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Abstract: The present study aimed to examine and compare the effects of a rehabilitation exercise (RE)
using neuromuscular electrical stimulation (NMES) and blood flow restriction (BFR) on muscle func-
tion and knee functional abilities in patients who underwent anterior cruciate ligament reconstruction
(ACLR). A total of 45 patients who underwent ACLR (28.76 ± 0.8 years; 34 males and 11 females)
were retrospectively divided into three groups: control (CON, n = 15), NMES (n = 15), and BFR
(n = 15). All participants carried out the RE program for 60 min, thrice a week for 12 weeks. The
Lysholm score, International Knee Documentation Committee (IKDC) subjective score, thigh circum-
ference at 5 cm from the knee joint, Y-balance posterior medial, and lateral significantly increased
in all groups via intervention (p < 0.05). However, NMES showed a higher thigh circumference at
15 cm from the knee joint than CON via intervention (p < 0.05), and the strength and endurance
of quadriceps femoris and hamstrings and Y-balance anterior showed a significant increase via
intervention in NMES and BFR compared with CON (p < 0.05). In conclusion, we confirmed that RE
using NMES and BFR effectively enhances muscle function and balance in ACLR patients.

Keywords: anterior cruciate ligament reconstruction; balance; blood flow restriction exercise; muscular
function; neuromuscular electrical stimulation; rehabilitation

1. Introduction

In the field of sports medicine, anterior cruciate ligament (ACL) surgery due to knee
injury is frequently performed, and quadriceps femoris weakness is generally observed [1].
The muscle weakness of the quadriceps femoris muscle due to ACL injury is caused
by muscle atrophy and a nerve-suppressive reaction that blocks muscle activation of
the quadriceps femoris [1–3]. Atherogenic muscle inhibition is related to joint swelling,
inflammation, pain, joint relaxation, and structural damage that occur after knee injury
or knee surgery [2,3]. ACL injury, in particular, causes more muscle atrophy through
a mechanism that inhibits quadriceps femoris activity [1]. Because quadriceps femoris
weakness caused by a knee injury and surgery exacerbates dynamic knee stability [4,5]
and functional ability [6] and increases the risk of arthritis [7] and knee joint re-injury [8],
urgent and effective medical treatment is required.

Even if the overall rehabilitation process is performed after ACL surgery, the muscle
function of the quadriceps femoris does not fully recover to the pre-ACL surgery state [9,10].
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After ACL surgery, quadriceps femoris weakness is associated with changes in movement
patterns [11], decreased muscle function [12], increased risk of re-injury [13], and thinning of
the articular cartilage of the femur [14]. In particular, muscle atrophy and muscle weakness
occurring after ACL injury and surgery are important issues, and such muscle atrophy
and muscle weakness can persist for many years after ACL surgery [15]. A previous study
reported that the cross-sectional area of the quadriceps femoris between the ACL surgical
site and the non-surgical site was 18% or more even after six years [16]. Therefore, a
rehabilitation exercise modality to restore the muscle function of the quadriceps femoris
more effectively after ACL surgery is very important.

Neuromuscular electrical stimulation (NMES) is a method using large electrodes and
multiple current paths, and it is a method of complexly delivering current using multiple
paths rather than the traditional form of electrical stimulation [17]. That is, the electrical
stimulation generated by the NMES equipment stimulates the motor nerve of the muscle
through multiple current paths to induce continuous contraction and relaxation of the mus-
cle, thereby inducing muscle improvement, that is, muscle hypertrophy [17,18]. Previous
studies have reported that NMES minimizes quadriceps femoris atrophy [18], increases
the strength of muscle contraction during exercise [19], and enhances muscle function [20].
Additionally, the repetitive electrical stimulation of skeletal muscle using NMES shows
physiological improvement such as an increase in cross-sectional area [21], suppression
of a decrease in muscle mass [22], and an increase in the motor unit of neuromuscular
muscle [23]. By inducing hypoxic conditions in local muscle tissue via resistance exercise
with reduced oxygen supply, BFR stimulates chemoreceptor types III and IV of muscle
afferents [24,25], and it is thus an effective modality for inducing the recruitment of more
fast muscle fibers to improve muscle function and induce muscle hypertrophy [26]. A
previous study reported that the combination of BFR and low-intensity resistance exercise
can induce the effect of high-intensity resistance exercise, which leads to an enhancement in
muscle function and hypertrophy [27]. As summarized above, NMES and BFR are suitable
for the rehabilitation exercise modality of patients undergoing ACL reconstruction, and it
is very important to evaluate their clinical effectiveness. In addition, studies comparing
the effectiveness of general rehabilitation exercise, NMES, and BFR to patients who have
underwent ACL reconstruction are lacking.

Therefore, the purpose of the present study was to examine and compare the effects of
the rehabilitation exercise modality using NMES and BFR vs. general rehabilitation exercise
modality on the muscle function of the quadriceps femoris and knee functional abilities
in patients who underwent ACL reconstruction. We hypothesized that the rehabilitation
exercise modality using NMES and BFR would enhance the quadriceps femoris and knee
functional abilities in patients who underwent ACL reconstruction more than the general
rehabilitation exercise modality.

2. Materials and Methods
2.1. Participants

Our study was conducted retrospectively using the test results of those who partici-
pated in the rehabilitation exercise process after ACL reconstruction from January 2017 to
December 2021 by the same orthopedic knee surgeon at K hospital and M hospital. During
the study period, one orthopedic knee specialist and a rehabilitation team moved to the
hospital in July 2019 and used the same surgical method and rehabilitation exercise process
to perform the same rehabilitation exercise. The present study included 45 Korean patients
(age: 28.7 ± 8.2 years (34 males: 29.4 ± 8.5 years and 11 females: 26.8 ± 7.3 years)) who
underwent cruciate ligament surgery using the same method via an orthopedic medical
doctor. The CONSORT flow chart is illustrated in Figure 1. They were equally assigned to
a control group (CON, n = 15) to undergo general rehabilitation exercise, an NMES group
(n = 15), and a BFR group (n = 15) according to their age, sex, height, and weight. The CON
consisted of subjects who underwent general rehabilitation from January to December 2017,
and it was selected in consideration of age, gender, height, and weight. The NMES group
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consisted of subjects who applied the general rehabilitation and MNES from January 2018
to June 2019 at K Hospital. The BFR group consisted of subjects who applied the general
rehabilitation and BFR from January 2020 to December 2021 at M Hospital.
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Figure 1. CONSORT flow chart. ACL, anterior cruciate ligament; CON, control; NMES, neuromuscu-
lar electrical stimulation group; BFR, blood flow restriction group.

Patients who underwent meniscus repair for a meniscus tear or cartilage repair for
cartilage defects and elite athletes were excluded from the present study.

All participants received information about the purpose and process of the study,
including possible side effects, and consent was obtained. Because all participants com-
pleted the study, all data were used in the analyses. As shown in Table 1, there were no
significant differences in participants’ characteristics between the groups. All procedures
were performed according to the ethical standards of the responsible committee on human
experimentation and the Declaration of Helsinki. The study was approved by the Insti-
tutional Review Board of Konkuk University (7001355-202206-E-172) in Korea and was
conducted according to the Declaration of Helsinki.

Table 1. Participants’ characteristics.

Variable CON (n = 15) NMES (n = 15) BFR (n = 15) p-Value

Sex (male/female) 11/4 12/3 11/4 -
Age (years) 27.53 ± 8.43 29.13 ± 9.07 29.60 ± 7.60 0.780
Height (cm) 170.41 ± 76.83 173.47 ± 6.50 170.96 ± 7.63 0.495
Weight (kg) 76.83 ± 17.14 74.51 ± 11.72 70.79 ± 10.95 0.476

ACL leg (right/left) 6/9 8/7 4/11 -
Values are expressed as the mean ± standard deviation. CON, control group; NMES, neuromuscular electrical
stimulation group; BFR, blood flow restriction group; ACL, anterior cruciate ligament.

2.2. Study Design

The present study design is illustrated in Figure 2. All participants who underwent
ACL reconstruction were divided into three groups: CON (n = 15, underwent general
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rehabilitation exercise), NMES (n = 15, underwent rehabilitation exercise with NMES), and
BFR (n = 15, underwent rehabilitation exercise with BFR). All participants underwent a
pre-test, a 12-week rehabilitation exercise program applied to each group, and a post-test.
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In the present study, pre-tests were performed after being diagnosed with an ACL
rupture by an orthopedic surgeon. The pre-test was completed one day before the ACL
reconstruction, and the post-test began two days after the last rehabilitation exercise
program. On the test day, all participants visited the Sports Medical Center at K and M
hospitals and were tested after stabilization. All participants were measured for height
and weight and evaluated on a subjective questionnaire (Lysolum score, IKDC subjective
score). Then, to measure the circumference of the thigh, all participants were measured
by relaxing in a supine position and measuring at the 5 cm and 15 cm points on the thigh.
Then, muscle strength and endurance were measured to evaluate the isokinetic muscular
function. For a dynamic evaluation of balance, the Y-balance test (YBT) was measured as
an anterior reach, a posteromedial reach, and a posterolateral reach.

During the rehabilitation exercise session, a 12-week rehabilitation exercise program
was conducted for all participants of each group three days after ACL surgery. The
rehabilitation exercise program was performed three days per week for 12 weeks. The
general rehabilitation exercise session consisted of exercises to enhance range of motion
(ROM exercise), weight-bearing exercise, closed kinetic chain (CKC) exercise, and open
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kinetic chain (OKC) exercise. The ROM exercise was designed to promote the recovery of
full ROM within six weeks. The ROM exercise was performed passively for knee flexion
and then continued with active assistance. In addition, from week 4, an active motion was
performed to achieve complete ROM. The ROM exercise increased the control of the pain
and swelling gradually. Then, weight-bearing exercises were performed with the knees
completely extended, such as weight shift exercises. From week 3, all patients were trained
to walk normally as much as possible. We recommended that the patients wear braces until
week 12. To ensure the complete extension of the knee, the angle of the brace was fixed at
0◦ until week 2; the patients were permitted to adjust the brace to their desired angle after
week 2. The CKC exercises were initiated two to three weeks after surgery, such as wall
squat, mini squat, half squat, and lunge, step-up exercise, and adding a gradual increase
in weight from week 9. The exercise was performed in three sets of 15 repetitions. The
OKC exercises for the quadriceps femoris were performed two to six weeks after surgery
without weight bearing. From week 7, OKC exercise training with increased weight was
performed at a limited angle of 90–45◦ flexion and was performed without angle restriction
until three months after surgery. In addition, the OKC exercises for the hamstring muscle
were initiated four weeks after surgery, such as prone active curl and standing active curl
exercises, and a gradual increase in weight was added from week 9. The exercise was
performed in three sets of 15 repetitions.

The NMES group and BFR group performed the same ROM exercises and weight-
bearing exercises as the CON group. The NMES and BFR were applied four weeks after
surgery. The NMES group performed the exercise by applying NMES when performing
the same CKC exercise and OKC exercise as the CON group. The NMES group used the
Kneehab device (Bio-Medical Research Ltd., Galway, Ireland) proposed by Feil et al. [28]
with the general rehabilitation program. The Kneehab is an NMES device that wraps around
the thigh and locates an array of four large electrodes over the quadriceps muscle. For the
applied method, the frequency was 50 Hz, the contraction time was 5 s, the relaxation time
was 10 s, and the duration time was 20 min.

The BFR group performed the exercise by applying BFR when performing the same
CKC exercise and OKC exercise as the CON group. The BFR group used the Smart Cuffs
device (Smart Tools Plus, OH, USA) with the general rehabilitation program. The BFR
application method was the method proposed by Hughes et al. [29]. The intensity of
exercise was started by setting a limit of 10–30% of the one-repetition maximum (1-RM)
and was gradually increased. The BFR was achieved using hand-pumped blood pressure
cuffs. The pressure was applied at 40% of the systolic blood pressure (SBP), and it was
increased by 10 mmHg per two weeks.

Before and after the 12-week rehabilitation exercise session, each participant’s anthro-
pometry (height and weight), Lysolum score, IKDC subjective score, thigh circumference
(5 cm and 15 cm above the femur), isokinetic muscular function (strength and endurance),
and balance (Y-balance anterior, posterior medial, and posterior lateral) were measured.

All testing procedures and rehabilitation exercise sessions were performed in the
Sports Medicine Center at K and M hospitals.

2.3. Anthropometry (Height and Weight)

Height and weight were measured using a height and weight measuring instrument
(BSM330, Inbody, Seoul, Korea). All participants wore lightweight clothing and were asked
to remove all metal items from their bodies.

2.4. The Lysholm Score and the International Knee Documentation Committee (IKDC)
Subjective Score

The Lysholm score and the IKDC subjective score of all the participants were mea-
sured, which are both clinical evaluation items that show the patient’s subjective knee
functional status.
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The Lysholm score was designed to measure the symptoms and function of patients
with ACL and meniscus injuries. It does measure functioning in daily activities slightly,
but it does not measure the domain of functioning in sports and recreational activities. This
questionnaire consists of eight items with a total score of 100 points, with a higher score
indicating fewer symptoms and higher levels of functioning.

The IKDC score was designed to evaluate patients with ligament and meniscus injuries
as well as knee disorders such as patellofemoral pain or symptoms and determine their
function in daily life and sports activities. This questionnaire consists of seven knee
symptom items, two sports activity items, and two function items, with higher scores
indicating fewer symptoms and higher levels of functioning.

2.5. Thigh Circumference

The thigh circumference was measured using a tape measure (Balzer 80206F, Hoechst-
mass, Sulzbach, Germany). To measure the circumference of the thigh, all participants were
asked to lie down with their legs shoulder-width apart. In a state in which the force was
removed, 5 cm and 15 cm were marked from the patella to the femur, and the circumference
of the area was evaluated with a tape measure.

2.6. Isokinetic Muscle Function

The isokinetic muscle function (e.g., strength and endurance) was measured using an
isokinetic dynamometer (Biodex system IV, Biodex medical, NY, USA) in the quadriceps
femoris and hamstrings. The peak torque was measured four times at an angular velocity
of 60◦/s to evaluate the muscle strength, and the total work was measured 10 times at an
angular velocity of 180◦/s to evaluate muscle endurance.

2.7. Balance

The YBT for measuring dynamic balance ability was measured using the Functional
Movement System’s YBT Kit (Functional Movement Systems, Inc., Chatham, VA, USA).
The YBT was measured in each of the following directions: anterior, posteromedial, and
posterolateral. This test was performed thrice in each direction while the person was
standing barefoot. The anterior reach, posteromedial reach, and posterolateral reach were
all measured, and the best value was recorded.

2.8. Statistical Analysis

All statistical analyses were conducted using IBM SPSS Statistics for Windows, version
25 (IBM Corp., Armonk, NY, USA). The data are presented as a mean ± standard deviation.
The normality of the distribution of all outcome variables was verified using the Shapiro–
Wilk test. A two-way analysis (time × group) of variance with repeated measures of the
“time” factor was used to analyze the effects of rehabilitation exercise programs on each
dependent variable. Partial eta-squared (η2) values were calculated as measures of the effect
size. If a significant interaction or main effect within time or between groups was found, the
paired t-test or independent t-test was used. A priori power analysis was performed with
G-power for the isokinetic muscular function parameter (peak torque of the quadriceps
femoris) based on previous research [14], indicating that a sample size of 12 participants
per group would be required to provide 90% power at an α-level of 0.05. We anticipated
a more than 10–20% dropout rate and aimed for a starting population of 15. The level of
significance was set a priori at p < 0.05.

3. Results
3.1. The Lysholm Score and the IKDC Subjective Score

As shown in Figure 3, a significant main effect within time was found for Lysholm
score (p < 0.001, η2 = 0.641) and IKDC subjective score (p < 0.001, η2 = 0.529). Post hoc
analysis found significant increases in Lysholm score (CON, p = 0.001; NMES, p < 0.001;
BFR, p < 0.001) and IKDC subjective score (CON, p = 0.011; NMES, p < 0.001; BFR, p < 0.001)
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via intervention in all groups. However, there was no significant difference in Lysholm
scores and the IKDC subjective scores between the three groups.
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3.2. Thigh Circumference

As shown in Figure 4, a significant main effect within time for thigh circumference
at 5 cm (p < 0.001, η2 = 0.353) and 15 cm (p = 0.001, η2 = 0.231) and a significant effect
between groups for thigh circumference at 15 cm (p = 0.013, η2 = 0.188) was observed.
Post hoc analysis found significant increases via intervention in all groups for the thigh
circumference at 5 cm (CON, p = 0.021; NMES, p = 0.001; BFR, p = 0.028). However, the post
hoc analysis found that NMES showed a significant increase in the thigh circumference at
15 cm via intervention (p = 0.007), and NMES showed a higher value in the thigh circumfer-
ence at 15 cm before (p = 0.006) and after intervention (p = 0.002) than CON.
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Figure 4. Changes in thigh circumference at 5 cm and 15 cm via rehabilitation interventions in each
group. (A) Change in thigh circumference at 5 cm. (B) Change in thigh circumference at 15 cm. CON,
control group; NMES, neuromuscular electrical stimulation group; BFR, blood flow restriction group.
Significant interaction or main effect: † p < 0.05; Significant difference in each group via rehabilitation
intervention: * p < 0.05, ** p < 0.01; Significant difference between groups each time: a p < 0.05.
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3.3. Isokinetic Muscle Function

As shown in Figure 5, there was a significant interaction for hamstring strength
(p = 0.001, η2 = 0.294) and hamstring endurance (p = 0.006, η2 = 0.215) as well as a significant
main effect within time with respect to quadriceps femoris strength (p < 0.001, η2 = 0.320)
and quadriceps femoris endurance (p < 0.001, η2 = 0.265). Post hoc analysis found significant
increases via intervention in NMES and BFR in terms of the quadriceps femoris strength
(NMES, p = 0.001; BFR, p = 0.001), hamstring strength (NMES, p < 0.001; BFR, p < 0.001),
quadriceps femoris endurance (NMES, p = 0.001; BFR, p = 0.010), and hamstring endurance
(NMES, p < 0.001; BFR, p = 0.001). In addition, the post hoc analysis found that BFR showed
a higher value in hamstring endurance after intervention than CON (p = 0.003).
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Figure 5. Changes in isokinetic muscle function via rehabilitation intervention in each group.
(A) Change in quadriceps femoris strength. (B) Change in hamstring strength. (C) Change in
quadriceps femoris endurance. (D) Change in quadriceps hamstring endurance. CON, control
group; NMES, neuromuscular electrical stimulation group; BFR, blood flow restriction group, N-M;
Newton–Meters, J; Joule. Significant interaction or main effect: † p < 0.05; Significant difference in
each group via rehabilitation intervention: * p < 0.05, ** p < 0.01, *** p < 0.001; Significant difference
between groups each time: a p < 0.05.

3.4. Balance

As shown in Figure 6, there was a significant interaction for Y-balance anterior
(p = 0.006, η2 = 0.214), and a significant main effect within time for Y-balance posterior
medial (p < 0.001, η2 = 0.515) and Y-balance posterior lateral (p < 0.001, η2 = 0.353) was
observed. Y-balance anterior significantly increased via intervention in BFR (p < 0.001), and
Y-balance posterior medial (CON, p = 0.011; NMES, p = 0.003; BFR, p < 0.001) and Y-balance
posterior lateral (CON, p = 0.010; NMES, p = 0.006; BFR, p = 0.008) significantly increased
via intervention in all groups.
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Figure 6. Changes in balance via rehabilitation intervention in each group. (A) Change in Y-balance
anterior. (B) Change in Y-balance posterior medial. (C) Change in Y-balance posterior lateral. CON,
control group; NMES, neuromuscular electrical stimulation group; BFR, blood flow restriction group.
Significant interaction or main effect: † p < 0.05; Significant difference in each group via rehabilitation
intervention: * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

In this study, the application of NMES and BFR after ACL reconstruction was shown to
be effective for muscle function of the quadriceps femoris and knee functional abilities. In
particular, it was effective in improving the muscle strength and muscular endurance of the
quadriceps and biceps femoris, and YBT, a dynamic balance test, showed improved results.
These results show that using NMES and BFR improves the muscle and knee function.

Among the results of this study, the Lysholm score and IKDC subjective score showed
improvement after exercise compared to before surgery, and there was no difference
between groups. A previous study that verified the effect of NMES after ACL reconstruction
reported that there was no significant difference between groups in the IKDC subjective
score, but it reported that the Lysholm score improved significantly compared to the CON
group [28]. In addition, NMES used in rehabilitation exercise reported a moderate effect
on self-reported patient outcomes at 12 weeks after surgery and is recommended to be
included in rehabilitation after ACL reconstruction [30]. In addition, a previous study
that verified the BFR effect reported an improvement in IKDC subjective score after eight
weeks of BFR training as in this study [26] and reported that there was no difference
between groups [31]. The subjective evaluation of knee function after ACL reconstruction
is important, and the results of this study showed that the subjective evaluation of knee
function after NMES and BFR was better than that before surgery.

In this study, as a result of comparing the thigh circumference before and 12 weeks
after surgery, a significant change was found in the measurement results of the 5 cm thigh
circumference of all groups. In the results of a previous study comparing three weeks of
NMES training with a CON group of 19 healthy college students, when analyzing thigh
circumferences after the exercise, a statistically significant increase was only observed in
the left (non-dominant) limb [32]. After six weeks of BFR training, it was found that both
the left and right circumferences of the healthy people were improved in the BFR group
than in the CON group [33].

In another previous study, when healthy subjects were compared with the BFR group
and the CON group after six weeks of BFR training, the thigh circumference improved
by 3.5% in the BFR group, showing a statistically significant difference. BFR training is
also helpful in the conservative treatment of diseases such as osteoarthritis, tendonitis, and
muscle strains, and it is also a useful method for postoperative rehabilitation such as ACL
reconstruction and arthroscopic surgery [34].

The results of our study showed significant improvements in quadriceps and ham-
string strength and muscular endurance in the NMES and BFR groups.
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As a result of a previous study of 12 weeks of rehabilitation exercise using NMES
after ACL reconstruction, knee extensor muscle strength increased by 30.2% and 27.8%,
respectively, at 90 and 180◦/s at six months after surgery [28]. In another previous study,
isokinetic torques of the knee extensor and flexor muscles were measured in a total of
49 subjects in the NMES group and the CON group, who were trained for six weeks by
additionally applying NMES. Contrary to the results of our study, there was no significant
difference, so it was reported that the application of NMES was not effective in improving
muscle strength [35]. However, in several previous studies, NMES combined with rehabili-
tation exercise was seen to be more effective in improving quadriceps muscle strength than
rehabilitation exercise alone. [30,36]. In addition, it was reported that NMES could be suc-
cessful in improving quadriceps muscle strength when applied early in the postoperative
rehabilitation period [37]. Therefore, the application of NMES is thought to help improve
muscle strength.

Previous studies reported similar benefits of BFR training after ACL reconstruction,
with declines in quadriceps muscle atrophy between days 3 and 14 postoperatively being
less (11% vs. 22%) in patients who received BFR training during rest for 50 min per day for
10 days [38]. Ohta et al. [39] evaluated the changes in muscle strength of the quadriceps
and hamstrings after applying BFR for 16 weeks after ACL reconstruction. The results were
the same as in our study; the isokinetic strength of the extensors was greater in the BFR
group compared to the CON group. The isokinetic strength in the knee flexors also showed
better results in the BFR group than in the CON group.

As a result of the strength test in the previous study on the effect of BFR training
in healthy subjects, there was a significant difference in extensor strength by 11% and
muscular endurance by 15%. The flexor strength was improved by 11%, but there was
no statistical difference between the two groups; meanwhile, muscular endurance was
improved by 27%, and there was a significant difference. Such BFR training would greatly
benefit patients with orthopedic diseases, as it provides the advantage of increased muscle
strength without placing additional mechanical stress on inflamed or reconstructed tissues
or joints [29,34].

The results of quadriceps muscle strength and muscular endurance improvement
after BFR application were the same as the results of several previous studies [40,41], but
there were previous studies that reported the same results of improved hamstring strength
and muscular endurance [42], and there were studies that reported different results [40].
Among them, the BFR group showed improvement in extensor strength and endurance
in the muscle strength test results after three weeks of training for patients with ACL
reconstruction, but there was no difference in flexor strength and endurance [40]. This
reported different results from our study. A previous study reported that hamstring muscles
had many oxidative type I fibers, so BFR training would have been effective in improving
flexor muscle function [43].

BFR training has also been shown to improve muscular endurance by improving
muscle microvascular function and oxygenation [44,45]. BFR training can improve skeletal
muscle hypertrophy and strength to a similar extent as heavy load resistance training, with
a greater reduction in knee joint pain and effusion, leading to greater overall improvements
in physical function. Therefore, BFR training may be more appropriate in the progressive
limb loading phase of rehabilitation following surgery in patients who underwent ACL
reconstruction [26]. Ultimately, the application of BFR can be presented as an effective
method to strengthen the knee extensor and flexor muscles.

In the results of this study, the anterior reach of the YBT was significantly increased in
the BFR group. YBT correlated with knee extensor and flexor peak torque in patients who
underwent ACL reconstruction [46,47]. In addition, several previous studies have reported
that the anterior reach of YBT was reduced after the general rehabilitation process in the
ACL reconstruction group [48,49]. Therefore, an improvement of anterior reach after BFR
application is an important result. This is because the results prove the effectiveness of BFR
in patients with ACL reconstruction.
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To prevent quadriceps muscle atrophy, which occurs frequently after ACL recon-
struction, early strength increase can help to avoid quadriceps inhibition and atrophy and
provide the most effective rehabilitation process for rehabilitation targets and return to
sports [19]. Therefore, Park et al. [50] reported that aerobic exercise and strength training
are important to maintain optimal physical strength due to problems such as a busy sched-
ule or poor health. To enable continuous exercise for health management, it is essential to
apply various new exercise methods such as NMES or BFR.

5. Limitations

The present study has the following limitations. First, this was a retrospective study.
Therefore, there may be selection bias because the time of introduction of the equipment
was different and the rehabilitation process was carried out in two hospitals. Second, the
activity level before surgery was not considered. The results of the evaluations may have
varied depending on the physical ability of the patients as well as their sex. Third, the
three-month follow-up period was relatively short.

6. Conclusions

The present study confirmed that rehabilitation exercise programs using the NMES
and the BFR are more effective rehabilitation methods for enhancing muscle function
and balance ability in ACL reconstruction patients compared with general rehabilitation
exercise. In the future, we need to conduct a study to confirm the mechanisms and effects
of rehabilitation exercise programs using the NMES and the BFR on muscle hypertrophy
and ligament strengthening in patients who underwent ACL reconstruction.
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