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Abstract: Bacteria are remarkably associated with the growth of green algae Tetraselmis which are
used as a feed source in aquaculture, but Tetraselmis-associated bacterial community is characterized
insufficiently. Here, as a first step towards characterization of the associated bacteria, we investigated
the community composition of free-living (FLB) and particle-associated (PAB) bacteria in each
growth phase (lag, exponential, stationary, and death) of Tetraselmis suecica P039 culture using
pyrosequencing. The percentage of shared operational taxonomic units (OTUs) between FLB and
PAB communities was substantially high (≥92.4%), but their bacterial community compositions were
significantly (p = 0.05) different from each other. The PAB community was more variable than the
FLB community depending on the growth phase of T. suecica. In the PAB community, the proportions
of Marinobacter and Flavobacteriaceae were considerably varied in accordance with the cell number
of T. suecica, but there was no clear variation in the FLB community composition. This suggests
that the PAB community may have a stronger association with the algal growth than the FLB
community. Interestingly, irrespective of the growth phase, Roseobacter clade and genus Muricauda
were predominant in both FLB and PAB communities, indicating that bacterial communities in
T. suecica culture may positively affect the algae growth and that they are potentially capable of
enhancing the T. suecica growth.

Keywords: Tetraselmis suecica; associated bacterial community; free-living bacteria; particle associated
bacteria

1. Introduction

Marine green microalga genus Tetraselmis is well-known to have a high lipid content
and fast growth [1,2], and thus it has been widely used in multiple industries, for example,
a source of nutrition for invertebrates in aquaculture [3], feedstock of biofuel production [4],
and cosmetic applications [5]. In order to save the cost for algal production, there have been
attempts to advance the algal-culture technique which enables gaining a higher biomass of
this green algae.

Algal-culture techniques have been developed based on adjusting physiochemical
factors (e.g., light intensity, nutrient limitation, temperature, pH, CO2 concentration, and
salinity) which are well known to have an intimate association with algal growth [6,7].
Recently, bacteria which have a symbiotic relationship to algae have been considered as a
new factor to advance the algal-culture technique, allowing to gain a higher algal biomass.
Bacteria can affect the growth of algae in various ways which ranged from mutualism to
parasitism [8–12]. Interestingly, the maximum algal cell density is obviously enhanced
when symbiotic bacteria are added to the algal culture, compared to that in the optimum
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culture condition (e.g., culture media, temperature, salinity, pH, etc.) without bacteria,
for example, the biomass productivity of T. striata was enhanced up to two-fold by the
addition of two bacterial strains (Pelgibacter bermudensis and Stappia sp.) [4]. These findings
show the possibility that bacteria can be an important factor to advance a culture technique
for algae.

Due to the high economic value of T. suecica, studies on developing the mass cul-
ture technique for this algae have been carried out, and in order to advance this culture
technique, bacteria which enhanced the algal growth were isolated more recently [13,14].
Thus, understanding mutualism between T. suecica and co-existing bacteria is thought
to be important, but there is a significant knowledge gap for this ecological relationship
due to a lack of evidence. The two bacterial groups exist in the algal culture. These in-
clude free-living (FLB) and particle-associated (PAB) bacteria which are phylogenetically
distinct. Based on previous findings, these two groups are closely associated with the
growth of algae even though PAB showed stronger species-specific association to the
host algae [8,15–17]. In addition, their community compositions are distinctly varied de-
pending on the growth phase of algae due to the change in composition and quantity of
dissolve organic matters (DOM) released from the host algae. However, in previous stud-
ies, only the FLB composition was identified, and the previous analysis method (terminal
restriction fragment length polymorphism) may not be adequate to gain a high resolution
for the characterization of bacterial community composition in T. suecica culture due to the
methodological limitation [13].

The present study aims to elucidate bacterial taxa which were associated with the
growth of T. suecica. To address this, we investigated the community composition of both
FLB and PAB and a variation in the two bacterial groups depending on the growth phase of
T. suecica with the next generation sequencing (NGS) approach, allowing a high taxonomic
resolution.

2. Materials and Methods
2.1. Algal Culture and Cell Growth Analysis

A culture of T. suecica P039 (cell size: Average 16.2 µm length and 10.6 µm width in
33 cells) which was isolated from coastal water in Deukryang Bay, Korea, was obtained
from the Korea Marine Microalgae Culture Center (Pukyong National University, Busan,
Korea). It has been maintained in an autoclaved f/2 medium [18] at 20 ◦C in a 12:12 h
light:dark cycle with a photon flux density of approximately 65 µmol photons m−2 s−1.
The growth stage of T. suecica was determined based on the growth curve (Figure S1).

Cell growth curves were analyzed at every 2-day intervals using cell numbers mea-
sured with the Sedgwick-Rafter counting chamber. At the same time, bacterial cells were
counted by using the 4′,6-diamidino-2-phenylindole (DAPI) (D9542, Sigma-Aldrich, Darm-
stadt, Germany) staining method [19]. Briefly, all glass wares and reagents were sterilized
with 10% nitric acid treatments and filtration with a 0.22 µm nuclepore membrane (Milli-
pore, Cork, Ireland), respectively. As for bacteria counting, 20 mL of cultures was preserved
with 1 mL of formaldehyde (37% formaldehyde), and then stored at 4 ◦C and a dark
condition. For DAPI staining, we mixed 1 mL of the preserved cultures and 100 µL of
DAPI (0.1 µg mL−1), and incubated it for 5 min. Then, the cells were filtered through
the pore size 0.2 µm black filter (Isopore membrane; Millipore, Bedford, MA, USA) us-
ing a hand pump with less than 178 mmHg in pressure. The filters were mounted on
an objective slide, and observed using a fluorescent microscope (Axioskop, Carl Zeiss,
Oberkochen, Germany).

2.2. Sample Collection and DNA Extraction

To investigate a change in the bacteria community composition depending on the
growth stages, the T. suecica culture was harvested in lag (day 2), exponential (day 8),
stationary (day 20), and decline (day 32) growth phases. In addition, we used the size-
fractionated filtration method for collecting the separate bacteria of both PAB and FLB
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from the culture. One hundred mL of T. suecica culture were filtered sequentially through a
10 µm (PAB) and 0.2 µm (FLB) pore size membrane filter (diameter: 47 mm; Millipore, Cork,
Ireland). Each loaded filter was immediately placed in a 2-mL microtube (Axygen Sciences,
CA) that contained 800 µL extraction buffer (100 mM Tris-HCl, 100 mM Na2-EDTA, 100 mM
sodium phosphate, 1.5 M NaCl, 1% CTAB) and was then stored at −80 ◦C until the DNA
was extracted.

The DNA was extracted using a modified CTAB protocol [20]. Briefly, 2 mL of micro-
tubes containing membrane filters and the extraction buffer (100 mM Tris-HCl, 100 mM
Na2-EDTA, 100 mM sodium phosphate, 1.5 M NaCl, 1% CTAB) were subjected to three
cycles of immersion in liquid N2 until completely frozen and then thawed in a 65 ◦C water
bath. After 8 µL of proteinase K was added (10 mg mL−1 in TE buffer), the samples were
incubated at 37 ◦C for 30 min. Then, after the addition of 80 µL of 20% sodium dodecyl
sulfate (SDS), the samples were incubated at 65 ◦C for 2 h, shaken gently with an equal
volume of chloroform-isoamyl alcohol (24:1), and then centrifuged at 10,000× g for 5 min.
The aqueous phase was transferred to a new 2 mL tube containing 88.8 µL of 3 M sodium
acetate (pH 5.1), and 587 µL of isopropanol (≥99%) was added. Following centrifugation at
14,000× g for 20 min, the supernatant was decanted, 1 mL of cold 70% ethanol was added,
and the samples were centrifuged at 14,000× g for 15 min. The pellets were air dried at
room temperature before being dissolved in 100 µL of TE buffer (10 mM Tris-HCl, 1 mM
EDTA; pH 8).

2.3. Pyrosequencing

Metagenomic sequencing was performed using the 454 GS FLX Titanium Sequencer
System (Roche, Basel, Switzerland). Briefly, target rDNA retrieved from the cultured
samples was amplified using the polymerase chain reaction (PCR) performed with two
universal bacterial primers: 27F, 5′-GAG TTT GAT CMT GGC TCA G-3′ and 518R, 5′-TTA
CCG CGG CTG CTG G-3′. Each primer was tagged using multiplex identifier (MID)
adaptors according to the manufacturer’s instructions (Roche, Mannheim, Germany),
which allowed for the automatic sorting of the pyrosequencing-derived sequencing reads
based on the MID adaptors. In addition, MID-linked 27F and 518R were linked to the
pyrosequencing primers 5′-CGT ATC GCC TCC CTC GCG CCA TCA G-3′ and 5′-CTA
TGC GCC TTG CCA GCC CGC TCAG-3′, respectively, according to the manufacturer’s
instructions (Roche, Mannheim, Germany).

Metagenomic PCR was performed with 20 µL reaction mixtures containing 2 µL
10× Ex Taq buffer (TaKaRa, Kyoto, Japan), 2 µL of a dNTP mixture (4 mM), 1 µL of
each primer (10 pM), 0.2 µL Ex Taq polymerase (2.5 U), and 0.1 µg of the environmental
DNA template. PCR cycling was performed in an iCycler (Bio-Rad, Hercules, CA, USA)
at 94 ◦C for 5 min, followed by 35 cycles at 94 ◦C for 20 s, 52 ◦C for 40 s, and 72 ◦C
for 1 min, and a final extension at 72 ◦C for 10 min. The resulting PCR products were
electrophoresed in 1.0% agarose gel, stained with ethidium bromide, and viewed under
ultraviolet transillumination.

Prior to pyrosequencing, amplified PCR products were individually purified using
a Dual PCR Purification Kit (Bionics, Seoul, Korea) and, subsequently, equal volumes
of each purified PCR product were mixed together. Pyrosequencing of the MID-tagged
PCR amplicons was performed using a 454 GS FLX Titanium system (Roche, Mannheim,
Germany) with a commercial service at Macrogen, Inc. (Seoul, Korea).

2.4. Pyrosequencing Data Analysis

After each sequencing procedure had been completed, a quality check was per-
formed to remove short sequence reads (e.g., less than 150 bp), low-quality sequences,
sequence artifacts and chloroplast sequences, and any non-bacterial ribosome sequences
and chimeras [21,22]. Using the basic local alignment search tool (BLAST), all of the se-
quence reads were compared to the Silva rRNA database [23]. Sequence reads which were
similar with an E-value of less than 0.01 were admitted as partial 16S rDNA sequences.
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The taxonomy of the sequence with the highest similarity was assigned to the sequence read
(genus and class level). To analyze operational taxonomic units (OTUs), the CD-HIT-OTU
software was used for clustering [24] and the Mothur software was used for Shannon-
Weaver diversity and Chao richness estimation [25]. All data from the 454 pyrosequences
were deposited into the Genebank database.

To examine the similarities and differences in the community composition (at the OTU
level) among the samples (FLB and PAB communities depending on the growth phase
of T. suecica), PRIMER ver. 7 [26] and R studio ver. 5.3 [27] were used to generate the
heatmap and dendrogram for the hierarchical cluster analysis, together with similarity
profiles (SIMPROF, p = 0.05). All the analyses were performed based on the Bray-Curtis
dissimilarity index.

3. Results and Discussion
3.1. Cell Growth of Tetraselmis suecica and Bacteria in Cultures

The green algae T. suecica and FLB in the culture appeared as a common, typical
S-shaped growth curve (Figure 1), but the growth of FLB was faster than that of T. suecica.
The highest density (3,774,000 cells mL−1) of bacterial cells was shown at day 10, whereas
T. suecica reached the maximum cell density (827,830 cells mL−1) at day 18. Community
compositions of FLB and PAB were investigated using the samples which were collected at
day 2, 8, 20, and 32, referring to the lag, exponential, stationary, and death growth phase of
T. suecica.
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Figure 1. The growth curves of Tetraselmis suecica and the associated bacteria. Arrows represent
each sampling point. Abbreviations: FLB: Free-living bacteria; PAB: Particle-associated bacteria;
Exp: Exponential; Stn: Stationary; Dth: Death.

3.2. Pyrosequencing Data and Comparison of FLB and PAB in Tetraselmis suecica

The pyrosequencing analysis generated 3742–9409 nucleotide fragments of FLBs and
8078–13,725 nucleotide fragments of PAB. All of the samples reached saturation in the
rarefaction curve indicating that a sufficient amount of sequences was identified by the
pyrosequencing used in this study (Figure S1). The number of bacterial OTUs (≥97%
similarity) in FLB and PAB were 35 and 30, respectively, and all bacterial OTUs in PAB
were present in FLB (Figure 2A).
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Figure 2. Bacterial operational taxonomic units (OTUs) Venn diagram. (A): Venn diagram enumerates
shared bacterial OTUs between free-living (FLB) and particle-associated (PAB); (B,C): Venn diagrams
enumerate FLB and PAB OTUs, shared by and exclusive to lag, exponential (Exp), stationary (Stn),
and death (Dth) growth phases of T. suecica. The percentage number (lower right corner of each
Venn-diagram) indicates the proportion of shared bacterial OTUs.

Based on alpha diversity indices (Shannon and Simpson), the level of bacterial diver-
sity in FLB was clearly higher than that in PAB (Table 1). The averages of diversity indices
of FLB were 3.39 (Shannon) and 0.84 (Simpson), but those of PAB were 1.99 (Shannon) and
0.57 (Simpson), respectively. Together with these findings, the bacterial community in FLB
was more diverse than that in PAB.

Table 1. Number of sequence reads and alpha diversity indices (Shannon and Simpson) PAB and
FLB samples, which were isolated from each growth phase of T. suecica culture (P-039).

Samples Read Count
Diversity Indices

Shannon Simpson

Particle-associated

Lag 10,683 2.023 0.569
Exponential 13,725 1.908 0.543
Stationary 9433 1.961 0.565
Death 8078 2.066 0.594

Free-living

Lag 7233 3.105 0.792
Exponential 3742 3.540 0.850
Stationary 9409 3.418 0.844
Death 7854 3.490 0.863

The proportion of shared OTUs between FLB and PAB communities was remarkably
high. It was 100% of PAB and ≥92.4% of FLB (Figure 2A). According to previous findings,
this proportion is determined by the concentration of particles [28–30], and the proportion
of shared bacterial OTUs between FLB and PAB communities was relatively high in certain
marine environments where a higher concentration of particles existed [31–34]. In this study,
we used the culture which contained a high concentration of cells. Therefore, this might
result in a high proportion of shared bacterial OTUs between the two bacterial communities
in this study. Interestingly, we have obtained similar results (i.e., high proportion of shared
bacterial OTUs) in previous studies where dinoflagellate cultures were used [28,35].

3.3. Difference between FLB and PAB Communities in Tetraselmis suecica Culture

Interestingly, there was a clear difference in the bacterial community composition
between FLB and PAB communities even though a proportion of shared bacterial OTUs
was remarkably high. The genus Roseobacter, belonging to the class Rhodobacteraceae
(56.7–60.1%), was most dominant in the FLB community (Figure 3). The second most
dominant groups were genera Oceanicaulis (family Hyphomonadaceae, 6.3–9.3%), Loktanella
(Rhodobacteraceae, 2.9–8.6%), Muricauda (Flavobacteriaceae, 4.8–6.5%), Roseibacterium
(Rhodobacteraceae, 3.5–6.3%), and Marinobacter (Alteromonadaceae, 1.9–7.1%). Whereas,
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in the PAB community, the family Flavobacteriaceae (19.5–36.9%, unidentified at the genus
level) and the genus Marinobacter (10.2–30.1%) were predominant groups, with Oceanicaulis
(8.2–14.3%), Loktanella (4.8–5.8%), and Muricauda (5.5–8.1%) the second most dominant
genera (Figure 3). These two bacterial communities at the OTU level were significantly
distinct (77.5% of similarity level, p = 0.05) in the cluster analysis and the SIMPROF
test (Figure 4). Organic matters released from phytoplankton play an important role in
the determination of abundance and community composition of heterotrophic bacteria
in aquatic environments [8]. There are two types of organic matters which originated
from phytoplankton [8], one is the low molecular weight (LMW) molecule (e.g., amino
acids, organic acids, and carbohydrate, etc.) and the other is the high molecular weight
(HMW) macromolecule (e.g., polysaccharides, proteins, nucleic acids, and lipids, etc.).
The environments where FLB and PAB communities distribute are clearly distinct in terms
of the ratio between LMW and HMW. Thus, this may lead to a significant difference in
the community composition between FLB and PAB. For example, the most dominant
taxa in FLB and PAB were Rhodobacteraceae (genus Roseobacter) and Flavobacteriaceae,
respectively. Based on previous findings, the Roseobacter clade is capable of utilizing
various LMW compounds that originated from phytoplankton as a carbon source [36–38].
Whereas, Flavobacteriaceae prefer to use HMW compounds and can convert these into
LMW compounds [39].
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Figure 4. Heatmap for a comparison of the bacterial community composition among the samples
at the species level. The values in the heat map represent the log-transformed relative abundance
(Log X + 1) of each bacterial OTU, and similarity matrices were generated using the Bray–Curtis
method. In the cluster analysis on Y-axis, the red dot-lines indicate where divisions are not statistically
significant, as judged by similarity profiles (SIMPROF) carried out at p = 0.05.

3.4. Variation in Bacterial Community Composition Depending on the Growth Stage of Tetraselmis
suecica

The number of bacterial OTUs observed in the lag, exponential, stationary, and death
growth phases of T. suecica was 29, 31, 27, and 28, respectively for FLB (Figure 3B) and
27, 27, 25, 25, respectively for PAB (Figure 2C). There was no significant difference in
bacterial diversity depending on the growth phase of host green algae (Table 1). The range
of the Shannon index was 3.105–3.540 (FLB) and 1.908–2.066 (PAB), and the range of
the Simpson index was 0.792–0.863 (FLB) and 0.543–0.594 (PAB). Whereas, depending
on the growth phase of T. suecica, the community composition of FLB and PAB was
varied, and, interestingly, the PAB community was more variable than the FLB community
(Figures 3 and 4). In the hierarchical cluster analysis, the PAB community composition in
the death phase of T. suecica was significantly (p = 0.05) distinct to that in the other growth
phases (lag, exponential, and stationary phases) at the OTU level, where there was no
significantly different composition of FLB communities in each growth phase of green
algae (Figure 4). To our knowledge, PAB has a stronger species-specific association to the
growth and physiological condition of host algae [15–17,28,35], since the microhabitat for
PAB is provided by algae [40,41].

Rhodobacteraceae OTU1, belonging to the Roseobacter clade, was generally predom-
inant in both FLB and PAB communities even though its proportion in FLB was higher
than that in PAB. This suggests that this bacterial OTU may be intimately associated with
T. suecica. The Roseobacter clade can provide growth-promoting compounds (e.g., vitamin
B12) to various algal species, including Tetraselmis [12,42,43]. Based on a recent study [13],
the growth yield of T. suecica F and M33 was increased when three isolates from the
Roseobacter clade were co-cultivated. Interestingly, the bacterial isolate, belonging to genus
Muricauda, has also shown the capability to enhance the growth of T. suecica F and M33 [13].
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This genus was one of the dominant taxa in both FLB and PAB communities in our study.
Given these findings, dominant bacterial groups of PAB and FLB communities established
in T. suecica culture may positively contribute to the growth of host green algae. However,
the actual impact of these bacterial taxa on the growth of T. suecica is thought to be unclear.
For example, a cell number of T. suecica was largely decreased in the death phase, but the
proportion of these bacterial taxa was not significantly decreased (Figures 1 and 3). To our
knowledge, inorganic nutrients which are essential to algal growth were generally depleted
in the death phase of algae due to the consumption by the algae. Thus, it is more likely
that the decrease in T. suecica cells in the death phase may be caused by the depletion of
inorganic nutrients even though growth promoting bacteria (e.g., Roseobacter clade and
Muricauda) were present.

In the PAB community, the proportion of Marinobacter was gradually decreased in
accordance with the increase in cell number of T. suecica. Its proportion in the lag and
exponential growth phase was clearly higher than that in the stationary and death phase,
in which the algal growth rate was relatively low (Figures 1 and 3). Several clades of this
bacterial genus can secrete a siderophore called vibrioferrin, allowing the promotion of
the algal assimilation of iron [44]. Therefore, a lower proportion of Marinobacter in the
stationary and death phases may adversely affect the growth of T. suecica.

Flavobacteriaceae can primarily consume HMW compounds and convert them into
LMW compounds [39]. Thus, an abundance of this bacteria is generally elevated when a
number of HMW compounds were released from the algae, as a result of cell lysis [45–48].
Similarly, in this study, the proportion of Flavobacteriaceae in the PAB community gradually
increased in accordance with an increase in the cell number of T. suecica (Figures 1 and 3),
resulting in an elevation of the HMW compound concentration.

3.5. Conclusions and Remarks

The present study is the first to characterize FLB and PAB communities in T. suecica
culture using the NGS approach. Based on our findings, FLB and PAB communities were
significantly distinct (p = 0.05), the PAB community was more affected depending on the
growth phases of T. suecica than FLB community. In addition, bacterial taxa (e.g., Roseobacter
clade and Muricauda) which are capable of enhancing the growth of host green algae were
dominant in both FLB and PAB communities, irrespective of growth phase of T. suecica.
These findings suggest that bacterial community in T. suecica culture may positively affect
the growth of host algae. However, to evaluate the actual impact of bacterial communities
on the growth of T. suecica, further extensive studies, such as growth promoting mechanism
of bacteria in algal culture, are needed.
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