell count after 7 days of treatment. 
F. The number of inflammatory foci in the extraorbital lacrimal gland after 7 days of treatment. 
In C–F mean values ± SD are shown, where each circle indicates the data from an individual eye. */§p < 0.05, **/ §§p < 0.01, ***p < 0.001, ****p < 0.0001, ns: not 
significant, as analyzed by one-way ANOVA and Tukey’s multiple-comparison test. The asterisks in C indicate the values relative to PBS-treated group. 

J.Y. Oh et al.                                                                                                                                                                                                                                    



The Ocular Surface 24 (2022) 40–50

46

epithelial defects and restored tear production (Fig. 5F), and that 
Link_TSG6 (1 or 10 μg) significantly increased the number of conjunc-
tival goblet cells (Fig. 5G). 

These results collectively indicate that Link_TSG6 had both preven-
tive and therapeutic effects in the environmental desiccating stress 
model. 

3.5. Effects of Link_TSG6 on corneal epithelial healing in the epithelial 
debridement wound model 

To investigate the direct effect of Link_TSG6 on corneal epithelial 
wound healing, we generated a 2-mm-diameter epithelial defect in the 

central cornea of 8-week-old BALB/c mice by gentle scraping with a 
No.13 surgical blade. Immediately after wounding, Link_TSG6 (0.1 or 1 
μg in 5 μL PBS) or PBS (5 μL) was topically applied to the eyes BID for 
one day (Fig. 6A). 

Twenty-four hours later, observation of the cornea under fluorescein 
vital dye staining revealed that Link_TSG6 dramatically reduced the 
epithelial defect area (Fig. 6B and C). A similar observation was made 
with regard to IL-6 mRNA transcript levels in the cornea (Fig. 6D). 

4. Discussion 

Decades of research have revealed that DED is a multifactorial 

Fig. 5. Link_TSG6 has preventive and therapeutic effects on DED in an environmental desiccating stress model. 
A. Experimental protocol for evaluation of preventive effect. To induce desiccating injury, 7-week-old C57BL/6 mice were placed in a dry chamber and injected 
intraperitoneally with scopolamine TID for 10 days, during which time topical administration of Link_TSG6 (0.1–10 μg in 5 μL PBS), Restasis® (5 μL) or PBS (5 μL) 
BID was performed. C57BL/6 (B6) mice that were not subjected to desiccating injury served as a negative control. 4–5 animals (8–10 eyes) were used per group 
except for 2 animals (4 eyes) in B6 negative control. 
B. Representative photographs of corneal fluorescein staining after 10 days of treatment. 
C. Quantitative analysis of corneal epithelial defects (left panel) and tear production (right panel). 
D. Representative flow cytometry cytograms (left) and quantitation of IFN-γ+CD4+ cells (middle) and IL-17+CD4+ cells (right) in draining cervical lymph nodes 
(CLN). 
E. Experimental protocol for evaluation of therapeutic effect. 7-week-old C57BL/6 mice were subjected to desiccating injury for 14 days (from day 0–14). Starting 
from day 7, the mice received topical administration of Link_TSG6 (0.1–10 μg in 5 μL PBS) or PBS (5 μL) BID for 7 days. At day 14, assays were carried out. 
F. Quantitation of corneal epithelial defects (left) and tear production (right) at day 7 (before treatment start; pre-treatment) and at day 14 (7 days of treatment; post- 
treatment). 
G. Measurement of conjunctival goblet cell number post-treatment. 
In C, D, F and G mean values ± SD are shown, where each circle represents the data from an individual eye. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: 
not significant, as analyzed either by one-way ANOVA and Tukey’s multiple-comparison test, or by paired t-test for comparison between pre- and post-treatment eyes 
in F. 
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disease in which an unstable and hyperosmolar tear film and inflam-
mation play etiological roles, causing damage to the ocular surface 
epithelium [3]. These epithelial changes and subsequent loss of barrier 
function further destabilize the tear film and amplify inflammation, 
thereby making DED a self-perpetuating, chronic disorder [3,22]. Thus, 
strategies aimed both at the inhibition of inflammation and the pro-
tection (or restoration) of the epithelium are key to the development of 
disease-modifying DED therapies. 

Currently, there are three U.S. Food and Drug Administration (FDA)- 
approved DED treatments: 1) cyclosporine 0.05% (Restasis®, Allergan, 
Irvine, CA) and 0.09% (Cequa™, Sun Pharma, Cranbury, NJ), 2) lifite-
grast 5% (Xiidra®, Novartis) and 3) loteprednol etabonate 0.25% 
(Eysuvis®, Kala Pharmaceuticals, Watertown, MA). 

Cyclosporine is a calcineurin inhibitor that blocks IL-2 activation of 
lymphocytes. Lifitegrast is a small molecule integrin antagonist, which 
blocks binding between lymphocyte function-associated antigen (LFA)-1 
(CD11a, CD18) and intercellular adhesion molecule (ICAM)-1 (CD54). 
Both cyclosporine and lifitegrast act on T cells, suppressing activation 
and migration of the cells. Since its first FDA approval in 2003, topical 
cyclosporine has been widely used for DED treatment; however, a recent 
comprehensive review has revealed that there is low-to-moderate evi-
dence for the efficacy of topical cyclosporine in the treatment of DED, 
mainly due to inconsistent results across studies [23]. Moreover, topical 
cyclosporine is frequently associated with treatment-related adverse 
events, leading to discontinued use in up to 29% of patients [23]. Lifi-
tegrast 5% (Xiidra®) was approved for treatment of the signs and 
symptoms of DED by the FDA in 2016 [24]; however, the European 
Medicines Agency (EMA) recently concluded that the effectiveness of 
Xiidra was not demonstrated across different symptoms of DED (https 
://www.ema.europa.eu/en/medicines/human/withdrawn-applicatio 
ns/xiidra). 

Although T cells are likely important players in the pathophysiology 

of chronic DED (e.g., based on adoptive transfer experiments in mouse 
desiccation-injury models [25]), other factors, including the 
pro-inflammatory death of cells in the ocular surface epithelium and 
innate immune cell activation upon desiccating stress, play a critical role 
in the initiation and perpetuation of DED. Therefore, it is perhaps not 
surprising that therapies only targeting T cells, such as cyclosporine and 
lifitegrast, have limited efficacy in the treatment of DED. Another 
FDA-approved drug Eysuvis® is a topical corticosteroid (loteprednol 
etabonate 0.25%). Corticosteroids rapidly suppress cells of both the 
innate and adaptive immune systems through induction of apoptosis and 
transcriptional repression of inflammatory cytokines [26–28]. However, 
topical corticosteroids also induce apoptosis of corneal epithelial cells 
[29,30], and are often associated with cataract formation and elevation 
of intraocular pressure, precluding their long-term use in chronic con-
ditions like DED. 

Over the past decade, we have investigated the therapeutic potential 
and mechanism of mesenchymal stem/stromal cells (MSCs) in the eye [8, 
31]. MSCs, a heterogeneous population of spindle-shaped, plastic-adherent 
stromal cells isolated from various connective tissues, exhibit prominent 
abilities to modulate both innate and adaptive immune responses and to 
facilitate tissue regeneration. Multiple studies by our group and others have 
indicated that MSCs have beneficial effects in models of DED by sup-
pressing inflammation and promoting regeneration in the lacrimal gland 
and ocular surface [32–41]. In line with these preclinical data, a recently 
published clinical study by Moller-Hansen et al. (2021) demonstrated a 
rapid, dramatic, and persistent improvement in symptoms and signs of DED 
after an intra-lacrimal gland injection of MSCs in SjS-related DED patients 
[42]. Another clinical study by Liang et al. (2021) showed the safety and 
efficacy of subconjunctival injection of MSCs in corneal epithelial healing 
in patients with acute ocular burns [43]. It is well-known that MSCs exert 
their therapeutic effects by secreting paracrine factors in response to 
inflammatory stimuli [44–46]. Among the protective factors that are 

Fig. 6. Link_TSG6 accelerates healing in mice 
following corneal epithelial debridement wounding. 
A. Experimental scheme. A 2-mm-diameter region of 
epithelium in the central cornea was removed by 
scraping in 8-week-old BALB/c mice, and the eyes 
were treated topically with Link_TSG6 (0.1 or 1 μg 
in 5 μL PBS) or PBS (5 μL) BID. 5 animals (10 eyes) 
were used per group. 24 h later, the corneas were 
extracted for assays. 
B. Representative corneal photographs under a co-
balt blue filter following fluorescein staining before 
treatment (pre-treatment) and after 24 h of treat-
ment (post-treatment). Green-stained areas corre-
spond to corneal epithelial defects. 
C. Measurement of the corneal epithelial defect 
areas. 
D. Real-time RT-qPCR for pro-inflammatory cyto-
kine IL-6. The mRNA levels are presented as fold 
changes relative to the levels in normal corneas 
without injury. 
In C and D mean values ± SD are shown, where each 
circle indicates the data from an individual eye. **p 
< 0.01, ****p < 0.0001 as analyzed by one-way 
ANOVA and Tukey’s multiple-comparison test.   
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produced by activated MSCs, TSG-6 has been identified to mediate the 
anti-inflammatory action of MSCs in the cornea [47–52] as well as in many 
other organ/disease systems [6]. 

TSG-6 is an endogenous protein that is not constitutively expressed in 
most adult tissues, being upregulated by inflammatory mediators or upon 
injury [6,53]. However, it has been found to be present in tissues which 
are metabolically active or subject to challenges from the environment 
[6], including the cornea [7]. TSG-6 provides protection and maintains 
homeostasis through multiple anti-inflammatory and tissue-protective 
properties [6]. Indeed, in previous studies, we found that topical appli-
cation of recombinant human FL_TSG6 was effective in the treatment of 
DED by alleviating inflammation and corneal epithelial defects and 
improving tear production in both the NOD.B10.H2b mouse model and 
the concanavalin A-induced lacrimal gland inflammation model [4,5]. 
The anti-inflammatory mechanism of TSG-6 involves inhibition of the 
migration and/or function of innate immune cells such as neutrophils [10, 
11,54–57], macrophages [58–65] and dendritic cells [66,67], all of which 
are involved in DED pathophysiology [68]. In addition, TSG-6 has been 
shown to influence adaptive immunity, inhibiting T cell migration and 
activation [66,69], e.g., by increasing the numbers of regulatory T cells 
and tolerogenic antigen-presenting cells [66]. 

As noted above, FL_TSG6 has problems that prevent successful clin-
ical translation: instability and tendency to aggregate, poor solubility 
and difficulty of manufacturing at scale. By contrast, Link_TSG6, the 
recombinant Link module from the human TSG-6 protein, is not asso-
ciated with these disadvantages; it is easier to make, is highly soluble 
and stable in solution, and it retains many of the activities and ligand- 
binding properties of the full-length protein [6]. 

In the present study, we demonstrated both preventive and thera-
peutic effects of topical Link_TSG6 administration in two DED models, 
the NOD.B10.H2b mouse model and an environmental desiccating stress 
model. Link_TSG6 decreased corneal epithelial defects, with no lesions 
present in about 50% of treated eyes (e.g., after 7 days of treatment), 
while increasing tear production and goblet cell density. Link_TSG6 also 
suppressed inflammation in the ocular surface and lacrimal glands, and 
reduced the number of Th1 and Th17 cells in ocular draining lymph 
nodes. In addition, topical Link_TSG6 directly accelerated corneal 
epithelial wound healing in mice following epithelial debridement. 
Importantly, Link_TSG6 was more effective than Restasis in ameliorating 
clinical signs of DED and repressing inflammation of the ocular surface; 
moreover it was more efficacious than FL_TSG6 at reducing the extent of 
corneal lesions. 

Link_TSG6 has been found previously to be a potent inhibitor of 
neutrophil migration [10,55], mediated by its interaction with CXCL8 
that blocks the binding of this chemokine to heparan sulfate (e.g., on 
endothelial cells) and thereby modulates its bioavailability and activity 
[11]. Link_TSG6 also interacts with other chemokines, including CCL2, 
CCL5, CCL19, CCL21 and CXCL12 [11,70], which are responsible for the 
migration of monocytes, macrophages, dendritic cells and T lympho-
cytes within eye tissues in the context of DED [71,72]. From the present 
study it is apparent that Link_TSG6 inhibits the infiltration of CD3+ T 
cells into lacrimal glands during DED. Link_TSG6’s suppression of Th1 
and Th17 cell numbers in CLNs is likely through its inhibition of the 
migration/function of antigen presenting dendritic cells (e.g., in a 
CCL19-dependent manner [72]). Link_TSG6 also reduced the expression 
of pro-inflammatory cytokines at the ocular surface and in lacrimal 
glands, as has been observed previously in an air-pouch model of acute 
inflammation [10], indicating that this protein has multiple 
anti-inflammatory effects. 

In previous studies TSG-6 has been shown to directly promote the 
migration of corneal epithelial cells in vitro [4,73] and to enhance 
wound healing in the cornea and skin in vivo [6,73–75]. From the data 
presented here, it is apparent that Link_TSG6 retains these properties of 
the full-length protein, i.e., with rapid wound closure in the corneal 
debridement model. The mechanism underlying this is currently un-
clear. However, integrins have a well-established role in corneal wound 

healing [76] and previously it has been found that Link_TSG6 enhances 
the binding of fibronectin to cell surface α5β1 [77], an interaction that is 
central to epithelial cell migration. 

In some contexts, TSG-6’s anti-inflammatory activities have been 
attributed to its enzymatic activity that leads to the covalent modifica-
tion of the polysaccharide hyaluronan with heavy chains of the inter- 
alpha-inhibitor family [6]. This mechanism of action can be ruled out 
here since this function relies on a metal ion binding site within the 
TSG-6 CUB module [78] and the isolated Link module domain 
(Link_TSG6) lacks this activity [10]. 

DED is one of the most common reasons for individuals seeking 
medical eye care [79,80]. Nevertheless, most treatment options consist 
of over-the-counter preparations of artificial tears and ocular lubricants, 
with a limited number of prescription drugs that primarily target T cells. 
Given the fact that DED develops by a vicious cycle of epithelial damage, 
innate immune activation and subsequent adaptive immune activation, 
new drugs, targeting multiple steps of the pathophysiology are needed. 
In this regard endogenous proteins with anti-inflammatory and 
tissue-protective properties, such as thymosin β4 [81,82] and pigment 
epithelium-derived factor [83–85], are currently in development or 
under investigation. We herein propose that Link_TSG6 is a promising 
candidate as a novel DED therapeutic that can both suppress inflam-
mation and promote epithelial regeneration/repair. 
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