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Prediction of the histology 
of colorectal neoplasm in white 
light colonoscopic images using 
deep learning algorithms
Seong Ji Choi1, Eun Sun Kim1* & Kihwan Choi2*

The treatment plan of colorectal neoplasm differs based on histology. Although new endoscopic 
imaging systems have been developed, there are clear diagnostic thresholds and requirements in 
using them. To overcome these limitations, we trained convolutional neural networks (CNNs) with 
endoscopic images and developed a computer-aided diagnostic (CAD) system which predicts the 
pathologic histology of colorectal adenoma. We retrospectively collected colonoscopic images from 
two tertiary hospitals and labeled 3400 images into one of 4 classes according to the final histology: 
normal, low-grade dysplasia, high-grade dysplasia, and adenocarcinoma. We implemented a CAD 
system based on ensemble learning with three CNN models which transfer the knowledge learned 
from common digital photography images to the colonoscopic image domain. The deep learning 
models were trained to classify the colorectal adenoma into these 4 classes. We compared the 
outcomes of the CNN models to those of two endoscopist groups having different years of experience, 
and visualized the model predictions using Class Activation Mapping. In our multi-center study, our 
CNN-CAD system identified the histology of colorectal adenoma with as sensitivity 77.25%, specificity 
of 92.42%, positive predictive value of 77.16%, negative predictive value of 92.58% averaged over the 
4 classes, and mean diagnostic time of 0.12 s per image. Our experiments demonstrate that the CNN-
CAD showed a similar performance to that of endoscopic experts and outperformed that of trainees. 
The model visualization results also showed reasonable regions of interest to explain the classification 
decisions of CAD systems. We suggest that CNN-CAD system can predict the histology of colorectal 
adenoma.

Colon cancer is a major cause of morbidity and mortality worldwide1. Colon cancer develops in steps from benign 
polyps through multiple processes over time, and these steps enable the doctors to screen and prevent the can-
cer before its actual development2. During a colonoscopy, which is the most important diagnostic modality for 
colon cancer screening, endoscopists encounter many abnormal lesions, including premalignant and malignant 
lesions, and they make a diagnosis with the help of histologic reports from removed tissue3. Microscopic analysis 
has been the basis for cancer diagnosis; however, the formulation of the histologic report takes a few days, and 
several additional days are required if any special stains are needed. Moreover, many lesions may exist in the 
colon, although benign lesions are more prevalent, and a histological examination of all lesions is expensive4.

To diagnose cancer relatively early, easily, accurately, and economically, many authors have proposed per-
forming an optical biopsy, which predicts the histology of the lesion by its surface features before histological 
confirmation. In addition, recently developed imaging techniques, such as narrow-band imaging, endocytoscopy, 
and laser-induced fluorescence spectroscopy have shown promising results5–7. However, these newly invented 
techniques require new endoscopic devices, which further increase the economic burden. Furthermore, the 
performance of optical biopsies is operator-dependent, and thus, many non-expert endoscopists must depend 
solely upon the histologic report.

To overcome the aforementioned disadvantages, the objective of our study was to explore the application of 
deep learning to analyzing white light colonoscopic adenoma images and build a computer-aided diagnostic 
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(CAD) system. Deep learning, the application of which has been expanding in various academic fields, is an 
optimized tool for automatically extracting features and classifying images, and we considered it an efficient 
means of achieving our goal. The aim of this study was to develop a CAD system based on deep learning models 
to support the clinically efficient optical biopsy by predicting the histopathology of colorectal tumors.

Methods
Study design and methods.  We prepared a dataset by collecting colonoscopic images from Korea Uni-
versity Anam Hospital (KUMC), Seoul, Republic of Korea, and we also prepared a separate dataset by collecting 
images from Hanyang University Hospital (HYUMC), Seoul, Republic of Korea. The colonoscopic images were 
taken using a standard endoscope (CF-H260AL, CF-Q260AL, CF-H290L, or CF-HQ290L; Olympus Medical 
Systems, Co. Ltd., Tokyo, Japan) and a standard endoscopic system (EVIS LUCERA ELITE CV-260/CLV-260 
or CV-290/CLV-290SL; Olympus Medical Systems, Co. Ltd., Tokyo, Japan). All the colonoscopic images were 
automatically stored in the hospital Picture Archiving and Communication System (PACS).

Figure 1 shows the flow diagram of how the image collection was performed. The images were labeled into 
4 different categories including normal, adenoma with low grade dysplasia (A-LGD), adenoma with high grade 
dysplasia (A-HGD), and adenocarcinoma (CA) based on the histologic report. The adenoma in the images 
included tubular adenoma, tubulovillous adenoma, villous adenoma and serrated adenoma. The KUMC dataset 
consists of 1000 for normal and A-LGD, and 500 for A-HGD and CA, and the HYUMC dataset consists of 100 
for balancing the number of images for each class.

Because not all colonoscopic procedures contain images of adenoma, a list was made for colonoscopies with 
adenoma from January 2017 to February 2020. Only one procedure per patient is included, and the collection 
of images for each category was stopped when the target number was reached.

For A-LGD, H-LGD, and CA, we included standard white light colonoscopic tumor images that had been 
histologically confirmed. Especially for A-LGD and A-HGD, images were included only if they had been removed 
with en-bloc resection, because biopsy results cannot always be trusted if only some parts of the tumor were 
analyzed. As in previous studies, poor quality images, which were defined as images with motion-blurring, 
out-of-focus, insufficient brightness, or a considerable amount of blood, mucus, or fecal material covering the 
tumor’s surface, were excluded8,9. Images captured using an advanced technique, such as near-focus mode or 
narrow-band imaging (NBI), were also excluded. Colonoscopic images that were collected and had no adenoma 
were gathered to be included in the normal category. For the normal category, images without adenoma among 
the reviewed images were included, and colonoscopic images with abnormal lesion, Boston Bowel Preparation 
Score lower than 6, near-focus mode, NBI, and previously defined poor-quality images were excluded. Abnor-
mal lesion included uneven surface caused by hyperplastic polyp, inflammatory polyp, hamartomatous polyp, 
submucosal tumor, and external compression.

Three experienced endoscopists with more than 5 years of colonoscopy experience participated in collect-
ing data and reviewed the images starting from January 2017 sequentially. Only one best image was chosen per 

Figure 1.   Flowchart of the data collection. Images were collected until they met the target number of images for 
each class in the training and test sets. CA adenocarcinoma, A-HGD adenoma with high grade dysplasia, A-LGD 
adenoma with low grade dysplasia.
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lesion, and the image was not selected if any of the endoscopists considered the image to be of poor quality. The 
data collection was finished when each class reached the target number of images.

The study protocol was approved by Korea University Anam Hospital Institutional Review Board 
(2019AN0424), and the need for informed consent was waived by the Institutional Review Board due to the 
retrospective nature of the study. The authors confirm that all the experiments were performed in accordance 
with relevant guidelines and regulations. All patient data were anonymized, and all images were de-identified 
and organized into a different order.

The proposed CAD system used ensemble learning with three CNN models, which transferred the knowledge 
of digital photography and learned with colonoscopic images to classify the images into one of 4 different patho-
logic categories. The CAD system also revealed heatmaps of the relevant regions with respect to the predicted 
class. The details are explained in the following subsections.

Colonoscopic image datasets preparation.  The collected colonoscopic images originally had uneven 
black areas around the endoscopy camera captures to display system information. In addition, the original colo-
noscopic images were in various resolutions due to the different acquisition systems and settings. In order to 
standardize our dataset, we cropped the colonoscopic images to exclude unnecessary black areas and resized the 
cropped images into 480 × 480 (Fig. 2).

Network architectures.  Recently, deep learning has become a dominant machine learning tool in the field 
of visual recognition. Convolution neural networks (CNNs) showed human-level image classification accuracy 
in the ImageNet Large Scale Visual Recognition Challenge10–14. In this study, we implemented the CNN-based 
CAD system (CNN-CAD) based on contemporary CNN architectures and comparatively evaluated their diag-
nosis performance. For CNNs, we used Inception-v312, ResNet-5013, and DenseNet-16114 as baseline models 
(Supplementary Table 1). To adapt the existing CNN models for colorectal diagnosis, we replaced the last fully 
connected layer, which predicts 1000 ImageNet categories, with a fully connected layer for predicting 4 cat-
egories (normal, A-LGD, A-HGD, and CA). In addition, we removed the auxiliary fully connected layer of the 
Inception-v3 model and replaced it with a fully connected layer for predicting the 4 categories.

Balanced sampling for imbalanced data.  The frequencies of the 4 different categories are uneven in our 
colonoscopic dataset. For example, if we randomly select an image from the dataset, the probabilities that the 
image is labelled with normal or adenocarcinoma differ. To avoid overfitting the models with the samples from 
frequent categories, we rebalanced sampling weights inversely proportional to the frequencies of the categories. 
When input images were sampled with the rebalanced sampling weights, the probabilities that input images 
belong to the categories were the same.

Training deep neural networks.  All the neural networks were initialized with models pre-trained with 
the ImageNet dataset15. Because the ImageNet dataset contains physical objects, the model could not be directly 
trained for colonoscopic images. As discussed above, the final dense layers of the models were replaced by new 
layers specific to the task of diagnosing colorectal tumor.

The deep learning models were retrained end-to-end to fine-tune the weights of the networks. To augment 
the data, we randomly flipped the input images horizontally and vertically. For training, we used a stochastic 
gradient descent (SGD) optimizer with a learning rate of 10−4, momentum of 0.9, and batch size of 8. The neural 
networks were fine-tuned using during 300 epochs. In order to update the model parameters, the colonoscopic 
images were sampled from the training set according to the balanced sampling rule. During each epoch, the same 
number of images in the training set were sampled and fed into the neural networks. The codes were written in 
PyTorch running on an NVIDIA Titan Xp GPU16.

Figure 2.   Original colonoscopic image (a) stored in the hospital Picture Archiving and Communication System 
(PACS) and the cropped and resized image (b) for training and testing our convolutional neural network-
computer-aided diagnostic system.
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Ensemble learning for computer‑aided diagnosis.  As shown in Fig. 3, our CNN-CAD system col-
lected the decisions from multiple CNN models for its output. In order to combine the predictions from the 
CNN models into one final prediction, we utilized ensemble learning by combining the models in parallel. 
Although we were able to combine hard-decisions from the models, we combined soft-decisions by averaging 
the last activation maps among the models. Making a final decision based on soft-decisions rather than hard-
decisions obtained better predictive accuracy. By selecting the most probable class, we were able to retrieve the 
mode of multiple CNN models.

Visualization of CNN‑CAD decision.  A recently proposed technique called Class Activation Mapping 
(CAM) enables CNNs to highlight the regions used by a restricted class of image classification17. In this study, 
we employed Grad-CAM, which allowed us to visualize the predicted class scores of any given image without 
the need for architectural changes, retraining processes, or any additional network components18. The heatmap 
reveals the relevant image regions and the CNN-CAD makes a decision. We further compared the resultant 
heatmaps among the different CNN-CAD models.

Performance evaluation using tenfold cross‑validation.  In this subsection, we assess the histo-
pathological prediction performance of our deep learning model with the KUMC dataset. In general, the perfor-
mance of a machine learning model is warranted if the model has a low prediction error, which can be directly 
calculated by applying the model to predict the response to new data that were not used in the training process. 
Although the prediction error can be easily calculated if a designated test set is available, our colonoscopic data 
of colorectal tumors and histopathology were limited. In the absence of a large test set, cross-validation can 
be used for model assessment as well as model selection19. By holding out a subset of the data set to prepare a 
validation set, and then applying the deep learning model to the validation set, which was not used for training, 
cross-validation can estimate the prediction error in order to evaluate the performance of the model.

In order to evaluate the CNN-CAD system without overfitting, we performed tenfold cross-validation with 
the KUMC dataset by randomly partitioning the dataset into 10 splits. Each split included 1/10 of the dataset 
(100 normal images, 100 A-LGD images, 50 A-HGD images, and 50 CA images). In each experiment, we first 
selected one split as the validation set. We trained the neural networks with the remaining 9/10 of the dataset as 
the training set. Then, we evaluated the neural networks with the validation set. The experiment was repeated 
10 times, where each time a different split was selected as the validation set. Because the 10 splits were mutually 
exclusive, the models in the 10 experiments predicted the categories for all images in the dataset. Hence, each 
model was trained and selected independently of the corresponding validation split.

Multi‑center study for testing deep neural networks.  Although cross-validation theoretically esti-
mates the expected prediction error, deep learning models are often applied to clinical data from different centers 
in practice. Furthermore, the properties of colonoscopic images such as brightness and resolution vary depend-
ing on clinical environments such as equipment and protocols. In order to further evaluate the performance of 
our CAD system with more realistic data/situations, we performed a multi-center study by using separate data-
sets, the KUMC dataset for training and the HYUMC dataset for testing our CNN-CAD system. First, we fine-
tuned the three deep learning models with the KUMC dataset during 300 epochs where each epoch in training 
with 3000 images took approximately 30 s for Inception-v3, 20 s for ResNet-50, and 50 s for DenseNet-161. Then, 
we tested the trained CNNs and CNN-CAD system with the HYUMC dataset which consists of 400 images 
including 100 images for each category.

Quantitative analysis.  The primary metric to evaluate the results in the experiments was classification 
accuracy; we also calculated sensitivity, specificity, positive predictive value (PPV), negative predictive value 
(NPV), and mean diagnostic time per image (MDT). We used the following definitions in our evaluation. Accu-
racy was defined as the ratio of the number of correctly classified images to the total number of images. Sensi-

Figure 3.   Overview of computer aided diagnosis (CAD) system based on 3 CNN models. Each CNN model 
independently predicts the class of input colonoscopic image. The following model analyzer decides final class 
from the predictions and provides the corresponding visual explanation.
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tivity was defined as the ratio of the number of true-positive images to the number of true-positive and false-
negative images. Specificity was defined as the ratio of the number of true-negative images to the number of 
true-negative and false-positive images. The PPV was defined as the ratio of the number of true-positive images 
to the number of true-positive and false-positive images. Finally, the NPV was defined as the ratio of the number 
of true-negative images to the number of true-negative and false-negative images.

Since we categorize the colonoscopic images into 4 classes, “true-positive” implies that the predicted class 
corresponds to the ground truth histology. Hence, we calculated quantitative metrics for each class and averaged 
the quantitative metrics over the 4 classes. We further compared the outcomes of the three CNN-CADs and of 
two endoscopist groups having different levels of clinical experience.

Diagnostic assessment by endoscopist.  A test set of 200 images was created by randomly selecting 
50 images from each class. Four experts with more than five years’ experience in colonoscopy and six trainees 
with less than two years’ experience in colonoscopy participated in the classification trial. The participating 
endoscopists had been trained or were currently in a fellowship program at tertiary university hospitals. The 
annual colonoscopy volumes for the experts and trainees were more than 1000 and 500, respectively. The clas-
sification label of each image was not revealed to the participants. They were asked to classify each image of the 
test set into one of four classes: normal, A-LGD, A-HGD, or CA.

Results
Data collection.  Figure 1 shows the number of images collected for the analysis in each class. For A-LGD, a 
total of 1176 and 121 images were reviewed from 360 and 39 consecutive colonoscopic procedures with A-LGD, 
and the collection of images was stopped when A-LGD class reached 1000 and 100 images from KUMC and 
HYUMC, respectively. For A-HGD, a total of 538 and 117 images were reviewed from 463 and 106 consecutive 
colonoscopic procedures with A-HGD, and the collection of images was stopped when A-HGD class reached 
500 and 100 images in KUMC and HYUMC, respectively. For CA, a total of 526 and 108 images were reviewed 
from 493 and 101 consecutive colonoscopic procedures with CA, and the collection of images was stopped 
when CA class reached 500 and 100 images from KUMC and HYUMC, respectively. For the normal category, 
colonoscopic images without adenoma were separated, and 31,123 and 6049 images were reviewed from 1249 
and 241 consecutive colonoscopic procedures in KUMC and HYUMC, respectively. After exclusion, 1000 and 
100 images were randomly selected among 21,693 and 4156 images from KUMC and HYUMC, respectively.

Cross‑validation results with KUMC dataset.  The KUMC dataset consists of 3000 images and 4 cat-
egories (1000 normal, 1000 A-LGD, 500 A-HGD, and 500 CA images). Table 1 shows the characteristics of the 
colonoscopic images. In Fig. 4, the learning curves of tenfold cross-validation are shown. For each epoch, the 

Table 1.   Characteristics of colonoscopic images. CA adenocarcinoma, A-HGD adenoma with high grade 
dysplasia, A-LGD adenoma with low grade dysplasia.

Normal (n = 1000) A-LGD (n = 1000) A-HGD (n = 500) CA (n = 500)

Location

Rectum 183 163 97 110

Sigmoid colon 167 188 113 134

Descending colon 166 111 57 49

Transverse colon 192 220 103 87

Ascending colon 224 275 112 107

Cecum 68 43 18 13

Morphology (A-LGD/A-HGD)

Ip 27 11

Is 354 139

IIa 611 347

IIb 8 3

Adenoma

Tubular 807 363

Tubulovillous 156 108

Villous 0 5

Serrated 37 24

Morphology (CA)

Protruded 108

Depressive 134

Ulcerative 175

Laterally spreading 83
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training loss was averaged over the 10 cross-validation models of each CNN. The validation accuracy was calcu-
lated by evaluating the 10 cross-validation models of each CNN for each epoch.

For each experiment, we collected the cross-validation result of the best validation accuracy model, which 
shows the highest validation accuracy during 300 epochs. In Fig. 5, the receiver operating characteristic (ROC) 
curves of the best validation accuracy models are constructed by plotting the true positive rate (sensitivity) as a 
function of the false positive rate (1 − specificity). The value of the areas under the curve of ROCs (AUC) ranges 
from 0.95 to 0.99.

Table 2 shows the performance of the CNN models. The ensemble learning CNN-CAD model showed the 
best performance in our cross-validation with a F1-score of 0.9055, and its 4-class averaged sensitivity, specificity, 
PPV, and NPV were 90.65%, 97.57%, 90.55%, and 97.52%, respectively. The cross-validation results of the CNN 
models are attached as Supplementary Tables 2–5.

Table 2 also compares the classification performance of the CNN models and the endoscopists. The 
endoscopists classified colon adenoma with an overall sensitivity of 80.77%, specificity of 93.58%, PPV of 81.00%, 
NPV of 93.62%, and MDT of 8.91 s. Among the endoscopists, the expert group showed higher-level results than 
the trainee group in all parameters: sensitivity (85.00% vs. 77.97%), specificity (95.00% vs. 92.63%), PPV (85.67% 
vs. 77.93%), NPV (95.03% vs. 92.70%), F1-score (0.8508 vs. 0.7779), and MDT (7.96 s ± 4.80 s vs. 9.55 s ± 6.26). 
More importantly, our model showed better results than the expert group in all parameters: sensitivity (90.65% 
vs. 85.00%), specificity (97.57% vs 95.00%), PPV (90.55% vs. 85.67%), NPV (97.52% vs. 95.03%), F1-score 
(0.9055 vs. 0.8508), and MPT (0.05 s vs. 7.96 s). Total outcome measures of each endoscopist are listed in Sup-
plementary Table 5.

Figure 6 shows the CAM in each class using the different CNN models. The CAM highlights the class-specific 
regions of images and thus helps us visualize the location of the colonoscopic lesions and verify the decision of 
the CNN-CAD. By means of the CAM, we obtained the visual explainability of the classification yielded by the 
CNN-CAD.

Test results with HYUMC dataset.  The HYUMC dataset consists of 400 images and 4 categories (100 
normal, 100 A-LGD, 100 A-HGD, and 100 CA images). As the same with the cross-validation, we used the best 
validation accuracy models, and we constructed an ensemble model using the 10 best validation accuracy mod-
els for each CNN. Our ensemble learning CNN-CAD system used the 30 best validation accuracy models of the 
three CNNs to predict the final decision. Table 3 summarizes the test results of CNN models. Our CNN-CAD 
system based on ensemble learning showed the best performance in our classification test with a F1-score of 
0.7681, and the 4-class averaged sensitivity, specificity, PPV, and NPV were 77.25%, 92.42%, 77.16%, and 92.58%, 
respectively.

Table 3 also compares the classification performance of the deep learning models and the endoscopists. The 
endoscopist experts classified colon adenoma with an overall sensitivity of 67.44%, specificity of 88.53%, accu-
racy of 67.44%, PPV of 66.65%, NPV of 88.99%, and MDT of 7.92. Among the endoscopists, the expert group 
showed higher-level results than the trainee group in all parameters: sensitivity (72.38% vs. 62.50%), specificity 
(90.58% vs. 86.47%), PPV (71.38% vs. 61.91%), NPV (90.89% vs. 87.08%), F1-score (0.7187 vs. 0.6217), and MDT 
(7.72 s ± 4.11 s vs. 8.13 s ± 4.82). Our CNN-CAD model showed slightly better results than the expert group in 
all parameters: sensitivity (77.25% vs. 72.38%), specificity (92.42% vs 90.58%), PPV (77.16% vs. 71.38%), NPV 
(92.58% vs. 90.89%), F1-score (0.7681 vs. 0.7187), and MPT (0.12 s vs. 7.72 s). Total outcome measures of each 

Figure 4.   Learning curves of tenfold cross-validation with the KUMC data set. (a) Training loss. (b) Validation 
accuracy. The training loss is averaged over the 10 cross-validation models for each CNN and each epoch. The 
validation accuracy is calculated by evaluating the 10 cross-validation models and collecting the validation 
results for each CNN and each epoch.
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Figure 5.   Receiver operating characteristics (ROCs) curves of tenfold cross-validation with the KUMC data 
set. The 10 cross-validation models which show the best validation accuracy during 300 training epochs are 
evaluated. The area under curve (AUC) is also listed for each category. (a) Inception-v3. (b) Resnet-50. (c) 
DenseNet-161. (d) CAD-CNN.

Table 2.   Cross-validation results with performance comparison among the evaluated deep learning 
algorithms and endoscopists. NPV negative predictive value, MDT mean diagnostic time per image, PPV 
positive predictive value, s seconds.

Sensitivity (mean) 
(%)

Specificity (mean) 
(%) PPV (mean) (%) NPV (mean) (%) F1-score (mean) MDT, s

Inception-V3 89.05 97.16 88.88 97.11 0.8894 0.04

ResNet-50 89.98 97.34 89.77 97.27 0.8977 0.03

DenseNet-161 89.88 97.37 89.79 97.35 0.8982 0.05

CNN-CAD 90.65 97.55 90.57 97.52 0.9055 0.12

Endoscopist, expert 
(mean) 85.00 95.00 85.74 95.05 0.8508 7.96 ± 4.80

Endoscopist, trainee 
(mean) 77.98 92.63 78.39 92.76 0.7779 9.55 ± 6.26
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Figure 6.   Classification activation maps using different convolutional neural network models in colonoscopic 
images. (a) normal, (b) low grade dysplasia, (c) high grade dysplasia, (d) adenocarcinoma.

Table 3.   Test result with performance comparison among the evaluated deep learning algorithms and 
endoscopists. NPV negative predictive value, MDT mean diagnostic time per image, PPV positive predictive 
value, s seconds.

Sensitivity (mean) 
(%)

Specificity (mean) 
(%) PPV (mean) (%) NPV (mean) (%) F1-score (mean) MDT, s

Inception-V3 72.75 90.92 72.28 91.07 0.7227 0.04

ResNet-50 74.00 91.33 73.35 91.61 0.7320 0.03

DenseNet-161 74.50 91.50 74.70 91.62 0.7415 0.05

CNN-CAD 77.25 92.42 77.16 92.58 0.7681 0.12

Endoscopist, expert 
(mean) 72.38 90.58 71.38 90.89 0.7187 7.72 ± 4.11

Endoscopist, trainee 
(mean) 62.50 86.47 61.91 87.08 0.6217 8.13 ± 4.82
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endoscopist are listed in Supplementary Table 6. The receiver operating characteristic (ROC) curves of the best 
validation accuracy models are plotted in Fig. 7.

Discussion
In the field of gastroenterology, colonoscopy is the area where artificial intelligence (AI) is most widely and 
actively applied. Current researches are focused on detection and classification of colonoscopic lesions20, and in 
this study we applied deep learning to the classification of colonoscopic images into 4 categories. Our model using 
state-of-the-art CNNs could differentiate the 4 classes successfully. In comparison with that of endoscopists, our 
model’s performance was similar to that of endoscopic experts and outperformed that of trainees. To the best 
of our knowledge, this is the first study to demonstrate that a trained AI model can classify white light colono-
scopic images into 4 categories (normal, A-LGD, A-HGD, and CA), where most current studies have applied a 
binary classification (non-neoplastic vs. neoplastic or hyperplastic vs. neoplastic) using enhanced images8,21–24.

Overall outcomes of our study decreased in test results with the HYUMC dataset compared to the cross-
validation results with the KUMC dataset. From the performance difference between validation and test results, 
one may suggest that the deep learning models are overfitted. However, we argue that the performance differ-
ence is due to the statistical difference between the validation and test sets rather than model overfitting. Since 
the prediction accuracy of endoscopists also showed a decrease up to 15%, we can observe that the images in 
the KUMC dataset are easier to predict compared to those in the HYUMC dataset. The learning curves in Fig. 4 
with stable training loss and validation accuracy also differs from those of overfitting models. Nevertheless, our 
model showed similar or slightly better results with experts in the test results, which suggests that our model 

Figure 7.   Receiver operating characteristics (ROCs) curves of test results with the HYUMC data set. The 10 
CV models which show the best validation accuracy during 300 training epochs with the KUMC data set are 
evaluated. The area under curve (AUC) is also listed for each category. (a) Inception-v3. (b) Resnet-50. (c) 
DenseNet-161. (d) CAD-CNN.
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will perform well in many different situations, and we expect the outcome would improve if we train our model 
with images from different settings.

The prediction of the histology of colon tumors is quite challenging due to various features of the lesion 
itself and the nature of the organ where the lesion develops. Even for the same tumor, there are inter- and intra-
variances of brightness, size, shape, and texture of the colon lesions. Moreover, the characteristics of the colon, 
which is a long mobile tube-like organ with angulation and haustra that frequently changes its diameter, make 
the features of the lesion more variable25. To overcome these difficulties and evaluate the lesion more precisely, 
many imaging techniques, such as NBI, I-Scan, Fujifilm Intelligent Color Enhancement (FICE), confocal laser 
endomicroscopy, and endocytoscopy, have been developed and have shown good accuracy in many studies26–29. 
To increase the accuracy of AI in the detection or differentiation of colon adenoma, most researchers have applied 
these virtual chromoendoscopy techniques22–24,30–33. However, these techniques are not available in many medical 
centers, especially in community-based hospitals, and endoscopists who are equipped with these endoscopes 
require training or education, as long as 6 months, to reach certain levels of competence and accuracy in using 
them34,35. To be able to use these techniques, there are clear diagnostic thresholds and requirements36. Our study 
was designed to overcome these disadvantages and maximize our model’s clinical use by using solely unmagnified 
white light colonoscopic images. Our CNN-CAD model was able to classify these images successfully.

Compared to many previous studies, we classified images into normal, A-LGD, A-HGD, and CA to aid in 
planning for the treatment and follow-up in advance. For treatment, endoscopic removal should be primarily 
considered for A-LGD and A-HGD lesion, and accurate diagnosis could help in deciding proper removal plan, 
including simple resection, endoscopic mucosal resection or endoscopic submucosal resection. In addition to 
endoscopic treatment, surgery or palliative treatment could also be considered in CA depending on its stage. 
We built our model for optical biopsy with artificial intelligence to reduce an unnecessary procedure, save the 
time delay from discovery of lesion to treatment, and aid endoscopists in making proper treatment decision.

With minor adjustments, we expect our model to achieve higher classification accuracy when enhanced-
technique images are used and we will produce a validation image set with these images for the follow-up study. 
Our model showed high-level sensitivity and accuracy in classifying normal and A-LGD images, but rather low-
level sensitivity and accuracy in classifying A-HGD and CA (Supplementary Tables 2–5). In particular, because 
intramucosal carcinoma (Tis) and CA are differentiated by the depth of invasion, the differentiation of A-HGD 
and CA was especially challenging for both our model and the endoscopists. Moreover, images of these inter-
mediate stages are relatively rare, and we need to collect more images if we intend to differentiate them further.

Our model is not a definitive tool to make the diagnosis, but it can be used as a helpful tool in predicting 
the histology of colon lesions and forming treatment plans. The diagnostic accuracy of endoscopic biopsy for 
colon cancer can be as low as 78.1% owing to many factors, including tumor heterogeneity and the number of 
biopsies. Our model can help physicians make a more accurate diagnosis by providing a second opinion on 
re-biopsy or multiple biopsies of colon adenoma, because our data include the pathologic report from en-bloc 
resections only37. Due to these qualities, our model can help endoscopists, especially those who are inexperienced, 
in quality improvement. Because endoscopists capture the images of the colon tumor when they observe it and 
CNN models take only 0.03–0.05 s per image for prediction in our study, our CNN-CAD model, which predicts 
images rather than videos, can diagnose a colon adenoma in semi-real time. Moreover, because we were able 
to distinguish normal colonoscopic images from adenomatous colonoscopic images with an accuracy of 99.0% 
in our pilot study, we are planning to use our dataset in a colon adenoma detection study and we anticipate the 
construction of a model that can detect and diagnose a colon adenoma simultaneously in real time.

We constructed heatmaps to visualize surface intensity information and understand the classification mecha-
nism of the different CNNs (Fig. 6). This is a promising tool for reviewing the decision made by CNN-CAD. 
In our study, heatmap locations in A-LGD were consistent across the CNN models, but high intensity lesions 
in A-HGD were relatively inconsistent, resulting in low classification accuracy compared to the other classes. 
This may be a result of the diverse features of A-HGD; however, we need to evaluate the heatmaps further to 
understand and improve the model. CAM not only helps us understand and review the decision of CNN-CAD; 
it may also help us find unique features of the different classes, thereby providing us with valuable information.

The strength of our model is demonstrated by the fact that, although the images used in the study were not 
originally captured for the purpose of the study, it achieved a high-level performance. In this retrospective image 
dataset, some images contained blurring, artifacts, bubbles, stools, or an instrument, which made analysis dif-
ficult, and the positions of the lesions in the image frames were not consistent. Thus, in a prospective study or 
actual usage, the accuracy is expected to be higher than in our study. Furthermore, a well-designed prospective 
randomized controlled study is required to confirm the feasibility of our model. In addition, because image 
enhancing technologies, such as NBI, I-scan, or FICE, provide more detailed information about the character-
istics of the lesions and deep learning algorithms usually perform better with more data, the application of our 
model with these technologies is expected to show higher accuracy38. Interestingly, the endoscopists tended to 
miss the correct answer by a narrow margin, that is, their answers were close to the correct ones: they rarely chose 
CA when the correct classification was A-LGD and vice versa. However, the AI method made large mistakes, 
albeit rarely, such as classifying CA as normal (Supplementary Tables 2–5). These results support the idea that 
AI can be used as an assistive technology but cannot replace physicians completely despite its recent advances.

Our study has several limitations. Several clinical characteristics, such as the size of colon adenoma or distance 
between the lesion and the colonoscope, were not included in our study because of lack of data and the limited 
number of images used. In addition, the study was conducted in two tertiary hospitals, one for training image set 
and one for test image set, but a total of two hospitals is not enough number to evaluate the validity of our model, 
and therefore further studies in collaboration including community-based hospitals are required, and our model 
needs to be modified for successful application in different hospital settings. Only one image per polyp was used 
in our study to reduce the overfitting issue, and thus, characteristics that cannot be contained in a single image 
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were neglected. Even though image selection was performed by experts, there are no clear standards for certain 
criteria so selection bias could not be avoided completely. Because our study was performed retrospectively, its 
efficacy should and will be supported with a prospective study.

In conclusion, we constructed a CAD system for predicting the histology of colorectal tumors in white light 
colonoscopic images by applying a deep learning model. Our results showed promising classification results that 
were similar to those of the experts. Our deep learning model not only can predict the histology of the lesions 
but also has the potential to identify the lesion simultaneously. Further studies and advancement of our model 
will help endoscopists accurately detect and diagnose colorectal tumors in real time.

Data availability
The data and analysis tools are available from the corresponding author upon request.
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