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Preface

Approximation Theory and Analytic Inequalities focuses on various important areas
of Mathematics in which approximation methods play an essential role. Of course,
since inequalities are of integral importance for the investigation of approximation
and optimization problems, this volume also features cutting-edge research on a
wide spectrum of analytic inequalities with emphasis on differential and integral
inequalities in the spirit of functional analysis, operator theory, nonlinear anal-
ysis, and variational calculus, featuring a plethora of applications. In particular,
in this volume the reader will be exposed to the important areas of research
such as convexity theory, polynomial inequalities, extremal problems, prediction
theory, fixed point theory for operators, PDEs, fractional integral inequalities,
multidimensional numerical integration, Gauss–Jacobi and Hermite–Hadamard-
type inequalities, Hilbert-type inequalities, as well as Ulam’s stability of functional
equations. This publication provides significant and up-to-date information and
several research results, which could be found useful to a wide readership including
graduate students and researchers working in Mathematics, Physics, Economics,
Operational Research, and their interconnections. The contributed book chapters
have been written by eminent researchers in their corresponding fields. The
discussion of concepts, theories, problems, and methods featured in this publication
makes it an invaluable reference source. It is our pleasure to express our thanks to
all of the contributors in this book who participated in this collective effort. Last but
not least, we would like to acknowledge the superb assistance that the Springer staff
has provided for this publication.

Athens, Greece Themistocles M. Rassias
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Harmonic Hermite–Hadamard
Inequalities Involving Mittag-Leffler
Function

Muhammad Uzair Awan, Marcela V. Mihai, Khalida Inayat Noor,
and Muhammad Aslam Noor

Abstract The main objective of this paper is to establish some new refinements
of Hermite–Hadamard like inequalities via harmonic convex functions on the
co-ordinates with a kernel involving generalized Mittag-Leffler function. Several
special cases are also discussed as applications of our main results. The techniques
of this paper may be starting point for further research in this dynamic field.

1 Introduction and Preliminaries

Inequality theory has played a fundamental and crucial part in the development
of almost all the fields of pure and applied sciences and is continuing to do so.
Inequalities present very active and fascinating field of research. Recently, a wide
class of inequalities are being derived via different concepts of convexity. As a
result of interaction between different branches of mathematical and engineering
sciences, convex functions have been extended and generalized in several directions
from different points of view. The ideas and techniques of convex functions are
being used in a variety of diverse areas of sciences and proved to be productive and
innovative. These facts have inspired and motivated the researchers to generalize and
extend the concept of convexity in various directions. The development of convexity
theory can be viewed as the simultaneous pursuit of two different lines of research. It
reveals the fundamental facts on the qualitative behavior of the solution to important
classes of problems; on the other hand, it also helps us to develop highly efficient and
powerful new numerical techniques to solve complicated and complex problems. In
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2 M. U. Awan et al.

fact, convexity theory provides us a sound basis for computing the approximate and
analytical solutions of a large number of seemingly unrelated problems in a general
and unified framework. For example, the variational inequalities, which can be
regarded as a natural extension of variational principles, are related to the simple fact
that the minimum of a differentiable convex function on a convex set in any normed
space can be characterized by a variational inequality. However, it is remarkable
and amazing that variational inequalities allow many diversified applications in
ever branch of pure and applied sciences. See, for example, [18, 19, 22, 23]. On
other hand, a function is a convex function, if and only if, it satisfies the Hermite–
Hadamard type inequality. Convex functions have been generalized and extended in
several directions using interesting and novel ideas. Several new classes of convex
functions and convex sets have been introduced and investigated. Various new
inequalities related to these new classes of convex functions have been derived by
researchers. It is worth mentioning that the weighted arithmetic mean is used to
define the convex set. Related to the arithmetic mean, we have harmonic mean,
which has applications in electrical circuit theory and other branches of sciences. It
is known that the total resistance of a set of parallel resisters is obtained by adding up
the reciprocal of the individual resistance value and then considering the reciprocal
of their total. Anderson et al.[1] have considered and studied some other properties
of the harmonic convex functions. In particular, it has been shown that a function f
is a harmonic convex, if and only if, it satisfies the inequality of the type

f

(
2ab

a + b
)
≤ ab

b − a
∫ b

a

f (x)

x2
dx ≤ f (a)+ f (b)

2
, (1)

which is called the Hermite–Hadamard inequality for harmonic convex function.
Noor and Noor [21] have shown that the optimality conditions of the differentiable
harmonic convex functions on the harmonic convex set can be expressed by a class
of variational inequalities, which is called the harmonic variational inequality. This
shows that harmonic convex functions have similar properties that convex functions
have. This allows us to use the analogue results of the convex functions to suggest
similar numerical methods for the harmonic convex functions. This is itself an
interesting problem. See also Noor et al. [22] for more details. This inequality gives
us a lower and an upper estimation for the integral average of harmonic convex
functions defined on compact intervals, involving the midpoint and endpoints of
the domain. It is not a consequence of harmonic convexity but characterizes it as
it provides us necessary and sufficient condition for a function to be harmonic
convex. It plays a significant role in numerical analysis and also has applications
in theory of means. For some more details, see [4, 6, 32] and the references therein.
Recently, many researchers have extended Hermite–Hadamard’s inequality on two
dimensions utilizing co-ordinated convex function, see [2, 3, 5, 24, 28].
Fractional calculus is the branch of mathematics in which we discuss the ideas
of arbitrary order differentiation and integration. Since the appearance of these
ideas, there were no acceptable geometrical and physical interpretation for many
years. Now we know that the geometric interpretation of fractional integration is
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“Shadows on the walls” and its physical interpretation is “Shadows of the past.”
Recently, it experienced a rapid development due to its great many applications
in different fields of pure and applied sciences since it is a good tool to describe
long memory processes. For details, see [7, 11, 16]. Recently, inequalities experts
have also used the ideas and techniques of fractional calculus in obtaining several
fractional refinements of classical inequalities. Sarikaya et al. [29] used fractional
integrals and obtained the fractional version of Hermite–Hadamard’s inequality. For
some recent studies and investigations, see [10, 12–15, 17, 27, 30].
The Mittag-Leffler function is a special function, which arises naturally in the solu-
tion of fractional order integral equations or fractional order differential equations. It
is also involved in the study of the fractional generalization of the kinetic eqnarray,
random walks, Levy flights, super diffusive transport, and in the study of complex
systems. For interesting details, see [9].
We now discuss some basic concepts and results that will be helpful in obtaining
main results of the paper.
In recent years, the concept of convexity has been extended and generalized in
different directions. Noor et al. [20] introduced the notion of co-ordinated harmonic
convex functions.

Definition 1 ([20]) Let us consider the bidimensional interval Δ = [a, b] × [c, d]
in R

2 \ {(0, 0)} with a < b, c < d. A function f : Δ→ R will be called harmonic
convex on the rectangle Δ, if

f

(
ab

ta + (1− t)b ,
cd

tc + (1− t)d
)
≤ (1− t)f (a, c)+ tf (b, d), (2)

for all (a, b), (c, d) ∈ Δ, t ∈ [0, 1].
These co-ordinated harmonic convex functions may be defined as:

Definition 2 ([20]) Let us consider the bidimensional interval Δ = [a, b] × [c, d]
in R

2 \ {0} with a < b, c < d. A function f : Δ → R is said to be co-ordinated
harmonic convex function on the rectangle Δ, if

f

(
xy

tx + (1− t)y ,
uv

su+ (1− s)v
)

≤ (1− t)(1− s)f (x, u)+ (1− s)tf (y, u)+ s(1− t)f (x, v)+ tsf (y, v), (3)

for all (x, y), (u, v) ∈ Δ, t, s ∈ [0, 1].
We would like to mention that a function f : Δ ⊂ R

2 \ {0} → R is called harmonic
on the co-ordinates if the partial mappings fy : [a, b] → R, defined by fy(u) =
f (u, y), and fx : [c, d] → R, defined by fx(v) = f (x, v), are harmonic convex for
all x ∈ [a, b] and y ∈ [c, d].
Definition 3 Let f ∈ L[a, b], where a ≥ 0. The Riemann–Liouville integrals
J νa+f and J νb−f, of order ν > 0, are defined by
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J νa+f (x) =
1

Γ (ν)

∫ x

a

(x − t)ν−1f (t)dt, for x > a

and

J νb−f (x) =
1

Γ (ν)

∫ b

x

(t − x)ν−1f (t)dt, for x < b,

respectively. Here, Γ (ν) = ∫∞
0 e−t t ν−1dt is the Gamma function. We also make

the convention

J 0
a+f (x) = J 0

b−f (x) = f (x).

Definition 4 ([8, 16]) Let f ∈ L(Δ), Δ = [a, b] × [c, d]. The Riemann–Liouville
integral

J
ν1,ν2
a+,c+f (x, y) =

1

Γ (ν1)Γ (ν2)

∫ x

a

∫ y

c
(x − t)ν1−1(y − s)ν2−1f (t, s)dsdt, x > a, y > c

J
ν1,ν2
a+,d−f (x, y) =

1

Γ (ν1)Γ (ν2)

∫ x

a

∫ d

y
(x − t)ν1−1(s − y)ν2−1f (t, s)dsdt, x > a, y < d

J
ν1,ν2
b−,c+f (x, y) =

1

Γ (ν1)Γ (ν2)

∫ b

x

∫ y

c
(t − x)ν1−1(y − s)ν2−1f (t, s)dsdt, x < b, y > c

and

J
ν1,ν2
b−,d−f (x, y) =

1

Γ (ν1)Γ (ν2)

∫ b

x

∫ d

y
(t − x)ν1−1(s − y)ν2−1f (t, s)dsdt, x < b, y < d,

respectively.
Here, Γ is the Gamma function, J 0,0

a+,c+f (x, y) = J
0,0
a+,d−f (x, y) =

J
0,0
b−,c+f (x, y) = J 0,0

b−,d−f (x, y) and J 1,1
a+,c+f (x, y) =

∫ x
a

∫ y
c
f (t, s)dsdt .

More details about the Riemann–Liouville fractional integrals can be found in [8].
In [26], Salim and Faraj have defined the generalized fractional integral operators
containing Mittag-Leffler function:

Definition 5 Let μ, ν, k, l, γ be positive real numbers and ω ∈ R. Then the gen-
eralized fractional integral operators containing Mittag-Leffler function εγ,δ,k

μ,ν,l,ω,a+

and εγ,δ,k
μ,ν,l,ω,b− for a real-valued continuous function f are defined by

(
ε
γ,δ,k

μ,ν,l,ω,a+f
)
(x) =

∫ x

a

(x − t)ν−1E
γ,δ,k

μ,ν,l

(
ω(x − t)μ) f (t)dt, (4)

respectively



Harmonic Hermite–Hadamard Inequalities 5

(
ε
γ,δ,k

μ,ν,l,ω,b−f
)
(x) =

∫ b

x

(t − x)ν−1E
γ,δ,k

μ,ν,l

(
ω(t − x)μ) f (t)dt, (5)

where the function Eγ,δ,kμ,ν,l is generalized Mittag-Leffler function defined as

E
γ,δ,k

μ,ν,l (t) =
∞∑
n=0

(γ )kn

Γ (μn+ ν)
tn

(δ)ln
,

and (a)n is the Pochhammer symbol: (a)n = a(a + 1) · . . . · (a + n− 1), (a)0 = 1.

Remark If k = l = 1 in (4), then the integral operator
(
ε
γ,δ,k

μ,ν,1,ω,a+f
)

reduces to

an integral operator
(
ε
γ,δ,1
μ,ν,l,ω,a+f

)
containing generalized Mittag-Leffler function

E
γ,δ,1
μ,ν,1 introduced by Srivastava and Tomovski in [31]. Along with k = l = 1, in

addition if δ = 1 then (4) reduces to an integral operator defined by Prabhaker in
[25] containing Mittag-Leffler function Eγμ,ν . For ω = 0 in (4), the integral operator(
ε
γ,δ,k

μ,ν,l,ω,a+f
)

reduces to the Riemann–Liouville fractional integral operator [26].

In [26], the properties of the generalized integral operator and the generalized
Mittag-Leffler function are studied. It is proved that Eγ,δ,kμ,ν,l (t) is absolutely con-

vergent for all t ∈ R, where k < l + μ. Since |Eγ,δ,kμ,ν,l (t) | ≤
∑∞
n=0

∣∣∣ (γ )kn
Γ (μn+ν)

tn

(δ)ln

∣∣∣
with

∑∞
n=0

∣∣∣ (γ )kn
Γ (μn+ν)

tn

(δ)ln

∣∣∣ = S, we have |Eγ,δ,kμ,ν,l (t) | ≤ S.
Inspired by Definition 5, we will give the following definition:

Definition 6 Let μ, ν, k, l, γ be positive real numbers and ω ∈ R, then

(
ε
γ,δ,k

μ,ν,l,ω,a+,c+f
)
(x, y)

=
∫ x

a

∫ y

c

(x − t)ν1−1(y − s)ν2−1E
γ1,δ1,k1
μ1,ν1,l1

(
ω1(x − t)μ1

)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2(y − s)μ2

)
f (t, s)dsdt,

x > a, y > c;

(
ε
γ,δ,k

μ,ν,l,ω,a+,d−f
)
(x, y)

=
∫ x

a

∫ d

y

(x − t)ν1−1(s − y)ν2−1E
γ1,δ1,k1
μ1,ν1,l1

(
ω1(x − t)μ1

)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2(s − y)μ2

)
f (t, s)dsdt,

x > a, y < d;

(
ε
γ,δ,k

μ,ν,l,ω,b−,c+f
)
(x, y)

=
∫ b

x

∫ y

c

(t − x)ν1−1(y − s)ν2−1E
γ1,δ1,k1
μ1,ν1,l1

(
ω1(t − x)μ1

)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2(y − s)μ2

)
f (t, s)dsdt,
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x < b, y > d, respectively

(
ε
γ,δ,k

μ,ν,l,ω,b−,d−f
)
(x, y)

=
∫ b

x

∫ d

y

(t − x)ν1−1(s − y)ν2−1E
γ1,δ1,k1
μ1,ν1,l1

(
ω1(t − x)μ1

)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2(s − y)μ2

)
f (t, s)dsdt,

x < b, y < d, where μ = (μ1, μ2) , ν = (ν1, ν2) , ω = (ω1, ω2) , γ =
(γ1, γ2) , δ = (δ1, δ2) , k = (k1, k2) , μ, ν, ω, γ, δ, k > (0, 0).

Similar to Definition 6, we introduce the following fractional integrals:

Definition 7 Let μ, ν, k, l, γ be positive real numbers and ω ∈ R, then

(
ε
γ1,δ1,k1
μ1,ν1,l1,ω1,a

+
)
f

(
x,
c + d

2

)
=

∫ x

a

(x − t)ν1−1E
γ1,δ1,k1
μ1,ν1,l1

(
ω1(t − x)μ1

)
f

(
t,
c + d

2

)
dt,

(
ε
γ1,δ1,k1
μ1,ν1,l1,ω1,b

−
)
f

(
x,
c + d

2

)
=

∫ b

x

(t − x)ν1−1E
γ1,δ1,k1
μ1,ν1,l1

(
ω1(t − x)μ1

)
f

(
t,
c + d

2

)
dt,

(
ε
γ2,δ2,k2
μ2,ν2,l2,ω2,c

+
)
f

(
a + b

2
, y

)
=

∫ y

c

(y − s)ν2−1E
γ2,δ2,k2
μ2,ν2,l2

(
ω2(y − s)μ2

)
f

(
a + b

2
, s

)
ds,

(
ε
γ2,δ2,k2
μ2,ν2,l2,ω2,d

−
)
f

(
a + b

2
, y

)
=

∫ d

y

(s − y)ν2−1E
γ2,δ2,k2
μ2,ν2,l2

(
ω2(s − y)μ2

)
f

(
a + b

2
, s

)
ds.

Definition 8 A function g : Δ ⊂ R
2 \ {(0, 0)} → R is said to be harmonically

symmetric with respect to 2ab
a+b and 2cd

c+d on the co-ordinates if

g(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g

(
1

1
a
+ 1
b
− 1
x

, 1
1
c
+ 1
d
− 1
y

)

g

(
x, 1

1
c
+ 1
d
− 1
y

)

g

(
1

1
a
+ 1
b
− 1
x

, y

)

holds for all x ∈ [a, b] and y ∈ [c, d].
Lemma 1 Let p ∈ R \ {0}, and g : [a, b] ⊆ R \ {0} → R be integrable and
p-symmetric with respect to a

p+bp
2 , then

(i) If p > 0,

(
ε
γ,δ,k

μ,ν,l,ω,
(
ap+bp

2

)+g ◦ h
) (
bp

) =
(
ε
γ,δ,k

μ,ν,l,ω,
(
ap+bp

2

)−g ◦ h
) (
ap

)

= 1

2

[(
ε
γ,δ,k

μ,ν,l,ω,
(
ap+bp

2

)+g ◦ h
) (
bp

)+
(
ε
γ,δ,k

μ,ν,l,ω,
(
ap+bp

2

)−g ◦ h
) (
ap

)]
,
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with h(x) = x1/p, x ∈ [ap, bp],
(ii) If p < 0,

(
ε
γ,δ,k

μ,ν,l,ω,
(
ap+bp

2

)+g ◦ h
) (
ap

) =
(
ε
γ,δ,k

μ,ν,l,ω,
(
ap+bp

2

)−g ◦ h
) (
bp

)

= 1

2

[(
ε
γ,δ,k

μ,ν,l,ω,
(
ap+bp

2

)+g ◦ h
) (
ap

)+
(
ε
γ,δ,k

μ,ν,l,ω,
(
ap+bp

2

)−g ◦ h
) (
bp

)]
,

with h(x) = x1/p, x ∈ [bp, ap].

2 Results and Discussions

Now we are in a position to present our main results.

Lemma 2 If the function g : Δ → R is nonnegative, integrable, and symmetric
with respect to 2ab

a+b and
2cd
c+d on the co-ordinates, then the following equalities hold

(
ε
γ,δ,k

μ,ν,l,ω, 2ab
a+b

−
, 2cd
c+d

−g ◦ h
)(

1

b
,

1

d

)
=

(
ε
γ,δ,k

μ,ν,l,ω, 2ab
a+b

−
, 2cd
c+d

+g ◦ h
)(

1

b
,

1

c

)

=
(
ε
γ,δ,k

μ,ν,l,ω, 2ab
a+b

+
, 2cd
c+d

−g ◦ h
)(

1

a
,

1

d

)
=

(
ε
γ,δ,k

μ,ν,l,ω, 2ab
a+b

+
, 2cd
c+d

+g ◦ h
)(

1

a
,

1

c

)

= 1

4

[(
ε
γ,δ,k

μ,ν,l,ω, 2ab
a+b

−
, 2cd
c+d

−g ◦ h
)(

1

b
,

1

d

)
+

(
ε
γ,δ,k

μ,ν,l,ω, 2ab
a+b

−
, 2cd
c+d

+g ◦ h
)(

1

b
,

1

c

)

+
(
ε
γ,δ,k

μ,ν,l,ω, 2ab
a+b

+
, 2cd
c+d

−g ◦ h
)(

1

a
,

1

d

)
+

(
ε
γ,δ,k

μ,ν,l,ω, 2ab
a+b

+
, 2cd
c+d

+g ◦ h
)(

1

a
,

1

c

)]
, (6)

where h :
[

1
b
, 1
a

]
×

[
1
d
, 1
c

]
→ R, h(t, s) =

(
1
t
, 1
s

)
.

Proof Since g harmonically symmetric with respect to 2ab
a+b and 2cd

c+d using Defini-
tion 8, we have

(g ◦ h)(t, s) = g
(

1

t
,

1

s

)
= g

(
1

1
a
+ 1
b
− t ,

1
1
c
+ 1
d
− s

)
,

for all t ∈
[

1
b
, 1
a

]
, s ∈

[
1
d
, 1
c

]
, where h :

[
1
b
, 1
a

]
×

[
1
d
, 1
c

]
→ R, h(t, s) =

(
1
t
, 1
s

)
.

Hence, in the following integral setting, x = 1
a
+ 1
b
− t, y = 1

c
+ 1
d
− s gives
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(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+g ◦ h
)(

1

a
,

1

c

)

=
∫ 1

a

a+b
2ab

∫ 1
c

c+d
2cd

(
1

a
− t

)ν1−1 (
1

c
− s

)ν2−1

×Eγ1,δ1,k1
μ1,ν1,l1

(
ω1

(
1

a
− t

)μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2

(
1

c
− s

)μ2
)
g

(
1

t
,

1

s

)
dsdt

=
∫ 1

b

a+b
2ab

∫ 1
d

c+d
2cd

(
x − 1

b

)ν1−1 (
y − 1

d

)ν2−1

×Eγ1,δ1,k1
μ1,ν1,l1

(
ω1

(
x − 1

b

)μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2

(
y − 1

d

)μ2
)
g

(
1

x
,

1

y

)
(−dy)(−dx)

=
∫ a+b

2ab

1
b

∫ c+d
2cd

1
d

(
x − 1

b

)ν1−1 (
y − 1

d

)ν2−1

×Eγ1,δ1,k1
μ1,ν1,l1

(
ω1

(
x − 1

b

)μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2

(
y − 1

d

)μ2
)
g

(
1

x
,

1

y

)
dydx

=
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−g

)(
1

b
,

1

d

)
. (7)

Similarly, we get

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+g ◦ h
)(

1

a
,

1

c

)
=

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+g ◦ h
)(

1

b
,

1

c

)
, (8)

respectively,

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+g ◦ h
)(

1

a
,

1

c

)
=

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−g ◦ h
)(

1

a
,

1

d

)
. (9)

Combining equalities (7), (8), and (9), we get equality (6) and the proof is complete.

�

Remark If we take ω1 = ω2 = 0, then (6) gets

(
J
ν1,ν2
2ab
a+b

−
, 2cd
c+d

−g ◦ h
)(

1

b
,

1

d

)
=

(
J
ν1,ν2
2ab
a+b

−
, 2cd
c+d

+g ◦ h
)(

1

b
,

1

c

)

=
(
J
ν1,ν2
2ab
a+b

+
, 2cd
c+d

−g ◦ h
)(

1

a
,

1

d

)
=

(
J
ν1,ν2
2ab
a+b

+
, 2cd
c+d

+g ◦ h
)(

1

a
,

1

c

)

= 1

4

[(
J
ν1,ν2
2ab
a+b

−
, 2cd
c+d

−g ◦ h
)(

1

b
,

1

d

)
+

(
J
ν1,ν2
2ab
a+b

−
, 2cd
c+d

+g ◦ h
)(

1

b
,

1

c

)
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+
(
J
ν1,ν2
2ab
a+b

+
, 2cd
c+d

−g ◦ h
)(

1

a
,

1

d

)
+

(
J
ν1,ν2
2ab
a+b

+
, 2cd
c+d

+g ◦ h
)(

1

a
,

1

c

)]
.

The next result is the Hermite–Hadamard type inequality via harmonically convex
functions on the co-ordinates containing the generalized Mittag-Leffler function.

Theorem 1 Let f : Δ → R be harmonically convex on the co-ordinates on Δ =
[a, b] × [c, d] in R2 \ {(0, 0)} and f ∈ L[Δ]. Then one has the inequalities:

f

(
2ab

a + b ,
2cd

c + d
)⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+1

)(
1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−1

)(
1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+1

)(
1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−1

)(
1
b
, 1
d

)
⎤
⎥⎥⎦

≤

⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+f ◦ h
)(

1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−f ◦ h
)(

1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+f ◦ h
)(

1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−f ◦ h
)(

1
b
, 1
d

)
⎤
⎥⎥⎦

≤ f (a, c)+ f (b, c)+ f (a, d)+ f (b, d)
4

×

⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+1

)(
1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−1

)(
1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+1

)(
1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−1

)(
1
b
, 1
d

)
⎤
⎥⎥⎦ , (10)

where μ = (μ1, μ2) , ν = (ν1, ν2) , ω
′ = (

ω′1, ω′2
)
, γ = (γ1, γ2) , δ =

(δ1, δ2) , k = (k1, k2), μ, ν, ω′, γ, δ, k > (0, 0) with ω′1 = ω1
(b−a)μ1 , ω

′
2 = ω2

(d−c)μ2

and h :
[

1
b
, 1
a

]
×

[
1
d
, 1
c

]
→ R, h(t, s) =

(
1
t
, 1
s

)
.

Proof If we take t = s = 1
2 in (3), we get

f

(
2xy

x + y ,
2uv

u+ v
)
≤ f (x, u)+ f (x, v)+ f (y, u)+ f (y, v)

4
. (11)

Using the substitutions x = ab
t
2 a+ 2−t

2 b
, y = ab

t
2 b+ 2−t

2 a
, u = cd

s
2 c+ 2−s

2 d
, and v =

cd
s
2 d+ 2−s

2 c
inequality (11) gets

f

(
2ab

a + b ,
2cd

c + d
)
≤1

4

⎡
⎢⎢⎣
f

(
ab

t
2 a+ 2−t

2 b
, cd
s
2 c+ 2−s

2 d

)
+ f

(
ab

t
2 a+ 2−t

2 b
, cd
s
2 d+ 2−s

2 c

)

+f
(

ab
t
2 b+ 2−t

2 a
, cd
s
2 c+ 2−s

2 d

)
+ f

(
ab

t
2 b+ 2−t

2 a
, cd
s
2 d+ 2−s

2 c

)
⎤
⎥⎥⎦ .

(12)

Thus, multiplying both sides of (12) by tν1−1sν2−1E
γ1,δ1,k1
μ1,ν1,l1

(ω1t
μ1) E

γ2,δ2,k2
μ2,ν2,l2

(ω2s
μ2)

and then by integrating with respect to (t, s) on [0, 1] × [0, 1], we obtain
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f

(
2ab

a + b ,
2cd

c + d
)∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)

dsdt

≤ 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1
0

∫ 1
0 t
ν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(ω1t
μ1) E

γ2,δ2,k2
μ2,ν2,l2

(ω2s
μ2)

f

(
ab

t
2 a+ 2−t

2 b
, cd
s
2 c+ 2−s

2 d

)
dsdt

+ ∫ 1
0

∫ 1
0 t
ν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(ω1t
μ1) E

γ2,δ2,k2
μ2,ν2,l2

(ω2s
μ2)

f

(
ab

t
2 a+ 2−t

2 b
, cd
s
2 d+ 2−s

2 c

)
dsdt

+ ∫ 1
0

∫ 1
0 t
ν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(ω1t
μ1) E

γ2,δ2,k2
μ2,ν2,l2

(ω2s
μ2)

f

(
ab

t
2 b+ 2−t

2 a
, cd
s
2 c+ 2−s

2 d

)
dsdt

+ ∫ 1
0

∫ 1
0 t
ν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(ω1t
μ1) E

γ2,δ2,k2
μ2,ν2,l2

(ω2s
μ2)

f

(
ab

t
2 b+ 2−t

2 a
, cd
s
2 d+ 2−s

2 c

)
dsdt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Using substitutions x = 1
ab

(
t
2a + 2−t

2 b
)
, y = 1

cd

(
s
2c + 2−s

2 d
)

, we have

∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)

dsdt

=
(

2ab

b − a
)ν1

(
2cd

c + d
)ν2 ∫ 1

a

a+b
2ab

∫ 1
c

c+d
2cd

(
1

a
− x

)ν1−1 (
1

c
− y

)ν2−1

×Eγ1,δ1,k1
μ1,ν1,l1

(
ω′1

(
1

a
− x

)μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω′2

(
1

c
− y

)μ2
)

dydx

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2

(
ε
γ,δ,k

μ,ν,l,ω′, a+b2ab
+
, c+d2cd

+1

)(
1

a
,

1

c

)
, (14)

∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)
f

(
ab

t
2a + 2−t

2 b
,

cd

s
2 c + 2−s

2 d

)
dsdt

=
(

2ab

b − a
)ν1

(
2cd

c + d
)ν2 ∫ 1

a

a+b
2ab

∫ 1
c

c+d
2cd

(
1

a
− x

)ν1−1 (
1

c
− y

)ν2−1

×Eγ1,δ1,k1
μ1,ν1,l1

(
ω′1

(
1

a
− x

)μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω′2

(
1

c
− y

)μ2
)
f

(
1

x
,

1

y

)
dydx

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2

(
ε
γ,δ,k

μ,ν,l,ω′, a+b2ab
+
, c+d2cd

+f ◦ h
)(

1

a
,

1

c

)
. (15)
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Analogously, we obtain

∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)
f

(
ab

t
2a + 2−t

2 b
,

cd

s
2d + 2−s

2 c

)
dsdt

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2

(
ε
γ,δ,k

μ,ν,l,ω′, a+b2ab
+
, c+d2cd

−f ◦ h
)(

1

a
,

1

d

)
, (16)

∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)
f

(
ab

t
2b + 2−t

2 a
,

cd

s
2 c + 2−s

2 d

)
dsdt

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2

(
ε
γ,δ,k

μ,ν,l,ω′, a+b2ab
−
, c+d2cd

+f ◦ h
)(

1

b
,

1

c

)
, (17)

∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)
f

(
ab

t
2b + 2−t

2 a
,

cd

s
2d + 2−s

2 c

)
dsdt

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2

(
ε
γ,δ,k

μ,ν,l,ω′, a+b2ab
−
, c+d2cd

−f ◦ h
)(

1

b
,

1

d

)
. (18)

Introducing relationships (14)–(18) in (13), we get, after multiplying with(
b−a
2ab

)ν1 ( d−c
2cd

)ν2 and using Lemma 2

f

(
2ab

a + b ,
2cd

c + d
)
⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+1

)(
1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−1

)(
1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+1

)(
1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−1

)(
1
b
, 1
d

)
⎤
⎥⎥⎦

≤

⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+f ◦ h
)(

1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−f ◦ h
)(

1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+f ◦ h
)(

1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−f ◦ h
)(

1
b
, 1
d

)
⎤
⎥⎥⎦ ,

with which the first inequality of (10) is proved.

For the proof of the second inequality in (10), we first note that f is a harmonic
convex function on the co-ordinates on Δ, and then, by using (3) it yields

f

(
ab

t
2a + 2−t

2 b
,

cd

s
2c + 2−s

2 d

)

≤ 2− t
2
· 2− s

2
f (a, c)+ 2− s

2
· t

2
f (b, c)+ 2− t

2
· s

2
f (a, d)+ t

2
· s

2
f (b, d),

f

(
ab

t
2a + 2−t

2 b
,

cd

s
2d + 2−s

2 c

)
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≤ 2− t
2
· 2− s

2
f (a, d)+ 2− s

2
· t

2
f (b, d)+ 2− t

2
· s

2
f (a, c)+ t

2
· s

2
f (b, c),

f

(
ab

t
2b + 2−t

2 a
,

cd

s
2c + 2−s

2 d

)

≤ 2− t
2
· 2− s

2
f (b, c)+ 2− s

2
· t

2
f (a, c)+ 2− t

2
· s

2
f (b, d)+ t

2
· s

2
f (a, d),

f

(
ab

t
2b + 2−t

2 a
,

cd

s
2d + 2−s

2 c

)

≤ 2− t
2
· 2− s

2
f (b, d)+ 2− s

2
· t

2
f (a, d)+ 2− t

2
· s

2
f (b, c)+ t

2
· s

2
f (a, c).

By adding these inequalities, we have

f

(
ab

t
2a + 2−t

2 b
,

cd

s
2c + 2−s

2 d

)
+ f

(
ab

t
2a + 2−t

2 b
,

cd

s
2d + 2−s

2 c

)

+f
(

ab

t
2b + 2−t

2 a
,

cd

s
2c + 2−s

2 d

)
+ f

(
ab

t
2b + 2−t

2 a
,

cd

s
2d + 2−s

2 c

)

≤ f (a, c)+ f (b, c)+ f (a, d)+ f (b, d). (19)

Then, multiplying both sides of (19) by 1
4 t
ν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(ω1t
μ1) E

γ2,δ2,k2
μ2,ν2,l2

(ω2s
μ2) and integrating with respect to (t, s) on [0, 1] × [0, 1], we get

∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)
f

(
ab

t
2a + 2−t

2 b
,

cd

s
2 c + 2−s

2 d

)
dsdt

+
∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)
f

(
ab

t
2a + 2−t

2 b
,

cd

s
2d + 2−s

2 c

)
dsdt

+
∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)
f

(
ab

t
2b + 2−t

2 a
,

cd

s
2 c + 2−s

2 d

)
dsdt

+
∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)
f

(
ab

t
2b + 2−t

2 a
,

cd

s
2d + 2−s

2 c

)
dsdt

≤
∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
) [ f (a, c)+ f (b, c)
+f (a, d)+ f (b, d)

]
dsdt.

So, after multiplying with
(
b−a
2ab

)ν1 ( d−c
2dc

)ν2 and using Lemma 2, we have
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⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+f ◦ h
)(

1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−f ◦ h
)(

1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+f ◦ h
)(

1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−f ◦ h
)(

1
b
, 1
d

)
⎤
⎥⎥⎦

≤ f (a, c)+ f (b, c)+ f (a, d)+ f (b, d)
4

×

⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+1

)(
1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−1

)(
1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+1

)(
1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−1

)(
1
b
, 1
d

)
⎤
⎥⎥⎦ ,

which finishes the proof. 
�
Remark For ω1 = ω2 = 0, Theorem 1 is transformed into a new theorem with
integrals of Riemann–Liouville type:

Theorem 2 Let f : Δ → R be harmonically convex on the co-ordinates on Δ =
[a, b] × [c, d] in R2 \ {(0, 0)} and f ∈ L[Δ]. Then one has the inequalities:

f

(
2ab

a + b ,
2cd

c + d
)⎡
⎢⎢⎣

(
J
ν1,ν2
a+b
2ab
+
, c+d2cd

+1

)(
1
a
, 1
c

)
+

(
J
ν1,ν2
a+b
2ab
+
, c+d2cd

−1

)(
1
a
, 1
d

)

+
(
J
ν1,ν2
a+b
2ab
−
, c+d2cd

+1

)(
1
b
, 1
c

)
+

(
J
ν1,ν2
a+b
2ab
−
, c+d2cd

−1

)(
1
b
, 1
d

)
⎤
⎥⎥⎦

≤

⎡
⎢⎢⎣

(
J
ν1,ν2
a+b
2ab
+
, c+d2cd

+f ◦ h
)(

1
a
, 1
c

)
+

(
J
ν1,ν2
a+b
2ab
+
, c+d2cd

−f ◦ h
)(

1
a
, 1
d

)

+
(
J
ν1,ν2
a+b
2ab
−
, c+d2cd

+f ◦ h
)(

1
b
, 1
c

)
+

(
J
ν1,ν2
a+b
2ab
−
, c+d2cd

−f ◦ h
)(

1
b
, 1
d

)
⎤
⎥⎥⎦

≤ f (a, c)+ f (b, c)+ f (a, d)+ f (b, d)
4

×

⎡
⎢⎢⎣

(
J
ν1,ν2
a+b
2ab
+
, c+d2cd

+1

)(
1
a
, 1
c

)
+

(
J
ν1,ν2
a+b
2ab
+
, c+d2cd

−1

)(
1
a
, 1
d

)

+
(
J
ν1,ν2
a+b
2ab
−
, c+d2cd

+1

)(
1
b
, 1
c

)
+

(
J
ν1,ν2
a+b
2ab
−
, c+d2cd

−1

)(
1
b
, 1
d

)
⎤
⎥⎥⎦ ,

where h :
[

1
b
, 1
a

]
×

[
1
d
, 1
c

]
→ R, h(t, s) =

(
1
t
, 1
s

)
.

The following theorem establishes Hermite–Hadamard–Fejer type inequalities for
co-ordinated harmonic convex functions containing the generalized Mittag-Leffler
function.

Theorem 3 Let f : Δ → R be harmonically convex on the co-ordinates on Δ =
[a, b]×[c, d] inR2\{(0, 0)}, f ∈ L[Δ], and the function g : Δ→ R is nonnegative,
integrable, and symmetric with respect to 2ab

a+b and
2cd
c+d on the co-ordinates, then one

has the inequalities:
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f

(
2ab

a + b ,
2cd

c + d
)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+g ◦ h
)(

1
a
, 1
c

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−g ◦ h
)(

1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+g ◦ h
)(

1
b
, 1
c

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−g ◦ h
)(

1
b
, 1
d

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+fg ◦ h
)(

1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−fg ◦ h
)(

1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+fg ◦ h
)(

1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−fg ◦ h
)(

1
b
, 1
d

)
⎤
⎥⎥⎦

≤ f (a, c)+ f (b, c)+ f (a, d)+ f (b, d)
4

×

⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+g ◦ h
)(

1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−g ◦ h
)(

1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+g ◦ h
)(

1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−g ◦ h
)(

1
b
, 1
d

)
⎤
⎥⎥⎦ , (20)

where μ = (μ1, μ2) , ν = (ν1, ν2) , ω
′ = (

ω′1, ω′2
)
, γ = (γ1, γ2) , δ =

(δ1, δ2) , k = (k1, k2), μ, ν, ω′, γ, δ, k > (0, 0) with ω′1 = ω1
(b−a)μ1 , ω

′
2 = ω2

(d−c)μ2

and h :
[

1
b
, 1
a

]
×

[
1
d
, 1
c

]
→ R, h(t, s) =

(
1
t
, 1
s

)
.

Proof Since f is a harmonically convex function on Δ, we have inequality (12).
Multiplying both sides of this inequality with

tν1−1sν2−1E
γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)
g

(
ab

t
2a + 2−t

2 b
,

cd

s
2c + 2−s

2 d

)

and integrating with respect to (t, s) on [0, 1] × [0, 1], we obtain

f

(
2ab

a + b ,
2cd

c + d
)

∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)
g

(
ab

t
2a + 2−t

2 b
,

cd

s
2 c + 2−s

2 d

)
dsdt
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≤ 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1
0

∫ 1
0 t
ν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(ω1t
μ1 ) E

γ2,δ2,k2
μ2,ν2,l2

(ω2s
μ2 )

×f
(

ab
t
2 a+ 2−t

2 b
, cd
s
2 c+ 2−s

2 d

)
g

(
ab

t
2 a+ 2−t

2 b
, cd
s
2 c+ 2−s

2 d

)
dsdt

+ ∫ 1
0

∫ 1
0 t
ν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(ω1t
μ1 ) E

γ2,δ2,k2
μ2,ν2,l2

(ω2s
μ2 )

×f
(

ab
t
2 a+ 2−t

2 b
, cd
s
2 d+ 2−s

2 c

)
g

(
ab

t
2 a+ 2−t

2 b
, cd
s
2 c+ 2−s

2 d

)
dsdt

+ ∫ 1
0

∫ 1
0 t
ν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(ω1t
μ1 ) E

γ2,δ2,k2
μ2,ν2,l2

(ω2s
μ2 )

×f
(

ab
t
2 b+ 2−t

2 a
, cd
s
2 c+ 2−s

2 d

)
g

(
ab

t
2 a+ 2−t

2 b
, cd
s
2 c+ 2−s

2 d

)
dsdt

+ ∫ 1
0

∫ 1
0 t
ν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(ω1t
μ1 ) E

γ2,δ2,k2
μ2,ν2,l2

(ω2s
μ2 )

×f
(

ab
t
2 b+ 2−t

2 a
, cd
s
2 d+ 2−s

2 c

)
g

(
ab

t
2 a+ 2−t

2 b
, cd
s
2 c+ 2−s

2 d

)
dsdt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

Using substitutions x = 1
ab

(
t
2a + 2−t

2 b
)
, y = 1

cd

(
s
2c + 2−s

2 d
)

, we have

∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)
g

(
ab

t
2a + 2−t

2 b
,

cd

s
2 c + 2−s

2 d

)
dsdt

=
(

2ab

b − a
)ν1

(
2cd

c + d
)ν2 ∫ 1

a

a+b
2ab

∫ 1
c

c+d
2cd

(
1

a
− x

)ν1−1 (
1

c
− y

)ν2−1

×Eγ1,δ1,k1
μ1,ν1,l1

(
ω′1

(
1

a
− x

)μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω′2

(
1

c
− y

)μ2
)
g

(
1

x
,

1

y

)
dydx

=
(

2ab

b − a
)ν1

(
2cd

c + d
)ν2 ∫ 1

a

a+b
2ab

∫ 1
c

c+d
2cd

(
1

a
− x

)ν1−1 (
1

c
− y

)ν2−1

×Eγ1,δ1,k1
μ1,ν1,l1

(
ω′1

(
1

a
− x

)μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω′2

(
1

c
− y

)μ2
)
(g ◦ h) (x, y) dydx

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2

(
ε
γ,δ,k

μ,ν,l,ω′, a+b2ab
+
, c+d2cd

+g ◦ h
)(

1

a
,

1

c

)
, (22)

∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)

×f
(

ab

t
2a + 2−t

2 b
,

cd

s
2 c + 2−s

2 d

)
g

(
ab

t
2a + 2−t

2 b
,

cd

s
2 c + 2−s

2 d

)
dsdt

=
(

2ab

b − a
)ν1

(
2cd

c + d
)ν2 ∫ 1

a

a+b
2ab

∫ 1
c

c+d
2cd

(
1

a
− x

)ν1−1 (
1

c
− y

)ν2−1

×Eγ1,δ1,k1
μ1,ν1,l1

(
ω′1

(
1

a
− x

)μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω′2

(
1

c
− y

)μ2
)
f

(
1

x
,

1

y

)
g

(
1

x
,

1

y

)
dydx

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2

(
ε
γ,δ,k

μ,ν,l,ω′, a+b2ab
+
, c+d2cd

+fg ◦ h
)(

1

a
,

1

c

)
. (23)
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For the next three inequalities, we use previous substitutions and substitutions u =
1
a
+ 1
b
− x, v = 1

c
+ 1
d
− y, respectively, the harmonically symmetric with respect

to 2ab
a+b and 2cd

c+d of g.

∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)

×f
(

ab

t
2a + 2−t

2 b
,

cd

s
2d + 2−s

2 c

)
g

(
ab

t
2a + 2−t

2 b
,

cd

s
2 c + 2−s

2 d

)
dsdt

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2 ∫ 1

a

a+b
2ab

∫ 1
c

c+d
2cd

(
1

a
− x

)ν1−1 (
1

c
− y

)ν2−1

×Eγ1,δ1,k1
μ1,ν1,l1

(
ω′1

(
1

a
− x

)μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω′2

(
1

c
− y

)μ2
)

f

(
1

x
,

1
1
c
+ 1
d
− y

)
g

(
1

x
,

1

y

)
dydx

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2 ∫ 1

a

a+b
2ab

∫ 1
c

c+d
2cd

(
1

a
− x

)ν1−1 (
1

c
− y

)ν2−1

×Eγ1,δ1,k1
μ1,ν1,l1

(
ω′1

(
1

a
− x

)μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω′2

(
1

c
− y

)μ2
)

f

(
1

x
,

1
1
c
+ 1
d
− y

)
g

(
1

x
,

1
1
c
+ 1
d
− y

)
dydx

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2 ∫ 1

a

a+b
2ab

∫ c+d
2cd

1
d

(
1

a
− x

)ν1−1 (
v − 1

d

)ν2−1

×Eγ1,δ1,k1
μ1,ν1,l1

(
ω′1

(
1

a
− x

)μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω′2

(
v − 1

d

)μ2
)
f

(
1

x
,

1

v

)
g

(
1

x
,

1

v

)
dvdx

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2

(
ε
γ,δ,k

μ,ν,l,ω′, a+b2ab
+
, c+d2cd

−fg ◦ h
)(

1

a
,

1

d

)
, (24)

∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)

×f
(

ab

t
2b + 2−t

2 a
,

cd

s
2c + 2−s

2 d

)
g

(
ab

t
2a + 2−t

2 b
,

cd

s
2c + 2−s

2 d

)
dsdt

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2

(
ε
γ,δ,k

μ,ν,l,ω′, a+b2ab
−
, c+d2cd

+fg ◦ h
)(

1

b
,

1

c

)
, (25)
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∫ 1

0

∫ 1

0
tν1−1sν2−1E

γ1,δ1,k1
μ1,ν1,l1

(
ω1t

μ1
)
E
γ2,δ2,k2
μ2,ν2,l2

(
ω2s

μ2
)

×f
(

ab

t
2b + 2−t

2 a
,

cd

s
2d + 2−s

2 c

)
g

(
ab

t
2a + 2−t

2 b
,

cd

s
2c + 2−s

2 d

)
dsdt

=
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2

(
ε
γ,δ,k

μ,ν,l,ω′, a+b2ab
−
, c+d2cd

−fg ◦ h
)(

1

b
,

1

d

)
. (26)

Introducing relationships (22)–(26) in (13), we get, after multiplying with(
b−a
2ab

)ν1 ( d−c
2cd

)ν2 and using Lemma 2

f

(
2ab

a + b ,
2cd

c + d
)⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+g

)(
1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−g

)(
1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+g

)(
1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−g

)(
1
b
, 1
d

)
⎤
⎥⎥⎦

≤

⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+fg ◦ h
)(

1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−fg ◦ h
)(

1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+fg ◦ h
)(

1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−fg ◦ h
)(

1
b
, 1
d

)
⎤
⎥⎥⎦ ,

with this the first inequality of (20) is proved.

For the proof of the second inequality in (20), we multiply inequality (19) with

tν1−1sν2−1E
γ1,δ1,k1
μ1,ν1,l1

(ω1t
μ1) E

γ2,δ2,k2
μ2,ν2,l2

(ω2s
μ2) g

(
ab

t
2 a+ 2−t

2 b
, cd
s
2 c+ 2−s

2 d

)
and integrat-

ing with respect to (t, s) on [0, 1] × [0, 1]. By computing, we get

(
2ab

b − a
)ν1

(
2cd

d − c
)ν2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+f ◦ h
)(

1
a
, 1
c

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−f ◦ h
)(

1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+f ◦ h
)(

1
b
, 1
c

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−f ◦ h
)(

1
b
, 1
d

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ f (a, c)+ f (b, c)+ f (a, d)+ f (b, d)
4

·
(

2ab

b − a
)ν1

(
2cd

d − c
)ν2

×

⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+1

)(
1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−1

)(
1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+1

)(
1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−1

)(
1
b
, 1
d

)
⎤
⎥⎥⎦ .
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So, after multiplying with
(
b−a
2ab

)ν1 ( d−c
2dc

)ν2 and using Lemma 2, we have

⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+f ◦ h
)(

1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−f ◦ h
)(

1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+f ◦ h
)(

1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−f ◦ h
)(

1
b
, 1
d

)
⎤
⎥⎥⎦

≤ f (a, c)+ f (b, c)+ f (a, d)+ f (b, d)
4

×

⎡
⎢⎢⎣

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

+1

)(
1
a
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
+
, c+d2cd

−1

)(
1
a
, 1
d

)

+
(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

+1

)(
1
b
, 1
c

)
+

(
ε
γ,δ,k

μ,ν,l,ω, a+b2ab
−
, c+d2cd

−1

)(
1
b
, 1
d

)
⎤
⎥⎥⎦ ,

which finishes the proof. 
�
Remark For ω1 = ω2 = 0, Theorem 3 becomes a new theorem with fractional
integrals of Riemann–Liouville type:

Theorem 4 Let f : Δ → R be harmonically convex on the co-ordinates on Δ =
[a, b]×[c, d] inR2\{(0, 0)}, f ∈ L[Δ], and the function g : Δ→ R is nonnegative,
integrable, and symmetric with respect to 2ab

a+b and
2cd
c+d on the co-ordinates, then one

has the inequalities:

f

(
2ab

a + b ,
2cd

c + d
)⎡
⎢⎢⎣

(
J
ν1,ν2
a+b
2ab
+
, c+d2cd

+g ◦ h
)(

1
a
, 1
c

)
+

(
J
ν1,ν2
a+b
2ab
+
, c+d2cd

−g ◦ h
)(

1
a
, 1
d

)

+
(
J
ν1,ν2
a+b
2ab
−
, c+d2cd

+g ◦ h
)(

1
b
, 1
c

)
+

(
J
ν1,ν2
a+b
2ab
−
, c+d2cd

−g ◦ h
)(

1
b
, 1
d

)
⎤
⎥⎥⎦

≤

⎡
⎢⎢⎣

(
J
ν1,ν2
a+b
2ab
+
, c+d2cd

+fg ◦ h
)(

1
a
, 1
c

)
+

(
J
ν1,ν2
a+b
2ab
+
, c+d2cd

−fg ◦ h
)(

1
a
, 1
d

)

+
(
J
ν1,ν2
a+b
2ab
−
, c+d2cd

+fg ◦ h
)(

1
b
, 1
c

)
+

(
J
ν1,ν2
a+b
2ab
−
, c+d2cd

−fg ◦ h
)(

1
b
, 1
d

)
⎤
⎥⎥⎦

≤ f (a, c)+ f (b, c)+ f (a, d)+ f (b, d)
4

×

⎡
⎢⎢⎣

(
J
ν1,ν2
a+b
2ab
+
, c+d2cd

+g ◦ h
)(

1
a
, 1
c

)
+

(
J
ν1,ν2
a+b
2ab
+
, c+d2cd

−g ◦ h
)(

1
a
, 1
d

)

+
(
J
ν1,ν2
a+b
2ab
−
, c+d2cd

+g ◦ h
)(

1
b
, 1
c

)
+

(
J
ν1,ν2
a+b
2ab
−
, c+d2cd

−g ◦ h
)(

1
b
, 1
d

)
⎤
⎥⎥⎦ ,

where h :
[

1
b
, 1
a

]
×

[
1
d
, 1
c

]
→ R, h(t, s) =

(
1
t
, 1
s

)
.
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3 Conclusion

We have derived several new integral inequalities of Hermite–Hadamard type
via the functions having harmonic convexity property on the co-ordinates. These
inequalities involve a kernel containing generalized Mittag-Leffler function. We
have also discussed some new special cases of the main results. It is expected that
the results obtained in the paper may inspire the researchers of this field.

Acknowledgments Authors would like to express their gratitude to Prof. Dr. Themistocles M.
Rassias for his kind invitation and support. This research is supported by HEC NRPU project No:
8081/Punjab/NRPU/R&D/HEC/2017.
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Two-Dimensional Trapezium Inequalities
via pq-Convex Functions

Muhammad Uzair Awan, Muhammad Aslam Noor, Khalida Inayat Noor,
and Themistocles M. Rassias

Abstract We establish some new two-dimensional trapezium-like inequalities
involving partial differentiable pq-convex functions on rectangle. The concept
of pq-convex functions also includes the harmonic convex functions and convex
functions as special cases. These results represent refinement and improvement of
the known results. Some cases are discussed, which can be obtained as applications
of the results. The ideas and techniques of this chapter may be a starting point for
further research.

1 Introduction

In recent years, the classical theory of convexity has experienced rapid development
due to its great many applications in different fields of pure and applied sciences.
Recently, the classical concept of convexity has been extended and generalized in
different directions. For more information, see [1–4, 7–9, 16–18, 26]. Power means
[9] can be viewed as a natural extension of the arithmetic means and have been used
to introduce the concept of p-convex functions. Zhang et al. [26] studied various
properties of the p-convex functions. Obviously, the p-convex functions include the
convex functions and harmonic convex functions as special cases. Several Hermite–
Hadamard-type inequalities have been obtained for the p-convex functions in recent
years. Noor et al. [17] extended the class of p-convex functions to two-dimensional
pq-convex function and derived some new and novel integral inequalities.
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It is a known fact that convexity has a close relationship with the theory of
inequalities. Many inequalities can be obtained directly using the definition of
convex functions. Hermite–Hadamard inequality is one of the most studied results,
which can be obtained using convex functions. This result provides us the necessary
and sufficient condition for a function to be convex. It reads as: Let f : I = [a, b] ⊂
R→ R be a convex function, then

f

(
a + b

2

)
≤ 1

b − a
b∫
a

f (x)dx ≤ f (a)+ f (b)
2

,

and conversely. This result is called Hermite–Hadamard’s inequality. For some
recent studies, see [1, 3–7, 16, 17, 19–25].

In this chapter, we consider the class of pq-convex functions on a rectangle.
We establish some new trapezium-like inequalities using pq-convex functions on
rectangle. Several special cases of results are obtained as applications. Our results
can viewed as significant refinement and improvement of the previous known
results. It is an interesting problem to consider the applications of two-dimensional
inequalities in numerical analysis and approximation theory.

2 Preliminary Results

In this section, we recall some previously known concepts. For more details, see an
excellent book [9].

Definition 1 ([26]) A set Kp is said to be a p-convex set, if

[txp + (1− t)yp] 1
p ∈ Kp, ∀x, y ∈ I, t ∈ [0, 1], p �= 0. (1)

It is worth mentioning that for p = 1, the set Kp becomes the convex set K and for
p = −1, the p-convex set Kp reduces to the harmonic convex set Kh, respectively.
This shows that the p-convex set is quite general and includes the convex set and
harmonic convex set as special cases.

Definition 2 ([26]) A function f : Kp → R is said to be p-convex function, if

f (txp + (1− t)yp) 1
p ≤ tf (x)+ (1− t)f (y), ∀x, y ∈ Kp, t ∈ [0, 1].

Also note that for t = 1
2 , Definition 2, becomes

f

(
xp + yp

2

) 1
p ≤ f (x)+ f (y)

2
, ∀x, y ∈ Kp, t ∈ [0, 1].
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The function f is called the Jensen p-convex function.
We now discuss some important special cases of p-convex functions,

I. If p = 1, then p-convex functions reduce to:

Definition 3 A function f : K → R is said to be a convex function on the convex
set K, if

f (tx + (1− t)y) ≤ tf (x)+ (1− t)f (y), ∀x, y ∈ K, t ∈ [0, 1].

It is known that the minimum u ∈ K is a minimum of a differentiable convex
function f on a convex set K, if and only if, u ∈ K satisfies the inequality

〈f ′(u), v − u〉 ≥ 0,∀v ∈ K,

which is called the variational inequality. The variational inequalities can be viewed
as the natural extension and generalization of the variational principles, the origin
of which can be traced back to Euler, Lagrange and Bernoulli’s brothers. Variational
inequalities have appeared to be a powerful tool to study a wide class of unrelated
problems in a unified framework. For the applications, formulation, numerical
results, dynamical systems and other aspects of the variational inequalities, see [9–
15] and the references therein.

II. If p = −1, then p-convex functions reduce to:

Definition 4 A function f : Kh→ R is said to be a harmonic convex function, if

f

(
xy

(1− t)x + ty
)
≤ tf (x)+ (1− t)f (y), ∀x, y ∈ Kh, t ∈ [0, 1].

It has been shown by Noor and Noor [13] that u ∈ Kh is the minimum of
a differentiable harmonic convex function, if and only if, u ∈ Kh satisfies the
inequality

〈
f ′(u), uv

u− v
〉
≥ 0,∀v ∈ Kh,

which is called harmonic variational inequality. It is an interesting problem to study
the applications and numerical aspects of harmonic variational inequalities. For
further details, see [13, 14].

We now consider two-dimensional integral inequalities for pq-convex functions,
which is the main focus of this paper. Let us consider a bidimensional interval Δ =
[a, b] × [c, d] ⊂ R

2 with a < b and c < d. A function f : Δ → R is said to be
convex function on Δ if the following inequality:

f (tx + (1− t)z, ty + (1− t)w) ≤ tf (x, y)+ (1− t)f (z,w),
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holds, for all (x, y), (z, w) ∈ Δ and t ∈ [0, 1]. This is definition is mainly due to
Dragomir [4].

A function f : Δ → R is said to be convex on Δ if the partial functions fy :
[a, b] → R, fy(u) = f (u, y) and fx : [c, d] → R, fx(v) = f (x, v) are convex for
all x ∈ [a, b] and y ∈ [c, d].
Definition 5 ([4]) Let Δ = [a, b] × [c, d] ⊂ R

2 be a rectangle. A function f :
Δ→ R is said to be (coordinated) convex function on rectangle, if

f (tx + (1− t)y, ru+ (1− r)w)
≤ trf (x, u)+ t (1− r)f (x,w)+ r(1− t)f (y, u)+ (1− t)(1− r)f (y,w),

whenever x, y ∈ [a, b], u,w ∈ [c, d] and t, r ∈ [0, 1].
Definition 6 ([17]) Let Δ = [a, b] × [c, d] ⊂ R

2 be a rectangle. A function f :
Δ→ R is said to be pq-convex function on rectangle, if

f (Mp(x1, x2; t),Mq(y1, y2; r))
≤ trf (x1, y1)+t (1− r)f (x1, y2)+r(1− t)f (x2, y1)

+(1− t)(1− r)f (x2, y2), (2)

whenever x1, x2 ∈ [a, b], y1, y2 ∈ [c, d] and t, r ∈ [0, 1].
We now discuss some special cases of Definition 6.

I. If p = q, then, we have

Definition 7 Let Δ = [a, b] × [c, d] ⊂ R
2 be a rectangle. A function f : Δ→ R

is said to be p-convex function on rectangle, if

f (Mp(x1, x2; t),Mp(y1, y2; r))
≤ trf (x1, y1)+ t (1− r)f (x1, y2)+ r(1− t)f (x2, y1)+ (1− t)(1− r)f (x2, y2).

II. If p = 1 = q, then Definition 6 and Definition 7 reduce to Definition 5.

This shows that the concept of pq-convex functions on rectangle is quite flexible
and unifying one.
For some recent investigations on pq-convex functions, see [17].

For the reader’s convenience, we recall here the definitions of the Gamma
function

Γ (x) =
∫ ∞

0
e−xtx−1dt

and the Beta function
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B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt.

It holds

B(x, y) = Γ (x)Γ (y)
Γ (x + y) .

The integral form of the hypergeometric function is

2F1(x, y; c; z) = 1

B(y, c − y)
∫ 1

0
ty−1(1− t)c−y−1(1− zt)−xdt

for |z| < 1, c > y > 0.

3 Results and Discussions

In this section, we discuss our main results. For this purpose, we need the following
auxiliary result.

Lemma 1 Let f : Δ ⊆ R
2 → R

2 be a partial differentiable function on Δ =
[a, b] × [c, d] in R2 with a < b and c < d. If ∂

2f
∂t∂r
∈ L1(Δ), then

Rf (t, r;p, q;Δ)

= (b
p − ap)(dq − cq)

4pq

×
1∫

0

1∫
0

(
1− 2t

[tap + (1− t)bp]1− 1
p

)(
1− 2r

[rap + (1− r)bp]1− 1
p

)

× ∂
2f

∂t∂r

(
Mp(a, b; t),Mq(c, d; r)

)
dtdr,

where

Rf (t, r;p, q;Δ)

= f (a, c)+ f (b, c)+ f (a, d)+ f (b, d)
4

− p

2(bp − ap)

⎡
⎣

b∫
a

xp−1f (x, c)dx +
b∫
a

xp−1f (x, d)dx

⎤
⎦
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− q

2(dq − cq)

⎡
⎣

d∫
c

yq−1f (a, y)dy +
d∫
c

yq−1f (b, y)dy

⎤
⎦

+ pq

(bp − ap)(dq − cq)
b∫
a

d∫
c

xp−1yq−1f (x, y)dxdy.

Proof Consider

1∫
0

1∫
0

(
1− 2t

[tap + (1− t)bp]1− 1
p

)(
1− 2r

[rap + (1− r)bp]1− 1
p

)

∂2f

∂t∂r

(
Mp(a, b; t),Mq(c, d; r)

)
dtdr.

This implies

I =
1∫

0

(
1− 2t

[tap + (1− t)bp]1− 1
p

)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1∫
0

(
1− 2r

[rap + (1− r)bp]1− 1
p

)
∂2f

∂t∂r

(
Mp(a, b; t),Mq(c, d; r)

)
dr

︸ ︷︷ ︸
I1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

dt. (3)

Integrating by parts, we have

I1 =
1∫

0

(
1− 2r

[rap + (1− r)bp]1− 1
p

)
∂2f

∂t∂r

(
Mp(a, b; t),Mq(c, d; r)

)
dr

= q

dq − cq
∂f

∂t
([tap + (1− t)bp] 1

p , c)+ q

dq − cq
∂f

∂t
([tap + (1− t)bp] 1

p , d)

+ 2q

dq − cq
1∫

0

∂f

∂t
([tap + (1− t)bp] 1

p , [rcq + (1− r)dq ] 1
q )dr. (4)
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From (3) and (4), we have

I2 = q

dq − cq
1∫

0

(
1− 2t

[tap + (1− t)bp]1− 1
p

)
∂f

∂t
([tap + (1− t)bp] 1

p , c)dt

= q

dq − cq
[

p

bp − aa f (a, c)+
p

bp − aa f (b, c)

− 2p2

(bp − ap)2
b∫
a

xp−1f (x, c)dx

]
. (5)

Similarly from (3) and (4), we have

I3 = q

dq − cq
1∫

0

(
1− 2t

[tap + (1− t)bp]1− 1
p

)
∂f

∂t
([tap + (1− t)bp] 1

p , d)dt

= q

dq − cq
[

p

bp − aa f (a, d)+
p

bp − aa f (b, d)

− 2p2

(bp − ap)2
b∫
a

xp−1f (x, d)dx

]
. (6)

Also,

I4 = 2q

dq − cq
1∫

0

1∫
0

(
1− 2t

[tap + (1− t)bp]1− 1
p

)
∂f

∂t
([tap + (1− t)bp] 1

p ,

[rcq + (1− r)dq ] 1
q )drdt

= 2pq2

(bp − ap)(dq − cq)2
d∫
c

yq−1f (a, y)dy

+ 2pq2

(bp − ap)(dq − cq)2
d∫
c

yq−1f (b, y)dy

− 4p2q2

(bp − ap)2(dq − cq)q
b∫
a

d∫
c

xp−1yq−1f (x, y)dxdy. (7)
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On summation of (3), (4), (5), (6) and (7) and multiplying by (bp−ap)(dq−cq )
4pq

completes the proof. 
�
Now using Lemma 1, we derive our coming results.

Theorem 1 Let f : Δ ⊆ R
2 → R

2 be a partial differentiable function on Δ =
[a, b]×[c, d] in R2 with a < b and c < d and ∂2f

∂t∂r
∈ L1(Δ). If

∣∣∣ ∂2f
∂r∂t

∣∣∣ is pq-convex
function on rectangle, then

|Rf (t, r;p, q;Δ)|

≤ (b
p − ap)(dq − cq)

4pq

×
[
K1

∣∣∣ ∂2f

∂t∂r
(a, c)

∣∣∣+K2

∣∣∣ ∂2f

∂t∂r
(b, c)

∣∣∣+K3

∣∣∣ ∂2f

∂t∂r
(a, d)

∣∣∣+K4

∣∣∣ ∂2f

∂t∂r
(b, d)

∣∣∣
]
,

where

K1 =
1∫

0

1∫
0

(
|1− 2t |

[tap + (1− t)bp]1− 1
p

)(
|1− 2r|

[rap + (1− r)bp]1− 1
p

)
trdrdt

= b1−p
⎡
⎣ 2

3 ·2 F1

(
1− 1

p
, 3; 4; 1− ap

bp

)
− 1

2 ·2 F1

(
1− 1

p
, 2; 3; 1− ap

bp

)
+ 1

12 ·2 F1

(
1− 1

p
, 2; 4; 1

2

(
1− ap

bp

))
⎤
⎦

×d1−p
⎡
⎣ 2

3 ·2 F1

(
1− 1

p
, 3; 4; 1− cp

dp

)
− 1

2 ·2 F1

(
1− 1

p
, 2; 3; 1− cp

dp

)
+ 1

12 ·2 F1

(
1− 1

p
, 2; 4; 1

2

(
1− cp

dp

))
⎤
⎦ ; (8)

K2 =
1∫

0

1∫
0

(
|1− 2t |

[tap + (1− t)bp]1− 1
p

)(
|1− 2r|

[rap + (1− r)bp]1− 1
p

)
(1− t)rdrdt

= b1−p

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3 ·2 F1

(
1− 1

p
, 2; 4; 1− ap

bp

)
− 1

2 ·2 F1

(
1− 1

p
, 1; 3; 1− ap

bp

)
+ 1

2 ·2 F1

(
1− 1

p
, 1; 3; 1

2

(
1− ap

bp

))
− 1

22 ·2 F1

(
1− 1

p
, 2; 4; 1

2

(
1− ap

bp

))

⎤
⎥⎥⎥⎥⎥⎥⎦

×d1−p

⎡
⎢⎢⎢⎣

2
3 ·2 F1

(
1− 1

p
, 3; 4; 1− cp

dp

)
− 1

2 ·2 F1

(
1− 1

p
, 2; 3; 1− cp

dp

)
+ 1

12 ·2 F1

(
1− 1

p
, 2; 4; 1

2

(
1− cp

dp

))

⎤
⎥⎥⎥⎦ ; (9)
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K3 =
1∫

0

1∫
0

(
|1− 2t |

[tap + (1− t)bp]1− 1
p

)(
|1− 2r|

[rap + (1− r)bp]1− 1
p

)
t (1− r)drdt

= b1−p

⎡
⎢⎢⎢⎣

2
3 ·2 F1

(
1− 1

p
, 3; 4; 1− ap

bp

)
− 1

2 ·2 F1

(
1− 1

p
, 2; 3; 1− ap

bp

)
+ 1

12 ·2 F1

(
1− 1

p
, 2; 4; 1

2

(
1− ap

bp

))

⎤
⎥⎥⎥⎦

×d1−p

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3 ·2 F1

(
1− 1

p
, 2; 4; 1− cp

dp

)
− 1

2 ·2 F1

(
1− 1

p
, 1; 3; 1− cp

dp

)
+ 1

2 ·2 F1

(
1− 1

p
, 1; 3; 1

2

(
1− cp

dp

))
− 1

22 ·2 F1

(
1− 1

p
, 2; 4; 1

2

(
1− cp

dp

))

⎤
⎥⎥⎥⎥⎥⎥⎦
, (10)

and

K4 =
1∫

0

1∫
0

(
|1− 2t |

[tap+(1− t)bp]1− 1
p

)(
|1− 2r|

[rap+(1− r)bp]1− 1
p

)
(1−t)(1−r)drdt

= b1−p

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3 ·2 F1

(
1− 1

p
, 2; 4; 1− ap

bp

)
− 1

2 ·2 F1

(
1− 1

p
, 1; 3; 1− ap

bp

)
+ 1

2 ·2 F1

(
1− 1

p
, 1; 3; 1

2

(
1− ap

bp

))
− 1

22 ·2 F1

(
1− 1

p
, 2; 4; 1

2

(
1− ap

bp

))

⎤
⎥⎥⎥⎥⎥⎥⎦

×d1−p

⎡
⎢⎢⎢⎢⎢⎢⎣

1
3 ·2 F1

(
1− 1

p
, 2; 4; 1− cp

dp

)
− 1

2 ·2 F1

(
1− 1

p
, 1; 3; 1− cp

dp

)
+ 1

2 ·2 F1

(
1− 1

p
, 1; 3; 1

2

(
1− cp

dp

))
− 1

22 ·2 F1

(
1− 1

p
, 2; 4; 1

2

(
1− cp

dp

))

⎤
⎥⎥⎥⎥⎥⎥⎦
. (11)

Proof Using Lemma 1, property of modulus and the fact that | ∂2f
∂t∂r
| is pq-convex

on rectangle, we have

|Rf (t, r;p, q;Δ)|

=
∣∣∣∣ (b

p − ap)(dq − cq)
4pq
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×
1∫

0

1∫
0

(
1− 2t

[tap + (1− t)bp]1− 1
p

)(
1− 2r

[rap + (1− r)bp]1− 1
p

)

× ∂
2f

∂t∂r

(
Mp(a, b; t),Mq(c, d; r)

)
dtdr

∣∣∣∣
≤ (b

p − ap)(dq − cq)
4pq

×
1∫

0

1∫
0

(
|1− 2t |

[tap + (1− t)bp]1− 1
p

)(
|1− 2r|

[rap + (1− r)bp]1− 1
p

)

×
∣∣∣∣ ∂

2f

∂t∂r

(
Mp(a, b; t),Mq(c, d; r)

)∣∣∣∣dtdr

≤ (b
p − ap)(dq − cq)

4pq

1∫
0

1∫
0

(
|1− 2t |

[tap + (1− t)bp]1− 1
p

)(
|1− 2r|

[rap + (1− r)bp]1− 1
p

)

×
{
tr

∣∣∣ ∂2f
∂t∂r
(a, c)

∣∣∣+ (1− t)r∣∣∣ ∂2f
∂t∂r
(b, c)

∣∣∣+ t (1− r)∣∣∣ ∂2f
∂t∂r
(a, d)

+(1− t)(1− r)
∣∣∣ ∂2f
∂t∂r
(b, d)

}
dtdr

= (b
p − ap)(dq − cq)

4pq

×
[
K1

∣∣∣ ∂2f

∂t∂r
(a, c)

∣∣∣+K2

∣∣∣ ∂2f

∂t∂r
(b, c)

∣∣∣+K3

∣∣∣ ∂2f

∂t∂r
(a, d)

∣∣∣+K4

∣∣∣ ∂2f

∂t∂r
(b, d)

∣∣∣
]
.

This completes the proof. 
�
Theorem 2 Let f : Δ ⊆ R

2 → R
2 be a partial differentiable function on Δ =

[a, b]×[c, d] inR2 with a < b and c < d and ∂2f
∂t∂r
∈ L1(Δ). If

∣∣∣ ∂2f
∂r∂t

∣∣∣β is pq-convex
function on rectangle, where 1

α
+ 1
β
= 1, α, β > 1, then

|Rf (t, r;p, q;Δ)|

≤ (b
p − ap)(dq − cq)

4pq
C

1− 1
β

×
[
K1

∣∣∣ ∂2f

∂t∂r
(a, c)

∣∣∣β+K2

∣∣∣ ∂2f

∂t∂r
(b, c)

∣∣∣β+K3

∣∣∣ ∂2f

∂t∂r
(a, d)

∣∣∣β+K4

∣∣∣ ∂2f

∂t∂r
(b, d)

∣∣∣β
] 1
β

,

where K1, K2, K3 and K4 are given by (8), (9), (10) and (11), respectively, and
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C =
1∫

0

1∫
0

(
|1− 2t |

[tap + (1− t)bp]1− 1
p

)(
|1− 2r|

[rap + (1− r)bp]1− 1
p

)
drdt

= 2F1

(
1− 1

p
, 2; 3; 1− a

p

bp

)
− 2F1

(
1− 1

p
, 1; 2; 1− a

p

bp

)

+ 2F1

(
1− 1

p
, 1; 3; 1

2

(
1− a

p

bp

))

×2F1

(
1− 1

p
, 2; 3; 1− c

p

dp

)
− 2F1

(
1− 1

p
, 1; 2; 1− c

p

dp

)

+ 2F1

(
1− 1

p
, 1; 3; 1

2

(
1− c

p

dp

))
.

Proof Using Lemma 1, property of modulus, Holder’s inequality and the fact that

| ∂2f
∂r∂t
|β is pq-convex function on rectangle, we have

|Rf (t, r;p, q;Δ)|

=
∣∣∣∣ (b

p − ap)(dq − cq)
4pq

×
1∫

0

1∫
0

(
1− 2t

[tap + (1− t)bp]1− 1
p

)(
1− 2r

[rap + (1− r)bp]1− 1
p

)

× ∂
2f

∂t∂r

(
Mp(a, b; t),Mq(c, d; r)

)
dtdr

∣∣∣∣
≤ (bp − ap)(dq − cq)

4pq

×
1∫

0

1∫
0

(
|1− 2t |

[tap + (1− t)bp]1− 1
p

)(
|1− 2r|

[rap + (1− r)bp]1− 1
p

) ∣∣∣∣

∂2f

∂t∂r

(
Mp(a, b; t),Mq(c, d; r)

)∣∣∣∣dtdr

≤ (bp − ap)(dq − cq)
4pq

( 1∫
0

1∫
0

(
|1− 2t |

[tap + (1− t)bp]1− 1
p

)(
|1− 2r|

[rap + (1− r)bp]1− 1
p

)
dtdr

)1− 1
β

×

⎛
⎜⎜⎜⎝

1∫
0

1∫
0

(
|1−2t |

[tap+(1−t)bp]1− 1
p

)(
|1−2r|

[rap+(1−r)bp]1− 1
p

)

×
∣∣∣∣ ∂2f
∂t∂r

([tap + (1− t)bp] 1
p , [rcq + (1− r)dq ] 1

q
)∣∣∣∣
β

dtdr

⎞
⎟⎟⎟⎠

1
β
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≤ (bp − ap)(dq − cq)
4pq

( 1∫
0

1∫
0

(
|1− 2t |

[tap + (1− t)bp]1− 1
p

)(
|1− 2r|

[rap + (1− r)bp]1− 1
p

)
dtdr

)1− 1
β

×
( 1∫

0

1∫
0

(
|1− 2t |

[tap + (1− t)bp]1− 1
p

)(
|1− 2r|

[rap + (1− r)bp]1− 1
p

)

×
{
tr

∣∣∣ ∂2f

∂t∂r
(a, c)

∣∣∣β + (1− t)r
∣∣∣ ∂2f

∂t∂r
(b, c)

∣∣∣β

+t (1− r)
∣∣∣ ∂2f

∂t∂r
(a, d)

∣∣∣β + (1− t)(1− r)∣∣∣ ∂2f

∂t∂r
(b, d)

∣∣∣β
}

dtdr

) 1
β

≤ (bp − ap)(dq − cq)
4pq

C
1− 1

β

×
[
K1

∣∣∣ ∂2f

∂t∂r
(a, c)

∣∣∣β +K2

∣∣∣ ∂2f

∂t∂r
(b, c)

∣∣∣β +K3

∣∣∣ ∂2f

∂t∂r
(a, d)

∣∣∣β +K4

∣∣∣ ∂2f

∂t∂r
(b, d)

∣∣∣β
] 1
β

.

This completes the proof. 
�
Remark 1 It is worth to mention here that for p = q in the above results, we have
the results for p-convex functions on rectangle, which to the best of our knowledge
are new in the literature. If p = 1 = q, then the above results reduce to the results
for convex functions on rectangle. Note that in particular if p = −1, then our results
collapse to the results for harmonically convex functions on rectangle, see [16].

4 Conclusion

A new integral identity for partial differentiable functions has been derived.
Utilizing this new auxiliary result, we have established several new trapezoidal-like
inequalities via pq-convex functions. It has been observed that under suitable values
of p and q we obtain several new and known results. Interested readers may explore
the applications of these new inequalities in engineering, mathematical sciences,
numerical analysis and optimization.
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New k-Conformable Fractional Integral
Inequalities

Muhammad Uzair Awan, Muhammad Aslam Noor, Sadia Talib,
Khalida Inayat Noor, and Themistocles M. Rassias

Abstract A new integral identity using the concepts of k-conformable fractional
calculus is obtained. Utilizing the preinvexity property of the functions associated
upper bounds is also obtained. Some special cases of the obtained results are also
discussed.

1 Introduction

Theory of convexity can be regarded as mathematical foundation for minimax
theory, Lagrange multiplier theory, and duality. Convex functions played a very
significant role in the theory of inequalities. A set K ⊂ R is said to be convex,
if

(1− t)x + ty ∈X , ∀x, y ∈X , t ∈ [0, 1].

Similarly, convex functions are defined as A function f : K → R is said to be
convex, if

(1− t)f (x)+ tf (y) ≥ f ((1− t)x + ty)

holds for all x, y ∈ K and t ∈ [0, 1].
Due to its great many utilities in different fields of pure as well as in applied

sciences, it received full attention by the researchers. In recent decades, the classical
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concept of convexity has been generalized and extended according to the need of
the problems. A very significant extension of convexity that is differentiable invex
functions in optimization theory was given by Henson [6], but he has not used the
term invex. It was Craven [2] who used the terminology invex for this class of
functions. Mititelu [10] described invex sets as A set X ∈ R is said to be invex
with respect to bifunction ζ(., .), if

x + tζ(y, x) ∈X , ∀x, y ∈X , t ∈ [0, 1].

Note that convexity can be recaptured from invexity by taking ζ(y, x) = y − x.
This shows that every convex set is an invex with respect to ζ(y, x) = y − x, but
the converse is not true in general.

Weir and Mond [19] introduced the class of preinvex functions (a generalization
of convex functions) as A function F :X → R is said to be preinvex with respect
to bifunction ζ(., .), if

F (x + tζ(y, x)) ≤ (1− t)F (x)+ tF (y), ∀x, y ∈X , t ∈ [0, 1].

If ζ(y, x) = y − x, the class of preinvex functions reduces to the class of convex
functions.

The relationship between theory of convexity and theory of inequalities has
attracted many researchers. Many inequalities known to us in the literature can
easily be obtained using the functions having convexity property. For example, a
very famous result in this regard is of Hermite and Hadamard commonly known as
Hermite–Hadamard’s inequality. This result reads as

Theorem 1 Let F : [a, b] ⊂ R→ R be a convex function, then

F

(
a + b

2

)
≤ 1

b − a
b∫
a

F (x)dx ≤ F (a)+F (b)

2
.

This double inequality provides us necessary and sufficient condition for a
function to be convex. Noor [11] obtained a new general version of Hermite–
Hadamard’s inequality using the class of preinvex functions. It reads as

Theorem 2 Let F : [a, b] ⊂ R → R be a preinvex function. If ζ(., .) satisfies
condition C, then

F

(
2a + ζ(b, a)

2

)
≤ 1

ζ(b, a)

a+ζ(b,a)∫
a

F (x)dx ≤ F (a)+F (b)

2
.

Noor et al. [12] further generalized this result using the class of h-preinvex
functions. For some recent developments on Hermite–Hadamard’s inequality and
its applications, see [4, 13].
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Fractional calculus also known as non-integer calculus has emerged as interdis-
ciplinary subject. It grows out of the long established definitions of the ordinary
calculus integral and derivative operators. It experienced a rapid development in
past 100 years; however, the birthday of the fractional calculus is regarded as 30
September 1695. In the start, it was reserved to few mathematicians, but latter on
many researchers started working on it. One of the most classical definitions in frac-
tional calculus was that of Riemann–Liouville definition presented in the nineteenth
century. Since then, fractional calculus helped many applied mathematicians in
solving different physical problems. The definition of Riemann–Liouville integrals
is given as

Definition 1 ([9]) Let F ∈ L1[a, b]. Then the Riemann–Liouville integrals Jα
a+F

and Jα
b−F of order α > 0 with a ≥ 0 are defined by

Jα
a+F (x) = 1

Γ (α)

x∫
a

(x − t)α−1F (t)dt, x > a,

and

Jα
b−F (x) = 1

Γ (α)

b∫
x

(t − x)α−1F (t)dt, x < b,

where

Γ (α) =
∫ ∞

0
e−t tα−1dt,

is the well known Gamma function.

Sarikaya et al. [17] utilized the concepts of Riemann–Liouville fractional
integrals and obtained a fractional analogue of Hermite–Hadamard’s inequality.
Since the appearance of this article, a number of new and novel fractional analogues
of Hermite–Hadamard’s inequality, see [5, 15, 18]. In recent years, the classical
concepts of fractional calculus have been extended and generalized in different
directions using novel and innovative ideas. For example, Sarikaya et al. [16]
introduced the notion of k-Riemann–Liouville fractional integrals and discussed
some of its interesting aspects and applications.

Definition 2 ([16]) Let F ∈ L1[a, b]. Then the k- Riemann–Liouville integrals
kJ
α
a+F and kJαb−F of order α > 0 with a ≥ 0 are defined by

kJ
α
a+F (x) = 1

kΓk(α)

x∫
a

(x − t) αk−1F (t)dt, x > a, k > 0,
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and

kJ
α
b−F (x) = 1

kΓk(α)

b∫
x

(t − x) αk−1F (t)dt, x < b, k > 0.

Here, Γk(x) =
∞∫
0
tx−1e− t

k

k dt , �(x) > 0 is the one parameter deformation of

classical gamma function called as k-gamma function and was introduced by Diaz
et al. [3]. Γk is based on the repeated appearance of the expression of: φ(φ+k)(φ+
2k)(φ + 3k) . . . (φ + (n− 1)k). Diaz et al. [3] also introduced the notion of k-Beta
function as

Bk(x, y) = 1

k

1∫
0

t
x
k
−1(1− t) yk−1dt

= Γk(x)Γk(y)
Γk(x + y) , �(x) > 0,�(y) > 0.

For more information on k-analogues of special functions, see [3].
Roughly, we can say that the core idea behind fractional calculus depends upon

two approaches: one that of Riemann–Liouville approach, and the other one is
Grunwald–Letnikov approach. However, utilizing these approaches, the obtained
results seem to be very complicated and lose some basic properties of the classical
concepts. Taking this into account in [8], the authors introduced a simple, well-
behaved fractional derivative called as conformable fractional derivative. This
definition reads as: for a function f : (0,∞) → R, the conformable fractional
derivative is defined as

Iαf (t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

,

where 0 < α ≤ 1, t > 0.
Abdeljawad [1] defined the left and right conformable fractional derivatives as

Definition 3 The left conformable fractional derivative starting from a of function
f : [a,∞)→ R of order 0 < α ≤ 1 is given as

I aα f (t) = lim
ε→0

f (t + ε(t − a)1−α)
ε

,

and the right conformable fractional derivative terminating at b is given as

I bαf (t) = lim
ε→0

f (t + ε(b − t)1−α)
ε

.
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Abdeljawad [1] also defined the left and right conformable fractional integrals of
any order α > 0 as

Definition 4 ([1]) Let α ∈ (n, n + 1] and β = α − n. Then the left and right
conformable fractional integrals starting at a of order α are defined by

I aα f (t) =
1

n!
t∫
a

(t − u)n(u− a)β−1f (u)du,

and

I bαf (λ) =
1

n!
b∫
t

(u− t)n(b − u)β−1f (u)du.

Note that if α = n+ 1 then β = 1 where n = 0, 1, 2, . . ..
Recently, Jarad et al. [7] introduced new left and right conformable fractional

integrals as

Definition 5 ([7]) Let β ∈ C, �(β) > 0 and α ∈ R \ 0, and then the left and right
conformable fractional integrals are defined as

β
aJ

αf (x) = 1

Γ (β)

x∫
a

(
(x − a)α − (t − a)α

α

)β−1
f (t)

(t − a)1−α dt,

and

βJ α
b f (x) =

1

Γ (β)

b∫
x

(
(b − x)α − (b − t)α

α

)β−1
f (t)

(b − t)1−α dt.

Qi et al. [14] extended the definition of conformable fractional integrals intro-
duced by Jarad et al. [7] using the concept of k-calculus. They defined new general
conformable fractional integrals as

Definition 6 ([14]) Let β ∈ C, �(β) > 0, k > 0 and α ∈ R \ 0, and then the left
and right conformable fractional integrals are defined as

β
aJ

αf (x) = 1

kΓk(β)

x∫
a

(
(x − a)α − (t − a)α

α

) β
k
−1

f (t)

(t − a)1−α dt,

and
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βJ α
b f (x) =

1

kΓk(β)

b∫
x

(
(b − x)α − (b − t)α

α

) β
k
−1

f (t)

(b − t)1−α dt.

The aim of this article is to obtain some new k-analogues of trapezium like
inequalities involving the class of preinvex functions. In order to obtain the main
results of the paper, we derive a new conformable fractional integral identity that
will serve as an auxiliary result. This is the main motivation of this article.

2 Results and Discussions

In this section, we discuss our main results.

Lemma 1 Let T : [a, a + ζ(b, a)] → R be a differentiable function on (a, a +
ζ(b, a)) with ζ(b, a) > 0 and T ′ ∈ L[a, a+ ζ(b, a)]. Also let α, β ∈ R

+. Then the
following equality for k-fractional conformable integrals holds for k > 0:

ζ
αβ
k (x, a)T (a)+ ζ αβk (x, b)T (b)

αβζ(b, a)

−Γk(β + k)
ζ(b, a)

[
β
kH

α
[a+ζ(x,a)]−T (a)− β

kH
α
b+T (b + ζ(x, b))

]

= ζ
αβ
k
+1(x, a)

ζ(b, a)

1∫
0

[(
1− (1− t)α

α

) β
k − 1

α
β
k

]
T ′(a + tζ(x, a))dt

−ζ
αβ
k
+1(x, b)

ζ(b, a)

1∫
0

[
1

α
β
k

−
(

1− (1− t)α
α

) β
k

]
T ′(b + tζ(x, b))dt.

Proof Integrating by parts, we have

J1 =
1∫

0

[(
1− (1− t)α

α

) β
k − 1

α
β
k

]
T ′(a + tζ(x, a))dt

=
1∫

0

(
1− (1− t)α

α

) β
k

T ′(a + tζ(x, a))dt − 1

α
β
k

1∫
0

T ′(a + tζ(x, a))dt

=
(

1− (1− t)α
α

) β
k T (a + tζ(x, a))

ζ(x, a)

∣∣∣∣
1

0
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− β

kζ(x, a)

1∫
0

(
1− (1− t)α

α

) β
k
−1 T (a + tζ(x, a))

(1− t)1−α dt − 1

α
β
k

T (a + tζ(x, a))
ζ(x, a)

∣∣∣∣
1

0

= T (a)

α
β
k ζ(x, a)

− Γk(β + k)
ζ
αβ
k
+1(x, a)

β
kH

α
[a+ζ(x,a)]−T (a), (1)

and

J2 =
1∫

0

[
1

α
β
k

−
(

1− (1− t)α
α

) β
k

]
T ′(b + tζ(x, b))dt

= 1

α
β
k

1∫
0

T ′(b + tζ(x, b))dt −
1∫

0

(
1− (1− t)α

α

) β
k

T ′(b + tζ(x, b))dt

= 1

α
β
k

T (b + tζ(x, b))
ζ(x, b)

∣∣∣∣
1

0
−

(
1− (1− t)α

α

) β
k T (b + tζ(x, b))

ζ(x, b)

∣∣∣∣
1

0

+ β

kζ(x, b)

1∫
0

(
1− (1− t)α

α

) β
k
−1 T (b + tζ(x, b))

(1− t)1−α dt

= − T (b)

α
β
k ζ(x, b)

+ Γk(β + k)
ζ
αβ
k
+1(x, b)

β
kH

α
b+T (b + ζ(x, b)). (2)

Multiplying equality (1) by ζ
αβ
k
+1
(x,a)

ζ(b,a)
and equality (2) by ζ

αβ
k
+1
(x,b)

ζ(b,a)
and then

subtracting the resulting equalities, we obtained the required result.

Now using Lemma 1, we derive our next results.

Theorem 3 Let T : [a, a + ζ(b, a)] → R be a differentiable function on (a, a +
ζ(b, a)) with ζ(b, a) > 0 and T ′ ∈ L[a, a + ζ(b, a)]. Also let |T ′| be a preinvex
function on [a, a + ζ(b, a)] and α, β ∈ R

+. Then the following inequality for k-
fractional conformable integrals holds for k > 0:

∣∣∣∣ζ
αβ
k (x, a)T (a)+ ζ αβk (x, b)T (b)

α
β
k ζ(b, a)

−Γk(β + k)
ζ(b, a)

[
β
kH

α
[a+ζ(x,a)]−T (a)− β

kH
α
b+T (b + ζ(x, b))

] ∣∣∣∣

≤
[

1

2
− k
α

(
Bk

(
β+k, k

α

)
−Bk

(
β+k, 2k

α

))]
ζ
αβ
k
+1(x, a)+ζ αβ+1(x, b)

α
β
k ζ(b, a)

|T ′(x)|
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+
[

1

2
− k
α
Bk

(
β + k, 2k

α

)]
ζ
αβ
k
+1(x, a)|T ′(a)| + ζ αβk +1(x, b)|T ′(b)|

α
β
k ζ(b, a)

.

Proof Using Lemma 1 and property of modulus, we get

∣∣∣∣ζ
αβ
k (x, a)T (a)+ ζ αβk (x, b)T (b)

α
β
k ζ(b, a)

−Γk(β + k)
ζ(b, a)

[
β
kH

α
[a+ζ(x,a)]−T (a)− β

kH
α
b+T (b + ζ(x, b))

] ∣∣∣∣

≤ ζ
αβ
k
+1(x, a)

ζ(b, a)

1∫
0

[
1

α
β
k

−
(

1− (1− t)α
α

) β
k

]
|T ′(a + tζ(x, a))|dt

+ζ
αβ
k
+1(x, b)

ζ(b, a)

1∫
0

[
1

α
β
k

−
(

1− (1− t)α
α

) β
k

]
|T ′(b + tζ(x, b))|dt. (3)

Using the preinvexity of |T ′|, we have

1∫
0

[(
1− (1− t)α

α

) β
k − 1

α
β
k

]
|T ′(a + tζ(x, a))|dt

≤ 1

α
β
k

1∫
0

[
1− (1− (1− t)α) βk

]
(t |T ′(x)| + (1− t)|T ′(a)|)dt, (4)

and

1∫
0

[
1

α
β
k

−
(

1− (1− t)α
α

) β
k

]
|T ′(b + tζ(x, b))|dt

≤ 1

α
β
k

1∫
0

[
1− (1− (1− t)α) βk

]
(t |T ′(x)| + (1− t)|T ′(b)|)dt. (5)

It can be easily calculated that
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1∫
0

tdt−
1∫

0

t
[
1−(1−(1−t)α) βk

]
dt=1

2
− k
α

(
Bk

(
β+k, k

α

)
− Bk

(
β + k, 2k

α

))
,

(6)
and

1∫
0

(1−t)dt−
1∫

0

(1−t)
[
1− (1− (1− t)α) βk

]
dt = 1

2
− k
α
Bk

(
β + k, 2k

α

)
. (7)

Using (4), (5), (6), and (7) in (3), we get the required result.

Theorem 4 Let T : [a, a + ζ(b, a)] → R be a differentiable function on (a, a +
ζ(b, a)) with ζ(b, a) > 0 and T ′ ∈ L[a, a + ζ(b, a)]. Also let |T ′|q be a preinvex
function on [a, a + ζ(b, a)] where q > 1, p−1 + q−1 = 1 and α, β ∈ R

+. Then the
following inequality for k-fractional conformable integrals holds for k > 0:

∣∣∣∣ζ
αβ
k (x, a)T (a)+ ζ αβk (x, b)T (b)

α
β
k ζ(b, a)

−Γk(β + k)
ζ(b, a)

[
β
kH

α
[a+ζ(x,a)]−T (a)− β

kH
α
b+T (b + ζ(x, b))

] ∣∣∣∣

≤
[

1

α
βp
k

− k

α
βp
k
+1
Bk

(
k

α
, βp + k

)] 1
p

×
[
ζ
αβ
k
+1(x, a)

ζ(b, a)

[ |T ′(b)|q+|T ′(x)|q
2

] 1
q +ζ

αβ
k
+1(x, b)

ζ(b, a)
|
[ |T ′(b)|q+|T ′(x)|q

2

] 1
q

]
.

Proof Using Lemma 1 and Hölder’s inequality, we have

∣∣∣∣ ζ
αβ
k (x, a)T (a)+ ζ αβk (x, b)T (b)

α
β
k ζ(b, a)

−Γk(β + k)
ζ(b, a)

[
β
k
H α
[a+ζ(x,a)]−T (a)− β

k
H α
b+T (b + ζ(x, b))

] ∣∣∣∣

≤ ζ
αβ
k
+1(x, a)

ζ(b, a)

⎛
⎜⎝

1∫
0

⎡
⎣ 1

α
β
k

−
(

1−(1−t)α
α

) β
k

⎤
⎦
p

dt

⎞
⎟⎠

1
p
⎛
⎜⎝

1∫
0

|T ′(a+tζ(x, a))|qdt

⎞
⎟⎠

1
q

+ ζ
αβ
k
+1(x, b)

ζ(b, a)

⎛
⎜⎝

1∫
0

⎡
⎣ 1

α
β
k

−
(

1−(1−t)α
α

) β
k

⎤
⎦
p

dt

⎞
⎟⎠

1
p
⎛
⎜⎝

1∫
0

|T ′(b+tζ(x, b))|qdt

⎞
⎟⎠

1
q

. (8)



44 M. U. Awan et al.

Note that |ap − bp| ≤ ap − bp for a, b > 0 with a > b and p > 1.
Then we can write

|1− (1− (1− t)α) βk |p ≤ 1− |1− (1− t)α| βpk .

Therefore,

1∫
0

[
1

α
β
k

−
(

1− (1− t)α
α

) β
k

]p

≤
1∫

0

1

α
βp
k

dt −
1∫

0

(
1− (1− t)α

α

) βp
k

dt

= 1

α
βp
k

− k

α
βp
k
+1
Bk

(
k

α
, βp + k

)
. (9)

Since |T ′|q is preinvex on [a, a + ζ(b, a)], we have

1∫
0

|T ′(a + tζ(x, a))|qdt ≤ |T
′(a)|q + |T ′(x)|q

2
, (10)

and

1∫
0

|T ′(b + tζ(x, b))|qdt ≤ |T
′(b)|q + |T ′(x)|q

2
. (11)

Using (9), (10), and (11) in (8) completes the proof.

Theorem 5 Let T : [a, a + ζ(b, a)] → R be a differentiable function on (a, a +
ζ(b, a)) with ζ(b, a) > 0 and T ′ ∈ L[a, a + ζ(b, a)]. Also let |T ′|q be a preinvex
function on [a, a + ζ(b, a)], where q ≥ 1 and α, β ∈ R

+. Then the following
inequality for k-fractional conformable integrals holds for k > 0:

∣∣∣∣ζ
αβ
k (x, a)T (a)+ ζ αβk (x, b)T (b)

α
β
k ζ(b, a)

−Γk(β + k)
ζ(b, a)

[
β
kH

α
[a+ζ(x,a)]−T (a)− β

kH
α
b+T (b + ζ(x, b))

] ∣∣∣∣

≤ ζ
αβ
k
+1(x, a)

α
β
k
+1ζ(b, a)

[
α − kBk

(
β + k, k

α

)]1− 1
q
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×
{[
α

2
− k

(
Bk

(
β + k, k

α

)
+ Bk

(
β + k, 2k

α

))]
|T ′(x)|q

+
[
α

2
− kBk

(
β + k, 2k

α

)]
|T ′(a)|q

} 1
q

+ ζ
αβ
k
+1(x, b)

α
β
k
+1ζ(b, a)

[
α − kBk

(
β + k, k

α

)]1− 1
q

×
{[
α

2
− k

(
Bk

(
β + k, k

α

)
+ Bk

(
β + k, 2k

α

))]
|T ′(x)|q

+
[
α

2
− kBk

(
β + k, 2k

α

)]
|T ′(b)|q

} 1
q

.

Proof Using Lemma 1 and power mean integral inequality, we have

∣∣∣∣ζ
αβ
k (x, a)T (a)+ ζ αβk (x, b)T (b)

α
β
k ζ(b, a)

−Γk(β + k)
ζ(b, a)

[
β
kH

α
[a+ζ(x,a)]−T (a)− β

kH
α
b+T (b + ζ(x, b))

] ∣∣∣∣

≤ ζ
αβ
k
+1(x, a)

ζ(b, a)

⎛
⎝

1∫
0

∣∣∣∣ 1

α
β
k

−
(

1− (1− t)α
α

) β
k
∣∣∣∣dt

⎞
⎠

1− 1
q

×
⎛
⎝

1∫
0

∣∣∣∣ 1

α
β
k

−
(

1− (1− t)α
α

) β
k
∣∣∣∣|T ′(a + tζ(x, a))|qdt

⎞
⎠

1
q

+ζ
αβ
k
+1(x, b)

ζ(b, a)

⎛
⎝

1∫
0

∣∣∣∣ 1

α
β
k

−
(

1− (1− t)α
α

) β
k
∣∣∣∣dt

⎞
⎠

1− 1
q

×
⎛
⎝

1∫
0

∣∣∣∣ 1

α
β
k

−
(

1− (1− t)α
α

) β
k
∣∣∣∣|T ′(b + tζ(x, b))|qdt

⎞
⎠

1
q

. (12)

Since |T ′|q is preinvex on [a, a + ζ(b, a)], we have

1∫
0

∣∣∣∣ 1

α
β
k

−
(

1− (1− t)α
α

) β
k
∣∣∣∣|T ′(a + tζ(x, a))|qdt
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≤ 1

α
β
k

1∫
0

[1− (1− (1− t)α) βk ](t |T ′(x)|q + (1− t)|T ′(a)|q)dt

= 1

α
β
k

[
1

2
− k
α

(
Bk

(
β + k, k

α

)
− Bk

(
β + k, 2k

α

))]
|T ′(x)|q

+ 1

α
β
k

[
1

2
− k
α
Bk

(
β + k, 2k

α

)]
|T ′(a)|q, (13)

similarly

1∫
0

∣∣∣∣ 1

α
β
k

−
(

1− (1− t)α
α

) β
k
∣∣∣∣|T ′(b + tζ(x, b))|qdt

≤ 1

α
β
k

1∫
0

[1− (1− (1− t)α) βk ](t |T ′(x)|q + (1− t)|T ′(b)|q)dt

= 1

α
β
k

[
1

2
− k
α

(
Bk

(
β + k, k

α

)
− Bk

(
β + k, 2k

α

))]
|T ′(x)|q

+ 1

α
β
k

[
1

2
− k
α
Bk

(
β + k, 2k

α

)]
|T ′(b)|q . (14)

Also

1∫
0

∣∣∣∣ 1

α
β
k

−
(

1− (1− t)α
α

) β
k
∣∣∣∣dt = 1

α
β
k

(
α − kBk

(
β + k, k

α

)
α

)
. (15)

Using (13), (14), and (15) in (12) completes the proof.

Remark 1 We would like to point out that, if k = 1 in the above discussed results,
then we have new results for conformable fractional integrals. For ζ(m, n) = m −
n, we have new results for k-conformable fractional integrals involving convexity
property of the functions. This shows that the results obtained in this paper are
quite unifying one. We would like to point out that the main results of this paper
can be extended and generalized using the class of h-preinvex functions. Ideas and
techniques of this paper may be starting point for further research.

Acknowledgments This research is supported by the HEC NRPU project No: 8081/Pun-
jab/NRPU/R&D/HEC/2017.



k-Conformable Fractional Integral Inequalities 47

References

1. T. Abdeljawad, On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)
2. B.D. Craven, Duality for generalized convex fractional programs, in Generalized Convexity in

Optimization and Economics, ed. by S. Schaible, T. Ziemba (Academic, 1981), pp. 473–489
3. R. Diaz, E. Pariguan, On hypergeometric functions and k-pochhammer symbol. Divulg. Mat.

15(2), 179–192 (2007)
4. S.S. Dragomir, C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and

Applications, RGMIA Monographs, Victoria University (2000)
5. T.S. Du, J.G. Liao, L.Z. Chen, et al., Properties and RiemannLiouville fractional Hermite-

Hadamard inequalities for the generalized (α,m)-preinvex functions. J. Inequal. Appl. 2016,
306 (2016)

6. M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545–550
(1981)

7. F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators. Adv.
Diff. Equ. 2017, 247 (2017)

8. R. Khalil, M.A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative. J.
Comput. Appl. Math. 264, 65–70 (2014)

9. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential
Equations, vol. 204 (North-Holland, London/New York) (2006)

10. S. Mititelu, Invex sets. Stud. Cerc. Mat. 46(5), 529–532 (1994)
11. M.A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal.

Approx. Theory 2, 126–131 (2007)
12. M.A. Noor, K.I. Noor, M.U. Awan, J. Li, On Hermite-Hadamard inequalities for h-preinvex

functions. Filomat 28(7), 1463–1474 (2014)
13. C. Peng, C. Zhou, T.S. Du, RiemannLiouville fractional Simpson’s inequalities through

generalized (m, h1, h2)- preinvexity. Ital. J. Pure Appl. Math. 38, 345–367 (2017)
14. F. Qi, S. Habib, S. Mubeen, M.N. Naeem, Generalized k-fractional conformable integrals and

related inequalities. AIMS Math. 4(3), 343–358 (2019)
15. E. Set, A. Gozpinar, S.I. Butt, A study on HermiteHadamard-type inequalities via new

fractional conformable integrals. Asian-Euorpian J. Math. (2019, Accepted)
16. M.Z. Sarikaya, A. Karaca, On the k-Riemann-Liouville fractional integral and applications.

Int. J. Stat. Math. 1(3), 33–43 (2014)
17. M.Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard’s inequalities for fractional

integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)
18. S. Wu, M.U. Awan, M.V. Mihai, M.A. Noor, S. Talib, Estimates of upper bound for a kth

order differentiable functions involving Riemann-Liouville integrals via higher order strongly
h-preinvex functions. J. Inequal. Appl. 2019, 227 (2019)

19. T. Weir, B. Mond, Preinvex functions in multiple objective optimization. J. Math. Anal. Appl.
136, 29–38 (1988)



On the Hyers–Ulam–Rassias
Approximately Ternary Cubic Higher
Derivations

H. Azadi Kenary and Themistocles M. Rassias

Abstract In this paper, we prove the generalized Hyers–Ulam–Rassias stability of
ternary cubic higher derivations by using a version of the fixed point theorem.

2000 Mathematics Subject Classification: 46K05; 39B82; 47B47.

1 Introduction

A ternary algebra is a real or complex linear space endowed with a linear mapping,
the so-called ternary product (x, y, z, )→ [xyz] of A× A× A into A such that

[[xyz]tu] = [x[yzt]u] = [xy[ztu]] for all x, y, z, t, u ∈ A.

If (A, .) is a usual binary algebra, then an induced ternary multiplication can be
defined by [xyz] = (x.y).z. Hence, the ternary algebra is a natural generalization of
the binary case. If a ternary algebra (A, [ ]) has a unit, i.e., an element e ∈ A such
that x = [xee] = [eex] for all x ∈ A, then A with the binary product x.y = [xey]
is a usual algebra.

A normed ternary algebra is a ternary algebra with a norm ‖.‖ such that

‖[xyz]‖ ≤ ‖x‖‖y‖‖z‖ for x, y, z ∈ A.

A Banach ternary algebra is a normed ternary algebra such that the normed linear
space with norm ‖.‖ is complete.

Ternary algebras have been studied during the nineteenth century. Their struc-
tures appeared more or less naturally in various domains of mathematical physics
and data processing. The discovery of Nambu mechanics and the progress of
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quantum mechanics [20], as well as the work of S. Okubo [21] on the Yang–
Baxter equation, provided significant development on ternary algebras (see also
[3, 9, 19, 24, 25]). The simplest example of this (non-commutative and non-
associative) ternary algebra is given by the following composition rule:

[abc]ijk =
N∑

l,m,n=1

anilbljmcmkn, i, j, k = 1, 2, . . . , N.

We say that a functional equation (ξ) is stable if any function g satisfying the
equation (ξ) is approximately near to a true solution of (ξ).We say that a functional
equation is superstable if every approximate solution constitutes an exact solution
of it.

The stability of functional equations was first introduced by Ulam [26] in 1940.
In 1941, Hyers [17] gave a partial solution to Ulam,s problem for the case of
approximate additive mappings in the context of Banach spaces. In 1950, T. Aoki
[5] studied this problem for additive mappings (see also [4, 8, 15] and [16, 23]).
In 1978, Th. M. Rassias [23] generalized the theorem of Hyers by considering the
stability problem with unbounded Cauchy differences

‖f (x + y)− f (x)− f (y)‖ ≤ ε(‖x‖p + ‖y‖p), (ε > 0, p ∈ [0, 1)).

This phenomenon of stability that was introduced by Th. M. Rassias [23] is now
known as the Hyers–Ulam–Rassias stability or generalized Hyers–Ulam stability.
A further generalization was obtained by Gǎvruta [15], by replacing the Cauchy
difference by a control mapping φ and also introducing the concept of generalized
Hyers–Ulam–Rassias stability in the spirit of Th. M. Rassias’ approach (see also
[1, 2, 6–8, 10–14, 16–18, 22, 23, 27]).

Chu and Kang [10] introduced the following functional equation:

f (x + 2y)+ f (x − 2y)+ f (2x) = 2f (x)+ 4f (x + y)+ f (x − y), (1.1)

and they established the general solution and the generalized Hyers–Ulam–Rassias
stability for the functional equation (1.1). The function f (x) = x3 satisfies the
functional equation (1.1), which is thus called a cubic functional equation. Every
solution of the cubic functional equation is said to be a cubic function. Jun and Kim
proved that a function f between real vector spaces X and Y is a solution of (1.1) if
and only if there exists a unique function C : X3 → Y such that f (x) = C(x, x, x)
for all x ∈ X, and C is symmetric for each one fixed variable and is additive for two
fixed variables. For more detailed definitions of such terminologies, we can refer to
[11] and [14].

Throughout this paper, A denotes a ternary algebra and B stands for a Banach
ternary algebra.
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Definition 1 A mapping H : A → B is called a ternary cubic homomorphism
between ternary algebras A,B if

(1) H is a cubic function,
(2) H([xyz]) = [H(x)H(y)H(z)], for all x, y, z ∈ A.
Definition 2 A mappingD : A→ A is called a ternary cubic derivation on ternary
algebra A if

(1) D be a cubic function,
(2) D([xyz]) = [D(x)y3z3] + [x3D(y)z3] + [x3y3D(z)], for all x, y, z ∈ A.
Definition 3 Let N be the set of natural numbers. Form ∈ N∪{0} = N0, a sequence
H = {h0, h1, . . . , hm} (resp., H = {h0, h1, . . . , hn, . . .}) of cubic mappings from
A into B is called a ternary cubic higher derivation of rank m (resp., infinite rank)
from A into B if

hn[xyz] =
∑

i+j+k=n
[hi(x)hj (y)hk(z)]

holds for each n ∈ {0, 1, . . . , m} (resp., n ∈ N0) and for all x, y, z ∈ A.

The ternary cubic higher derivation H on A is called strong if h0(x) = x3 for
all x ∈ A. Of course, a ternary cubic higher derivation of rank 0 from A into
B (resp., a strong ternary cubic higher derivation of rank 1 on A) is a ternary
cubic homomorphism (resp., a ternary cubic derivation). So a ternary cubic higher
derivation is a generalization of both a ternary cubic homomorphism and a ternary
cubic derivation.

R. Badora [6] and T. Miura et al. [27] proved the Hyers–Ulam stability and the
Isac- and Rassias-type stabilities of derivations. Kyoo-Hong Park and Yong-Soo
Jung [22] investigated the stability and superstability of higher ternary derivations
via the Cauchy functional equation. Recently, Eshaghi Gordji and Bavand Savadk-
ouhi investigated approximate cubic homomorphisms on Banach algebras. For more
detailed definitions of such terminologies, we can refer to [7] and [14].

We apply the following fixed point theorem.

Theorem 1 Let (X, d) be a complete generalized metric space and J : X→ X be
a strictly contractive mapping, that is

d(Jx, Jy) ≤ Ld(x, y) for x, y ∈ X and some L < 1. .

Then, for each fixed element x ∈ X, either d(J nx, J n+1x) = +∞ for all n ≥ 0 or
d(J nx, J n+1x) < +∞ for all n ≥ n0 for some natural n0. Moreover, if the second
alternative holds then:

(i) the sequence (J nx) is convergent to a fixed point y∗ of J ;
(ii) y∗ is the unique fixed point of J in the set
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Y := {y ∈ X, d(J n0x, y) < +∞}

and

d(y, y∗) ≤ 1

1− Ld(y, Jy) (x, y ∈ Y ).

2 Main Results

In this section, using the fixed point alternative approach, we investigate the
generalized Hyers–Ulam–Rassias stability of the functional equation (1.1).

Theorem 2 Let ϕ : A5 → [0,∞) be a control function such that

limn→∞ ϕ(2mx,2my,2mt,2mu,2mz)
23m = 0 for all x, y, t, u, z ∈ A and

ψ(x) = ϕ(x, 0, 0, 0, 0).

Let F = {f0, f1, . . . , fn, . . .} be a sequence of mappings such that

∥∥∥fn(x + 2y)+ fn(x − 2y)+ fn(2x)− 2fn(x)− 4fn(x + y)− fn(x − y)

+ fn[tuz] −
∑

i+j+k=n
[fi(t)fj (u)fk(z)]

∥∥∥ ≤ ϕ(x, y, t, u, z), (2.1)

for all x, y, t, u, z ∈ A and each n ∈ N0. Then there exists a unique ternary cubic
higher derivation

H = {h0, h1, . . . , hn, . . .}

of any rank from A into B such that for each n ∈ N0 it holds that

‖fn(x)− hn(x)‖ ≤ 1

7
ψ(x), for all x ∈ A.

Proof Setting y = t = u = z = 0 in (2.1), we obtain

‖fn(2x)− 8fn(x)‖ ≤ ψ(x). (2.2)

Consider the set X = {g : g : A→ B} and the generalized metric d on X :

d(h, g) = inf{M ∈ (0,∞) : ‖g(x)− h(x)‖ ≤ Mψ(x), ∀x ∈ A},

as well as the operator J : X→ X with
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(Jh)(x) = 1

8
h(2x) for all h ∈ X and x ∈ A.

It follows from (2.2) that

‖(Jh)(x)− Jg(x)‖ =
∥∥∥∥h(2x)8

− g(2x)
8

∥∥∥∥ ≤ 1

8
d(h, g)⇒ d(Jh, Jg) ≤ 1

8
d(h, g)

for all h, g ∈ X. Thus, J is a strictly contractive mapping with Lipschitz constant
1
8 . On the other hand, by (2.2), we have

‖(Jfn)(x)− fn(x)‖ ≤ 1

8
ψ(x)⇒ d(Jfn, fn) ≤ 1

8
.

Therefore, it follows from Theorem 1 (i) that there exists a mapping hn : A→ B

such that hn is a fixed point of J , that is hn(2x) = 8hn(x) for all x ∈ A. By
Theorem 1 (i) limm→∞ d(Jm(fn), fn) = 0, we conclude that

lim
m→∞

fn(2mx)

23m
= hn(x) (2.3)

for all x ∈ A. The mapping hn is the unique fixed point of J in the set

Un = {g ∈ S : d(fn, g) <∞}.

Thus, hn is the unique fixed point of J such that

‖fn(x)− hn(x)‖ ≤ Mψ(x) for someM > 0 and for all x ∈ A.

Again, by Theorem 1 (ii), we have

d(fn, hn) ≤ 1

1− 1
8

d(fn, Jfn) ≤
1
8

1− 1
8

= 1

7
,

so

‖fn(x)− hn(x)‖ ≤ 1

7
ψ(x)

for all x ∈ A and each n ∈ N0. Replacing in (2.1) the terms x, y by 2nx, 2ny,
respectively, as well as setting t = u = z = 0, and multiplying both sides of (2.1)
by 2−3m, we obtain

‖hn(x + 2y)+ hn(x − 2y)+ hn(2x)− 2hn(x)− 4hn(x + y)− hn(x − y)‖ =
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lim
m→∞

∥∥∥∥fn(2
m(x + 2y))

23m
+ fn(2

m(x − 2y))

23m
+ fn(2

m+1x)

23m
− 4fn(2m(x + y))

23m

−4fn(2m(x − y))
23m − 2fn(2mx)

23m

∥∥∥∥ ≤ lim
m→∞

ϕ(2mx, 2my, 0, 0, 0)

23m = 0

for all x, y ∈ A. Thus, hn is cubic for each n ∈ N0. It follows from (2.1) that the
function

�n(t, u, z) = fn[tuz] −
∑

i+j+k=n
[fi(t)fj (u)fk(z)] (2.4)

for each n ∈ N0 and all t, u, z ∈ A, is bounded. Hence, we see that

lim
m→∞

�n(2mt, 2mu, 2mz)

29m = 0 (2.5)

for each n ∈ N0 and all t, u, z ∈ A. Using (2.3), (2.4), and (2.5), we get

hn[tuz] = lim
m→∞

fn(23m[tuz])
29m = lim

m→∞
fn[(2mt)(2mu)(2mz)]

29m

= lim
m→∞

∑
i+j+k=n[fi(2mt)fj (2mu)fj (2mz)] +�n(2mt, 2mu, 2mz)

29m

= lim
m→∞

∑
i+j+k=n

[
1

23m fi(2
mt)

1

23m fj (2
mu)

1

23m fk(2
mz)

]

+ lim
m→∞

�n(2mt, 2mu, 2mz)

29m =
∑

i+j+k=n
[hi(t)hj (u)hk(z)]

for all t, u, z ∈ A and all n ∈ N0. This completes the proof of the Theorem. 
�
As a consequence of Theorem 2, we show the Hyers–Ulam–Rassias stability of

ternary cubic higher derivations.

Corollary 1 Let 0 ≤ p < 3, α, β > 0 and let F = {f0, f1, . . . , fn, . . .} be a
sequence of mappings from A into B such that

‖fn(x + 2y)+ fn(x − 2y)+ fn(2x)− 2fn(x)− 4fn(x + y)− fn(x − y)

+fn[tuz]−
∑

i+j+k=n
[fi(t)fj (u)fk(z)]‖ ≤ α+β(‖x‖p+‖y‖p+‖t‖p+‖u‖p+‖z‖p)

for all x, y, t, u, z ∈ A and each n ∈ N0. Then there exists a unique ternary cubic
higher derivation
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H = {h0, h1, . . . , hn, . . .}

of any rank from A into B such that

‖fn(x)− hn(x)‖ ≤ α + β‖x‖
p

7
.

Proof Set

ϕ(x, y, t, u, z) = α + β(‖x‖p + ‖y‖p + ‖t‖p + ‖u‖p + ‖z‖p),

in the Theorem 2. 
�
Similarly to Theorem 2, we can prove the following theorem:

Theorem 3 Suppose that ϕ : A5 → [0,∞) is a control function such that

lim
n→∞ 23mϕ

(
x

2m
,
y

2m
,
t

2m
,
u

2m
,
z

2m

)
= 0

for all x, y, t, u, z ∈ A. Assume that F = {f0, f1, . . . , fn, . . .} is a sequence of
mappings such that

‖fn(x + 2y)+ fn(x − 2y)+ fn(2x)− 2fn(x)− 4fn(x + y)− fn(x − y)

+ fn[tuz] −
∑

i+j+k=n
[fi(t)fj (u)fk(z)]‖ ≤ ϕ(x, y, t, u, z) (2.6)

for all x, y, t, u, z ∈ A and each n ∈ N0. Suppose that there exists 0 ≤ L < 1 such
that the mapping γ (x) = ϕ (

x
2 , 0, 0, 0, 0

)
has the property

8γ
(x

2

)
≤ Lγ (x)

for all x ∈ A. Then there exists a unique ternary cubic higher derivation H =
{h0, h1, . . . , hn, . . .} of any rank from A into B such that for each n ∈ N0,

‖fn(x)− hn(x)‖ ≤ γ (x)

1− L
holds for all x ∈ A.
Proof Setting y = t = u = z = 0 in (2.6), we obtain

‖fn(2x)− 8fn(x)‖ ≤ ϕ(x, 0, 0, 0, 0).

Replacing x by x
2 in the above inequality, we get
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∥∥∥8fn
(x

2

)
− fn(x)

∥∥∥ ≤ ϕ (x
2
, 0, 0, 0, 0

)
= γ (x) (2.7)

for all x ∈ A and each n ∈ N0. Consider X = {g : g : A→ B} and the generalized
metric d on X :

d(h, g) = inf{M ∈ (0,∞) : ‖g(x)− h(x)‖ ≤ Mγ(x), ∀x ∈ A},

as well as the operator J : X → X with (Jh)(x) = 8h
(
x
2

)
for all h ∈ X. For

arbitrary elements g, h ∈ X,, we have

d(f, g) < ε⇒ ‖f (x)− h(x)‖ ≤ εγ (x)⇒
∥∥∥f (x

2

)
− h

(x
2

)∥∥∥ ≤ εγ (x
2

)

⇒ ‖Jf (x)− Jh(x)‖ ≤ 8εγ
(x

2

)
≤ Lεγ (x)⇒

d(Jf, Jh) ≤ Ld(f, g).

Thus, J is a strictly contractive function with the Lipschitz constant L. It follows
from (2.7) that

d(Jfn, fn) ≤ 1.

Moreover, by Theorem 1, there exists a mapping hn : A → B such that hn
is a fixed point of J that is 8hn

(
x
2

) = hn(x) for all x ∈ A. By Theorem 1,
limm→∞ d(Jm(fn), fn) = 0, we conclude that

lim
m→∞ 23mfn(2

−mx) = hn(x) for all x ∈ A.

The mapping hn is the unique fixed point of J in the set

Un = {g ∈ S : d(fn, g) <∞}.

Hence, hn is the unique fixed point of J such that

‖fn(x)− hn(x)‖ ≤ Mγ(x) for someM > 0 and for all x ∈ A.

Again, by Theorem 1 (ii), we have

d(fn, hn) ≤ 1

1− Ld(fn, Jfn) ≤
1

1− L,

that is

‖fn(x)− hn(x)‖ ≤ γ (x)

1− L
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for all x ∈ A. The rest is similar to the proof of Theorem 2. 
�
The following corollary is similar to Corollary 1 for the case when p > 3.

Corollary 2 Let p > 3, β > 0, and F = {f0, f1, . . . , fn, . . .} be a sequence of
mappings from A into B such that

‖fn(x + 2y)+ fn(x − 2y)+ fn(2x)− 2fn(x)− 4fn(x + y)− fn(x − y)

+fn[tuz]−
∑

i+j+k=n
[fi(t)fj (u)fk(z)]‖ ≤ α+β(‖x‖p+‖y‖p+‖t‖p+‖u‖p+‖z‖p)

for all x, y, t, u, z ∈ A and each n ∈ N0. Then there exists a unique ternary cubic
higher derivation

H = {h0, h1, . . . , hn, . . .}

of any rank from A into B such that

‖fn(x)− hn(x)‖ ≤ β‖x‖
p

2p − 8

for all x ∈ A.
Proof Set

ϕ(x, y, t, u, z) = β(‖x‖p + ‖y‖p + ‖t‖p + ‖u‖p + ‖z‖p) ,

and let L = 23−p in Theorem 3. Then γ (x) = β2−p‖x‖p, and there exists a
sequence H = {h0, h1, . . . , hn, . . .} with the required properties. 
�
Remark An interesting question is to ask whether there exists an approximately
ternary cubic higher derivation that is not a ternary cubic higher derivation.
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Hyers–Ulam Stability for Differential
Equations and Partial Differential
Equations via Gronwall Lemma

Sorina Anamaria Ciplea, Daniela Marian, Nicolaie Lungu,
and Themistocles M. Rassias

Abstract In this paper, we will study Hyers–Ulam stability for Bernoulli differ-
ential equations, Riccati differential equations, and quasi-linear partial differential
equations of first order, using Gronwall Lemma, following a method given by Rus.

MSC: 26D10; 34A40; 39B82; 35B20

1 Introduction

In [1–3], Rus has obtained some results regarding Ulam stability of differential and
integral equations, using Gronwall inequalities method and weak Picard operators
technique. In [4], Rus and Lungu have studied the stability of a partial differential
equation of order two of hyperbolic type using the same method. In [5], Craciun
and Lungu have studied, using this method, a partial differential equation of order
two having a general form. In this paper, we use the same method in order to
study the stability of Bernoulli and Riccati equations and also of quasi-linear partial
differential equations of first order. We mention that some results regarding Ulam
stability of Bernoulli and Riccati differential equations were established by Jung
and Rassias [6, 7], using the integrating factor method. The first result proved
on the Hyers–Ulam stability of partial differential equations is due to A. Prastaro
and Th.M. Rassias [8]. Also Lungu and Popa [9] and Marian and Lungu [10]
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have obtained stability results from some partial differential linear and quasi-linear
equations. The Gronwall inequality is used in Quarawani [11] in order to study
Hyers–Ulam–Rassias stability for Bernoulli differential equations, and it is also used
in [12, 13]. For a broader study of Hyers–Ulam stability for functional equations,
the reader is also referred to the following books and papers: [6, 7, 14–26].

In the following, we will use Definitions 2.1, 2.2, 2.3 from [1], p.126 and
Remark 2.1, 2.2. from [1], p.127.

2 Main Results

Stability of Bernoulli Differential Equation

Let (B, |·|) be a (real or complex) Banach space, a, b ∈ R, a < b, p, q ∈
C ([a, b] ,B), and n ∈ R\{0, 1}.

We consider the Bernoulli differential equation

z′ (x) = p (x) z (x)+ q (x) zn (x) , x ∈ [a, b] , (2.1)

and the inequation

∣∣y′ (x)− p (x) y (x)− q (x) yn (x)∣∣ ≤ ε, x ∈ [a, b] . (2.2)

From Remark 2.1 from [1], p.127 follows that y ∈ C1 ([a, b] ,B) is a solution of
the inequation (2.2) if and only if there exists a function g ∈ C1 ([a, b] ,B) (which
depends on y) such that

(i) |g (x)| ≤ ε,∀x ∈ [a, b] ;
(ii) y′ (x) = p (x) y (x)+ q (x) yn (x)+ g (x) ,∀x ∈ [a, b] .

From Remark 2.2 from [1], p.127 follows that if y ∈ C1 ([a, b] ,B) is a solution
of the inequation (2.2), then y is a solution of the following integral inequation

∣∣∣∣y (x)− y (a)−
∫ x

a

[
p (t) y (t)+ q (t) yn (t)] dt

∣∣∣∣ ≤ (x − a) ε,∀x ∈ [a, b] .

Theorem 4 If

(i) a <∞, b <∞;
(ii) p, q ∈ C ([a, b] ,B) ;

(iii) there exists L > 0 such that

∣∣q (x) yn (x)− q (x) zn (x)∣∣ ≤ L |y (x)− z (x)| ,
for all x ∈ [a, b] and y, z ∈ C1 ([a, b] ,B) ,

then the equation (2.1) is Hyers–Ulam stable.
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Proof Let y ∈ C1 ([a, b] ,B) be a solution of the inequation (2.2) and z the unique
solution of the Cauchy problem

{
z′ (x) = p (x) z (x)+ q (x) zn (x) , x ∈ [a, b] ,
z (a) = y (a) . (2.3)

We have that

z (x) = y (a)+
∫ x

a

[
p (t) z (t)+ q (t) zn (t)] dt, x ∈ [a, b] .

Let

M = max
x∈[a,b]

|p (x)| .

We consider the difference

|y (x)− z (x)| ≤
∣∣∣∣y (x)− y (a)−

∫ x

a

[
p (t) y (t)+ q (t) yn (t)] dt

∣∣∣∣+
∣∣∣∣
∫ x

a

[
p (t) y (t)+ q (t) yn (t)− p (t) z (t)− q (t) zn (t)] dt

∣∣∣∣ ≤

≤ ε (x − a)+
∫ x

a

[|p (t) y (t)− p (t) z (t)| + ∣∣(q (t) yn (t)− q (t) zn (t))∣∣] dt ≤

≤ ε (x − a)+
∫ x

a

[|p (t)| |y (t)− z (t)| + L |y (t)− z (t)|] dt =

= ε (x − a)+
∫ x

a

[|p (t)| + L] |y (t)− z (t)| dt.

From Gronwall lemma (see [27], p. 6), we have that

|y (x)− z (x)| ≤ ε (x − a) e
∫ x
a [|p(t)|+L]dt ≤ ε (b − a) e

∫ b
a (M+L)dt =

= ε (b − a) e(M+L)(b−a) = c · ε,

where c = (b − a) e(M+L)(b−a).
Example 1 We consider the Bernoulli differential equation

z′ = xz+ x

1+ x2

√
z, (2.4)

where x ∈ [a, b] and z ≥ 1.We have p (x) = x and q (x) = x
1+x2 . Let D =

{(x, z) | x ∈ [a, b] , z ≥ 1} and f (x, z) = x
1+x2

√
z.We have
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∣∣∣∣∂f∂z
∣∣∣∣ =

∣∣∣∣ x

1+ x2 ·
1

2
√
z

∣∣∣∣ ≤ 1

2

∣∣∣∣ x

1+ x2

∣∣∣∣ ≤ 1

4
,∀ (x, z) ∈ D,

and hence, the function f satisfies a Lipschitz condition in the variable z, on D,
with Lipschitz constant 1/4. Hence,

|f (x, y)− f (x, z)| ≤ L |y − z| = 1

4
|y − z| ,

that is
∣∣∣∣ x

1+ x2

√
y − x

1+ x2

√
z

∣∣∣∣ ≤ 1

4
|y − z| , x ∈ [a, b] , y ≥ 1, z ≥ 1.

We apply Theorem 4 so the equation (2.4) is Hyers–Ulam stable. Let y ∈
C1 ([a, b] ,B) be a solution of the inequation

∣∣∣∣z′ − xz− x

1+ x2

√
z

∣∣∣∣ ≤ ε, (2.5)

and z the unique solution of the Cauchy problem

{
z′ = xz+ x

1+x2

√
z,

z (a) = y (a) . (2.6)

We have

z (x) = y (a)−
∫ x

a

[
tz+ t

1+ t2
√
z

]
dt, x ∈ [a, b] .

Let

M = max
x∈[a,b]

|p (x)| = |b| .

We have

|y (x)− z (x)| ≤ ε (b − a) e
(
|b|+ 1

4

)
(b−a)

.

Stability of Riccati Differential Equation

Let (B, |·|) be a (real or complex) Banach space, a, b ∈ R, a < b and p, q, r ∈
C ([a, b] ,B) .
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We consider the Riccati differential equation

z′ (x) = p (x) z2 (x)+ q (x) z (x)+ r (x) , x ∈ [a, b] , (2.7)

and the inequation

∣∣∣y′ (x)− p (x) y2 (x)− q (x) y (x)− r (x)
∣∣∣ ≤ ε, x ∈ [a, b] . (2.8)

From Remark 2.1 from [1], p.127 follows that y ∈ C1 ([a, b] ,B) is a solution of
the inequation (2.8) if and only if there exists a function g ∈ C1 ([a, b] ,B) (which
depends on y) such that

(i) |g (x)| ≤ ε,∀x ∈ [a, b] ;
(ii) y′ (x) = p (x) y2 (x)+ q (x) y (x)+ r (x)+ g (x) ,∀x ∈ [a, b] .

From Remark 2.2 from [1], p.127 follows that if y ∈ C1 ([a, b] ,B) is a solution
of the inequation (2.8), then y is a solution of the following integral inequation:

∣∣∣∣y (x)−y (a)−
∫ x

a

[
p (t) y2 (t)+q (t) y (t)+ r (t)

]
dt

∣∣∣∣ ≤ (x − a) ε,∀x ∈ [a, b] .

Theorem 5 If

(i) a <∞, b <∞;
(ii) p, q, r ∈ C ([a, b] ,B) ;

(iii) there exists L > 0 such that

∣∣∣p (t) y2 (x)− p (t) z2 (x)

∣∣∣ ≤ L |y (x)− z (x)| ,
for all x ∈ [a, b] and y, z ∈ C1 ([a, b] ,B) ,

then the equation (2.7) is Hyers–Ulam stable.

Proof Let y ∈ C1 ([a, b] ,B) be a solution of the inequation (2.8) and z the unique
solution of the Cauchy problem

{
z′ (x) = p (x) z2 (x)+ q (x) z (x)+ r (x) , x ∈ [a, b] ,
z (a) = y (a) . (2.9)

We have that

z (x) = y (a)+
∫ x

a

[
p (t) y2 (t)+ q (t) z (t)+ r (t)

]
dt,∀x ∈ [a, b] .

Let
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M = max
x∈[a,b]

|q (x)| .

We consider the difference

|y (x)− z (x)| ≤
∣∣∣∣y (x)− y (a)−

∫ x

a

[
p (t) y2 (t)+ q (t) y (t)+ r (t)

]
dt

∣∣∣∣+
∣∣∣∣
∫ x

a

[
p (t) y2 (t)+ q (t) y (t)− p (t) z2 (t)− q (t) z (t)

]
dt

∣∣∣∣ ≤

≤ ε (x − a)+
∫ x

a

[∣∣∣p (t) y2 (t)− p (t) z2 (t)

∣∣∣+ |(q (t) y (t)− q (t) z (t))|] dt ≤

≤ ε (x − a)+
∫ x

a

[L |y (t)− z (t)| + |q (t)| |y (t)− z (t)|] dt =

≤ ε (x − a)+
∫ x

a

[L+ |q (t)|] |y (t)− z (t)| dt.

From Gronwall lemma (see [27], p. 6), we have that

|y (x)− z (x)| ≤ ε (x − a) e
∫ x
a (L+|q(t)|)dt ≤ ε (b − a) e

∫ b
a (L+M)dt =

= ε (b − a) e(M+L)(b−a) = c · ε,

where c = (b − a) e(M+L)(b−a).

Hyers–Ulam Stability of Quasi-linear Partial Differential
Equation

Hyers–Ulam Stability

Let (B, |·|) be a (real or complex) Banach space, a, b ∈ (0,∞], ε a positive real
number, ϕ ∈ C ([0, a)× [0, b) ,R+) and p, q, r ∈ C ([0, a)× [0, b)× B,R) and
p (x, y, u) �= 0.

We consider the following quasi-linear partial differential equation of first order:

∂u (x, y)

∂x
= − q (x, y, u)

p (x, y, u)

∂u

∂y
+ r (x, y, u)
p (x, y, u)

, (2.10)

and the following partial differential inequation:

∣∣∣∣∂v (x, y)∂x
+ q (x, y, v)
p (x, y, v)

∂v

∂y
− r (x, y, v)
p (x, y, v)

∣∣∣∣ ≤ ε, (2.11)
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∣∣∣∣∂v (x, y)∂x
+ q (x, y, v)
p (x, y, v)

∂v

∂y
− r (x, y, v)
p (x, y, v)

∣∣∣∣ ≤ ε · ϕ (x, y) . (2.12)

Remark 1 A function v ∈ C ([0, a)× [0, b) ,B) is a solution of the inequa-
tion (2.11) if and only if there exists a function g ∈ C ([0, a)× [0, b) ,B) such
that

(i) |g (x, y)| ≤ ε,∀ (x, y) ∈ [0, a)× [0, b);
(ii) ∂v(x,y)

∂x
= − q(x,y,v)

p(x,y,v)
vy (x, y)+ r(x,y,v)

p(x,y,v)
+ g (x, y), where vy = ∂v

∂y
.

Remark 2 If v ∈ C ([0, a)× [0, b) , B) is a solution of the inequation (2.11), then
v is a solution of the following integral inequation:

∣∣∣∣v (x, y)−v (0, y)−
∫ x

0

[
− q (s, y, v (s, y))
p (s, y, v (s, y))

vy (s, y)+ r (s, y, v (s, y))
p (x, y, v (s, y))

]
ds

∣∣∣∣≤εx,
∀x ∈ [0, a) , y ∈ [0, b) .

Indeed, by Remark 1, we have that

∂v (x, y)

∂x
= − q (x, y, v (x, y))

p (x, y, v (x, y))
vy (x, y)+ r (x, y, v (x, y))

p (x, y, v (x, y))
+ g (x, y) ,

∀x ∈ [0, a) , y ∈ [0, b) . This implies that

v (x, y) = v (0, y)+
∫ x

a

[
− q (s, y, v (s, y))
p (s, y, v (s, y))

vy (s, y)+ r (s, y, v (s, y))

p (x, y, v (s, y))
+ g (s, y)

]
ds.

From this, it follows that

∣∣∣∣v (x, y)− v (0, y)−
∫ x

0

[
− q (s, y, v (s, y))
p (s, y, v (s, y))

vy (s, y)+ r (s, y, v (s, y))

p (x, y, v (s, y))

]
ds

∣∣∣∣
≤

∫ x

0
|g (s, y)| ds ≤ εx.

Theorem 6 We suppose that

(i) a <∞, b <∞;
(ii) p, q, r ∈ C ([0, a]× [0, b]× B,B) , p �= 0;

(iii) there exists l1, l2 > 0 such that

∣∣∣∣ q (x, y, v1)

p (x, y, v1)
v1y (x, y)− q (x, y, v2)

p (x, y, v2)
v2y (x, y)

∣∣∣∣ ≤ l1 |v1 − v2| ,
∣∣∣∣ r (x, y, v1)

p (x, y, v1)
− r (x, y, v2)

p (x, y, v2)

∣∣∣∣ ≤ l2 |v1 − v2| ,
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∀v1, v2 ∈ B,∀ (x, y) ∈ [0, a]× [0, b] .

Then:

(a) for ψ ∈ C ([0, a] ,B), the equation (2.10) has a unique solution with

u (0, y) = ψ (y) ,∀y ∈ [0, b] ;

(b) the equation (2.10) is Hyers–Ulam stable.

Proof

(a) This is a known result (see [28] ).
(b) Let v be a solution of the inequation (2.11). Denote by u the unique solution of

the equation (2.10), which satisfies the condition

u (0, y) = v (0, y) ,∀y ∈ [0, b] .

From Remark 2 and condition (iii), we have that

|v (x, y)− u (x, y)| ≤

≤
∣∣∣∣v (x, y)−v (0, y)−

∫ x

0

[
− q (s, y, v (s, y))
p (s, y, v (s, y))

vy (s, y)+ r (s, y, v (s, y))
p (x, y, v (s, y))

]
ds

∣∣∣∣+
∫ x

0

∣∣∣∣− q (s, y, v (s, y))p (s, y, v (s, y))
vy (s, y)+ r (s, y, v (s, y))

p (x, y, v (s, y))
+ q (s, y, u (s, y))
p (s, y, u (s, y))

uy (s, y)

− r (s, y, u (s, y))
p (x, y, u (s, y))

∣∣∣∣ ds

≤ εx +
∫ x

0
[l1 |v (s, y)− u (s, y)| + l2 |v (s, y)− u (s, y)|] ds.

Or,

|v (x, y)− u (x, y)| ≤ εx +
∫ x

0
[l1 + l2] |v (s, y)− u (s, y)| ds.

From Gronwall lemma (see [27], p. 6), we have

|v (x, y)− u (x, y)| ≤ aea(l1+l2) · ε = c · ε,

where c = aea(l1+l2).
So, the equation (2.10) is Hyers–Ulam stable.
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Hyers–Ulam–Rassias Stability of Equation (2.10)

Let us consider the equation (2.10) and the inequation (2.12) in the case a = ∞, b =
∞.
Theorem 7 We suppose that

(i) p, q, r ∈ C ([0, a)× [0, b)× B,B) , p �= 0;
(ii) there exists l1, l2 ∈ C1 ([0, a)× [0, b) ,R+) such that

∣∣∣∣ q (x, y, v1)

p (x, y, v1)
v1y (x, y)− q (x, y, v2)

p (x, y, v2)
v2y (x, y)

∣∣∣∣ ≤ l1 (x, y) |v1 − v2| ;
∣∣∣∣ r (x, y, v1)

p (x, y, v1)
− r (x, y, v2)

p (x, y, v2)

∣∣∣∣ ≤ l2 (x, y) |v1 − v2| ;

∀v1, v2 ∈ B,∀ (x, y) ∈ [0, a)× [0, b) ;
(iii) e

∫∞
0 [l1(s,y)+l2(s,y)]ds is convergent and there exists a real number M such that

e
∫∞

0 [l1(s,y)+l2(s,y)]ds ≤ M, ∀y ∈ [0, b);
(iv) there exists λϕ > 0 such that

∫ x

0
ϕ (s, y) ds ≤ λϕ · ϕ (x, y) ,∀ (x, y) ∈ [0, a)× [0, b)

and ϕ increasing.

Then the equation (2.10) (a = ∞, b = ∞) is Hyers–Ulam–Rassias stable.

Proof Let v be a solution of the inequation (2.12). Denote by u the unique solution
of the problem

{
∂u(x,y)
∂x

= − q(x,y,u)
p(x,y,u)

uy (x, y)+ r(x,y,u)
p(x,y,u)

u (0, y) = v (0, y) .

We have

u (x, y) = v (0, y)+
∫ x

0

[
− q (s, y, u (s, y))
p (s, y, u (s, y))

uy (s, y)+ r (s, y, u (s, y))

p (x, y, u (s, y))

]
ds

and
∣∣∣∣v (x, y)− v (0, y)−

∫ x

0

[
− q (s, y, v (s, y))
p (s, y, v (s, y))

vy (s, y)+ r (s, y, v (s, y))

p (x, y, v (s, y))

]
ds

∣∣∣∣ ≤

≤ ε
∫ x

0
ϕ (s, y) ds ≤ ελϕ · ϕ (x, y) .

Then we have
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|v (x, y)− u (x, y)| ≤

≤
∣∣∣∣v (x, y)− v (0, y)−

∫ x

0

[
− q (s, y, v (s, y))
p (s, y, v (s, y))

vy (s, y)+ r (s, y, v (s, y))

p (x, y, v (s, y))

]
ds

∣∣∣∣+
∫ x

0

∣∣∣∣− q (s, y, v (s, y))p (s, y, v (s, y))
vy (s, y)+ r (s, y, v (s, y))

p (x, y, v (s, y))
+ q (s, y, u (s, y))
p (s, y, u (s, y))

uy (s, y)

− r (s, y, u (s, y))
p (x, y, u (s, y))

∣∣∣∣ ds

≤ ελϕ · ϕ (x, y)+
∫ x

0
[l1 (s, y) |v (s, y)− u (s, y)| + l2 (s, y) |v (s, y)− u (s, y)|] ds ≤

≤ ελϕ · ϕ (x, y)+
∫ x

0
[l1 (s, y)+ l2 (s, y)] |v (s, y)− u (s, y)| ds.

From Gronwall lemma (see [27], p. 6), we have that

|v (x, y)− u (x, y)| ≤ ελϕ · ϕ (x, y) e
∫ x

0 [l1(s,y)+l2(s,y)]ds ≤ cϕ · ε · ϕ (x, y) ,

where cϕ = λϕ ·M.
So, the equation (2.10) is generalized Hyers–Ulam–Rassias stable.
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On b-Metric Spaces and Brower and
Schauder Fixed Point Principles

Stefan Czerwik

Abstract In the paper, we present the basic ideas in b-metric spaces (and b-normed
spaces). The main result is the Schauder fixed point principle. For the proof, we use
the method presented by Dugundji and Granas in their book [4].

Mathematics Subject Classification (2010): 54D35, 54E50, 54E99, 46S20,
47H10

1 Introduction

We present some basic ideas needed in the paper. We start with the b-metric spaces
and b-normed spaces. By R, R+, N , and N0, we denote the sets of all real, real
nonnegative, natural, and natural with zero, respectively, numbers.

Definition 1 Let X be a nonempty set. A function d : X ×X→ R+ satisfying the
following conditions:

(i) d(x, y) = 0⇐⇒ x = y,
(ii) d(x, y) = d(y, x),

(iii) d(x, y) � s[d(x, z)+ d(z, y)],
for all x, y, z ∈ X and some fixed s � 1, is called a b-metric (ball metric) on X.
The pair (X, d) is a b-metric space.
It is clear that for s = 1, we get a metric on X.
More information on such spaces the reader may find in [1–3].

Definition 2 Let X be a nonempty linear space. A function ‖ · ‖: X → R+ such
that:

(iv) ‖ x ‖= 0 ⇔ x = 0,
(v) ‖ λx ‖= |λ| ‖ x ‖,
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(vi) ‖ x + y ‖� s[‖ x ‖ + ‖ y ‖],
for all x, y ∈ X, λ ∈ R and some fixed s � 1, is called a b-norm on X and
(X, ‖ · ‖) is a b-normed linear space.

Definition 3 (see [5]) A mapping d : X × X → R+ we call a strong b-metric if it
satisfies (i) and (ii) from the Definition 1 and

(vii) d(x, y) � d(x, z)+ sd(z, y),
for all x, y, z ∈ X and some s � 1.
Note that a strong b-metric satisfies also the condition (by the symmetry of d)

(viii) d(x, y) � sd(x, z)+ d(z, y),
for all x, y, z ∈ X and some s � 1.

One can verify that

Remark 1 A strong b-metric satisfies the condition

d(x0, xn) � s[d(x0, x1)+ · · · + d(xn−1, xn)], (1)

for all x0, · · · , xn ∈ X and n ∈ N .

Proof We have

d(x0, xn) � sd(x0, x1)+ d(x1, dn) � sd(x0, x1)+ sd(x1, x2)+ d(x2, xn)

· · · � s[d(x0, x1)+ · · · + d(xn−2, xn−1] + d(xn−1, xn)

� s[d(x0, x1)+ · · · + d(xn−1, xn)].

We say that d satisfies the s-relaxed triangle inequality if the condition (iii) is
fulfilled, and d satisfies the s-relaxed polygonal inequality if the condition (1) holds
true. So strong b-metric satisfies the s-relaxed polygonal inequality as well.

Remark 2 One can also consider a strong b-norm and a strong b-normed space,
respectively.

Remark 3 If ‖ · ‖ is a strong b-norm in a linear space X, then

d(x, y) :=‖ x − y ‖, x, y ∈ X (2)

is a strong b-metric in X.
Indeed, for x, y, z ∈ X, one gets

d(x, y) =‖ x − y ‖=‖ (x − z)+ (z− y) ‖
�‖ x − z ‖ +s ‖ z− y ‖= d(x, z)+ sd(z, y).

Remark 4 If ‖ · ‖ is a strong b-norm in X, then
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‖ x1 + x2 ‖� s ‖ x1 ‖ + ‖ x2 ‖, (3)

‖ x1 + · · · + xn ‖�‖ x1 ‖ +s(‖ x2 ‖ + · · · + ‖ xn ‖), (4)

‖ x1 + · · · + xn ‖� s(‖ x1 ‖ + · · · + ‖ xn−1 ‖)+ ‖ xn ‖, (5)

‖ x1 + · · · + xn ‖� s(‖ x1 ‖ + · · · + ‖ xn ‖), (6)

for all x1, · · · , xn ∈ X, and fixed s � 1.
We verify, e.g., (4). One has

‖ x1 + · · · + xn ‖ �‖ x1 + · · · + xn−1 ‖ +s ‖ xn ‖
�‖ x1 + · · · + xn−2 ‖ +s ‖ xn−1 ‖ +s ‖ xn ‖
· · ·
�‖ x1 ‖ +s(‖ x2 ‖ + · · · + ‖ xn ‖).

The rest is obvious, so we leave it for the reader.

Remark 5 A strong b-metric is a continuous function. In fact, let d(xn, x) → 0 as
n→∞ and d(yn, y)→ 0 as n→∞, xn, yn, x, y ∈ (X, d, s), then one has

d(xn, yn) � sd(xn, x)+ d(x, yn)
� sd(xn, x)+ d(x, y)+ sd(y, yn)

and hence

d(xn, yn)− d(x, y) � s[d(xn, x)+ d(yn, y)].

Similarly,

d(x, y)− d(xn, yn) � s[d(xn, x)+ d(yn, y)],

and consequently

|d(xn, yn)− d(x, y)| � s[d(xn, x)+ d(yn, y)], (7)

which completes the proof.

Lemma 1 Let (X, s, ‖ · ‖), s � 1 be a strong b-normed space. Then, ‖ · ‖ is a
continuous function.

Proof We have for x, y ∈ X



74 S. Czerwik

‖ x ‖=‖ y + (x − y) ‖�‖ y ‖ +s ‖ x − y ‖,

and hence

‖ x ‖ − ‖ y ‖� s ‖ x − y ‖ . (8)

Similarly,

‖ y ‖=‖ x + (y − x) ‖�‖ x ‖ +s ‖ x − y ‖

that is,

‖ x ‖ − ‖ y ‖� −s ‖ x − y ‖ . (9)

By (8) and (9), one gets

∣∣∣ ‖ x ‖ − ‖ y ‖ ∣∣∣ � s ‖ x − y ‖ . (10)

Therefore, if xn→ x as n→, then

∣∣∣ ‖ xn ‖ − ‖ x ‖
∣∣∣ � s ‖ xn − x ‖→ 0, as n→∞,

and consequently

‖ xn ‖→‖ x ‖ as n→∞,

i.e., ‖ · ‖ is a continuous function.

Definition 4 A mapping d : X ×X→ R+ satisfies the s-relaxed strong polygonal
inequality if

d(x0, xn) � d(x0, x1)+ s[d(x1, x2)+ · · · + d(xn−1, xn)] (11)

for some fixed s � 1 and for all x0, x1, . . . , xn ∈ X and all n ∈ N .

Lemma 2 If d : X ×X⇒ R+ satisfies (11), then

d(x0, xn) � s[d(x0, x1)+ · · · + d(xn−2, xn−1)] + d(xn−1, xn), (12)

for all x0, · · · , xn ∈ X and n ∈ N .

Proof We have, by (11) and (viii),
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d(x0, xn) � sd(x0, x1)+ d(x1, xn)

� sd(x0, x1)+ sd(x1, x2)+ d(x2, xn)

· · · � s[d(x0, x1)+ · · · + d(xn−2, xn−1)] + d(xn−1, xn)

i.e., we obtain (12).

Remark 6 Clearly, the s-relaxed strong polygonal inequality (11) implies the s-
relaxed strong triangle inequality (vii).

Remark 7 The inequality (vii) is equivalent to (11), for all x = x0, x1 =
z, x2, · · · , xn−1, xn = y and all n ∈ N .

Indeed, it is obvious that (11) implies (vii).
Conversely, one has

d(x, y) � d(x, xn−1)+ sd(xn−1, xn)

� d(x, xn−2)+ sd(xn−2, xn−1)+ sd(xn−1, xn)

· · ·
� d(x, x1)+ s[d(x1, x2)+ · · · + d(xn−1, y)],

i.e., (11).

2 Compactness in b-Metric Spaces

Definition 5 Let (X, d, s) be a b-metric space. A set M ⊂ X is compact, if any
{xn} in M contains a subsequence {xnk } that converges (with respect to d) to some
x ∈ X. If x ∈ M , thenM is called strongly compact.

Theorem 1 Let M ⊂ (X, d, s) be strongly compact and f : M → R be
continuous. Then,

(a) f is bounded onM ,
(b) there exist x0, x1 ∈ M such that

f (x0) = inf{f (x) : x ∈ M},
f (x1) = sup{f (x) : x ∈ M}.

Proof The proof runs similarly to that one presented in [6]. We show that f is
bounded below. For the contrary, assume that

∃xn∈Mf (xn) < −n. (13)



76 S. Czerwik

By the compactness ofM and continuity of f , there exists a subsequence {xnk } ⊂
M such that

xnk → x0 ∈ M and f (xnk )→ f (x0) ∈ R.

According to (13), we get contradiction.
For (b), let

α = inf {f (x) : x ∈ M}.

For every εn = 1
n

, there exists xn ∈ M such that

α � f (xn) < α + 1

n

and consequently there exists {xnk }, xnk → x0 ∈ M with

α � f (xnk ) < α +
1

nk

and f (xnk )→ f (x0) as k→∞.
Hence,

f (xnk )→ α and f (xnk )→ f (x0),

which means that α = f (x0), x0 ∈ M , and the proof is complete.
The verification of other statements is quite similar.

Remark 8 If the assumptions of Theorem 1 are not satisfied, then the result may not
be true (see also [6]).

Definition 6 A set E ⊂ (X, d, s) is called an ε-net, ε > 0, for a setM ⊂ (X, d, s),
if for every point x ∈ M there exists a point u ∈ E such that d(x, u) < ε.

Theorem 2 Let (X, d, s) be a b-metric complete space. Let for every ε > 0 there
exists finite ε-net with paints belonging toM ⊂ X. Then, M is a compact set.

The proof can be done very similarly to that one given in [6] for a metric space,
so the details are left to the reader.

Theorem 3 Let (X, d, s) be a b-metric space. IfM ⊂ X is compact, then for every
ε > 0 there exists finite ε-net {c1, . . . , cn} ⊂ M for the set M.

The proof can be done very similarly to the proof presented in [6] for a metric
space.

Remark 9 Till now, the existence of completion of b-metric spaces is still an
important and open problem.
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Theorem 4 IfM ⊂ X is compact (in b-metric space X), then M is bounded.

Proof Let

T = {x1, . . . , xn}

be 1-net for M. Let a ∈ X. One has for x ∈ M,xi ∈ T , i = 1, . . . , n,

d(x, a) � s[d(x, xi)+ d(xi, a)]
� s[1+max

i
d(xi, a)] � K <∞.

Theorem 5 Every compact b-metric space (X, d, s) is separable.

Proof Let {εn} be a sequence of positive, tending to zero, decreasing sequence, and
let

Tn = {xni }, i = 1, 2, . . . , in

be an εn-net for X. Let E = ∪∞i=1Tn. Then, T is a countable set. Moreover, for any
x ∈ X, εn < ε there exists xni ∈ Tn for some i ∈ N such that

d(x, xni ) < εn,

i.e., E is dense in X. This is the desired conclusion and finishes the proof.

3 Finite-Dimensional b-Normed Spaces

Let (X, d, s) be an n-dimensional b-normed linear space and {e1, . . . , en} be a base
of X. Then, we know that any x ∈ X has a unique representation

x = α1e1 + . . .+ αnen, αi ∈ R, i = 1, . . . , n. (14)

Define

||x||0 :=
n∑
i=1

|αi |, (15)

where x is given by (14).

Theorem 6 Let (X, || · ||, s) be an n-dimensional b-normed linear space. Then,
there exists β > 0 such that for all x ∈ X
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||x|| � β||x||0. (16)

Proof We have

||x|| = ||
n∑
i=1

αiei || � s|α1|||e1|| + · · · + sn|αn|||en||

� sn(|α1|||e1|| + . . .+ |αn|||en||)

� sn max
i
||ei ||

n∑
i=1

|α1|

� snK
n∑
i=1

|αi | = β||x||0,

where β = snK, K = max
i
||ei ||, i.e., (16).

Remark 10 By (Rn, || · ||0), we denote the n-dimensional space instead of (X, d, s)
with the norm defined by (15).

Theorem 7 Let (X, || · ||, s) be an n-dimensional strong b-normed linear space.
Then, there exist α > 0 and β > 0 such that for all x ∈ X

α||x||0 � ||x|| � β||x||0. (17)

Proof Let {e1, . . . , en} be a base of X and for x ∈ X,

x = α1x1 + . . .+ αnxn, αi ∈ R, i = 1, . . . , n.

Let U := {x ∈ X : ||x||0 = 1}. Then, U is bounded: for if x1, x2 ∈ U, xk =
αk1e1 + . . .+ αknen, k = 1, 2, then

||x1 − x2|| = ||
n∑
i=1

(α1
i − α2

i )ei ||

� sn
n∑
i=1

|α1
i − α2

i |||ei || � sn max
i
||ei ||(

n∑
i=1

|α1
i | +

n∑
i=1

|α2
i |)

� 2snK,

where K = max
i
||ei ||, 1 =

n∑
i=1

|ξ1
i |.
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By Lemma 1, f (x) := ||x||, f : U → R+, U ⊂ X, f is continuous.

But U = {(α1, . . . , αn)} ∈ R
n :

n∑
i=1
|αi | = 1} as a bounded and closed subset of

n-dimensional space Rn is the strongly compact set. Therefore, by Theorem 1, f has
infimum α in U different from zero (because if f on U is equal to f (x0), x0 ∈ U ,
so x0 �= 0).

Therefore,

α = inf
x∈U f (x) = inf

x∈U ||x|| = f (x) = ||x||, x ∈ U, x �= 0.

Consequently,

|| x||x||0 || � α > 0 for all x ∈ X,

since

|| x||x||0 ||0 = 1 for all x ∈ X.

Thus,

α||x||0 � ||x||, x ∈ X. (18)

From (16) and (18), one gets

α||x||0 � ||x|| � β||x||0, x ∈ X.

Remark 11 Moreover, if every b-norm || · || is equivalent to || · ||0, then every b-
norms || · ||1 and || · ||2 are equivalent too, so we have also (17) with b-norms || · ||1
and || · ||2.

More precisely, if

α||x||0 � ||x||1 � β||x||0, α > 0, β > 0, x ∈ X,

and

α1||x||0 � ||x||2 � β1||x||0, α1 > 0, β1 > 0, x ∈ X,

then

α1

β
||x||1 � ||x||2 � β1

α
||x||1, x ∈ X. (19)

This is the desired conclusion.
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Lemma 3 Let (X, || · ||, s) be an n-dimensional strong b-normed linear space, and
let U ⊂ X be a bounded set. Then, U is compact (in X).

Proof Let

x =
n∑
i=1

αiei, αi ∈ R, i = 1, . . . , n, x ∈ X,

and

x = {α1, . . . , αn}, x ∈ R
n,

Let f (x) = x, x ∈ U , then f (U) = U and by the inequalities

α||x|| � ||x|| � β||x||, α > 0, β > 0,

where ||x|| is the norm of x in X and ||x|| is the norm of corresponding x in R
n, we

get

1. U bounded in X iff U bounded in R
n,

2. a sequence {xn} is convergent in (X, || · ||, s) iff the corresponding sequence {xn}
is convergent in R

n.

Consequently, the compactness ofU bounded inX follows from the compactness
of U bounded in R

n. This conclude the proof.

Theorem 8 If the induced space (Rn, || · ||0) for the strong b-metric n-dimensional
linear space (X, || · ||, s) is complete, then also (X, || · ||, s) is a complete space.
Proof Let {xm}, xm = αm1 e1 + . . . + αmn en, αmi ∈ R, i = 1, . . . , n,m ∈ N , be a
Cauchy sequence of elements fromX. Then, also {xm} = {αm1 , . . . , αmn } is a Cauchy
sequence in (Rn, || · ||0): for if ε > 0 and

||xm − xk|| < ε for m, k > n0,

then from (17) one has

||xm − xk||0 =
n∑
i=1

|αmi − αki | �
1

α
||xm − xk|| < ε

α
.

Since (Rn, || · ||0) is complete, so for xm→ x as m→∞, with respect to || · ||0,
by (17), one gets

||xm − x|| � β||xm − x||0 → 0 as m→∞,
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and x = α1e1 + . . . + αnen ∈ (X, || · ||, s), which means that (X, || · ||, s) is a
complete space, and the proof of the theorem is finished.

4 Brower Fixed Point Principle in b-Normed Spaces

We know that

Theorem 9 (Brower) Let U be a nonempty bounded convex closed subset of Rn,
and let T : U → U be a continuous map.

Then, T has a fixed point u ∈ U .
We prove the following.

Theorem 10 (Brower) Let (Xn, || · ||, s) be n-dimensional strong b-normed linear
space, and let A ⊂ Xn be a bounded convex closed set. If, moreover, ϕ : A→ A is
continuous (in b-norm || · ||), then there exists y ∈ A such that ϕ(y) = y.
Proof Let x ∈ A, then x = α1e1 + . . . + αnen, αi ∈ R, i = 1, . . . , n and
{e1, . . . , en} is a base of Xn;

x = (α1, . . . , αn) ∈ A ⊂ R
n,

φ : A→ A, φ(x) = x, x ∈ A.

Then, φ is a homeomorphism of A onto φ(A) = A. In fact, φ is one to one.
Moreover, φ and φ−1 are continuous. Actually, we verify that for x, x0 ∈ A,

||x − x0|| → 0 implies ||φ(x)− φ(x0)||0 → 0.

In fact, one has by (17) Theorem 7

||φ(x)− φ(x0)||0 = ||x − x0||0 � 1

α
||x − x0|| → 0.

so φ(x)→ φ(x0) as x → x0.
Similarly,

φ−1(x) = x, φ−1 : A→ A,

and if x → x0, then φ−1(x)→ φ−1(x0).
For we have

||φ−1(x)− φ−1(x0)|| = ||x − x0|| � β||x − x0||0 → 0,

i.e., φ−1 is continuous in A.
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Now, we verify that φ(A) = A is convex. Let x, y ∈ φ(A),

x = (α1, . . . , αn), y = (β1, . . . , βn), αi, βi ∈ R, i = 1, . . . , n.

Since A is convex, for 0 � λ � 1 one has

λx + (1− λ)y =
(
λα1 + (1− λ)β1, . . . , λαn + (1− λ)βn

)
=

= φ
[
λx + (1− λ)y

]
∈ φ(A).

Hence,

λx + (1− λ)y ∈ φ(A), λ ∈ [0, 1],

so φ(A) is convex.
It is easy to show that φ(A) is bounded: for if x, y ∈ φ(A), then by the

boundedness of A and Theorem 6,

d(x, y) = ||x − y||0 � 1

α
||x − y|| � 1

α
·M = K,

whereM is a constant such that

||x − y|| � M for x, y ∈ A.

Therefore, φ(A) is bounded.
Finally, we show that φ(A) is closed.

Let x = α1e1 + . . .+ αnen, x = (α1, . . . , αn), x ∈ φ(A),
x0 = γ1e1 + . . .+ γnen, x0 = (γ1, . . . , γn), αi, γi ∈ R, i = 1, . . . , n.

We have to verify that

(
||x − x0|| → 0

)
⇒ x0 ∈ φ(A).

Really, by the closedness of A,

||x − x0|| � β||x − x0||0 → 0 implies x → x0,

i.e., x0 ∈ A, and consequently x0 ∈ φ(A).
To finish the proof, define

T := φϕφ−1, T : A→ A.
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By Theorem 9, there exists x ∈ A such that

φϕφ−1(x) = x,

i.e., ϕ[φ−1(x)] = φ−1(x).

If y = φ−1(x) ∈ A, then ϕ(y) = y, which ends the proof.

5 Schauder Fixed Point Principle in b-Normed Spaces

Definition 7 (see [4], p. 54) Let N := {c1, . . . , cn} be a finite subset of a strong
b-normed linear space E, and for any fixed ε > 0, let

(N, ε) :=
⋃{

B(ci, ε) : i = 1, . . . , n
}
,

and

B(ci, ε) :=
{
x ∈ E : ||x − ci || < ε

}
, i = 1, . . . , n.

For each i = 1, . . . , n, let μi : (N, ε)→ R be the map

μi(x) := max
[
0, ε − ||x − ci ||

]
.

The Schauder–Dugundi–Granas projection (see [4])

pε : (N, ε)→ conv(N)

is given by

pε(x) :=
[ n∑
i=1

μi(x)
]−1 n∑

i=1

μi(x)ci . (20)

Clearly, pε is well-defined, since each x ∈ (N, ε) also belongs to some B(ci, ε),
and therefore

n∑
i=1

μi(x) �= 0.

Also, pε[(N, ε)] ⊂ conv(N) as a convex combination of c1, . . . , cn.

Definition 8 (see [4]) Let X and Y be topological spaces. A continuous map F :
X→ X is called compact if F(X) is contained in a compact subset of Y .
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Note that

Lemma 4 Let E = (E, || · ||, s) be a strong b-normed linear space, and
c1, . . . , cn ∈ U ⊂ E, U -convex. Then,
(ix) ||x − pε(x)|| < εs, x ∈ (N, ε), N = {c1, . . . , cn},
(x) pε : (N, ε)→ con(N) ⊂ U is a continuous compact map.

Proof We have, by the definition (20) and Remark 1, for x ∈ (N, ε),

||x − pε(x)|| =
[ n∑
i=1

μi(x)
]−1||

n∑
i=1

μi(x)[x − ci]||

�
[ n∑
i=1

μi(x)
]−1
s

n∑
i=1

μi(x)||x − ci ||

� sε(
n∑
i=1

μi(x))
−1(

n∑
i=1

μi(x)) = sε.

The continuity of pε is a consequence of the fact that pε is a finite sum of
continuous functions (see also Lemma 1); compactness follows from Lemma 3.

Remark 12 The values of pε are in a finite-dimensional b-normed linear space
contained in E.

Lemma 5 Assume that X is a topological space and E a strong b-normed linear
space. Let U be a convex subset of E, and let F : X → U be a compact map. For
every ε > 0, there exists a finite set

N = {c1, . . . , cn} ⊂ F(x) ⊂ U

and a finite-dimensional map Fε : X→ U

such that:

(xi) ||Fε(x)− F(x)|| < sε, x ∈ X,
(xii) Fε(x) ⊂ conv(N) ⊂ U.
Proof Since F(X) is compact (in E), so by Theorem 3 there exists a finite ε-net
{c1, . . . , cn} ⊂ F(X). Also, F(X) ⊂ (N, ε); for if y ∈ F(X), then d(y, ci) < ε
for some i ∈ {1, . . . , n}, and hence y ∈ B(ci, ε), i.e., y ∈ (N, ε). This shows that
F(X) ⊂ (N, ε).

Now, let Fε(x) := pε[F(x)], x ∈ X. Therefore, if y = F(x), x ∈ X, then

||Fε(x)− F(x)|| = ||pε(y)− y|| < sε

because for y = F(x) ∈ (N, ε), x ∈ X, from Lemma 4,
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||y − pε(y)|| < εs,

and consequently

||Fε(x)− F(x)|| < εs, x ∈ X.

To verify (xii), let y ∈ Fε(X), so y = pε(z), z = F(x) ∈ (N, ε)
for some x ∈ X. Let

y = pε(z) =
n∑
i=1

λici,

n∑
i=1

λi = 1, λi ∈ R, i = 1, . . . , n.

Hence, y ∈ conv(N) ⊂ U . Therefore, since U is convex,

Fε(X) ⊂ conv(N) ⊂ U,

and we get (xii).

Definition 9 ([6]) Assume that U ⊂ E, and (E, d, s) is a b-metric space. If for
a given ε > 0, there exists a point x ∈ U such that d(x, F (x)) < ε for a map
F : U → E, then we say that x is an ε-fixed point for F .

Note the following:

Theorem 11 Let (X, b, s) be a strong b-metric space and A ⊂ X be a closed set.
Let F : A → X be a compact map. Then, F has a fixed point iff for each ε > 0 it
has an ε-fixed point.

Proof Since a necessary condition is trivial, we verify the sufficient condition only.
Let εn = 1

n
, n ∈ N, and let for each n ∈ N there exists an ∈ A, n ∈ N, εn-fixed

point for F , i.e.,

d(an, F (an)) <
1

n
, n ∈ N. (21)

Because F(X) ⊂ U ⊂ X, where U is compact (in X), then there exists
subsequence {ank }, such that F(ank ) → a as k → ∞, a ∈ X. But by (21),
for k � m0 and ε > 0

d(ank , a) � s[d(ank , F (ank )+ d(F (ank , a)]

� s[ 1

nk
+ ε] < 2sε
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so ank → a as k → ∞, and a ∈ A, since A is closed. Consequently, F(ank ) → a

and F(ank )→ F(a), because F is continuous; consequently, a = F(a), and we get
the expected fixed point, which finishes the proof.

The main result of this part is the following:

Theorem 12 (Schauder fixed point principle) Let (X, || · ||, s) be a strong
b-normed linear space, and U ⊂ X be a nonempty convex closed subset. Let,
moreover, F : U → U be a compact map. Then, there exists u ∈ U such that
F(u) = u.
Proof In view of Theorem 11, we show that for each ε > 0, F has an ε-fixed point
in U . By Lemma 5, for every ε > 0, there exists Fε : U → U with

(a) ||Fε(x)− F(x)|| < ε, x ∈ U,
(b) Fε(U) ⊂ conv(N) ⊂ U.

But Fε : conv(N)→ conv(N).

Indeed, conv(N) ⊂ U and

Fε[conv(N)] ⊂ Fε(U) ⊂ conv(N).

Also, by Theorem 10 and Lemma 5, there exists xε ∈ U such that Fε(xε) = xε .
Finally, by Theorem 11, there exists u ∈ U with F(u) = u, which concludes the
proof.

Remark 13 In [4], Theorem 3.2, it is stated that C is not necessarily closed, but in
Theorem 3.1 (which is used in the proof), the set A is closed. Something is not quite
clear.
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Deterministic Prediction Theory

Nicholas J. Daras

Abstract We give a general method for predicting spatio-temporal regions with
“strange” systemic occurrences. To do so, we consider systemic indices and their
measurements into the under consideration fixed spatio-temporal region. Given a
set of preselected future points, the magnitude of the (Euclidean or not) distance
between the surface of these systemic indices and a parametrized surface that
interpolates or passes very close to the points of systemic measurements and given
preselected vector values may be viewed as a measure for assessing the appearance
of peculiar systemic incidents over the region under consideration; so, depending on
these preselected points, we provide a general algorithmic framework for predicting
spatio-temporal regions into which crucial systemic events are expected.
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1 Introduction

In many modern scientific studies, quantifying assumptions, data and variables
can contribute to the accurate description of the phenomena through appropriate
mathematical models [1–4, 6–10, 13–15, 17]. The first purpose of the paper is
to provide a general method to predict time intervals of appearance of peculiar
systemic incidents during a given period. To do so, we consider systemic indices
and their measurements over a fixed under consideration domain in the space-
time. The magnitude of the (Euclidean or not) distance between the surface of
systemic indices and a parametrized surface that interpolates or passes very close
to systemic measurements and preselected vector values can be considered as a
measure for assessing occurrence of peculiar systemic incidents over the region
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under consideration; so, depending on these preselected points, we provide a
general algorithmic framework predicting spatio-temporal subregions into which
appearance of peculiar systemic incidents is expected.

Of course, two basic and reasonable questions arise immediately and may also
constitute central subjects of discussion. The first one relates to the subjectivity of
systemic choices and personal priorities, since it is very doubtful whether a set
of systemic indices could be considered as exhaustive, in the sense that it could
guarantee the ultimate reliability of the corresponding prediction. We treat this
question in a forthcoming paper [5]. Here, in order to simplify the formulation
of the model, we will assume constantly that there is a complete objectivity in all
systemic options and personal priorities, i.e., all systemic analysts have agreed for
the finalized selection of all systemic indices. The second question concerns the
reliability of systemic measurements and how much it could affect the validity of
prediction. Again, for simplification reasons, we will assume continuously that all
systemic measurements are carried out with sufficient reliability to such an extent
as to preclude any discrepancy in the estimates of the predictions.

The chapter is structured as follows. Section 2 introduces basic aspects and
methodology for a qualitative systemic analysis and provides basic systemic
definitions, such as the systemic index, the regularity interval, the two precarity
intervals, the two danger intervals and the predictable system.

Subsequently, the next section focuses on the algebraic approach that gives
possibility of introducing new concepts, such as the concept of systemic indices
over a system, the concept of systemic fibre at a point of the space-time and the
concept of systemic affinity between two systems.

Section 4 deals with geometric formalities permitting us to examine the structure
of universalities of systemic indices, that is of parametrized surfaces passing only
from given places of systemic indices over the spatio-temporal region under consid-
eration. In the same section, we overview the meaning of systemic measurements
(at discrete moments and locations) and then discuss the deviations and the smooth
parametrized surface of such a systemic measurement from a given universality of
systemic indices.

Based on this background, in Section 5, we consider the magnitude of the
(Euclidean or not) distance between the smooth parametrized surface of such a
systemic measurement from a given universality of systemic indices and another
surface that interpolates or passes close to the measurement points and some
future balance points. The measurement points are taken at predefined locations
that system administrators chose having put the requirement that, at optioned next
spatio-temporal moments, there will be no deviation from the regularity universality.
This approach allows predicting time moments and locations at which peculiar
systemic incidents are expected to happen: if at some spatio-temporal point, the
distance between the two surfaces exceeds a given critical tolerance value, then
it means that at this point peculiar systemic incidents are expected. As it is clear,
this prediction may be well described in two remarkable cases of main interest:
the limit case where the location remains constant and the general case where the
measurements are conducted at discrete time moments and over different locations.
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So, in Section 5, we first provide a general algorithmic framework for determining
time intervals and locations into which peculiar systemic incidents are expected and,
next, we limit ourselves to considering consequent computational algorithms only
for the case where the measurements are carried out at discrete points in time and
the position remains always fixed. These ideas are specified through alternative and
independent directions using interpolation methods and least square techniques.

Finally, in Section 6, we apply these approximations and give indicative numeri-
cal examples to determine time intervals into which peculiar systemic incidents are
expected.

2 Systemic Indices

Having regard to what has been mentioned in the previous section, suppose S is a
given system (or complex [7]) of which we want to predict behaviour. To this end,
we accept that the system is identified by its own (� + 1) system characteristics
(see, for instance, http://www.tezu.ernet.in/dba/new/faculty/heera/SAD.pdf, https://
www.kenyaplex.com/questions/22895-outline-the-characteristics-of-a-system.aspx,
https://managingresearchlibrary.org/glossary/system-characteristics and http://
www.ddegjust.ac.in/studymaterial/pgdca/ms-04.pdf), which we can fully know
one by one and depend on the time and their location.

We need to quantify the behaviour of each characteristic j .

Definition 1 A systemic index of S is a numerical function g(j)S = g(j)S (t, x, y, z),
which represents the states of the characteristic j at any date t ∈ R and location
(x, y, z) ∈ R

3 depending on its intrinsic physical features.

To simplify, any systemic index of S is supposed to be a piecewise continuous
function at (t, x, y, z). Furthermore, we will assume that, for any system character-
istic j , (j = 1, 2, . . . , �+ 1) and at any date t ∈ R and location (x, y, z) ∈ R

3 into
S, we are given

1. a regularity interval
[
r̃
(j)
S , r̃

(j)
S

] ⊂ R into which there is no change in the
behaviour of the characteristic j within the system, affecting both the other
systemic indices and the power and influence of others systemic characteristics
acting in the complex.

2. the under-weighted precarity interval
[
p̃
(j)
S , r̃

(j)
S

] ⊂ R and the over-weighted

interval
[
r
(j)
S , p

(j)
S

] ⊂ R into which there is only a slight change in the behaviour
of the characteristic j within the system, affecting both the other systemic indices
and the power and influence of others systemic characteristics acting in the
complex.

3. the under-weighted danger interval
[
d̃
(j)
S , p̃

(j)
S

] ⊂ R and the over-weighted

danger interval
[
p
(j)
S , d

(j)
S

] ⊂ R into which into which there is a major change
in the behaviour of the characteristic j within the system, affecting both the other

http://www.tezu.ernet.in/dba/new/faculty/heera/SAD.pdf
https://
www.kenyaplex.com/questions/22895-outline-the-characteristics-of-a-system.aspx
https://managingresearchlibrary.org/glossary/system-characteristics
http://www.
http://www.
ddegjust.ac.in/studymaterial/pgdca/ms-04.pdf
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systemic indices and the power and influence of others systemic characteristics
acting in the complex.

In the exterior of
[
d̃
(j)
S , d

(j)
S

]
, there is a catastrophic change in the behaviour of

the characteristic j within the system, affecting both the other systemic indices and
the power and influence of others systemic characteristics acting in the complex.

The vectors
(
r̃
(j1)
S , . . . , r̃

(jk)
S

) ∈ R
k and

(
r
(j1)
S , . . . , r

(jk)
S

) ∈ R
k are, respectively,

the lowest and highest thresholds of regularity over the system characteris-
tics j1, j2, . . . , jk at date t ∈ R and location (x, y, z) ∈ R

3. Especially, for
(j1, j2, . . . , jk) = (1, 2, . . . , �+ 1), we prefer to use the notation

r̃ = (
r̃
(1)
S , r̃

(2)
S , . . . , r̃

(�+1)
S

)
and r = (

r
(1)
S , r

(2)
S , . . . , r

(�+1)
S

)
.

The correspondence that associates each element of the space-time R
4 with

the corresponding regularity interval of the characteristic j is the regularity state
mapping of the system characteristic j over the space-time. Any point in its image
is a regularity state or regularity point, and any set in its graph is a regularity
zone for j . If, for instance, we have fixed the location (x, y, z) and we let the time
t to vary from a moment T0 to another moment T3, then a regularity zone for a
characteristic j may have a form like that of the graph in Figure 1.

Definition 2 Given any (t, x, y, z), the closed interval

[r̃ (j)S (t, x, y, z), r(j)S (t, x, y, z)]

is the regularity tolerance of the system characteristic j at date t ∈ R and location
(x, y, z) ∈ R

3 into S.

Remark 1 It is not excluded the limit situation r̃ (j)S = r(j)S = R(j)S . In such a case,

the systemic index R(j)S is the unique regularity value of the system characteristic j
at date t ∈ R and location (x, y, z) ∈ R

3 into S.

Similarly, the vectors
(
p̃
(j1)
S , . . . , p̃

(jk)
S

) ∈ R
k and

(
p
(j1)
S , . . . , p

(jk)
S

) ∈ R
k are,

respectively, the lowest threshold of under-weighted precarity and the highest
threshold of over-weighted precarity over the system characteristics j1, . . . , jk
at date t ∈ R and location (x, y, z) ∈ R

3. Especially, for (j1, j2, . . . , jk) =
(1, 2, . . . , �+ 1), we prefer to use the notation

Fig. 1 Regularity zone for a characteristic j , if we have fixed the location (x, y, z) and we let the
time t to vary from a moment T0 to another moment T3
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p̃ = (
p̃
(1)
S , p̃

(2)
S , . . . , p̃

(�+1)
S

)
and p = (

p
(1)
S , p

(2)
S , . . . , p

(�+1)
S

)
.

Notice that it is not excluded the case of coincidence

p̃
(j)
S = r̃ (j)S nor p(j)S = r(j)S .

The mappings that assign each element of the space-time to the corresponding
precarity intervals of the characteristic j are the precarity state mappings of the
system characteristic j over the space-time. A point in the image of a precarity state
mapping is a precarity state or precarity point, while a set in its graph is said to
be a precarity zone for j . The tolerance of the under-weighted precarity and the
tolerance of the over-weighted precarity at time t and location (x, y, z) into S are
defined to be the differences

δ̃
(j)

critical := |p̃(j)S − r̃ (j)S | and δ(j)critical := |p(j)S − r(j)S |, respectively.

Finally, the vectors
(
d̃
(j1)
S , . . . , d̃

(jk)
S

) ∈ R
k and

(
d
(j1)
S , . . . , d

(jk)
S

) ∈ R
k are,

respectively, the lowest threshold of under-weighted danger and the highest
threshold of over-weighted danger over the systemic characteristics j1, . . . , jk
at date t ∈ R and location (x, y, z) ∈ R

3. Especially, for (j1, j2, . . . , jk) =
(1, 2, . . . , �+ 1), we prefer to use the notation

d̃ = (
d̃
(1)
S , d̃

(2)
S , . . . , d̃

(�+1)
S

)
and p = (

d
(1)
S , d

(2)
S , . . . , d

(�+1)
S

)
.

Notice again that it is not excluded the case of coincidence

d̃
(j)
S = p̃(j)S nor d(j)S = p(j)S .

The mappings that assign each element of the space-time to the corresponding
danger intervals of the characteristic j are the danger state mappings of the system
characteristic j over the space-time. A point in the image of a danger state mapping
is a danger state or danger point, and a set in its graph is said to be a danger zone
for j . The extents of under-weighted danger and over-weighted danger at time t
and location (x, y, z) into S are defined to be the differences

ε̃
(j)

critical := |d̃(j)S − r̃ (j)S | and ε(j)critical := |d(j)S − r(j)S |, respectively.

Any point that does not belong to a closed interval of the form

[
d̃
(j)
S (t, x, y, z)− d(j)S (t, x, y, z)

]

for some (t, x, y, z) is a disaster point.
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Fig. 2 A schematic representation of the above concepts for a fixed location (x, y, z) ∈ R
3

Figure 2 provides a schematic representation of the above concepts for a fixed
location (x, y, z) ∈ R

3.

Definition 3 A system S endowed with the above defined tolerances of regularity,
precarity and danger is a predictable system.

Remark 2 The case of coincidence r̃ (j)S = r
(j)
S = R

(j)
S does not allow the

consideration of the two orientations, the first of which is introduced in the direction
drawn from a lowest to a highest threshold, while the second one is introduced in the
direction drawn from a highest to a lowest threshold. Instead, in this coincidence,
there is only one direction. This is the direction in which, simply, one of the
three successive situations may be happen: the precarious situation, the danger
situation and the disaster situation.

Remark 3 The concepts of regularity zone, precarity zone and danger zone could be
considered as analogues of the concepts that can be understood by saying low-risk
zone, medium-risk zone and high-risk zone, respectively.

For obvious reasons of simplifying the technical handling of our reasoning, we
make the following assumption

Assumption 1 The system analysts, who study the given system, have agreed for a
finalized, unique and discrete selection of all systemic indices governing the system
behaviour.

On the other hand, we are concerned about current numerical values g(S)j
(t, x, y, z) of the relevant selected system characteristics at a given discrete set
of time moments and locations. However, systemic measurements performed by
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a single person or computational block or body on the same item and under the
same conditions may contain errors due to various causes, such as rounding of
measurements, erroneous information, limited databases, etc. In order to avoid any
confounding effect, we will assume continuously the ideal situation.

Assumption 2 All systemic measurements are carried out with sufficient reliability
to such an extent as to preclude any discrepancy in the estimates of the predictions.

3 Basic Algebraic Considerations

The Space of Systemic Indices Over a System

It is assumed that there are a finite number of �+1 distinguishable systemic indices
of the system S, say g(1)S , g(2)S ,. . . ,g(�+1)

S for any date t and any location (x, y, z).

Definition 4

i. If every unit vector

e(j) = (0, . . . 0, 1, 0, . . . , 0)︸ ︷︷ ︸
j

of the vector space R
�+1 is identified with one unit of the vector space R

�+1 of
the system S at date t and location (x, y, z) (j = 1, 2, . . . , �+1), then the linear

space G(t,x,y,z) (S) :=
{
g = gS = λ1g

(1)
S + . . .+ λ�+1g

(�+1)
S : λ1, λ2, . . . , λ�+1

∈ R} ≡ R
�+1 with the usual Euclidean distance in R

�+1 is the space of the
instantaneous local systemic indices in S at date t and location (x, y, z).

ii. The linear space

G(S) = {
(t, (x, y, z), gS) : t ∈ R, (x, y, z) ∈ R

3, gS ∈ G(t,x,y,z)(S)
} ≡ R

�+5,

endowed with the usual Euclidean topology in R
�+5, is the space of the systemic

indices over the system S. The elements gS of G(S) are the systemic indices of
the system S.

It is clear that G(S) can be endowed with a continuous projection πS : G(S)→
B ⊂ R

4, such that for each point (t, x, y, z) ∈ B, the spaceG(t,x,y,z)(S) coincides
with the systemic fibre π−1

S (t, x, y, z) of G(S) at the point (t, x, y, z). Since the
space of systemic indices G(S) is separable and connected, the cardinality of the
each systemic fibre π−1

S (t, x, y, z) ≡ G(t,x,y,z)(S) does not exceed the infinite
cardinality of any basis of open sets in B.
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The systemic index space G(S) is a trivial bundle of discrete fibres G(t,x,y,z)(S)
= R

�+1, and therefore G(S), endowed with the continuous projection πS , is (also)
a systemic covering space of B.

On the other hand, it is important to see that the inverse image π−1
S (K) of any

compact set K in B is also compact in G(S). Thus, the systemic index space G(S)
is a quasi-compact space in the following sense: For any (t, x, y, z) ∈ B and any
family (Vi)i∈I of open subsets of G(S) such that ∪i∈I Vi ⊃ π−1

S (t, x, y, z), there
exists a finite part J of I and an open neighbourhood V of (t, x, y, z) such that
∪i∈I Vi ⊃ π−1

S (V) . In particular, we have the following.

Proposition 1 The systemic index space G(S) is a proper space over B.

Affinities Between Systems

Let S and T be two systems. Let us consider the corresponding systemic index
spaces G (S) and G (T ), with projections πS and πT , respectively.

Definition 5 A continuous mapping χ : G (S) → G (T ) is said to be a systemic
affinity between the systems S and T if the following diagram commutes:

G(S)
χ→ G(S)

πS ↘ ↙ πT

B

.

Evidently, if χ is a systemic affinity between the systems S and T , then for any
(t, x, y, z) ∈ B, χ induces a mapping

χ(t,x,y,z) : G(t,x,y,z) (S)→ G(t,x,y,z) (T )

of the momentary local systemic index space of the system S at date t and location
(x, y, z) into the momentary local systemic index space of the system T at date t
and location (x, y, z).

It is easy to verify the following.

Proposition 2 Any systemic affinity χ : G (S) → G (T ) between the systems S
and T is onto the systemic index space G (T ). If, moreover, there exists a point
(t, x, y, z) ∈ B such that the induced mapping χ(t,x,y,z) : G(t,x,y,z) (S) →
G(t,x,y,z) (T ) is one-to-one, then the systemic affinity between the systems S and
T is an isomorphism.

Given any two systemic affinities χ and ψ between the systems S and T , the set
of allD ∈ G (T ) such that χ(D) = ψ(D) is open and closed inG(T ). In particular,
since the systemic index space G(T )

(
R
�+5

)
is connected, we infer the following

result.
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Proposition 3 Whenever χ and ψ are two systemic affinities between the systems
S and T ,

i. if there exists a systemic index g ∈ G (T ) such that χ (g) = ψ (g), the systemic
affinities χ and ψ coincide

ii. if there exists a (t, x, y, z) ∈ B such that χ(t,x,y,z) = ψ(t,x,y,z), the systemic
affinities χ and ψ coincide.

The category which has elements the systemic index spaces and morphisms
the systemic affinities between two systems is called the category of systemic
systems. It will be denoted by B − T op. The sum of G (S) and G (T ) into
the category B − T op of systemic systems is the disjoint union G (S) � G (T )

endowed with the projection inducing πS onto G (S) and πT onto G (T ). It holds
(G (S) �G (T ))(t,x,y,z) = G(t,x,y,z) (S) �G(t,x,y,z) (T ).

The Fibre Product of Two Systemic Index Spaces

Let S and T be two systems, with corresponding systemic index spaces G (S) and
G (T ) and projections πS and πT , respectively. The fibre product G (S)×BG (T ) of
G (S) and G (T ) over the systems S and T is the subspace of the topological space
G (S)×G (T ) consisting in all pairs (DS,DT ) satisfying πS (DS) = πT (DT ). The
fibre product G (S)×B G (T ) endowed with the mapping (DS,DT )→ πS (DS) is
the product of the systemic index spaces G (S) and G (T ) into the category of
systems. It is clear that

(
G(S)×B G(T )

)
(t, x, y, z) = G(t,x,y,z)(S)×G(t,x,y,z)(T ),

whenever (t, x, y, z) ∈ B. Letting now h : B ≡ R × R
3 → B ≡ R × R

3 be
a continuous mapping, the topological space G

∗(S) := h(B) ×B G(S) endowed
with the first projection G

∗(S)→ h(B) is a space over the topological space h(B),
which is called the space over h(B) obtained from G(S) by base change from B to
h(B). The fibre of G∗(S) at a point b′ of h(B) is identified with the fibre of G(S)
at h(b′).

4 Geometric Foundations

Let S be any predictable system/complex with corresponding systemic index space
G(S). A tool that would allow us a thorough study of the measurements carried out
in the weighted systemic space is to attach systemic vector field measurements on
all points of the space of systemic indices. For now, we will always assume that the
values obtained from the measurements are reliable and accurate and will compare
them with respect to the given and fixed values of the systemic indices.



96 N. J. Daras

Universalities of Systemic Indices

Let U be a non-empty open subset of R4 = R×R
3 representing a spatio-temporal

historical phase.

Definition 6

i. The mapping

D : U → G(S) : (t, x, y, z) "→
(
t, x, y, z; g(1)S , . . . , g(�+1)

S

)

is called a universality of systemic indices for the system S over the spatio-
temporal historical phase U , or simply system universality.

ii. If the mapping D is smooth and regular, i.e., its differential D(t,x,y,z) is non-
singular (:has rank 4) for each (t, x, y, z) ∈ R × R

3, then D is a parametrized
surface of dimension 4 in the systemic index space G(S). In such a case, we
say that the image of the system universality SD = D(U) or simply D is the
parametrized surface of the systemic indices for the system S over U .

Smooth Parametrized Surfaces of Systemic Indices

We will first assume that the universality D : U → G(S) ≡ R
�+5 is smooth and

regular. The differential of D is the smooth map dD : U × R
4 → G(S) × G(S)

defined as follows. A point v ∈ U × R
4 is a vector v = ((t, x, y, z) , u) at a point

(t, x, y, z) ∈ U . Let α : I → U be any parametrized curve in U with α (t0) = v.
Then, dD (v) is the vector at D (t, x, y, z) (dD (v) ∈ R

�+5
D(t,x,y,z)

⊂ G(S) × G(S))
defined by dD (v) := D ◦ α (t0). Note that the value of dD (v) does not depend on
the choice of parametrized curve α, because

D ◦ α (t0) =
(
D ◦ α (t0) ,

(
D
(1)
S ◦ α

)′
(t0) , . . . ,

(
D
(l+1)
S ◦ α

)′
(t0)

)
=

(
D (t, x, y, z) ,∇D(1)S (α (t0)) · α (t0) , . . . . . . ,∇D(l+1)

S (α (t0)) · α (t0)
)
=

(
D (t, x, y, z) ,∇D(1)S (t, x, y, z) · v, . . . . . . ,∇D(l+1)

S (t, x, y, z) · v
)
,

so

dD (v) =
(
D (t, x, y, z) ,∇vD(1)S , . . . ,∇vD(l+1)

S

)
.
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It follows immediately from the above formula that the restriction dD(t,x,y,z) of dD
to R

4
(t,x,y,z) (: the vectors at (t, x, y, z)) is a linear map

dD(t,x,y,z) : R4
(t,x,y,z) → R

�+5
D(t,x,y,z)

.

Its matrix relative to the standard bases for R
4
(t,x,y,z) and R

�+5
D(t,x,y,z)

is just the
Jacobian matrix of D at (t, x, y, z). The regularity condition on D guarantees the
following:

Proposition 4 For any (t, x, y, z) ∈ U , the image dD(t,x,y,z)
(
R

4
(t,x,y,z)

)
of

dD(t,x,y,z) is a four-dimensional subspace ofR
l+5
D(t,x,y,z)

tangent to the parametrized
hypersurface D of dimension 4 in the systemic index space G(S) corresponding to
the point (t, x, y, z) ∈ U .

Notice that the parametrized surface D of dimension 4 in the systemic
index space G(S) does not need to be one-to-one, and that D (t, x, y, z) =
D

(
t
′
, x
′
, y
′
, z
′)

for (t, x, y, z) �=
(
t
′
, x
′
, y
′
, z
′)

does not necessarily imply that

the image of dD(t,x,y,z) is equal to the image of dD(
t
′
,x
′
,y
′
,z
′). In other words, the

following general inequality applies:

dD(t,x,y,z)
(
R

4
(t,x,y,z)

) �= dD(
t
′
,x
′
,y
′
,z
′)

(
R

4(
t
′
,x
′
,y
′
,z
′)
)
.

A systemic vector field along the parametrized surface SD of the systemic
indices for the system S over U is a map f that assigns to each point p =
(t, x, y, z) ∈ U a vector f (p) ∈ R

�+5
D(t,x,y,z)

. A comprehensive study of the systemic
vector fields along parametrized surfaces requires some additional concepts.

Definition 7 Let

f : U → R
�+5 : p = (t, x, y, z) "−→ f (p) = (D (p) ; f1, . . . , f�+5) ∈ R

�+5
D(t,x,y,z)

be a systemic vector field along the parametrized surface SD.

i. We say that f is smooth if each coordinate fj : U → R is smooth.
ii. We say that f is tangent to the parametrized surface SD of the systemic

indices for the system S over U if f is of the form

f (p) = dD(t,x,y,z) (y (p))

for some vector field y on U .
iii. We say that f is normal to the parametrized surface SD of the systemic

indices for the system S over U if
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f (p)⊥dD(t,x,y,z)
(
R

4
(t,x,y,z)

)
for all (t, x, y, z) ∈ U.

Let us now give a generalization of the concept of the velocity field in the case of
a systemic vector field along the parametrized surface describing the universality of
the systemic indices for the system S over U . Let

E(1),E(2),E(3) and E(4)

denote the tangent vector fields along the parametrized surface SD defined by

E(i) (t, x, y, z) = dD(t,x,y,z) ((t, x, y, z) ; 0, . . . , 0, 1, 0 . . . , 0) ,

where the 1 is in the (i + 1)th spot (i spots after the (t, x, y, z) ∈ U ).

Proposition 5 The components of E(i) are just the entries in the ith column of the
Jacobian matrix for D at (t, x, y, z) ∈ U :

E(1) (t, x, y, z) =
(
D (t, x, y, z) ; ∂D

∂t
(t, x, y, z)

)

=
(
D; ∂t
∂t
,
∂x

∂t
,
∂y

∂t
,
∂z

∂t
,
∂D1

∂t
, . . . ,

∂D�+1

∂t

)
(t, x, y, z) ,

E(2) (t, x, y, z) =
(
D (t, x, y, z) ; ∂D

∂x
(t, x, y, z)

)

=
(
D; ∂t
∂x
,
∂x

∂x
,
∂y

∂x
,
∂z

∂x
,
∂D1

∂x
, . . . ,

∂D�+1

∂x

)
(t, x, y, z) ,

E(3) (t, x, y, z) =
(
D (t, x, y, z) ; ∂D

∂y
(t, x, y, z)

)

=
(
D; ∂t
∂y
,
∂x

∂y
,
∂y

∂y
,
∂z

∂y
,
∂D1

∂y
, . . . ,

∂D�+1

∂y

)
(t, x, y, z) ,

E(4) (t, x, y, z) =
(
D (t, x, y, z) ; ∂D

∂z
(t, x, y, z)

)

=
(
D; ∂t
∂z
,
∂x

∂z
,
∂y

∂z
,
∂z

∂z
,
∂D1

∂z
, . . . ,

∂D�+1

∂z

)
(t, x, y, z) ,

where

D (t, x, y, z) =
(
t, x, y, z;D(1)S (t, x, y, z) , . . . ,D

(�+1)
S (t, x, y, z)

)
.

Note that E(i) (t, x, y, z) is simply the velocity at (t, x, y, z) ∈ U of the
coordinate curve
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ui "−→ D (u1, u2, u3, u4)

(all uj held constant except ui) passing through D (t, x, y, z). Here, u1 = t , u2 =
x, u3 = y and u4 = z. Since dD(t,x,y,z) is non-singular, we infer the following
proposition.

Proposition 6

i. The tangent vector fields E(1), E(2), E(3) and E(4) are linearly independent at
each point (t, x, y, z) ∈ U .

ii. For each point (t, x, y, z) ∈ U , the tangent vector fields E (1), E (2), E (3) and E (4)
form a basis for the tangent space defined by Image

[
dD(t,x,y,z)

]
.

Definition 8 For any smooth systemic vector field f : U → R
�+5 along the

parametrized surface SD of the systemic indices for the system S, the derivative

∇uf ∈ R
�+5
D(t,x,y,z)

of f with respect to u ∈ R
4
(t,x,y,z) (t, x, y, z) ∈ U is defined by

∇uf =
(
D (t, x, y, z) ,

d

dτ

∣∣∣∣
τ0

(f ◦ α)
)
= (D (t, x, y, z) ,∇uf1, . . . ,∇uf�+5) ,

where α is any parametrized curve in U with α̂ (τ0) = u.

Notice that, when

u ∈ {
e1 := (t, x, y, z; 1, 0, 0, 0) e2 = (t, x, y, z; 0, 1, 0, 0) ,
e3 = (t, x, y, z; 0, 0, 1, 0) , e4 = (t, x, y, z; 0, 0, 0, 1)

}
,

we have

∇e1 f =
(
D (t, x, y, z) ; ∂f

∂t
(t, x, y, z)

)

=
(
D (t, x, y, z) ; ∂f1

∂t
(t, x, y, z) , . . . ,

∂f�+5

∂t
(t, x, y, z)

)
,

∇e2 f =
(
D (t, x, y, z) ; ∂f

∂x
(t, x, y, z)

)

=
(
D (t, x, y, z) ; ∂f1

∂x
(t, x, y, z) , . . . ,

∂f�+5

∂x
(t, x, y, z)

)
,

∇e3 f =
(
D (t, x, y, z) ; ∂f

∂y
(t, x, y, z)

)
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=
(
D (t, x, y, z) ; ∂f1

∂y
(t, x, y, z) , . . . ,

∂f�+5

∂y
(t, x, y, z)

)
,

∇e4 f =
(
D (t, x, y, z) ; ∂f

∂z
(t, x, y, z)

)

=
(
D (t, x, y, z) ; ∂f1

∂z
(t, x, y, z) , . . . ,

∂f�+5

∂z
(t, x, y, z)

)
.

Discontinuous Universalities of Systemic Indices

It is quite reasonable to assume that all the components g(1)S , . . . , g
(�+1)
S of a

universality of systemic indices for a predictable system S remain constant over
long or short periods and for large or small areas. In other words, we can assume that
the spatio-temporal historical phase U is partitioned into different (closed) regions,
each associated with a different constant expression of the systemic indices:

There are

• a finite partition
{
Ûi : Ui is a nonvoid open subset ofU and i = 1, 2, . . . , I

}
of U , such that

Ui
⋂
U
i
′ = ∅ whenever i �= i ′ , and

• a finite set of constant vectors c(i) =
(
c
(i)
1 , . . . , c

(i)
l+1

)
in R

l+1, i = 1, 2, . . . , I ,

such that

(
g
(S)
1 , . . . , g

(S)
�+1

) = (
c
(i)
1 , . . . , c

(i)
�+1

)
,

for any (t, x, y, z) ∈ Ui .
The intersection Υ

i,i
′ := Ui

⋂
U
i
′ between the closure (: the set plus its

boundary) of the sets Ui and U
i
′ is either an R

3-dimensional manifold included in
the boundaries ∂Ui and ∂U

i
′ or the empty set. A set Υ

i,i
′ is termed to be a systemic

border or systemic discontinuous boundary.

Systemic Measurements

Systemic Measurement Deviations

Let U be any non-empty subset of R
4=R×R3 representing a spatio-temporal

historical phase. Suppose MF is a systemic measurement of size K + 1 in U .
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This means that it has been selected a certain process F by which each actual value
g
(j)
S = g(j)S (t, x, y, z) is assigned to K + 1 numbers

F
(
g
(S)
j

)
(t1, x1, y1, z1)

)
, . . . ,F

(
g
(S)
j

)
(tK+1, xK+1, yK+1, zK+1)

)
,

whenever (tν, xν, yν, zν) is in a given discrete set EK+1 =
{
(tν, xν, yν, zν) ∈

U, ν = 0, 1, 2, . . . , K
}

of cardinality K + 1. Letting

F (tν, xν, yν, zν) :=
(
F

(
g
(1)
S

)
(tν, xν, yν, zν)︸ ︷︷ ︸
F (1)ν

, . . . ,F
(
g
(�+1)
S

)
(tν, xν, yν, zν)︸ ︷︷ ︸

F (�+1)
ν

)
,

the systemic measurement MF can be understood as a mapping, which is expressed
in the following form:

MF : EK+1 → G(S) : (tν, xν, yν, zν) "→
(
tν, xν, yν, zν,F (1)ν , . . . ,F (�+1)

ν

)
.

Definition 9 Assume that the space G(S) is endowed with a (Euclidean or not)
metric dist , the choice of which may depend on the formulation or nature of the
problem under consideration.

i. The function

W∗ : EK+1 → R : (tν, xν, yν, zν) "→W∗ (tν, xν, yν, zν) :=
dist (r̃S (tν, xν, yν, zν) ,F (tν, xν, yν, zν))

is the systemic measurement deviation from the lowest threshold of regu-
larity at the points of EK+1.

ii. The function

W∗ : EK+1 → R : (tν, xν, yν, zν) "→W∗ (tν, xν, yν, zν) :=
dist (rS (tν, xν, yν, zν) ,F (tν, xν, yν, zν))

is the systemic measurement deviation from the highest threshold of
regularity at the points of EK+1.

iii. In the case of coincidence r̃ (j)S = r
(j)
S = R

(j)
S (∀j = 1, 2, . . . , � + 1), the

function

W : EK+1 → R : (tk, xk, yk, zk) "→W (tk, xk, yk, zk) :=
dist (RS (tk, xk, yk, zk) ,F (tk, xk, yk, zk))

is the systemic measurement deviation from the regularity value of S at the
points of EK+1.
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Since U is a separable topological space, it is possible to choose a sequence

· · · � EK � EK+1 � EK+2 � . . . .

of finite sets of points of U , such that

• their union E =⋃∞
K=1 EK+1 is dense in U and

• EK+1 contains only one element more than EK , say (tK+1, xK+1, yK+1, zK+1).

Hence, for any (t, x, y, z) ∈ U , there exists a well-defined sequence

(tK+1, xK+1, yK+1, zK+1) ∈ EK+1(K = 1, 2, . . . )

such that

(t, x, y, z)= lim
K+1→∞ (tK+1, xK+1, yK+1, zK+1) .

Defining

F (j) (t, x, y, z) :=liminfK+1→∞F (j) (tk+1, xk+1, yk+1, zk+1) (j=1, 2, . . . , �+ 1)

and

F (j) (t, x, y, z) :=limsupK+1→∞F (j) (tk+1, xk+1, yk+1, zk+1) (j=1, 2, . . . , �+1),

it is clear that F (j) and F (j) can be viewed as two processes by means of which
the actual value g(S)j (t, x, y, z) corresponds to two real numbers F (j) (t, x, y, z) and

F (j) (t, x, y, z), respectively, whenever (t, x, y, z) ∈ U . We are reasonably directed
to the next definition.

Definition 10

i. The mappings

F : U → G(S) : (t, x, y, z) "→ (
t, x, y, z;F (1) (t, x, y, z) , . . . ,F (�+1) (t, x, y, z)

)

and

F : U → G(S) : (t, x, y, z) "→ (
t, x, y, z;F (1) (t, x, y, z) , . . . ,F (�+1)

(t, x, y, z)
)

are called, respectively, the lower and the upper sections of the systemic
measurement MF for the predictable system S over U .

ii. If the set U is open in R
4 and the two mappings F and F are smooth and regular

in U , i.e., their differentials dF (t,x,y,z) and dF (t,x,y,z) are non-singular (: they
have rank 4) for each (t, x, y, z) ∈ U , then
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• F = F = F̃ and F̃(t, x, y, z) =
(
F̃ (1)(t, x, y, z), . . . , F̃ (�+1)(t, x, y, z)

)
is

called a smooth and regular extension of the systemic measurement MF for
the predictable system S over U and

• the image SF := F̃(U) is a parametrized surface of the systemic measure-
ment MF for the predictable system S over U .

Analogously, by defining

W∗(t, x, y, z) := liminfK+1→∞W∗ (tk+1, xk+1, yk+1, zk+1) ,

W∗(t, x, y, z) := limsupK+1→∞W∗ (tk+1, xk+1, yk+1, zk+1) ,

and

W∗(t, x, y, z) := liminfK+1→∞W∗ (tk+1, xk+1, yk+1, zk+1) ,

W∗
(t, x, y, z) := limsupK+1→∞W∗ (tk+1, xk+1, yk+1, zk+1) ,

it is obvious that W∗(t, x, y, z), W∗(t, x, y, z), W∗(t, x, y, z) and W∗
(t, x, y, z)

are four functions representing distances between, on the one hand, F(t, x, y, z) and
F(t, x, y, z) and, on the other hand, the lowest and highest thresholds of regularity,
respectively, at every point (t, x, y, z) ∈ U . More precisely, we are led reasonably
to the next definition.

Definition 11

i. The function

W∗ : U → R : (t, x, y, z) "→W∗(t, x, y, z):=dist
(
r̃S(t, x, y, z),F(t, x, y, z)

)

is the upper deviation of the systemic measurement at the points of U from
the lowest threshold of regularity over the predictable system S.

ii. The function

W∗ : U → R : (t, x, y, z) "→W∗(t, x, y, z):=dist
(
r̃S(t, x, y, z),F(t, x, y, z)

)

is the lower deviation of the systemic measurement at the points of U from
the lowest threshold of regularity over the predictable system S.

iii. The function

W∗ : U → R : (t, x, y, z) "→W∗
(t, x, y, z):=dist

(
rS(t, x, y, z),F(t, x, y, z)

)

is the upper deviation of the systemic measurement at the points of U from
the highest threshold of regularity over the predictable system S.
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iv. The function

W∗ : U → R : (t, x, y, z) "→W∗(t, x, y, z):=dist
(
rS(t, x, y, z),F(t, x, y, z)

)

is the lower deviation of the systemic measurement at the points of U from
the highest threshold of regularity over the predictable system S.

If, in particular, r̃S = rS =: RS , then W∗ ≡W∗ =:W∗ and W∗ ≡W∗ =:W∗.
In such a case, it is straightforward to see that the function W∗(t, x, y, z) equals the
distance dist

(
F(t, x, y, z),D(t, x, y, z)

)
between the upper section F(t, x, y, z)

of the systemic measurement MF and the universality D(t, x, y, z) of the systemic
indices for the predictable system S in U . Similarly, the function W∗(t, x, y, z)
equals the distance dist

(
F(t, x, y, z),D(t, x, y, z)

)
between the lower section

F(t, x, y, z) of the systemic measurement MF and the universality D(t, x, y, z)

of the systemic indices for the predictable system S in U .
Thus, we are led reasonably to the next definition.

Definition 12

i. The function

W∗ : U → R : (t, x, y, z) "→W∗(t, x, y, z):=dist
(
D(t, x, y, z),F(t, x, y, z)

)

is the upper deviation of the systemic measurement at the points of U from
the lowest threshold of regularity over the predictable system S.

ii. The function

W∗ : U → R : (t, x, y, z) "→W∗(t, x, y, z):=dist
(
D(t, x, y, z),F(t, x, y, z)

)

is the lower deviation of the systemic measurement at the points of U from
the lowest threshold of regularity over the predictable system S.

Smooth Parametrized Surfaces of Systemic Measurement

We can now make some useful general observations.
If U is a non-empty open subset of R4 and if the map F̃ : U → R

l+5 is smooth
and regular, its differential is the smooth map

dF̃ : U × R
4 → R

l+5 × R
l+5

defined as follows. A point v ∈ U × R
4 is a vector v = ((t, x, y, z) , u) at a point

(t, x, y, z) ∈ U . Let α : I → U be any parametrized curve in U with α (t0) = v.
Then, dF̃ (v) is the vector at

F̃ (t, x, y, z)
(
dF̂ (v) ∈ Rl+5

D(t,x,y,z) ⊂ R
l+5 × R

l+5
)
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defined by

dF̃ (v) = F̃ ◦ α (t0) .

Note that the value of dF̃ (v) does not depend on the choice of parametrized curve
α, because

F̃ ◦ α (t0) =
(
F̃ ◦ α (t0) ,

(
F̃ (1)S ◦ α

)′
(t0) , . . . ,

(
F̃ (l+1)
S ◦ α

)′
(t0)

)
=

(
F̃ (t, x, y, z) ,∇F̃ (1)S (α (t0)) · α̇ (t0) , . . . . . . ,∇F̃ (l+1)

S (α (t0)) · α̇ (t0)
)
=

(
F̃ (t, x, y, z) ,∇F̃ (1)S (t, x, y, z) · v, . . . . . . ,∇F̃ (l+1)

S (t, x, y, z) · v
)
,

so

dF̃ (v) =
(
F̃ (t, x, y, z) ,∇vF̃ (1)S , . . . ,∇vF̃ (l+1)

S

)
.

It follows immediately from the above formula that the restriction dF̃(t,x,y,z) of dF̃
to R

4
(t,x,y,z) (: the vectors at (t, x, y, z)) is a linear map dF̃(t,x,y,z) : R4

(t,x,y,z) →
R
l+5
F̃ (t,x,y,z)

. Its matrix relative to the standard bases for R4
(t,x,y,z) and R

l+1
D(t,x,y,z) is

just the Jacobian matrix of F̃ at (t, x, y, z).
The regularity condition on F̃ guarantees the following:

Proposition 7

i. The image dF̃(t,x,y,z)
(
R

4
(t,x,y,z)

)
of dF̃(t,x,y,z) is a four-dimensional subspace

of Rl+5
F̃ (t,x,y,z)

for each (t, x, y, z) ∈ U .
ii. Furthermore, the image dF̃(t,x,y,z)

(
R

4
(t,x,y,z)

)
of dF̃(t,x,y,z) is the tangent space

to the four-dimensional parametrized surface SF̃ = F̃(U) in the systemic index
space G (S) corresponding to the point (t, x, y, z) ∈ U .
Note that a parametrized surface F̃ in the systemic index space G (S) does not

need to be one-to-one, and that F̃ (t, x, y, z) = F̃
(
t
′
, x
′
, y
′
, z
′)

for (t, x, y, z) �=(
t
′
, x
′
, y
′
, z
′)

does not necessarily imply that the image dF̃(t,x,y,z)
(
R

4
(t,x,y,z)

)
of

dF̂(t,x,y,z) is equal to the image dF̃(t ′,x′,y′,z′)
(
R

4
(t ′,x′,y′,z′)

)
of dF̃(t ′,x′,y′,z′), i.e.,

Image
[
dF̃(t,x,y,z)

]
�= Image

[
dF̃(

t
′
,x
′
,y
′
,z
′)
]
.
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Definition 13 A systemic vector field along a parametrized surface SF̃
of systemic measurement MF for the system S over U is a map F =(
F̃;F1, . . . ,F�+5

)
that assigns to each point p = (t, x, y, z) ∈ U a vector F (p) ∈

R
�+5
F̃(t,x,y,z).

The study of the systemic vector fields along a parametrized surface SF̃ requires
consideration of some additional concepts.

Definition 14 Let F : U → R
�+5 : p = (t, x, y, z) "−→ F (p) =(

F̃ (p) ;F1, . . . ,F�+5

)
∈ R�+5

F̂ (t,x,y,z)
be a systemic vector field along a parametrized

surface SF̃ .

i. We say that F =
(
F̃;F1, . . . ,F�+5

)
is smooth if each coordinate Fj : U → R

is smooth (j = 1, 2, . . . , l + 5 ).

ii. We say that F =
(
F̃;F1, . . . ,F�+5

)
is tangent to the parametrized surface

SF̃ of the systemic indices for the system S over U if F is of the form F (p) =
dF̃(t,x,y,z) (y (p)) for some vector field y on U .

iii. We say that F =
(
F̃;F1, . . . ,F�+5

)
is normal to the parametrized surface

SF̃ of the systemic measurement MF for the system S over U if

F (p)⊥Image
[
dF̃(t,x,y,z)

]
for all (t, x, y, z) ∈ U.

Let us now give a generalization of the concept of the velocity field in the case of
a systemic vector field along a parametrized surface SF̃ of a systemic measurement
MF for the system S over U . Let G(1),G(2), G(3) and G(4) denote the tangent vector
fields along the parametrized surface SF̃ defined by

G(i) (t, x, y, z) = dF̃(t,x,y,z) ((t, x, y, z) ; 0, . . . , 0, 1, 0 . . . , 0) ,

where the 1 is in the (i + 1)th spot (i spots after the (t, x, y, z) ∈ U ).

Proposition 8 The components of G(i) are just the entries in the ith column of the
Jacobian matrix for F̃ at (t, x, y, z) ∈ U .

Note that G(i) (t, x, y, z) is simply the velocity at (t, x, y, z) ∈ U of the
coordinate curve ui "−→ F̃ (u1, u2, u3, u4) (all uj held constant except ui) passing
through F̃ (t, x, y, z). Here, u1 = t , u2 = x, u3 = y and u4 = z. Furthermore,
since dF̃(t,x,y,z) is non-singular, we infer the following proposition.

Proposition 9

i. The tangent vector fields G(1), G(2), G(3) and G(4) are linearly independent at
each point (t, x, y, z) ∈ U .
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ii. For each point (t, x, y, z) ∈ U , the tangent vector fields G(1), G(2), G(3) and G(4)
form a basis for the tangent Image

[
dF̃(t,x,y,z)

]
.

Definition 15 For any smooth systemic vector field F : U → R
�+5 (U open in

R
4=R×R3) along the parametrized surface SF̃ of the systemic measurement MF

for the system S, the derivative∇uF ∈ R
�+5
F̃(t,x,y,z) of F with respect to u ∈ R

4
(t,x,y,z)

(t, x, y, z) ∈ U is defined by

∇uF =
(
F̃ (t, x, y, z) , d

dτ

∣∣∣∣
τ0

(F ◦ α)
)
=

(
F̃ (t, x, y, z) ,∇uF1, . . . ,∇uF�+5

)
,

where

• F = (F1, . . . ,F�+5) is the vector part of F (:F (q) =
(
F̃ (q) ;F1 (q) , . . . ,

F�+5 (q)) for q ∈ U ) and
• α is any parametrized curve in U with α̇ (τ0) = u.

Note that, when

u ∈ {e1 = ((t, x, y, z) ; 1, 0, 0, 0) , e2 = ((t, x, y, z) ; 0, 1, 0, 0) ,
e3 = ((t, x, y, z) ; 0, 0, 1, 0) , e4 = ((t, x, y, z) ; 0, 0, 0, 1)} ,

we have

∇e1F =
(
F̃ (t, x, y, z) ; ∂F

∂t
(t, x, y, z)

)
,

∇e2F =
(
F̃ (t, x, y, z) ; ∂F

∂x
(t, x, y, z)

)
,

∇e3F =
(
F̃ (t, x, y, z) ; ∂F

∂y
(t, x, y, z)

)
,

∇e4F =
(
F̃ (t, x, y, z) ; ∂F

∂z
(t, x, y, z)

)
.

5 Distance Between the Universality of Systemic Indices and
a Parametrized Surface Passing Through the Points of a
Systemic Measurement

We will now use measurement results to predict dates and locations where there will
be future systemic incidents. To this end, it would suffice to construct the lower and
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upper sections F and F of a systemic measurement MF in a predictable system S

and then identify the four systematic deviations to investigate whether some of them
are greater or less than corresponding tolerances given in advance.

For any systemic characteristic j and any date t ∈ R, let us consider the
midpoint μ(j)S of the regularity tolerance [r̃ (j)S (t, x, y, z), r(j)S (t, x, y, z)]. The point

μ =
(
μ
(1)
S , . . . , μ

(�+1)
S

)
is the focus of regularity in S at the time t and location

(x, y, z). The hyperplane that perpendicularly intersects the regularity tolerance on
this focus μ divides the space-time into two parts, the bottom focal half-space P1
and upper focal half-space P2, in such a way that

• if Z = (Z1, Z2, . . . , Z�+5) ∈ P1, then

dist (r̃S(t, x, y, z)− Z) < dist (rS(t, x, y, z)− Z) ,

and
• if Z = (Z1, Z2, . . . , Z�+5) ∈ P2, then

dist (r̃S(t, x, y, z)− Z) > dist (rS(t, x, y, z)− Z) .

It is clear that only four situations may occur: either

F(t, x, y, z) ∈P1 and F(t, x, y, z) ∈ P2 or

F(t, x, y, z) ∈ P1 and F(t, x, y, z) ∈ P1 or

F(t, x, y, z) ∈P2 and F(t, x, y, z) ∈ P1 or

F(t, x, y, z) ∈ P2 and F(t, x, y, z) ∈ P1.

In the first and third of these situations, we will say that the measurement in
(t, x, y, z) has a bifurcated ending and (t, x, y, z) is a point with bifurcated
measurement trend. In the second of the previous situations, we will say that the
measurement in (t, x, y, z) is downward and (t, x, y, z) is a point of downtrend
measurement, while in the fourth situation, we will say that the measurement in
(t, x, y, z) is upward and (t, x, y, z) is a point of uptrend measurement.

Definition 16 Let

δ̃critical(t, x, y, z) =
(
δ̃
(1)
critical(t, x, y, z), . . . , δ̃

(�+1)
critical(t, x, y, z)

)
,

ε̃critical(t, x, y, z) =
(
ε̃
(1)
critical(t, x, y, z), . . . , ε̃

(�+1)
critical(t, x, y, z)

)
,

δcritical(t, x, y, z) =
(
δ
(1)
critical(t, x, y, z), . . . , δ

(�+1)
critical(t, x, y, z)

)
and

εcritical(t, x, y, z) =
(
ε
(1)
critical(t, x, y, z), . . . , ε

(�+1)
critical(t, x, y, z)

)
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be critical mappings that represent distances from the lowest and highest thresholds
outside of which the structure of regularity ceases to exist.

i. Suppose (τ, x, y, z) ∈ U is a point of downtrend measurement.

a. If

0 < max
{
W∗(τ, x, y, z),W∗(τ, x, y, z)

}
< ||δ̃critical(τ, x, y, z)||,

the point (τ, x, y, z) is a precarity point, due to low performance or sub-
sufficiency.

b. If

||δ̃critical(τ, x, y, z)|| ≤ min
{
W∗(τ, x, y, z),W∗(τ, x, y, z)

}
,

≤ max
{
W∗(τ, x, y, z),W∗(τ, x, y, z)

}
< ||ε̃critical(τ, x, y, z)||,

the point (τ, x, y, z) is a dangerous point, due to low performance or sub-
sufficiency.

c. If

||ε̃critical(τ, x, y, z)|| ≤ min
{
W∗(τ, x, y, z),W∗(τ, x, y, z)

}
,

the point (τ, x, y, z) is a collapse point, due to low performance or sub-
sufficiency.

ii. Suppose (τ, x, y, z) ∈ U is a point of uptrend measurement.

a. If

0 < max
{
W∗(τ, x, y, z),W

∗
(τ, x, y, z)

}
< ||δcritical(τ, x, y, z)||,

the point (τ, x, y, z) is a precarity point, due to high performance or
ultra-sufficiency.

b. If

||δcritical(τ, x, y, z)|| ≤ min
{
W∗(τ, x, y, z),W

∗
(τ, x, y, z)

}
,

≤ max
{
W∗(τ, x, y, z),W

∗
(τ, x, y, z)

}
< ||εcritical(τ, x, y, z)||,

the point (τ, x, y, z) is a dangerous point, due to high performance or
ultra-sufficiency.

c. If

||εcritical(τ, x, y, z)|| ≤ min
{
W∗(τ, x, y, z),W

∗
(τ, x, y, z)

}
,

the point (τ, x, y, z) is a collapse point, due to high performance or ultra-
sufficiency.
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In practice, it seems often difficult to identify the lower and the upper sections F
and F of a systemic measurement MF for the predictable system S over an open
set U ⊂ R

4. Therefore, in this section, it is intuitively preferable to be searched for
parametrized surfacesH(t, x, y, z) passing very close to the systemic measurement
points, in order to determine deviations between these surfaces and the universality
of systemic indices. To this end, we give the following two definitions.

Definition 17 If H : R4 → G(S) : (t, x, y, z) "→ H(t, x, y, z) is a parametrized
surface in the space G(S) of the systemic indices over the predictable system S, then
the functions

V∗ : U → R : (t, x, y, z) "→ V∗(t, x, y, z) := dist (r̃S(t, x, y, z),H(t, x, y, z)) and

V∗ : U → R : (t, x, y, z) "→ V∗(t, x, y, z) := dist (rS(t, x, y, z),H(t, x, y, z))

are, respectively, the deviations of the parametrized surface H from the lowest
and highest thresholds of regularity at the points of U over the system S. In the
case of coincidence rS = r̃S = RS , the common function

V : U → R : (t, x, y, z) "→ V(t, x, y, z) := dist (RS(t, x, y, z),H(t, x, y, z))

is called the deviation of the parametrized surface H from the regularity value
of S at the points of U .

Definition 18 As in Definition 16, let us consider the critical mappings

δ̃critical(t, x, y, z) =
(
δ̃
(1)
critical(t, x, y, z), . . . , δ̃

(�+1)
critical(t, x, y, z)

)
,

ε̃critical(t, x, y, z) =
(
ε̃
(1)
critical(t, x, y, z), . . . , ε̃

(�+1)
critical(t, x, y, z)

)
,

δcritical(t, x, y, z) =
(
δ
(1)
critical(t, x, y, z), . . . , δ

(�+1)
critical(t, x, y, z)

)
and

εcritical(t, x, y, z) =
(
ε
(1)
critical(t, x, y, z), . . . , ε

(�+1)
critical(t, x, y, z)

)
.

Let also H : R4 → G(S) : (t, x, y, z) "→ H(t, x, y, z) be a parametrized surface in
the space G(S)of the systemic indices over the predictable system S.

i. Suppose (τ, x, y, z) ∈ U is a point such that H(τ, x, y, z) in the bottom focal
half-space P1.

a. If

0 < V∗(τ, x, y, z) < ||δ̃critical(τ, x, y, z)||,

we say that the point (τ, x, y, z) is a potential point to display precarious
incident, because of low performance or sub-sufficiency.
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b. If

||δ̃critical(τ, x, y, z)|| ≤ V∗(τ, x, y, z) < ||ε̃critical(τ, x, y, z)||,

we say that the point (τ, x, y, z) is a potential point to display dangerous
incident, because of low performance or sub-sufficiency.

c. If

||ε̃critical(τ, x, y, z)|| ≤ V∗(τ, x, y, z),

we say that the point (τ, x, y, z) is a potential point to display disastrous
incident, because of low performance or sub-sufficiency.

ii. Suppose (τ, x, y, z) ∈ U is a point such that H(τ, x, y, z) in the upper focal
half-space P2.

a. If

0 < V∗(τ, x, y, z) < ||δcritical(τ, x, y, z)||,

we say that the point (τ, x, y, z) is a potential point to display precarious
incident, because of high performance and ultra-sufficiency.

b. If

||δcritical(τ, x, y, z)|| ≤ V∗(τ, x, y, z) < ||εcritical(τ, x, y, z)||,

we say that the point (τ, x, y, z) is a potential point to display dangerous
incident, because of high performance or ultra-sufficiency.

c. If

||εcritical(τ, x, y, z)|| ≤ V∗(τ, x, y, z),

we say that the point (τ, x, y, z) is a potential point to display disastrous
incident, because of high performance or ultra-sufficiency.

Having now defined the necessary theoretical background, we are able to look
for numerical or approximate constructions of parametrized surfaces HM passing
through M + 1 systemic measurement results at the points of a given finite subset
of U , in order to determine deviations between these surfaces and the universality
of systemic indices at each point (t, x, y, z) of U ⊂⊂ R

4.
Suppose EM+1 =

{
(tν, xν, yν, zν) ∈ U : ν = 0, 1, . . . ,M

}
is a given finite set

ofM + 1 different points.
Let also 0 ≤ k < M . Assume that, for any ν = 0, 1, 2, . . . , k, we know

the corresponding measurement points. Specifically, this means that for any j =
1, 2, . . . , �+ 1, we know the measured values

fj (tν, xν, yν, zν)
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of the j th systemic index g(j)S according to a systemic measurement MF at the k+1
discrete points tν , ν = 0, 1, . . . , k.

Below, we will formulate a general approximate method to identify all those time
intervals into the region (tk, tk+1) × (xk, xk+1) × (yk, yk+1) × (zk, zk+1), during
which peculiar incidents in the system may occur.

General Algorithmic Framework to Determine Times and Locations
of Peculiar Systemic Incidents

1. For each j = 1, 2, . . . , �+ 1, construct a well manageable numerical function
H
(j)
M (t, x, y, z), which passes very close to theM + 1 measured values

fj (tν, xν, yν, zν) (ν = 0, 1, . . . , k).

2. Construct the parametrized surface

HM : R4 → G (S) : (t, x, y, z) "→ HM (t, x, y, z) :=(
t, x, y, z,H

(1)
M (t, x, y, z) , . . . . . . , H

(�+1)
M (t, x, y, z)

)
.

3. Choose four critical tolerance functions

δ̃critical(t, x, y, z) =
(
δ̃
(1)
critical(t, x, y, z), . . . , δ̃

(�+1)
critical(t, x, y, z)

)
,

ε̃critical(t, x, y, z) =
(
ε̃
(1)
critical(t, x, y, z), . . . , ε̃

(�+1)
critical(t, x, y, z)

)
,

δcritical(t, x, y, z) =
(
δ
(1)
critical(t, x, y, z), . . . , δ

(�+1)
critical(t, x, y, z)

)
and

εcritical(t, x, y, z) =
(
ε
(1)
critical(t, x, y, z), . . . , ε

(�+1)
critical(t, x, y, z)

)
,

which represent distances from the lowest and highest thresholds outside of
which the regularity is repealed banded.

4. If r̃ = r , then

i. Find the set P of all points (τ, χ,ψ, ζ ) satisfying

tk < τ < tk+1,

xk < χ < xk+1,

yk < ψ < yk+1,

zk < ζ < zk+1.

ii. Solve in P the inequality

0 < V(τ, χ,ψ, ζ ) < ||δcritical(τ, χ,ψ, ζ )||;
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any point (τ, χ,ψ, ζ ) in P satisfying this inequality is a potential point to
display precarious incident.

iii. Solve in P the inequalities

||δcritical(τ, χ,ψ, ζ )|| ≤ V(τ, χ,ψ, ζ ) < ||εcritical(τ, χ,ψ, ζ )||;

any point (τ, χ,ψ, ζ ) in P satisfying this inequality is a potential point to
display dangerous incident.

iv. Solve in P the inequalities

||εcritical(τ, χ,ψ, ζ )|| ≤ V(τ, χ,ψ, ζ );

any point (τ, χ,ψ, ζ ) in P satisfying this inequality is a potential point to
display disastrous incident.

5. Else

i. Find the set P1 of all points (τ̃ , χ̃ , ψ̃, ζ̃ ) ∈ R
4 satisfying

dist

(
r̃S (τ̃ , χ̃ , ψ̃, ζ̃ )−HM(τ̃ , χ̃ , ψ̃, ζ̃ )

)
<dist

(
rS(τ̃ , χ̃ , ψ̃, ζ̃ )−HM(τ̃ , χ̃ , ψ̃, ζ̃ )

)
,

tk < τ̃ <tk+1,

xk < χ̃ <xk+1,

yk < ψ̃ <yk+1,

zk < ζ̃ <zk+1.

ii. Solve in P1 the inequality

0 < V∗(τ̃ , χ̃ , ψ̃, ζ̃ ) < ||δcritical(τ̃ , χ̃ , ψ̃, ζ̃ )||;

any point (τ̃ , χ̃ , ψ̃, ζ̃ ) in P1 satisfying this inequality is a potential point
to display precarious incident because of low performance or sub-
sufficiency.

iii. Solve in P1 the inequalities

||δcritical(τ̃ , χ̃ , ψ̃, ζ̃ )|| ≤ V∗(τ̃ , χ̃ , ψ̃, ζ̃ ) < ||εcritical(τ̃ , χ̃ , ψ̃, ζ̃ )||;

any point (τ̃ , χ̃ , ψ̃, ζ̃ ) in P1 satisfying this inequality is a potential point
to display dangerous incident because of low performance or sub-
sufficiency.

iv. Solve in P1 the inequalities

||εcritical(τ̃ , χ̃ , ψ̃, ζ̃ )|| ≤ V∗(τ̃ , χ̃ , ψ̃, ζ̃ );
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any point (τ̃ , χ̃ , ψ̃, ζ̃ ) in P1 satisfying this inequality is a potential point
to display disastrous incident because of low performance or sub-
sufficiency.

v. Find the set P2 of all points (τ̂ , χ̂ , ψ̂, ζ̂ ) ∈ R
4 satisfying

dist

(
r̃S (τ̂ , χ̂ , ψ̂, ζ̂ )−HM(τ̂ , χ̂ , ψ̂, ζ̂ )

)
> dist

(
rS(τ̂ , χ̂ , ψ̂, ζ̂ )−HM(τ̂ , χ̂ , ψ̂, ζ̂ )

)
,

tk < τ̂ < tk+1,

xk < χ̂ < xk+1,

yk < ψ̂ < yk+1,

zk < ζ̂ < zk+1.

vi. Solve in P2 the inequality

0 < V∗(τ̂ , χ̂ , ψ̂, ζ̂ ) < ||δcritical(τ̂ , χ̂ , ψ̂, ζ̂ )||;

any point (τ̂ , χ̂ , ψ̂, ζ̂ ) in P2 satisfying this inequality is a potential point
to display precarious incident because of high performance or utra-
sufficiency.

vii. Solve in P2 the inequalities

||δcritical(τ̂ , χ̂ , ψ̂, ζ̂ )|| ≤ V∗(τ̂ , χ̂ , ψ̂, ζ̂ ) < ||εcritical(τ̂ , χ̂ , ψ̂, ζ̂ )||;

any point (τ̂ , χ̂ , ψ̂, ζ̂ ) in P2 satisfying this inequality is a potential point
to display dangerous incident because of high performance or ultra-
sufficiency.

viii. Solve in P2 the inequalities

||εcritical(τ̂ , χ̂ , ψ̂, ζ̂ )|| ≤ V∗(τ̂ , χ̂ , ψ̂, ζ̂ );

any point (τ̂ , χ̂ , ψ̂, ζ̂ ) in P2 satisfying this inequality is a potential point
to display disastrous incident because of high performance or ultra-
sufficiency.

In order to simplify the computational complexity of our approach, we will
assume that the systemic study is carried out in a fixed location, say

x = x0 = const, y = y0 = const and z = z0 = const.

The general case cited in the algorithmic framework above will be considered in a
forthcoming paper [6].
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Here, to find well manageable numerical functions

H
(j)
M (t, x0, y0, z0) (j = 1, 2, . . . , �+ 1)

passing very close to theM + 1 values fj (tν, x0, y0, z0) (ν = 0, 1, . . . ,M + 1), we
will use interpolation techniques and least square polynomial approximation.

Obviously, these methods are not the only ones that could be used to determine
such well manageable numerical functions. However, for the main purpose of this
chapter, it is sufficiently indicative to consider only these methods, since for a
multitude of cases, they can be applied and give satisfactory prediction results.

The Linear Splines Interpolation Method

Suppose

EK+1 = {tν ∈ [T0, Tν] : ν = 0, 1, . . . , K}

is a given finite set ofM+1 different time moments in a fixed time interval [T0, Tν],
such that (tν, x0, y0, t0) ∈ U and tν < t

ν
′ , whenever ν, ν

′ ∈ 0, 1, . . . , K satisfy

ν < ν
′
.

Let also k < K . Assume that, for any ν = 0, 1, . . . , k, we know the
corresponding measurement points. Specifically, this means that for any such ν and
any j = 0, 1, . . . , �+ 1, we know the measured values

fj (tν) := fj (tν, x0, y0, z0)

of the j th systemic index g(j)S accordingly to a systemic measurement MF at the
k + 1 discrete points tν , ν = 0, 1, . . . , k.

Furthermore, assume that for any ν = k + 1, k + 2, . . . ,M , the point
(tν, x0, y0, t0) is a regularity state.

Below, we will formulate a general approximate method to identify all those time
intervals in the region (tk, tk+1), during which peculiar incidents in the system may
occur (Figure 3).

The advantage of application of a linear splines interpolation method [11]
consists in its low computational complexity, not only for computing the linear
splines but also for computing the roots and the intervals in which the approximate
tolerance deviations are negative or positive. In case of few interpolating points, this
method will give inaccurate results. But if there are enough interpolating points,
the method is efficient, so it is proposed in case that there are enough interpolating
points. Of course, in the general theoretical case, the effectiveness of the method
may be directly dependent on the number of the linear spline zeros that are within
the period of measurements. However, usually in practice, this is not a problem,
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Fig. 3 Time intervals

since all measurement values are situated a bit far from regularity points that, in
most cases, take positive values.

Now, our general algorithmic framework specializes as follows.

Algorithm 1:
Deterministic Prediction Using Linear Splines

Input: - the points (tν, fj (tν);
- the k measurement points;
- theM − k regularity points.

Output: - the zeroes of the functions
FLinearSpline(τ ) = ||δcritical(τ )|| − V(τ ),
F′LinearSpline(τ ) = ||εcritical(τ )|| − V(τ ),
G̃LinearSpline(τ̃ ) = ||δ̃critical(τ̃ )|| − V∗(τ̃ ),
G̃′LinearSpline(τ̃ ) = ||ε̃critical(τ̃ )|| − V∗(τ̃ ),
GLinearSpline(τ ) = ||δcritical(τ )|| − V∗(τ ),
G′LinearSpline(τ ) = ||εcritical(τ )|| − V∗(τ )

in a given interval (tk, tk+1);
- the intervals into which the following inequalities are satisfied:

FLinearSpline(τ ) < 0,
F′LinearSpline(τ ) < 0,

G̃LinearSpline(τ̃ ) < 0,

G̃′LinearSpline(τ̃ ) < 0,
GLinearSpline(τ ) < 0,
G′LinearSpline(τ ) < 0.

1. For each j = 1, 2, . . . , �+ 1, compute the Linear Spline

S
(j)
M (t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ1 (t)=fj (t0) t−t1t0−t1 + fj (t1)
t−t0
t1−t0 , t ∈ [t0, t1]

σ2 (t)=fj (t1) t−t2t1−t2 + fj (t2) t−t1t1−t1 , t ∈ [t1, t2]
...

σM (t)=fj (tM−1)
t−tM

tM−1−tM + fj (tM)
t−tM−1
tM−tM−1

, t ∈ [tM−1, tM ]

in the given interval based on theM + 1 values (tν, fj (tν)).
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2. Construct the curve

HM(t) ≡ SM (t, x0, y0, z0)

with

SM : R4 → G (S) : t "→ SM (t, x0, y0, z0) :=(
t, x0, y0, z0,S

(1)
M (t, x0, y0, z0) , . . . ,S

(�+1)
M (t, x0, y0, z0)

)
.

3. Choose four critical tolerance functions

δ̃critical(t) =
(
δ̃
(1)
critical(t), . . . , δ̃

(�+1)
critical(t)

)
,

ε̃critical(t) =
(
ε̃
(1)
critical(t), . . . , ε̃

(�+1)
critical(t)

)
,

δcritical(t) =
(
δ
(1)
critical(t), . . . , δ

(�+1)
critical(t)

)
and

εcritical(t) =
(
ε
(1)
critical(t), . . . , ε

(�+1)
critical(t)

)

representing distances from the lowest and highest thresholds outside of which
the regularity is repealed banded.

4. If r̃S = rS , then

i. Compute the zeroes of the deviations

FLinearSpline(τ ) and F′LinearSpline(τ )

in the given interval (tk, tk+1).
ii. Determine the intervals into which the tolerance deviation FLinearSpline(τ )

is positive using the computed zeroes; any point τ in (tk, tk+1) satisfying
this inequality is a potential point to display precarious incident.

iii. Determine the intervals into which the tolerance deviations

FLinearSpline(τ ) and F′LinearSpline(τ )

are negative and positive, respectively; any point τ in (tk, tk+1) satisfying
these inequalities is a potential point to display a dangerous incident.

iv. Determine the intervals into which F′LinearSpline(τ ) < 0; any point τ in
(tk, tk+1) satisfying this inequality is a potential point to display a dangerous
incident.
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5. Else

i. Determine the sets P̃ and P of all points τ̃ , τ ∈ (tk, tk+1) satisfying

dist (r̃S(τ̃ ),HM(τ̃ )) < dist (rS(τ̃ ),HM(τ̃ )) and

dist (r̃S(τ ),HM(τ)) > dist (rS(τ ),HM(τ)) .

ii. Compute the zeroes of the tolerance deviations

G̃LinearSpline(τ̃ ), G̃′LinearSpline(τ̃ ),

GLinearSpline(τ ) and G′LinearSpline(τ ).

iii. Determine

a. the intervals I ⊂ P̃ into which G̃LinearSpline(τ̃ ) > 0; any point τ̃ ∈
P̃ satisfying this inequality is a potential point to display precarious
incident, because of low performance or sub-sufficiency;

b. the intervals I ⊂ P̃ into which GLinearSpline(τ ) > 0; any point τ ∈
P satisfying this inequality is a potential point to display precarious
incident, because of high performance or ultra-sufficiency.

iv. Determine

a. in P̃ the intervals in which G̃LinearSpline(τ̃ ) < 0 and G̃′LinearSpline(τ̃ ) > 0;
any point τ̃ ∈ (tk, tk+1) satisfying these inequalities is a potential point
to display dangerous incident, because of low performance or sub-
sufficiency;

b. in P the intervals in which GLinearSpline(τ ) < 0 and G′LinearSpline(τ ) >

0; any point τ ∈ (tk, tk+1) satisfying this inequality is a potential point
to display dangerous incident, because of high performance or ultra-
sufficiency;

v. Determine

a. the intervals I ⊂ P̃ into which G̃′LinearSpline(τ̃ ) < 0; any point τ̃ ∈
(tk, tk+1) satisfying this inequality is a potential point to display disas-
trous incident, because of low performance or sub-sufficiency;

b. the intervals I ⊂ P̃ into which G′LinearSpline(τ ) < 0; any point τ ∈
(tk, tk+1) satisfying this inequality is a potential point to display disas-
trous incident, because of high performance or ultra sufficiency.

The Lagrange Interpolation Method

The advantage of Lagrange interpolation method [12, 16, 18] is its unified
expression into the whole interval of interest. But, on the other hand, its
computational complexity is greater than that of linear splines approximation and, in
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case of many interpolating points, the resulting polynomial will be of large degree,
which may cause problems due to cancellation of significant digits during floating
point operations, with subsequent increment in the computational complexity for
the computation of its roots. Thus, this method is recommended in the case of a
few interpolating points. Note that, the effectiveness of the polynomial interpolation
method seems to be dependent on the number of polynomial zeros located into
the period of measurements. However, as before, this is not a real problem, since,
usually in practice, the measurement values are all taken to be positive. Using
Lagrange interpolation, our general algorithmic framework becomes as follows.

Algorithm 2:
Deterministic Prediction Using Lagrange Interpolation

Input: - the interpolation points (tν, fj (tν);
- the k measurement points;
- theM − k regularity points.

Output: - the zeroes of the functions
FInterpolation(τ ) = ||δcritical(τ )|| − V(τ ),
F′Interpolation(τ ) = ||εcritical(τ )|| − V(τ ),
G̃Interpolation(τ̃ ) = ||δ̃critical(τ̃ )|| − V∗(τ̃ ),
G̃′Interpolation(τ̃ ) = ||ε̃critical(τ̃ )|| − V∗(τ̃ ),
GInterpolation(τ ) = ||δcritical(τ )|| − V∗(τ ),
G′Interpolation(τ ) = ||εcritical(τ )|| − V∗(τ )

in a given interval (tk, tk+1);
- the intervals into which the following inequalities are satisfied:

FInterpolation(τ ) < 0,
F′Interpolation(τ ) < 0,

G̃Interpolation(τ̃ ) < 0,

G̃′Interpolation(τ̃ ) < 0,
GInterpolation(τ ) < 0,
G′Interpolation(τ ) < 0.

1. For each j = 1, 2, . . . , � + 1, compute the unique Lagrange polynomial of
degree at mostM

L(j)M (t) =
M∑
ν=1

fj (tν)

M∏
ν
′=0(ν′ �=ν)

t − t
ν
′

tν − tν′

interpolating theM + 1 given values (tν, fj (tν)).
2. Construct the curve

HM(t) ≡ LM (t)

with

LM : R→ R
�+1 : t "→ LM (t) :=

(
t,L(1)M (t) , . . . ,L(�+1)

M (t)
)
.
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3. Choose four critical tolerance functions

δ̃critical(t) =
(
δ̃
(1)
critical(t), . . . , δ̃

(�+1)
critical(t)

)
,

ε̃critical(t) =
(
ε̃
(1)
critical(t), . . . , ε̃

(�+1)
critical(t)

)
,

δcritical(t) =
(
δ
(1)
critical(t), . . . , δ

(�+1)
critical(t)

)
and

εcritical(t) =
(
ε
(1)
critical(t), . . . , ε

(�+1)
critical(t)

)

representing distances from the lowest and highest thresholds outside of which
the regularity is repealed banded.

4. If r̃S = rS , then

i. Compute the tolerance deviations

FInterpolation(τ ) and F′Interpolation(τ )

in the given interval (tk, tk+1).
ii. Determine the intervals (αi, βi), (α′i , β ′i ) ⊂ (tk, tk+1) into which the

tolerance deviations FInterpolation(τ ) and F′Interpolation(τ ) are changing sign,
respectively;

For every interval (αi, βi) and (α′i , β ′i ),
Apply Bisection method for approaching zeroes of FInterpolation(τ ) in

(αi, βi) and zeroes of F′Interpolation(τ ) in (α′i , β ′i );
Apply Newton’s method for computing zeroes of FInterpolation(τ ) in

(αi, βi) and zeroes of F′Interpolation(τ ) in (α′i , β ′i );
iii. Determine the intervals into which the tolerance deviation FInterpolation(τ ) is

positive using the computed zeroes; any point τ in (tk, tk+1) satisfying this
inequality is a potential point to display precarious incident.

iv. Determine the intervals into which the tolerance deviations

FInterpolation(τ ) and F′Interpolation(τ )

are negative and positive, respectively; any point τ in (tk, tk+1) satisfying
these inequalities is a potential point to display a dangerous incident .

v. Determine the intervals into which F′Interpolation(τ ) < 0; any point τ in
(tk, tk+1) satisfying this inequality is a potential point to display a dangerous
incident.

5. Else

i. Determine the sets P̃ and P of all points τ̃ . τ ∈ (tk, tk+1) satisfying

dist (r̃(τ̃ ), HM(τ̃ )) < dist (r(τ̃ ),HM(τ̃ )) and

dist (r̃(τ ),HM(τ)) > dist (r(τ ),HM(τ)) .
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ii. Compute the tolerance deviations

G̃Interpolation(τ̃ ), G̃′Interpolation(τ̃ ),

GInterpolation(τ ) and G′Interpolation(τ ).

iii. Determine the intervals (c̃i , d̃i ), (c̃′i , d̃ ′i ), (ci, di), (c′i , d ′i ) ⊂ (tk, tk+1)

into which the tolerance deviations G̃Interpolation(τ̃ ), G̃′Interpolation(τ̃ ),
GInterpolation(τ ) and G′Interpolation(τ ) are changing sign, respectively;

For every interval (c̃i , d̃i ), (c̃′i , d̃ ′i ), (ci, di), (c′i , d ′i ) ⊂ (tk, tk+1),

Apply Bisection method for approaching zeroes of G̃Interpolation(τ̃ ) in

(c̃i , d̃i ), zeroes of G̃′Interpolation(τ̃ ) in (c̃′i , d̃ ′i ), zeroes of GInterpolation(τ ) in
(ci, di) and zeroes of G′Interpolation(τ ) in (c′i , d ′i );

Apply Newton’s method for computing zeroes of G̃Interpolation(τ̃ ) in

(c̃i , d̃i ), zeroes of G̃′Interpolation(τ̃ ) in (c̃′i , d̃ ′i ), zeroes of GInterpolation(τ ) in
(ci, di) and zeroes of G′Interpolation(τ ) in (c′i , d ′i ).

iv. Determine

a. the intervals I ⊂ P̃ into which G̃Interpolation(τ̃ ) > 0; any point τ̃ ∈ P̃

satisfying this inequality is a potential point to display precarious
incident, because of low performance or sub-sufficiency;

b. the intervals I ⊂ P̃ into which GInterpolation(τ ) > 0; any point τ ∈ P

satisfying this inequality is a potential point to display precarious
incident, because of high performance or ultra-sufficiency.

v. Determine

a. in P̃ the intervals in which G̃Interpolation(τ̃ ) < 0 and G̃′Interpolation(τ̃ ) > 0;
any point τ̃ ∈ (tk, tk+1) satisfying these inequalities is a potential point
to display dangerous incident, because of low performance or sub-
sufficiency;

b. in P the intervals in which GInterpolation(τ ) < 0 and G′Interpolation(τ ) >

0; any point τ ∈ (tk, tk+1) satisfying this inequality is a potential point
to display dangerous incident, because of high performance or ultra-
sufficiency;

vi. Determine

a. the intervals I ⊂ P̃ into which G̃′Interpolation(τ̃ ) < 0; any point τ̃ ∈
(tk, tk+1) satisfying this inequality is a potential point to display disas-
trous incident, because of low performance or sub-sufficiency;

b. the intervals I ⊂ P̃ into which G′Interpolation(τ ) < 0; any point τ ∈
(tk, tk+1) satisfying this inequality is a potential point to display disas-
trous incident, because of high performance or ultra-sufficiency.
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The Least Squares Polynomial Approximation Method

The third method that we use is the least squares polynomial approximation [12, 16].
The advantages of the method are the united formula for the whole interval, and the
degree of the computed polynomial is selected from the user, thus it can be small.
It can be used even if the number of the known points is large. The disadvantage is
that the computed polynomial is not interpolating all (or any of) the given points.

The method consists in the following thinking. Given (M + 1) points

(ti , fj (ti , x0, y0, z0))

and a degreem,m < M+1, we will find an optimal polynomial p(j)M (t) of degreem

that minimizes the 2-norm of the distance of p(j)M (t) from the given (M + 1) points.
In order to evaluate the minimization of the 2-norm, we use the QR factorization and
the fact that ‖Q‖2 = 1, sinceQ is an orthogonal matrix.

Having regard to the above considerations, in Algorithm 3 below, we will use the
following remarks.

1. For every point (ti , fj (ti , x0, y0, z0)) , we put

fj (ti , x0, y0, z0) = a(j)m tmi + a(j)m−1t
m−1
i + · · · + a(j)1 ti + a(j)0 . (1)

2. Let A be an λ × m matrix with λ > m, b a vector of length λ, and suppose that
we want to minimize the 2-norm of At − b. The QR factorization of A has the
following form:

R =
[
R1

0

]
,

where R1 is an m×m upper triangular matrix. Thus, A = QR, and for minimizing
the 2-norm of At − b, it holds

‖At − b‖2 = ‖QRt − b‖2 =
∥∥∥QT ∥∥∥

2
‖QRt − b‖2 =

∥∥∥QTQRt −QT b∥∥∥
2

∥∥∥Rt −QT b
∥∥∥

2
=

∥∥∥∥
[
R1

0

]
t −

[
c1

c2

]∥∥∥∥
2

=
∥∥∥∥
[
R1t − c1

−c2,

]∥∥∥∥
2

where

QT b =
[
c1

c2

]
, with length (c1) = m and length (c2) = λ−m.

ch7:alg3
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Since c2 is constant, the norm is minimized when R1t − c1 = 0; thus, in order to
minimize the initial norm, we have to solve the liner system

R1t = c1 (2)

The algorithm evaluating the previous technique is the following.

Algorithm 3:
Deterministic Prediction Using Least Squares

Input: - the interpolation points (tν, fj (tν);
- the k measurement points;
- theM − k regularity points.

Output: - the zeroes of the functions
FLeastSquares(τ ) = ||δcritical(τ )|| − V(τ ),
F′LeastSquares(τ ) = ||εcritical(τ )|| − V(τ ),
G̃LeastSquares(τ̃ ) = ||δ̃critical(τ̃ )|| − V∗(τ̃ ),
G̃′LeastSquares(τ̃ ) = ||ε̃critical(τ̃ )|| − V∗(τ̃ ),
GLeastSquares(τ ) = ||δcritical(τ )|| − V∗(τ ),
G′LeastSquares(τ ) = ||εcritical(τ )|| − V∗(τ )

in a given interval (tk, tk+1);
- the intervals into which the following inequalities are satisfied:

FLeastSquares(τ ) < 0,
F′LeastSquares(τ ) < 0,

G̃LeastSquares(τ̃ ) < 0,

G̃′LeastSquares(τ̃ ) < 0,
GLeastSquares(τ ) < 0,
G′LeastSquares(τ ) < 0.

1. For each j = 1, 2, . . . , �+ 1,
form the linear system

T ∗ a(j) = fj (T )⎛
⎜⎜⎜⎜⎜⎜⎜⎝
⇔

⎛
⎜⎝
tmM t

m−1
M

· · · tM 1
...
... · · · ...

...

tm0 tm−1
0 · · · t0 1

⎞
⎟⎠

︸ ︷︷ ︸
T

⎛
⎜⎝
a
(j)
m

...

a
(j)
0

⎞
⎟⎠

︸ ︷︷ ︸
a(j)

=
⎛
⎜⎝
fj (tM, x0, y0, z0)

...

fj (t0, x0, y0, z0)

⎞
⎟⎠

︸ ︷︷ ︸
fj (T )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

resulting from equation (1).
Apply the QR factorization to T : [Q,R] =qr(T)
Compute the coefficients a(j)i , i = m,m − 1, . . . , 0 of the polynomial p(j)M (t)

by solving the linear system
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R1a
(j) = c1

resulting from (2) applying the LU factorization with partial pivoting.
2. Construct the curve

HM(t) ≡ PM (t)

with

PM : R→ R
�+1 : t "→ PM (t) :=

(
t, P

(1)
M (t) , . . . , P

(�+1)
M (t)

)
.

3. Choose four critical tolerance functions

δ̃critical(t) =
(
δ̃
(1)
critical(t), . . . , δ̃

(�+1)
critical(t)

)
,

ε̃critical(t) =
(
ε̃
(1)
critical(t), . . . , ε̃

(�+1)
critical(t)

)
,

δcritical(t) =
(
δ
(1)
critical(t), . . . , δ

(�+1)
critical(t)

)
and

εcritical(t) =
(
ε
(1)
critical(t), . . . , ε

(�+1)
critical(t)

)

representing distances from the lowest and highest thresholds outside of which
the structure of regularity ceases to exist.

4. If r̃S = rS , then

i. Compute the tolerance deviations

FLeastSquares(τ ) and F′LeastSquares(τ )

in the given interval (tk, tk+1).
ii. Determine the intervals (αi, βi), (α′i , β ′i ) ⊂ (tk, tk+1) into which the

tolerance deviations FLeastSquares(τ ) and F′LeastSquares(τ ) are changing sign,
respectively;

For every interval (αi, βi) and (α′i , β ′i ),
Apply Bisection method for approaching zeroes of FLeastSquares(τ )

in (αi, βi) and zeroes of F′LeastSquares(τ ) in (α′i , β ′i );
Apply Newton’s method for computing zeroes of FLeastSquares(τ )

in (αi, βi) and zeroes of F′LeastSquares(τ ) in (α′i , β ′i );
iii. Determine the intervals into which the tolerance deviation FLeastSquares(τ )

is positive using the computed zeroes; any point τ in (tk, tk+1) satisfying
this inequality is a potential point to display precarious incident.

iv. Determine the intervals into which the tolerance deviations

FLeastSquares(τ ) and F′LeastSquares(τ )
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are negative and positive, respectively; any point τ in (tk, tk+1) satisfying
these inequalities is a potential point to display a dangerous incident.

v. Determine the intervals into which F′LeastSquares(τ ) < 0; any point τ in
(tk, tk+1) satisfying this inequality is a potential point to display a dangerous
incident.

5. Else

i. Determine the sets P̃ and P of all points τ̃ . τ ∈ (tk, tk+1) satisfying

dist (r̃(τ̃ ), PM(τ̃ )) < dist (r(τ̃ ), PM(τ̃ )) and

dist (r̃(τ ), PM(τ)) > dist (r(τ ), PM(τ)) .

ii. Compute the tolerance deviations

G̃LeastSquares(τ̃ ), G̃′LeastSquares(τ̃ ),

GLeastSquares(τ ) and G′LeastSquares(τ ).

iii. Determine the intervals (c̃i , d̃i ), (c̃′i , d̃ ′i ), (ci, di), (c′i , d ′i ) ⊂ (tk, tk+1)

into which the four respective tolerance deviations

G̃LeastSquares(τ̃ ), G̃′LeastSquares(τ̃ ),

GLeastSquares(τ ),G′LeastSquares(τ )

are changing sign;
For every interval (c̃i , d̃i ), (c̃′i , d̃ ′i ), (ci, di), (c′i , d ′i ) ⊂ (tk, tk+1),

Apply Bisection method for approaching zeroes of G̃LeastSquares(τ̃ ) in

(c̃i , d̃i ), zeroes of G̃′LeastSquares(τ̃ ) in (c̃′i , d̃ ′i ), zeroes of GLeastSquares(τ ) in
(ci, di) and zeroes of G′LeastSquares(τ ) in (c′i , d ′i );

Apply Newton’s method for computing zeroes of G̃LeastSquares(τ̃ ) in

(c̃i , d̃i ), zeroes of G̃′LeastSquares(τ̃ ) in (c̃′i , d̃ ′i ), zeroes of GLeastSquares(τ ) in
(ci, di) and zeroes of G′LeastSquares(τ ) in (c′i , d ′i ).

iv. Determine

a. the intervals I ⊂ P̃ into which G̃LeastSquares(τ̃ ) > 0; any point τ̃ ∈
P̃ satisfying this inequality is a potential point to display precarious
incident, because of low performance or sub-sufficiency;

b. the intervals I ⊂ P̃ into which GLeastSquares(τ ) > 0; any point τ ∈
P satisfying this inequality is a potential point to display precarious
incident, because of high performance or ultra-sufficiency.
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v. Determine

a. in P̃ the intervals in which G̃LeastSquares(τ̃ ) < 0 and G̃′LeastSquares(τ̃ )

> 0; any point τ̃ ∈ (tk, tk+1) satisfying these inequalities is a potential
point to display dangerous incident, because of low performance or sub-
sufficiency;

b. in P the intervals in which GLeastSquares(τ ) < 0 and G′Interpolation(τ ) >

0; any point τ ∈ (tk, tk+1) satisfying this inequality is a potential point
to display dangerous incident, because of high performance or ultra-
sufficiency;

vi. Determine

a. the intervals I ⊂ P̃ into which G̃′LeastSquares(τ̃ ) < 0; any point
τ̃ ∈ (tk, tk+1) satisfying this inequality is a potential point to display
disastrous incident, because of low performance or sub-sufficiency;

b. the intervals I ⊂ P̃ into which G′LeastSquares(τ ) < 0; any point
τ ∈ (tk, tk+1) satisfying this inequality is a potential point to display
disastrous incident, because of high performance or ultra-sufficiency.

6 Numerical Results

In this section, we present some analytical numerical results evaluating the algo-
rithms of Section 5, and we comment the behaviour of the algorithms.

Numerical Examples

Below, we present numerical examples, implementing our algorithms.
Let

HM (t, x0, y0, z0)= (H (1)M (t, x0, y0, z0) ,H
(2)
M (t, x0, y0, z0) ,H

(3)
M (t, x0, y0, z0) ),

where H(1)M is a function that passes through the points

(t
(1)
1 , w

(1)
1 ) = (0.227995363116753, 0.005887473341432)

(t
(1)
2 , w

(1)
2 ) = (0.666935900301706,−0.002451487989435)

(t
(1)
3 , w

(1)
3 ) = (1.088758378092684,−0.026536596177317)

(t
(1)
4 , w

(1)
4 ) = (1.222118728436067,−0.083738292365262)

(t
(1)
5 , w

(1)
5 ) = (1.919487917032162, 0.000000000000002),
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H
(2)
M a function that passes through the points

(t
(2)
1 , w

(2)
1 ) = (1.084431059927606, 0.001824976373948)

(t
(2)
2 , w

(2)
2 ) = (1.217471981917524,−0.008796025804148)

(t
(2)
3 , w

(2)
3 ) = (1.303998173014984,−0.005794329946252)

(t
(2)
4 , w

(2)
4 ) = (1.306656948627908,−0.005645884524371)

(t
(2)
5 , w

(2)
5 ) = (1.918582850410889, 0.000000000000004)

and H(3)M a function that passes through the points

(t
(3)
1 , w

(3)
1 ) = (0.477049937449979, 0.003546169430236)

(t
(3)
2 , w

(3)
2 ) = (0.831405751301321, 0.037059412329365)

(t
(3)
3 , w

(3)
3 ) = (0.969342971854446, 0.076154493784762)

(t
(3)
4 , w

(3)
4 ) = (1.136154854287057, 0.100711757050127)

(t
(3)
5 , w

(3)
5 ) = (1.858527246374456, 0.000000000000001).

Let also D =
(
t, x0, y0, z0; g(1)S , g(2)S , g(3)S

)
be a system universality defined by

g
(1)
S (t, x0, y0, z0) =

{
0.3, t ∈ [0, 1]
1, t ∈ (1, 2] ,

g
(2)
S (t, x0, y0, z0)=

⎧⎨
⎩

5, t ∈ [0, 0.5]
4.8, t ∈ (0.5, 1.5]
4.5, t ∈ (1.5, 2]

and

g
(3)
S (t, x0, y0, z0)= 1, t ∈ [0, 2]

Let us finally take

εcritical = 0.4.
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Application of the Lagrange Interpolation Method
Applying the Lagrange interpolation method to the first five pairs of points, we
construct the following polynomial of degree 4:

H
(1)
M (t, x0, y0, z0) = t4 − 3.834982837445468t3 + 4.754550511049691t2

−2.230278241661984t + 0.309978747075857.

Similarly, applying again the Lagrange interpolation method to the other two sets of
pairs of points, we construct the following polynomials:

H
(2)
M (t, x0, y0, z0) = t4 − 6.192973860723464t3 + 14.172259131310970t2

−14.183279563983136t + 5.230995486528229

and

H
(3)
M (t, x0, y0, z0)= t4 − 4.674114367931685− t37.506905149871919t2

−4.781612611847812t + 1.031873971027329.

In the interval [0, 0.5]:

g
(1)
S (t, x0, y0, z0) = 0.3, g(2)S (t, x0, y0, z0) = 5 and g(3)S (t, x0, y0, z0) = 1.

Thus,
D(t∗) := dist (D (t∗, x0, y0, z0) ,HM (t

∗, x0, y0, z0))− εcritical =

([
H 1
M(t

∗, x0, y0, z0)− g(1)S (t∗, x0, y0, z0)
]2

+
[
H 2
M(t

∗, x0, y0, z0)− g(2)S (t∗, x0, y0, z0)
]2

+
[
H 3
M(t

∗, x0, y0, z0)− g(3S (t∗, x0, y0, z0)
]2

) 1
2

− 0.4

= 102(0.030000000000000(t∗)8 − 0.294041421322012(t∗)7 + 1.277747933120760(t∗)6

− 3.245707071889221(t∗)5 + 5.178371259645941(t∗)4 − 4.982519922531551(t∗)3

+ 2.361242738501194(t∗)2 − 0.069018758555689(t∗)+ 0.00014474440218668).
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Applying a few steps of Bisection and Newton’s methods, we compute the only two
real zeroes (t∗1 ) and (t∗2 ) of this polynomial:

t∗1 = 0.002273099702700 and t∗2 = 0.028800172170581.

These two zeroes belong to [0, 0.5], and thus we may investigate in which subin-
terval, the distance dist

(
D

(
t∗i , x0, y0, z0

)
,HM

(
t∗i , x0, y0, z0

))
exceeds εcritical, by

determining the sign of D(t∗i ) := dist
(
D

(
t∗i , x0, y0, z0

)
,HM

(
t∗i , x0, y0, z0

)) −
εcritical. To do so, we observe that the computation of the middle of an interval [a, b]
is numerically more stable using the formula a+ (b− a)/2 instead of (a+ b)/2, so
we have

D
(

0+ t∗1
2

)
= 0.006934396087571 > 0 : exceeds

D
(
t∗1 +

t∗2 − t∗1
2

)
= 0.037415583826047 < 0 : does not exceed

D
(
t∗2 +

0.5− t∗2
2

)
= 7.639373481094819 > 0 : exceeds.

Thus, the subintervals of [0, 0.5] in which dist (D (t∗,x0,y0,z0) ,HM (t
∗, x0, y0, z0))

exceeds εcritical are

[0, t∗1 ] = [0, 0.002273099702700] and [t∗2 , 0.5] = [0.028800172170581, 0.5].

These results can be verified in the following graphs (Figure 4):
Similarly, we may proceed in the other intervals:

18

1.0

0

16

14

12
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8

6

4

2

0

-2
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1

0.5

0

0.5
0 0.01 0.02 0.03 0.04 0.05 0.06

Fig. 4 Left. D(t∗i ) = dist
(
D

(
t∗i , x0, y0, z0

)
, HM

(
t∗i , x0, y0, z0

))− εcritical Right. Blue: D(t∗i ) =
dist

(
D

(
t∗i , x0, y0, z0

)
, HM

(
t∗i , x0, y0, z0

))
, Red: εcritical
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In the interval [0.5, 1]:

g
(1)
S (t, x0, y0, z0) = 0.3, g(2)S (t, x0, y0, z0) = 4.8 and g(3)S (t, x0, y0, z0) = 1.

Thus,

D(t∗) := dist
(
D

(
t∗, x0, y0, z0

)
,HM

(
t∗, x0, y0, z0

))− εcritical =

= 102(0.030000000000000(t∗)8 − 0.294041421322012(t∗)7 + 1.277747933120760(t∗)6

− 3.245707071889221(t∗)5 + 5.182371259645940(t∗)4 − 5.007291817974445(t∗)3

+ 2.417931775026438(t∗)2 − 0.125751876811622(t∗)+ 0.00146872634829960).

This polynomial has no real roots in [0.5, 1]. Thus, D does not change sign in
[0.5, 1]. We check the sign of D in [0.5, 1]:

dist

(
0.5+1−0.5

2
, x0, y0, z0

)
= 21.546863660167102 > 0.

Thus, any point in the interval [0.5, 1] satisfies the inequality. This result is also
verified from Figure 5.

0.5
15

16

17

18

19

20

21

22

23

24

0.6 0.7 0.8 0.90.55 0.65 0.75 0.85 0.95 1

Fig. 5 D(t∗i ) = dist
(
D

(
t∗i , x0, y0, z0

)
, HM

(
t∗i , x0, y0, z0

))− εcritical = 0, in [0.5, 1]
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In the interval [1, 1.5]:

g
(1)
S (t, x0, y0, z0) = 1, g(2)S (t, x0, y0, z0) = 4.8andg(3)S (t, x0, y0, z0) = 1.

Thus,

D(t∗) := dist
(
D

(
t∗, x0, y0, z0

)
,HM

(
t∗, x0, y0, z0

))− εcritical =

= 102(0.030000000000000(t∗)8 − 0.294041421322012(t∗)7 + 1.277747933120760(t∗)6

− 3.245707071889221(t∗)5 + 5.168371259645941(t∗)4 − 4.953602058250208(t∗)3

+ 2.351368067871742(t∗)2 − 0.094527981428354(t∗)+ 0.006629023889238).

This polynomial has no real roots neither in interval [1, 1.5] nor in R.
Thus, D does not change sign in [1, 1.5]. We check the sign of D in [0.5, 1]:

dist

(
1+ 1.5− 1

2
, x0, y0, z0

)
= 25.099633861696560 > 0.

Thus, any point of the interval [1, 1.5] satisfies the inequality. This result is also
verified from Figure 6.

1
24.5

24.6

24.7

24.8

24.9

25

25.1

25.2

25.3

25.4

1.1 1.2 1.3 1.4 1.51.05 1.15 1.25 1.35 1.45

Fig. 6 D(t∗i ) = dist
(
D

(
t∗i , x0, y0, z0

)
, HM

(
t∗i , x0, y0, z0

))− εcritical = 0, in [1, 1.5]



132 N. J. Daras

1.5
21.6

21.8

22

22.2

22.4

22.6

22.8

1.6 1.7 1.8 1.9 21.55 1.65 1.75 1.85 1.95

Fig. 7 D(t∗i ) = dist
(
D

(
t∗i , x0, y0, z0

)
, HM

(
t∗i , x0, y0, z0

))− εcritical = 0, in [1.5, 2]

In the interval [1.5, 2] :

g
(1)
S (t, x0, y0, z0) = 1, g(2)S (t, x0, y0, z0) = 4.8 and g(3)S (t, x0, y0, z0) = 1.

Thus,

D(t∗) := dist
(
D

(
t∗, x0, y0, z0

)
,HM

(
t∗, x0, y0, z0

))− εcritical =

= 102(0.030000000000000(t∗)8 − 0.294041421322012(t∗)7 + 1.277747933120760(t∗)6

− 3.245707071889221(t∗)5 + 5.168371259645941(t∗)4 − 4.990759901414549(t∗)3

+ 2.436401622659608(t∗)2 − 0.179627658812253(t∗)+ 0.00971499680840698).

This polynomial has no real roots neither in interval [1.5, 2] nor in R

Thus, D does not change sign in [1.5, 2]. We check the sign of the previous function
in [1.5, 2]:

dist

(
1.5+ 2− 1.5

2
, x0, y0, z0

)
= 22.689534856364734 > 0.

Thus, any point of the interval [1.5, 2] satisfies the inequality. This result is also
verified from Figure 7.
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A special case: Measurement in the Chebyshev Points of [0, 2]
Assume that the measurements have been done in the Chebyshev points, properly
transformed for the interval [0, 2]:

1.951056516295154, 1.587785252292473, 1.000000000000000,

0.412214747707527 and 0.048943483704846.

Thus,
H
(1)
M is a function that passes through the points

(t
(1)
1 , w

(1)
1 ) = (1.951056516295154, 0.065558230683740),

(t
(1)
2 , w

(1)
2 ) = (1.587785252292473,−0.240026117055866),

(t
(1)
3 , w

(1)
3 ) = (1.000000000000000,−0.000731820981905),

(t
(1)
4 , w

(1)
4 ) = (0.412214747707527,−0.041221034220753),

(t
(1)
5 , w

(1)
5 ) = (0.048943483704846, 0.211766633448476),

H
(2)
M a function that passes through the points

(t
(2)
1 , w

(2)
1 ) = (1.951056516295154, 0.002603154846258),

(t
(2)
2 , w

(2)
2 ) = (1.587785252292473, 0.006004566492993),

(t
(2)
3 , w

(2)
3 ) = (1.000000000000000, 0.027001193132598),

(t
(2)
4 , w

(2)
4 ) = (1.306656948627908, 1.387695745483932),

(t
(2)
5 , w

(2)
5 ) = (1.918582850410889, 4.570045178558653),

and H(3)M a function that passes through the points

(t
(3)
1 , w

(3)
1 ) = (1.951056516295154, 0.054654055471936),

(t
(3)
2 , w

(3)
2 ) = (1.587785252292473, 0.010790868704285),

(t
(3)
3 , w

(3)
3 ) = (1.000000000000000, 0.083052141119750),

(t
(3)
4 , w

(3)
4 ) = (0.412214747707527, 0.037883303951495),

(t
(3)
5 , w

(3)
5 ) = (0.048943483704846, 0.815285451543443).
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Evaluating the previous procedure (Lagrange interpolation) to the above Chebyshev
points and solving the inequality of the relevant algorithm, we may conclude that
the inequality is satisfied in the following intervals:

[0, 0.002273099702700], [0.028800172170581, 0.5], [0.5, 1], [1, 1.5] and [1.5, 2].

The norm-2 of the difference of the results obtained from the algorithms is

1.314636333821229 · 10−12.

Application of the Least Squares Method
In case of many measurements, the use of polynomial interpolation will result to

a polynomial of high degree, which means that it cannot be handled efficiently due
to floating point errors and its increased computational complexity. The use of least
squares concluding to a polynomial of manageable degree is more appropriate.

Supposing that we have 100 measurements (Lagrange interpolation would lead
to a polynomial of degree 99!), we apply Algorithm 3, evaluating the least squares
technique to derive a polynomial of degree 4. The intervals in which the resulting
inequality is positive are

[0, 0.002273099702699], [0.028800172170581, 0.5], [0.5, 1], [1, 1.5] and [1.5, 2].

Application of the Linear Splines Method
We used 500 sets of measured points in each interval (:[0,0.5], [0.5,1], [1,1.5],

[1.5,2]) for every component of H .
Approximating H1, H2 and H3 using linear splines and computing the intervals

where the difference is positive, we conclude to the following result:

[0, 0.002257794228617], [0.029015423603700, 0.5], [0.5, 1], [1, 1.5] and [1.5, 2]

The 2-norm error with the other methods is

2.15 · 10−4.

Using 50 instead of 500 measurements in each interval, for every component of
H , the error is similar:

2.31 · 10−4,

but the decrease of the computational time is too significant.
An interesting task is the case that there are some measurement errors in the

initial points.
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In this case, the most appropriate method is the least squares one, which
minimizes the 2-norm of the system At = b, analysed in Subsection 5. Suppose
that there are errors in measured yis of order of O(10−3). Evaluating Algorithm 3 to
100 points, for the functions defined in our example, we get the following intervals:

[0, 0.001903961570183], [0.028255098676371, 0.5], [0.5, 1], [1, 1.5] and [1.5, 2].

The absolute error in the first interval is 3.691381325159999 · 10−4 and in the
second is 5.450734942099994 · 10−4 for measurement errors of order of 10−3 in
each measured point.

Applying Lagrange’s interpolation, the corresponding algorithm fails to compute
the roots of the final distance, and thus the sign of the final computed polynomial
does not change and it is positive for the whole initial interval. Thus, the inequality
holds for every t in [0, 2], which is not correct.

If the measured points are the Chebyshev ones, then the result is quite close to
the real ones:

[0, 0.001447041826483], [0.027872115109573, 0.5], [0.5, 1], [1, 1.5] and [1.5, 2].

For measurement errors of order of 10−3 in each measured point, the absolute
errors are 8.260578762160000 · 10−4 in the first interval and 9.280570610080002 ·
10−4 in the second interval.

Comparison of Algorithms

Comparing the algorithms, we may conclude the following results:

Method
Number of measured
points Efficiency Proposal

Computational
complexity

Linear splines Many High Proposed Low

Linear splines Few Low Not proposed Low

Langrange Many Low Not proposed Too high

Lagrange Few Good Proposed Low

Chebyshev Many High Not proposed Too high

Chebyshev Few Good Proposed Low

Least squares Many High Proposed Lowa

Least squares Few Good Proposed Lowa

aLow complexity for polynomials of low degree

According to this table, we infer that Lagrange and Chebyshev’s interpolation
methods are not proposed in case of many measured points, since the polynomial
that is computed is of high degree, causing instability issues due to floating point
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operations and resulting to high computation complexity. The second one can be
evaluated in case that there is the opportunity the measurements to be carried out at
Chebyshev points. In case of few measured points, the behaviour of both methods
is good, and thus they are proposed.

Least squares method is proposed for the case that there are many measured
points or there are measurement errors. The method is efficient, and the computa-
tional complexity is low for polynomials of low degree.

Finally, linear splines method is proposed in case of many measured points. The
computational complexity is low and the computation of the roots of the inequality
of the relevant algorithm is stable, since the splines are polynomials of degree 1.
Also, linear splines require only the continuity of the function in the interpolating
points. In case of few measured points, the method is not proposed.
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Accurate Approximations of the
Weighted Exponential Beta Function

Silvestru Sever Dragomir and Farzad Khosrowshahi

Abstract In this chapter, we provide several error bounds in approximating the
Weighted Exponential Beta function

F (α, β; γ ) :=
∫ 1

0
exp

[
γ xα (1− x)β] dx,

where α, β and γ are positive numbers, with some simple quadrature rules of Beta-
Taylor, Ostrowski and Trapezoid type.

MSC (1991): 26D15

1 Introduction

Both contractor and subcontractors’ failure to meet the liabilities to the suppliers and
financial institutions can force an otherwise successful organization into liquidity,
which is the ultimate cause of insolvency (Davis 1999, [1]). The mishaps tend to
cause damaging impact during both depressed and buoyant economic situations.
These are manifested in cash flow failures by overtrading in boom periods and
income constraints of recessed periods. Construction project expenditure patterns
tend to display growth behaviour and cumulatively take the familiar ‘S’ curve. The
expenditure pattern of construction projects is typically represented by exponential
curves where the rate of growth is proportional to the state of the growth, and
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each value represents a constant percentage of the neighbouring value. While the
traditional methods require extensive knowledge about the project and project
plan, the mathematical approaches are somewhat alienating to the user, as the
logic of the forecast is embedded within the data underpinning the model. The
traditional models typically generate a forecast, which is then depicted graphically.
An alternative approach to forecasting project expenditure has been proposed by
Khosrowshahi [12]. The method takes a reverse approach to the traditional methods.
Instead of forecasting the expenditure values, the method reconstructs the likely
shape of the expenditure pattern and then converts the shape into figure. The shape
of the periodic project expenditure profile embodies characteristics associated with
the physical properties of the project. These shape criteria consist of the following
general and specific characteristics:

General Characteristics. These characteristics apply to all projects.

– Negation of negative values
– Periodic values are discrete and form a pattern
– The baseline periodic pattern is a two-phased monotonic curve monotonically

increasing towards a peak and monotonically decreasing towards the end.
– The commencing and the terminating final values are both zero.

Specific Characteristics. These are characteristics that define the specifics of
each project.

– The position of the peak point on the time and the cost axes.
– The intensity of expenditure from the start to the peak point.
– The distortion of the underlying pattern causing acceleration or retardation

resulting in the generation of additional peaks and troughs.

Therefore, the shape of the expenditure pattern is defined in terms of these
variables. The role of the mathematical model is to generate a pattern converted
by transforming the shape variables into a graphical pattern.

Extensive analysis of project expenditure patterns has revealed that the main
features of the shape of the project periodic expenditure pattern are defined in terms
of a number of variables represented by the following expression (see [11]):

YC := exp
[
bxa(1− x)d

]
− 1,

where

xp := R = a

a + d and yp := Q = exp
[
bRa(1− R)d

]
− 1,

where

– Q and R, represent the positions of the project expenditure peak on both the cost
and time axes.

– a and b are parameterized in terms of xp and yp as follows:
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a = xpd

1− xp , b =
ln

(
1+ yp

)
xap

(
1− xp

)d .

– Parameter d is calculated through numerical method that is derived to rapidly
converge towards a solution within desired error tolerance.

A relationship is established between the properties of the project and the
physical shape of the project expenditure pattern. These are then related and
reflected on the mathematical expression through its parameters.

Motivated by the above considerations, in this paper we introduce the three-
parameter family of functions

fα,β,γ (x) := exp
[
γ xα (1− x)β] , x ∈ [0, 1] , α , β, γ > 0

and the “Weighted Exponential Beta” function defined by the integral

F (α, β; γ ) :=
∫ 1

0
fα,β,γ (x) dx =

∫ 1

0
exp

[
γ xα (1− x)β] dx, α, β, γ > 0.

In the following, by making use of Theory of Inequalities, we provide several error
bounds in accurately approximating the Weighted Exponential Beta function with
some simple quadrature rules of Beta-Taylor, Ostrowski and Trapezoid type.

2 Basic Facts on the Generating Function fα,β,γ

In Mathematics, the Beta function, also called the Euler integral of the first kind, is
a special function defined by

B (α, β) :=
∫ 1

0
xα−1 (1− x)β−1 dx, α > 0, β > 0. (2.1)

The utility of the Beta function is often overshadowed by that of the Gamma
function, partly perhaps because it can be evaluated in terms of the Gamma function.
However, since it occurs so frequently in practice, a special designation for it is
widely accepted.

We consider the three-parameter generating function fα,β,γ : [0, 1]→ [0,∞),

fα,β,γ (x) := exp
[
γ xα (1− x)β] ,

where α, β and γ are positive constants. This family can be extended for negative
numbers α and β by eliminating either ends of the closed interval [0, 1]. However,
we do not consider this case here.
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Define the simpler two-parameter family that generates the Beta function, gα,β :
[0, 1]→ [0,∞),

gα,β (x) = xα (1− x)β , (2.2)

where α and β are positive constants.
We start with the simple fact incorporated in the following:

Proposition 1 Let α, β, γ > 0. The function fα,β,γ is increasing on
[
0, α
α+β

]
,

decreasing on
[
α
α+β , 1

]
, and

max
x∈[0,1]

fα,β,γ (x) = fα,β,γ
(

α

α + β
)
= exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

.

(2.3)

Proof We have

fα,β,γ (x) = exp
[
γgα,β (x)

]

and

f ′α,β,γ (x) = γg′α,β (x) exp
[
γgα,β (x)

]
, x ∈ [0, 1] , (2.4)

showing that the sign of f ′α,β,γ on [0, 1] is the same with the one of g′α,β .
Furthermore, we have

g′α,β (x) = αxα−1 (1−x)β −βxα (1−x)β−1 = xα−1 (1− x)β−1 [α (1− x)−βx]

= xα−1 (1− x)β−1 [α − (α + β) x] , x ∈ (0, 1) .

This shows that g′α,β (x) > 0 for x ∈
(

0, α
α+β

)
and g′α,β (x) < 0 for

(
α
α+β , 1

)
,

which proves the statement. 
�
We need the following lemma that is of interest in itself, see also [5]:

Lemma 1 Let α, β, γ > 0.

(i) If 0 < α + β ≤ 1,, then gα,β is strictly concave on [0, 1] .
Define

x1,α,β := α (α + β − 1)−√αβ (α + β − 1)

(α + β) (α + β − 1)
<

α

α + β
and
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x2,α,β := α (α + β − 1)+√αβ (α + β − 1)

(α + β) (α + β − 1)
>

α

α + β .

(ii) If α, β ∈ (0, 1) with α + β > 1, then gα,β is strictly concave on [0, 1] .
(iii) If α > 1 and β ∈ (0, 1) then gα,β is strictly convex on

(
0, x1,α,β

)
and strictly

concave on
(
x1,α,β , 1

)
.

(iv) If α ∈ (0, 1) and β > 1, then gα,β is strictly concave on
(
0, x2,α,β

)
and strictly

convex on
(
x2,α,β , 1

)
.

(v) If α, β > 1, then gα,β is strictly concave on
(
x1,α,β , x2,α,β

)
and strictly convex

on
(
0, x1,α,β

) ∪ (
x2,α,β , 1

)
.

Proof If we take the second derivative of gα,β on (0, 1) , then we get

g′′α,β (x) = α (α − 1) xα−2 (1− x)β − αβxα−1 (1− x)β−1

− αβxα−1 (1− x)β−1 + β (β − 1) xα (1− x)β−2

= α (α−1) xα−2 (1−x)β − 2αβxα−1 (1−x)β−1+β (β − 1) xα (1− x)β−2

= xα−2 (1− x)β−2
[
α (α − 1) (1− x)2 − 2αβx (1− x)+ β (β − 1) x2

]

for all α, β > 0 and x ∈ (0, 1) .
Now, consider the two-parameter family of parabolas

hα,β (x) := α (α − 1) (1− x)2 − 2αβx (1− x)+ β (β − 1) x2, x ∈ R.

We have

hα,β (x) = α (α − 1)
(
x2 − 2x + 1

)
− 2αβ

(
x − x2

)
+ β (β − 1) x2

= [α (α − 1)+ 2αβ + β (β − 1)] x2 − 2 (α (α − 1)+ αβ) x + α (α − 1)

=
[
α2 + 2αβ + β2 − (α + β)

]
x2 − 2α (α + β − 1) x + α (α − 1)

=
[
(α + β)2 − (α + β)

]
x2 − 2α (α + β − 1) x + α (α − 1)

= (α + β) (α + β − 1) x2 − 2α (α + β − 1) x + α (α − 1)

for x ∈ R.
The discriminant of this family of parabolas is

�α,β := 4α2 (α + β − 1)2 − 4 (α + β) (α + β − 1) α (α − 1)

= 4α (α + β − 1) [α (α + β − 1)− (α + β) (α − 1)]

= 4α (α + β − 1)
(
α2 + αβ − α − α2 − αβ + α + β

)
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= 4αβ (α + β − 1)

for α, β > 0.
Now, if 0 < α+β < 1, then�α,β < 0, which shows that the parabola hα,β (x) <

0 for all x ∈ R, implying that g′′α,β (x) < 0 for x ∈ (0, 1), namely gα,β is strictly
concave on [0, 1] .

If α + β = 1, then hα,β (x) = α (α − 1) < 0, namely gα,β is strictly concave on
[0, 1] .

If α + β > 1 with α, β > 0 then �α,β > 0 and the parabola hα,β (·) has two
distinct interceptions with the axis ox, namely

x1,α,β = α (α + β − 1)−√αβ (α + β − 1)

(α + β) (α + β − 1)

and

x2,α,β = α (α + β − 1)+√αβ (α + β − 1)

(α + β) (α + β − 1)
.

The x coordinate for the vertex is

xV,α,β = α

α + β ∈ (0, 1)

for all α, β > 0.
We also have hα,β (0) = α (α − 1) and hα,β (1) = β (β − 1) .
Now, if α, β ∈ (0, 1) with α + β > 1, then x1,α,β < 0 and x2,α,β > 1 showing

that hα,β (x) < 0, namely gα,β is strictly concave on [0, 1] .

If α > 1 and β ∈ (0, 1) , then α + β > 1, x1,α,β ∈
(

0, α
α+β

)
, x2,α,β >

1, which shows that hα,β (x) > 0 for x ∈ (
0, x1,α,β

)
and hα,β (x) < 0 for x ∈(

x1,α,β , 1
)

showing that gα,β is strictly convex on
(
0, x1,α,β

)
and strictly concave on(

x1,α,β , 1
)
.

If α ∈ (0, 1) and β > 1, then α + β > 1, x1,α,β < 0, x2,α,β ∈
(

α
α+β , 1

)
,

which shows that hα,β (x) < 0 for x ∈ (
0, x2,α,β

)
and hα,β (x) > 0 for x ∈(

x2,α,β , 1
)

showing that gα,β is strictly concave on
(
0, x2,α,β

)
and strictly convex

on
(
x2,α,β , 1

)
.

If α, β > 1, then x1,α,β ∈
(

0, α
α+β

)
and x2,α,β ∈

(
α
α+β , 1

)
, which shows that

hα,β (x) < 0 for
(
x1,α,β , x2,α,β

)
and hα,β (x) > 0 for x ∈ (

0, x1,α,β
) ∪ (

x2,α,β , 1
)

showing that gα,β is strictly concave on
(
x1,α,β , x2,α,β

)
and strictly convex on(

0, x1,α,β
) ∪ (

x2,α,β , 1
)
. 
�

We can state the following fact concerning the logarithmic convexity of fα,β,γ .

Proposition 2 Let α, β, γ > 0. Define x1,α,β and x2,α,β as in Lemma 1.
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(1) If α, β ∈ (0, 1) , then fα,β,γ (x) is strictly log-concave on [0, 1] .
(2) If α > 1 and β ∈ (0, 1), then fα,β,γ (x) is strictly log-convex on

(
0, x1,α,β

)
and

strictly log-concave on
(
x1,α,β , 1

)
.

(3) If α ∈ (0, 1) and β > 1, then fα,β,γ (x) is strictly log-concave on
(
0, x2,α,β

)
and strictly log-convex on

(
x2,α,β , 1

)
.

(4) If α, β > 1, then fα,β,γ (x) is strictly log-concave on
(
x1,α,β , x2,α,β

)
and

strictly log-convex on
(
0, x1,α,β

) ∪ (
x2,α,β , 1

)
.

The proof is obvious by Lemma 1 observing that ln
[
fα,β,γ (x)

] = γgα,β (x) =
γ xα (1− x)β , x ∈ [0, 1] and α, β, γ > 0.

3 Taylor’s Type Expansion for fα,β,γ

We have the following representation result:

Theorem 1 Let α, β, γ > 0, then for all x ∈ [0, 1] and natural number n ≥ 1, we
have

fα,β,γ (x) = 1+
n∑
k=1

1

k!γ
kxαk (1− x)βk + Rn (α, β, γ, x) , (3.1)

where

Rn (α, β, γ, x) (3.2)

= 1

n!γ
n+1xα(n+1) (1− x)β(n+1)

∫ 1

0
exp

[
γ sxα (1− x)β] (1− s)n ds.

Proof Let I ⊂ R be a closed interval, c ∈ I , and let n be a positive integer. If
f : I −→ C is such that the n-derivative f (n) is absolutely continuous on I , then
for each y ∈ I

f (y) = Tn (f ; c, y)+ Rn (f ; c, y) , (3.3)

where Tn (f ; c, y) is Taylor’s polynomial, i.e.,

Tn (f ; c, y) :=
n∑
k=0

(y − c)k
k! f (k) (c) . (3.4)

Note that f (0) := f and 0! := 1 and the remainder is given by

Rn (f ; c, y) := 1

n!
∫ y

c

(y − t)n f (n+1) (t) dt. (3.5)
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For any integrable function h on an interval and any distinct numbers c, d in that
interval, we have, by the change of variable t = (1− s) c + sd, s ∈ [0, 1] that

∫ d

c

h (t) dt = (d − c)
∫ 1

0
h ((1− s) c + sd) ds.

Therefore,

∫ y

c

f (n+1) (t) (y − t)n dt

= (y − c)
∫ 1

0
f (n+1) ((1− s) c + sy) (x − (1− s) c − sy)n ds

= (y − c)n+1
∫ 1

0
f (n+1) ((1− s) c + sy) (1− s)n ds,

and from (3.5), we get the representation

f (y) =
n∑
k=0

(y − c)k
k! f (k) (c) (3.6)

+ 1

n! (y − c)
n+1

∫ 1

0
f (n+1) ((1− s) c + sy) (1− s)n ds

for all y, c ∈ I.
Now, if we write the equality (3.6) for the exponential function f (y) = ey,

y ∈ R, and the point c = 0, we get

exp y − 1 =
n∑
k=1

yk

k! +
1

n!y
n+1

∫ 1

0
exp (sy) (1− s)n ds (3.7)

for any real number y ∈ R.
If we take in (3.7) y = γgα,β (x) , x ∈ [0, 1] , we get

exp
[
γgα,β (x)

]− 1 =
n∑
k=1

γ k

[
gα,β (x)

]k
k!

+ 1

n!γ
n+1 [

gα,β (x)
]n+1

∫ 1

0
exp

[
sγgα,β (x)

]
(1− s)n ds,

which produces the desired result (3.1). 
�
We have some simple upper and lower bounds as follows:
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Corollary 1 Let α, β, γ > 0, then for all x ∈ [0, 1] and natural number n ≥ 1, we
have

n∑
k=1

1

k!γ
kxαk (1− x)βk (3.8)

≤ fα,β,γ (x)− 1

≤
n∑
k=1

1

k!γ
kxαk (1− x)βk + eγ

(n+ 1)!γ
n+1xα(n+1) (1− x)β(n+1) .

Proof The inequalities in (3.8) follow by (3.1) observing that

0 ≤ 1

n!γ
n+1 [

gα,β (x)
]n+1

∫ 1

0
exp

[
γ sgα,β (x)

]
(1− s)n ds

≤ 1

n!γ
n+1 [

gα,β (x)
]n+1 max

s∈[0,1]
exp

[
sγgα,β (x)

] ∫ 1

0
(1− s)n ds

≤ eγ

(n+ 1)!γ
n+1 [

gα,β (x)
]n+1

for all x ∈ [0, 1] . 
�
Corollary 2 Let α, β, γ > 0, then we have function series expansion

fα,β,γ (x) = 1+
∞∑
k=1

1

k!γ
kxαk (1− x)βk

uniformly on the interval [0, 1] .

Proof Let α, β, γ > 0. By (3.1), we have

∣∣∣∣∣fα,β,γ (x)− 1−
n∑
k=1

γ k

[
gα,β (x)

]k
k!

∣∣∣∣∣
=

∣∣∣∣ 1

n!γ
n+1 [

gα,β (x)
]n+1

∫ 1

0
exp

[
sγgα,β (x)

]
(1− s)n ds

∣∣∣∣
≤ 1

n!γ
n+1 [

gα,β (x)
]n+1

∫ 1

0

∣∣exp
[
sγgα,β (x)

]
(1− s)n∣∣ ds

≤ e
γ

n! γ
n+1

∫ 1

0
(1− s)n ds = eγ γ n+1

(n+ 1)!
for x ∈ [0, 1] and n ≥ 1.
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Consider the positive sequence

an := γ n+1

(n+ 1)! , n ≥ 1.

Then,

lim
n→∞

an+1

an
= lim
n→∞

γ n+2

(n+2)!
γ n+1

(n+1)!
= lim
n→∞

γ

(n+ 2)
= 0.

By using the ratio test for sequences, we conclude that limn→∞ an = 0, which
proves the statement. 
�

Now, we can introduce the three variable function F : (0,∞) × (0,∞) ×
(0,∞) → (0,∞) , which we can call the weighted Exponential Beta function,
defined by the integral

F (α, β; γ ) :=
∫ 1

0
exp

[
γ xα (1− x)β] dx > 1.

Then, we have the following representation result in terms of the Beta function:

Theorem 2 For any natural number n ≥ 1 and any α, β, γ > 0, we have the
Beta-Taylor representation

F (α, β; γ ) = 1+
n∑
k=1

1

k!γ
kB (αk + 1, βk + 1)+ Rn (α, β; γ ) , (3.9)

where the remainder Rn (α, β; γ ) is given by

Rn (α, β; γ )

:= 1

n!γ
n+1

∫ 1

0

(∫ 1

0

{
xα(n+1) (1− x)β(n+1) exp

[
sγ xα (1− x)β]} dx

)

(1− s)n ds. (3.10)

Proof If we integrate the identity (3.1), we get

F (α, β; γ ) =
∫ 1

0
fα,β,γ (x) dx (3.11)

= 1+
n∑
k=1

1

k!γ
k

∫ 1

0
xαk (1− x)βk dx +

∫ 1

0
Rn (α, β, γ, x) dx
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= 1+
n∑
k=1

1

k!γ
kB (αk + 1, βk + 1)+

∫ 1

0
Rn (α, β, γ, x) dx.

Also

∫ 1

0
Rn (α, β, γ, x) dx

= 1

n!γ
n+1

∫ 1

0
xα(n+1) (1− x)β(n+1)

(∫ 1

0
exp

[
γ sxα (1− x)β] (1− s)n ds

)
dx

= 1

n!γ
n+1

∫ 1

0

(∫ 1

0
xα(n+1) (1− x)β(n+1) exp

[
γ sxα (1− x)β] dx

)
(1− s)n ds,

where for the last equality, we used Fubini’s theorem. 
�
Corollary 3 We have the following Beta-Taylor series expansion

F (α, β; γ ) = 1+
∞∑
k=1

1

k!γ
kB (αk + 1, βk + 1) (3.12)

uniformly over α, β, γ > 0.

Proof Observe that

0 ≤ Rn (α, β; γ ) ≤ 1

n!γ
n+1

∫ 1

0
exp (sγ ) (1− s)n ds

= 1

n!γ
n+1eγ

∫ 1

0
(1− s)n ds = eγ γ n+1

(n+ 1)! → 0

for n→∞. This proves the claim. 
�

4 Error Bounds Via Ostrowski Type Inequalities

The following lemma provides an error estimate in approximating the integral mean
by a value of the function in the case when the derivative is bounded. It was obtained
in 1938 by Ostrowski, see [14].

Lemma 2 Let f : [a, b] −→ R be continuous on [a, b] and differentiable
on (a, b) , whose derivative is bounded on (a, b) and let

∥∥f ′∥∥∞,(a,b) :=
supt∈(a,b)

∣∣f ′ (t)∣∣ <∞. Then,
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∣∣∣∣f (x)− 1

b − a
∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

4
+

(
x − a+b

2

)2

(b − a)2
]
(b − a) ∥∥f ′∥∥∞,(a,b) (4.1)

for all x ∈ [a, b]. The constant 1
4 is sharp in the sense that it cannot be replaced by

a smaller one.

For a recent survey on this inequality, see [2] and the references therein.
We need the following lemma:

Lemma 3 For α, β > 1, we have

max
x∈[0,1]

∣∣∣g′α,β (x)
∣∣∣ ≤ max {α, β}

(
α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

. (4.2)

Proof From the definition of gα,β (x), we have

g′α,β (x) = gα−1,β−1 (x) [α − (α + β) x] , x ∈ [0, 1] , (4.3)

which implies that for α, β > 1, we have

max
x∈[0,1]

∣∣∣g′α,β (x)
∣∣∣ ≤ max

x∈[0,1]
gα−1,β−1 (x) max

x∈[0,1]
|α − (α + β) x| (4.4)

= max {α, β} max
x∈[0,1]

gα−1,β−1 (x) .

From (4.3), we get

g′α−1,β−1 (x) = gα−2,β−2 (x) [α − 1− (α + β − 2) x] , x ∈ (0, 1) .

This shows that g′α−1,β−1 (x) > 0 for x ∈
(

0, α−1
α+β−2

)
and g′α−1,β−1 (x) < 0 for(

α−1
α+β−2 ,∞

)
, which gives that

max
x∈[0,1]

gα−1,β−1 (x) = gα−1,β−1

(
α − 1

α + β − 2

)
(4.5)

=
(

α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

.

By (4.4) and (4.5), we get the desired inequality (4.2). 
�
We have the following result via Ostrowski’s inequality:

Theorem 3 For α, β > 1 and γ > 0, we have
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∣∣F (α, β; γ )− fα,β,γ (x)∣∣ ≤
[

1

4
+

(
x − 1

2

)2
]

(4.6)

× γ max {α, β}
(

α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

× exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

for all x ∈ [0, 1] .
In particular,

∣∣∣F (α, β; γ )− exp
( γ

2α+β
)∣∣∣ (4.7)

≤ 1

4
γ max {α, β}

(
α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

× exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

.

Proof If we write Ostrowski’s inequality for the function fα,β,γ on the interval
[0, 1] , then we have

∣∣∣∣fα,β,γ (x)−
∫ 1

0
fα,β,γ (t) dt

∣∣∣∣ ≤
[

1

4
+

(
x − 1

2

)2
]∥∥∥f ′α,β,γ

∥∥∥∞,[0,1]
(4.8)

for all x ∈ [0, 1] .
From (2.4), we have

f ′α,β,γ (x) = γg′α,β (x) exp
[
γgα,β (x)

] = γg′α,β (x) fα,β,γ (x) , x ∈ [0, 1] ,

which shows that

max
x∈[0,1]

∣∣∣f ′α,β,γ (x)
∣∣∣ ≤ γ max

x∈[0,1]

∣∣∣g′α,β (x)
∣∣∣ max
x∈[0,1]

fα,β,γ (x)

≤ γ max {α, β}
(

α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

× exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

,

where for the last inequality, we used Lemmas 2 and 3.
By employing (4.8), we obtain the desired result (4.6). 
�
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In 1997, Dragomir and Wang proved the following Ostrowski type inequality [6],
see also [2, p. 26]:

Lemma 4 Let f : [a, b]→ R be an absolutely continuous function on [a, b]. Then,
we have the inequality

∣∣∣∣f (x)− 1

b − a
∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

2
+

∣∣x − a+b
2

∣∣
b − a

]∥∥f ′∥∥[a,b],1 , (4.9)

for all x ∈ [a, b], where ‖·‖1 is the Lebesgue norm on L1 [a, b], i.e., we recall it

‖g‖[a,b],1 :=
∫ b

a

|g (t)| dt.

The constant 1
2 is best possible.

Note the fact that 1
2 is the best constant for differentiable functions was proved

in [15].

Theorem 4 For α, β > 1, γ > 0, we have

∣∣∣∣ fα,β,γ (x)F (α, β; γ ) − 1

∣∣∣∣ ≤
[

1

2
+

∣∣∣∣x − 1

2

∣∣∣∣
]

(4.10)

× γ max {α, β}
(

α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

for all x ∈ [0, 1] and, in particular,

∣∣∣∣∣∣
exp

(
γ

2α+β
)

F (α, β; γ ) − 1

∣∣∣∣∣∣ ≤
1

2
γ max {α, β}

(
α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

.

(4.11)
For α, β, γ > 0, we also have

∣∣F (α, β; γ )− fα,β,γ (x)∣∣ (4.12)

≤
[

1

2
+

∣∣∣∣x − 1

2

∣∣∣∣
]

× γ max {α, β}B (α, β) exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

for all x ∈ [0, 1] and, in particular,

∣∣∣F (α, β; γ )− exp
( γ

2α+β
)∣∣∣ (4.13)
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≤ 1

2
γ max {α, β}B (α, β) exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

,

where B (·, ·) is Euler’s Beta function.

Proof If we write the inequality (4.9) for fα,β,γ on the interval [0, 1] , then we have

∣∣fα,β,γ (x)− F (α, β; γ )∣∣ ≤
[

1

2
+

∣∣∣∣x − 1

2

∣∣∣∣
] ∥∥∥f ′α,β,γ

∥∥∥
[0,1],1

, (4.14)

for all x ∈ [0, 1] .
Now, observe that

∥∥∥f ′α,β,γ
∥∥∥

[0,1],1
(4.15)

=
∫ 1

0

∣∣∣f ′α,β,γ (t)
∣∣∣ dt = γ

∫ 1

0

∣∣∣g′α,β (t)
∣∣∣ exp

[
γgα,β (t)

]
dt

= γ
∫ 1

0

∣∣∣g′α,β (t)
∣∣∣ fα,β,γ (t) dt

= γ
∫ 1

0
gα−1,β−1 (t) |α − (α + β) t | fα,β,γ (t) dt

≤ γ max
t∈[0,1]

|α − (α + β) t |
∫ 1

0
gα−1,β−1 (t) fα,β,γ (t) dt

= γ max {α, β}
∫ 1

0
gα−1,β−1 (t) fα,β,γ (t) dt.

Since

∫ 1

0
gα−1,β−1 (t) fα,β,γ (t) dt (4.16)

≤ max
t∈[0,1]

gα−1,β−1 (t)

∫ 1

0
fα,β,γ (t) dt

=
(

α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

F (α, β; γ ) ,

and hence by (4.14)–(4.16), we get

∣∣fα,β,γ (x)− F (α, β; γ )∣∣ ≤
[

1

2
+

∣∣∣∣x − 1

2

∣∣∣∣
]
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× γ
(

α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

F (α, β; γ )

that is equivalent to (4.10).
We also have

∫ 1

0
gα−1,β−1 (t) fα,β,γ (t) dt (4.17)

≤ max
t∈[0,1]

fα,β,γ (t)

∫ 1

0
gα−1,β−1 (t) dt

= exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

B (α, β) ,

and hence by (4.14), (4.15) and (4.17), we get (4.12). 
�
In 1998, Dragomir and Wang proved the following Ostrowski type inequality for

p-norms of the derivative [7].

Lemma 5 Let f : [a, b] → R be an absolutely continuous function on [a, b]. If
f ′ ∈ Lp [a, b] , then we have the inequality

∣∣∣∣f (x)− 1

b − a
∫ b

a

f (t) dt

∣∣∣∣ (4.18)

≤ 1

(q + 1)1/q

[(
x − a
b − a

)q+1

+
(
b − x
b − a

)q+1
]1/q

(b − a)1/q ∥∥f ′∥∥[a,b],p ,

for all x ∈ [a, b], where p > 1, 1
p
+ 1
q
= 1, and ‖·‖[a,b],p is the p-Lebesgue norm

on Lp [a, b], i.e., we recall it

‖g‖[a,b],p :=
(∫ b

a

|g (t)|p dt
)1/p

.

Using this tool, we can prove the following result as well:

Theorem 5 For α, β > 1, γ > 0, we have

∣∣F (α, β; γ )− fα,β,γ (x)∣∣ ≤ 1

(q + 1)1/q

[
xq+1 + (1− x)q+1

]1/q
(4.19)

× γ max {α, β} exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

× [B (p (α − 1)+ 1, p (β − 1)+ 1)]1/p
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for all x ∈ [0, 1] , where p > 1, 1
p
+ 1
q
= 1.

In particular,

∣∣∣F (α, β; γ )− exp
( γ

2α+β
)∣∣∣ (4.20)

≤ 1

2 (q + 1)1/q
γ max {α, β} exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

× [B (p (α − 1)+ 1, p (β − 1)+ 1)]1/p ,

where B (·, ·) is Euler’s Beta function.

Proof If we write the inequality (4.18) for the function for fα,β on the interval
[0, 1] , then we have

∣∣fα,β,γ (x)− F (α, β; γ )∣∣ (4.21)

≤ 1

(q + 1)1/q

[
xq+1 + (1− x)q+1

]1/q ∥∥∥f ′α,β,γ
∥∥∥

[0,1],p
,

for all x ∈ [a, b], where p > 1, 1
p
+ 1
q
= 1.

Observe that
∥∥∥f ′α,β,γ

∥∥∥p
[0,1],p

(4.22)

=
∫ 1

0

∣∣∣f ′α,β,γ (t)
∣∣∣p dt = γ p

∫ 1

0

∣∣∣g′α,β (t)
∣∣∣p (

exp
[
γgα,β (t)

])p
dt

= γ p
∫ 1

0

∣∣∣g′α,β (t)
∣∣∣p f pα,β,γ (t) dt

= γ p
∫ 1

0
g
p

α−1,β−1 (t) |α − (α + β) t |p f pα,β,γ (t) dt

≤ γ p max
{
αp, βp

} ∫ 1

0
xp(α−1) (1− x)p(β−1) f

p
α,β,γ (t) dt.

Since, by (2.3), we have

max
t∈[0,1]

f
p
α,β,γ (t) = f pα,β,γ

(
α

α + β
)
= exp

[
pγ

(
α

α + β
)α (

β

α + β
)β]

and hence by (4.22), we get
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∥∥∥f ′α,β,γ
∥∥∥p

[0,1],p

≤ γ p max
{
αp, βp

}
exp

[
pγ

(
α

α + β
)α (

β

α + β
)β]

×
∫ 1

0
xp(α−1) (1− x)p(β−1) dt

= γ p max
{
αp, βp

}
exp

[
pγ

(
α

α + β
)α (

β

α + β
)β]

× B (p (α − 1)+ 1, p (β − 1)+ 1) ,

namely

∥∥∥f ′α,β,γ
∥∥∥

[0,1],p
≤ γ max {α, β} exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

× [B (p (α − 1)+ 1, p (β − 1)+ 1)]1/p .

Therefore, by (4.21), we get the desired result (4.19). 
�

5 Quadrature Rules of Ostrowski and Trapezoid Type

Let

Ik : a = x0 < x1 < . . . < xk−1 < xk = b

be a division of the interval [a, b] , αi (i = 0, . . . , k + 1) be ‘k + 2’ points so that
α0 = a, αi ∈ [xi−1, xi] (i = 1, . . . , k) and αk+1 = b. Define

hi := xi+1 − xi (i = 0, . . . , k − 1) and ν (h) := max {hi | i = 0, . . . , k − 1} .

Consider the equality

∫ b

a

f (t) dt = �k (f, Ik, αk+1)+ Rk (f, Ik, αk+1) , (5.1)

where

�k (f, Ik, α) :=
k∑
i=0

(αi+1 − αi) f (xi) (5.2)
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is the Ostrowski quadrature rule associated with the division Ik and the "k + 2"
points αk+1 := (α0, α1, . . . , αk, αk+1), while Rk (f, Ik, αk+1) is the error in
approximating the integral

∫ b
a
f (t) dt by the quadrature �k (f, Ik, α).

If we chose in (5.5)

α0 = a, α1 = a + x1

2
, α2 = x1 + x2

2
, . . . ,

αk−1 = xk−2 + xk−1

2
, αk = xk−1 + xk

2
, αk+1 = b,

then we get after some arrangements that

�k (f, Ik, α) = 1

2

[
(x1 − a) f (a)+

k−1∑
i=1

(xi+1 − xi−1) f (xi)+ (b − xk−1) f (b)

]

=: Tk (f, Ik) ,

where Tk (f, Ik) is called the Trapezoid quadrature rule associated with the function
f and the division Ik.

In this situation, we have

∫ b

a

f (t) dt = Tk (f, Ik)+ Rk (f, Ik) , (5.3)

where Rk (f, Ik) is the error in approximating the integral by the trapezoid rule
Tk (f, Ik) .

Let

Ik : xi := a + (b − a) i
k
, i = 0, . . . , k

be the equidistant partitioning of [a, b] . We can then consider the equidistant
Trapezoid rule given by

Tk (f ) := 1

k

f (a)+ f (b)
2

(b − a)+ b − a
k

k−1∑
i=1

f

(
a + (b − a) i

k

)

for k ≥ 2.
Furthermore, we can approximate the integral as

∫ b

a

f (t) dt = Tk (f )+ Rk (f ) , (5.4)

where Rk (f ) is the error in this equidistant approximation.
Assume that f is absolutely continuous on [a, b] .
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If f ′ is essentially bounded on [a, b], namely, f ′ ∈ L∞ [a, b] , then we have the
error bounds [8, p. 19]

|Rk (f, Ik, αk+1)| (5.5)

≤
[

1

4

k−1∑
i=0

h2
i +

k−1∑
i=0

(
αi+1 − xi + xi+1

2

)2
]∥∥f ′∥∥∞,[a,b]

≤ 1

2

k−1∑
i=0

h2
i

∥∥f ′∥∥∞,[a,b] ≤
1

2
(b − a) ∥∥f ′∥∥∞,[a,b] ν (h) .

The trapezoid rule error Rk (f, Ik) satisfies the better bounds

|Rk (f, Ik)| ≤ 1

4

(
k−1∑
i=0

h2
i

)∥∥f ′∥∥∞,[a,b] ≤
1

4
(b − a) ∥∥f ′∥∥∞,[a,b] ν (h) ,

and the equidistant error Rk (f ) satisfies the inequality

|Rk (f )| ≤ 1

4k
(b − a)2 ∥∥f ′∥∥∞,[a,b] .

In terms of 1-norm, we have the error bounds [3], see also [8, p. 51],

|Rk (f, Ik, αk+1)| (5.6)

≤
[

1

2
ν (h)+ max

i=1,...,n

∣∣∣∣αi+1 − xi + xi+1

2

∣∣∣∣
] ∥∥f ′∥∥1,[a,b] ≤

∥∥f ′∥∥1,[a,b] ν (h) .

In particular, we have

|Rk (f, Ik)| ≤ 1

2
ν (h)

∥∥f ′∥∥1,[a,b]

and

|Rk (f )| ≤ 1

2k
(b − a) ∥∥f ′∥∥1,[a,b] .

If f ′ ∈ Lp [a, b] , p > 1 and 1
p
+ 1
q
= 1, then [4], see also [8, p. 35],

|Rk (f, Ik, αk+1)| (5.7)

≤ 1

(q + 1)1/q

[
k−1∑
i=0

(αi+1 − xi)q+1 + (xi+1 − αi+1)
q+1

]1/q ∥∥f ′∥∥
p,[a,b]
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≤ 1

(q + 1)1/q
∥∥f ′∥∥

p,[a,b]

(
k−1∑
i=0

h
q+1
i

)1/q

≤ 1

(q + 1)1/q
(b − a)1/q ∥∥f ′∥∥

p,[a,b] ν (h) .

Moreover, we have

|Rk (f, Ik)| ≤ 1

2 (q + 1)1/q
∥∥f ′∥∥

p,[a,b]

(
k−1∑
i=0

h
q+1
i

)1/q

≤ 1

2 (q + 1)1/q
(b − a)1/q ∥∥f ′∥∥

p,[a,b] ν (h)

and

|Rk (f )| ≤ 1

2k (q + 1)1/q
(b − a)1+1/q

∥∥f ′∥∥
p,[a,b] .

Let

Ik : 0 = x0 < x1 < . . . < xk−1 < xk = 1

be a division of the interval [0, 1] and α0 = 0, αi ∈ [xi−1, xi] (i = 1, . . . , k)
and αk+1 = 1. We define the following Ostrowski type quadrature rule for the
exponential Beta function by

�k
(
fα,β,γ , Ik, α

) :=
k∑
i=0

(αi+1 − αi) exp
[
γ xαi (1− xi)β

]

and the Trapezoid rule by

Tk
(
fα,β,γ , Ik

) := 1

2

[
x1 +

k−1∑
i=1

(xi+1 − xi−1) exp
[
γ xαi (1− xi)β

]+ 1− xk−1

]
.

Consider also the equidistant Trapezoid rule given by

Tk
(
fα,β,γ

) := 1

k
+ 1

k

k−1∑
i=1

exp

[
γ

(
i

k

)α (
1− i

k

)β]

for k ≥ 2.

Theorem 6 Let Ik, α be as defined above. Then,
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F (α, β; γ ) = �k
(
fα,β,γ , Ik, α

)+ Rk (fα,β,γ , Ik, αk+1
)
,

where the remainder Rk
(
fα,β, Ik, αk+1

)
satisfies the bounds

∣∣Rk (fα,β,γ , Ik, αk+1
)∣∣ (5.8)

≤
[

1

4

k−1∑
i=0

h2
i +

k−1∑
i=0

(
αi+1 − xi + xi+1

2

)2
]∥∥∥f ′α,β,γ

∥∥∥∞,[0,1]

≤
[

1

4

k−1∑
i=0

h2
i +

k−1∑
i=0

(
αi+1 − xi + xi+1

2

)2
]

× γ max {α, β}
(

α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

× exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

, α, β > 1,

∣∣Rk (fα,β,γ , Ik, αk+1
)∣∣ (5.9)

≤
[

1

2
ν (h)+ max

i=1,...,n

∣∣∣∣αi+1 − xi + xi+1

2

∣∣∣∣
] ∥∥∥f ′α,β,γ

∥∥∥
1,[0,1]

≤
[

1

2
ν (h)+ max

i=1,...,n

∣∣∣∣αi+1 − xi + xi+1

2

∣∣∣∣
]

× γ max {α, β}B (α, β) exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

, α, β > 0

and

∣∣Rk (fα,β,γ , Ik, αk+1
)∣∣ (5.10)

≤ 1

(q + 1)1/q

[
k−1∑
i=0

(αi+1 − xi)q+1 + (xi+1 − αi+1)
q+1

]1/q ∥∥∥f ′α,β,γ
∥∥∥
p,[0,1]

≤ 1

(q + 1)1/q

[
k−1∑
i=0

(αi+1 − xi)q+1 + (xi+1 − αi+1)
q+1

]1/q

× γ max {α, β} exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

× [B (p (α − 1)+ 1, p (β − 1)+ 1)]1/p , α, β > 1,

where p > 1 and 1
p
+ 1
q
= 1.
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The proof follows from the inequalities (5.5), (5.6) and (5.7), and the fact that
from the previous section, we have the following upper bounds for the norms of
f ′α,β,γ

∥∥∥f ′α,β,γ
∥∥∥∞,[0,1]

≤ γ max {α, β}
(

α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

× exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

, α, β > 1,

∥∥∥f ′α,β,γ
∥∥∥

1,[0,1]
≤ γ max {α, β} exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

B (α, β) , α, β > 0

and

∥∥∥f ′α,β,γ
∥∥∥

[0,1],p
≤ γ max {α, β} exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

× [B (p (α − 1)+ 1, p (β − 1)+ 1)]1/p , α, β > 1.

Corollary 4 Let Ik be as defined above. Then,

F (α, β; γ ) = Tk
(
fα,β,γ , Ik

)+ Rk (fα,β,γ , Ik) ,
where the remainder Rk

(
fα,β, Ik

)
satisfies the bounds

∣∣Rk (fα,β,γ , Ik)∣∣ ≤ 1

4

k−1∑
i=0

h2
i

∥∥∥f ′α,β,γ
∥∥∥∞,[0,1]

≤
[

1

4

k−1∑
i=0

h2
i

]
(5.11)

× γ max {α, β}
(

α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

× exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

, α, β > 1,

∣∣Rk (fα,β,γ , Ik)∣∣ (5.12)

≤
[

1

2
ν (h)

] ∥∥∥f ′α,β,γ
∥∥∥

1,[0,1]
≤

[
1

2
ν (h)

]

× γ max {α, β}B (α, β) exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

, α, β > 0
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and

∣∣Rk (fα,β,γ , Ik)∣∣ ≤ 1

2 (q + 1)1/q

(
k−1∑
i=0

h
q+1
i

)1/q ∥∥∥f ′α,β,γ
∥∥∥
p,[0,1]

(5.13)

≤ 1

2 (q + 1)1/q

(
k−1∑
i=0

h
q+1
i

)1/q

× γ max {α, β} exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

× [B (p (α − 1)+ 1, p (β − 1)+ 1)]1/p , α, β > 1.

Remark 1 Finally, we mention the following simple trapezoid quadrature rule

F (α, β; γ ) = Tk
(
fα,β,γ

)+ Rk (fα,β,γ ) ,
where the remainder Rk

(
fα,β,γ

)
satisfies the bounds

∣∣Rk (fα,β,γ )∣∣ ≤ 1

4k

∥∥∥f ′α,β,γ
∥∥∥∞,[0,1]

(5.14)

≤ 1

4k
γ max {α, β}

(
α − 1

α + β − 2

)α−1 (
β − 1

α + β − 2

)β−1

× exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

, α, β > 1,

∣∣Rk (fα,β,γ )∣∣ (5.15)

≤ 1

2k

∥∥∥f ′α,β,γ
∥∥∥

1,[0,1]

≤ 1

2k
γ max {α, β} exp

[
γ

(
α

α + β
)α (

β

α + β
)β]

B (α, β) , α, β > 0

and

∣∣Rk (fα,β,γ )∣∣ ≤ 1

2k (q + 1)1/q

∥∥∥f ′α,β,γ
∥∥∥
p,[0,1]

(5.16)

≤ 1

2k (q + 1)1/q
γ max {α, β} exp

[
γ

(
α

α + β
)α (

β

α + β
)β]
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× [B (p (α − 1)+ 1, p (β − 1)+ 1)]1/p , α, β > 1.

The bounds above show that Rk
(
fα,β,γ

) → 0 when k → ∞, and therefore
F (α, β; γ ) = limk→∞ Tk

(
fα,β,γ

)
for α, β > 1 and γ > 0.
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On the Multiplicity of the Zeros of
Polynomials with Constrained
Coefficients

Tamás Erdélyi

Abstract We survey a few recent results focusing on the multiplicity of the zero at
1 of polynomials with constrained coefficients. Some closely related problems and
results are also discussed.

Mathematics Subject Classification (2010): 11C08, 41A17, 26C10, 30C15

1 On the Multiplicity of the Zero at 1 of Polynomials
with Constrained Coefficients

In [17] and [18], we examined a number of problems concerning polynomials with
coefficients restricted in various ways. We were particularly interested in how small
such polynomials can be on [0, 1]. For example, we proved that there are absolute
constants c1 > 0 and c2 > 0 such that

e−c1
√
n ≤ min

0 �≡Q∈Fn

{
max
x∈[0,1] |Q(x)|

}
≤ e−c2

√
n

for every n ≥ 2, where Fn denotes the set of all polynomials of degree at most n
with coefficients from {−1, 0, 1}.

Littlewood considered minimization problems of this variety on the unit disk. His
most famous, now solved, conjecture was that the L1 norm of an element f ∈ Fn on
the unit circle grows at least as fast as c logN , where N is the number of non-zero
coefficients in f and c > 0 is an absolute constant.

When the coefficients are required to be integers, the questions have a Diophan-
tine nature and have been studied from a variety of points of view.
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One key to the analysis is the study of the related problem of giving an upper
bound for the multiplicity of the zero these restricted polynomials can have at 1. In
[17] and [18], we answer this latter question precisely for the class of polynomials
of the form

Q(x) =
n∑
j=0

ajx
j , |aj | ≤ 1 , aj ∈ C , j = 1, 2, . . . , n ,

with fixed |a0| �= 0.
Various forms of these questions have attracted considerable study, though rarely

have precise answers been possible to give. Indeed, the classical, much studied,
and presumably very difficult problem of Prouhet, Tarry, and Escott rephrases as
a question of this variety. (Precisely: what is the maximal vanishing at 1 of a
polynomial with integer coefficients with l1 norm 2n? It is conjectured to be n.)

For n ∈ N, L > 0, and p ≥ 1, let κp(n, L) be the largest possible value of k for
which there is a polynomialQ �≡ 0 of the form

Q(x) =
n∑
j=0

ajx
j , aj ∈ C , |a0| ≥ L

( n∑
j=1

|aj |p
)1/p

,

such that (x − 1)k dividesQ(x).
For n ∈ N and L > 0, let κ∞(n, L) be the largest possible value of k for which

there is a polynomialQ �≡ 0 of the form

Q(x) =
n∑
j=0

ajx
j , aj ∈ C , |a0| ≥ L max

1≤j≤n |aj | ,

such that (x − 1)k dividesQ(x).
In [17], we proved that there is an absolute constant c3 > 0 such that

min
{1

6

√
n(1− logL)− 1 , n

}
≤ κ∞(n, L) ≤ min

{
c3

√
n(1− logL) , n

}

for every n ∈ N and L ∈ (0, 1]. However, we were far from being able to establish
the right result in the case of L ≥ 1. In [18], we proved the right order of magnitude
of κ∞(n, L) and κ2(n, L) in the case of L ≥ 1. Our results in [17] and [18] sharpen
and generalize the results of Schur [62], Amoroso [1], Bombieri and Vaaler [6], and
Hua [49] who gave versions of this result for polynomials with integer coefficients.
Our results in [17] have turned out to be related to a number of recent and old
publications from a rather wide range of research areas. See [1–16, 18–67], for
example. More results on the zeros of polynomials with Littlewood type coefficient
constraints may be found in [37]. Markov and Bernstein type inequalities under
Erdős type coefficient constraints are surveyed in [36].
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For n ∈ N, L > 0, and q ≥ 1, let μq(n, L) be the smallest value of k for which
there is a polynomial of degree k with complex coefficients such that

|Q(0)| > 1

L

( n∑
j=1

|Q(j)|q
)1/q

.

For n ∈ N and L > 0, let μ∞(n, L) be the smallest value of k for which there is a
polynomial of degree k with complex coefficients such that

|Q(0)| > 1

L
max

1≤j≤n |Q(j)| .

It is a simple consequence of Hölder’s inequality (see Lemma 3.6 in [42]) that

κp(n, L) ≤ μq(n, L)

whenever n ∈ N, L > 0, 1 ≤ p, q ≤ ∞, and 1/p + 1/q = 1.
In [42], we have found the size of κp(n, L) and μq(n, L) for all n ∈ N, L > 0,

and 1 ≤ p, q ≤ ∞. The result about μ∞(n, L) is due to Coppersmith and Rivlin,
[27], but our proof presented in [42] is completely different and much shorter even
in that special case. Another short proof of the Coppersmith–Rivlin inequality is
presented in [41].

Our results in [17] may be viewed as finding the size of κ∞(n, L) and μ1(n, L)

for all n ∈ N and L ∈ (0, 1].
Our results in [18] may be viewed as finding the size of κ∞(n, L), μ1(n, L),

κ2(n, L), and μ2(n, L) for all n ∈ N and L > 0.
Our main results in [42] are stated below.

Theorem 1 Let p ∈ (1,∞] and q ∈ [1,∞) satisfy 1/p + 1/q = 1. There are
absolute constants c1 > 0 and c2 > 0 such that

√
n(c1L)

−q/2 − 1 ≤ κp(n, L) ≤ μq(n, L) ≤ √n(c2L)
−q/2 + 2

for every n ∈ N and L > 1/2, and

c3 min
{√
n(− logL), n

}
≤ κp(n, L) ≤ μq(n, L) ≤ c4 min

{√
n(− logL), n

}
+ 4

for every n ∈ N and L ∈ (0, 1/2]. Here, c1 := 1/53, c2 := 40, c3 := 2/7, and
c4 := 13 are the appropriate choices.

Theorem 2 There are absolute constants c1 > 0 and c2 > 0 such that

c1

√
n(1− L)− 1 ≤ κ1(n, L) ≤ μ∞(n, L) ≤ c2

√
n(1− L)+ 1

for every n ∈ N and L ∈ (1/2, 1], and
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c3 min
{√
n(− logL), n

}
≤ κ1(n, L) ≤ μ∞(n, L) ≤ c4 min

{√
n(− logL), n

}
+ 4

for every n ∈ N and L ∈ (0, 1/2]. Note that κ1(n, L) = μ∞(n, L) = 0 for every
n ∈ N and L > 1. Here, c1 := 1/5, c2 := 1, c3 := 2/7, and c4 := 13 are the
appropriate choices.

Note that in [39], extending a result of Totik and Varjú in [66], we showed
that if the modulus of a monic polynomial P of degree at most n, with complex
coefficients, on the unit circle of the complex plane is at most 1 + o(1) uniformly,
then the multiplicity of each zero of P outside the open unit disk is o(n1/2).
Equivalently, if a polynomial P of degree at most n, with complex coefficients and
constant term 1, has modulus at most 1+ o(1) uniformly on the unit circle, then the
multiplicity of each zero of P in the closed unit disk is o(n1/2). These observations
were obtained in [39] as a consequence of our “one-sided” improvement of an old
Erdős–Turán Theorem in [43]. Namely in [39], we proved that if the zeros of

P(z) :=
n∑
j=0

aj z
j , aj ∈ C , a0an �= 0

are denoted by

zj = rj exp(iϕj ) , rj > 0 , ϕj ∈ [0, 2π) , j = 1, 2, · · · , n ,

then for every 0 ≤ α < β ≤ 2π , we have

∑
j∈I1(α,β)

1− β − α
2π

n ≤ 16
√
n logR1 ,

and

∑
j∈I2(α,β)

1− β − α
2π

n ≤ 16
√
n logR2 ,

where

R1 := |an|−1‖P ‖ , R2 := |a0|−1‖P ‖ ,

and

I1(α, β) := {j : α ≤ ϕj ≤ β, rj ≥ 1} , I2(α, β) := {j : α ≤ ϕj ≤ β, rj ≤ 1} .

Here, ‖P ‖ denotes the maximum modulus of P on the closed unit disk of the
complex plane. For better constants in the Erdős–Turán Theorem in [43], see the
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recent paper [64] by Soundararajan, who also offers a very elegant new approach to
prove the Erdős–Turán Theorem in [43].

2 Remarks and Problems

A question we have not considered in [42] is if there are examples of n, L, and p for
which the values of κp(n, L) are significantly smaller if the coefficients are required
to be rational (perhaps together with other restrictions). The same question may
be raised about μq(n, L). As the conditions on the coefficients of the polynomials
in Theorems 1 and 2 are homogeneous, assuming rational coefficients and integer
coefficients lead to the same results. Four special classes of interest are

Fn :=
⎧⎨
⎩Q : Q(z) =

n∑
j=0

aj z
j , aj ∈ {−1, 0, 1}

⎫⎬
⎭ ,

Nn :=
⎧⎨
⎩Q : Q(z) =

n∑
j=0

aj z
j , aj ∈ {0, 1}

⎫⎬
⎭ ,

Ln :=
⎧⎨
⎩Q : Q(z) =

n∑
j=0

aj z
j , aj ∈ {−1, 1}

⎫⎬
⎭ ,

and

Kn :=
⎧⎨
⎩Q : Q(z) =

n∑
j=0

aj z
j , aj ∈ C, |aj | = 1

⎫⎬
⎭ .

Elements of Fn are often called Borwein polynomials of degree at most n. Elements
of Nn are often called Newman polynomials of degree at most n. Elements of Ln are
often called Littlewood polynomials of degree n. Elements of Kn are often called
unimodular or Kahane polynomials of degree n. In [17], we proved the following
result.

Theorem 3 Let p ≤ n be a prime. SupposeQ ∈ Fn andQ has exactly k zeros at 1
and exactly m zeros at a primitive pth root of unity. Then

p(m+ 1) ≥ k logp

log(n+ 1)
.

The proof of Theorem 3 is so simple that we reproduce it here.
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Proof of Theorem 3 Let

ξj := exp

(
2πij

p

)
, j = 1, 2, . . . , p − 1 .

LetQ ∈ Fn be of the form

Q(x) = (x − 1)kR(x) ,

where R is a polynomial of degree at most n− k with integer coefficients. Then, for
every integer m ≤ k, we have

Q(m)(x) = (x − 1)k−mS(x) ,

where S is a polynomial of degree at most n− k with integer coefficients. Hence,

K :=
p−1∏
j=1

Q(m)(ξj ) =
p−1∏
j=1

(ξj − 1)k−m
p−1∏
j=1

S(ξj ) =: pk−mN ,

where both K and N are integers by the fundamental theorem of symmetric
polynomials. Further,

|K| ≤
p−1∏
j=1

(n+ 1)nm ≤ (n+ 1)(p−1)(m+1) .

Hence, K �= 0 implies

pk−m ≤ (n+ 1)(p−1)(m+1) ,

that is,

k −m ≤ (p − 1)(m+ 1) log(n+ 1)

logp
,

and the result follows. 
�
The following three problems arise naturally, and they have been already raised

in [10], for example.

Problem 1 How many zeros can a polynomial 0 �≡ Q ∈ Fn have at 1?

Problem 2 How many zeros can a polynomial Q ∈ Ln have at 1?

Problem 3 How many zeros can a polynomial Q ∈ Kn have at 1?
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The case when p = ∞ and L = 1 in our Theorem 1 gives that every 0 �≡ Q ∈
Fn, every Q ∈ Ln, and every Q ∈ Kn can have at most cn1/2 zeros at 1 with an
absolute constant c > 0, but one may expect better results by utilizing the additional
pieces of information on their coefficients.

It was observed in [17] that for every integer n ≥ 2 there is a Q ∈ Fn having
at least c(n/ log n)1/2 zeros at 1 with an absolute constant c > 0. This is a simple
pigeon hole argument. However, as far as we know, closing the gap between cn1/2

and c(n/ log n)1/2 in Problem 1 is an open and most likely very difficult problem.
It is proved in [11] that every polynomial P of the from

P(z) =
n∑
j=0

aj z
j , |a0| = 1, |aj | ≤ 1 , aj ∈ C

has at most c
√
n zeros inside any polygon with vertices on the unit circle ∂D,

where c depends only on the polygon. One of the main results of [19] gives
explicit estimates for the number and location of zeros of polynomials with bounded
coefficients. Namely, if

δn := 33π
log n√
n
≤ 1 ,

then every polynomial P of the from

P(z) =
n∑
j=0

aj z
j , |a0| = |an| = 1, |aj | ≤ 1 , aj ∈ C

has at least 8
√
n log n zeros in any disk with center on the unit circle and radius δn.

More on Littlewood polynomials may be found in [7, 37], for example.
As far as Problem 2.3 is concerned, Boyd [23] showed that for n ≥ 3 every

Q ∈ Ln has at most

c(log n)2

log log n
(2.1)

zeros at 1, and this is the best known upper bound even today. Boyd’s proof is
very clever and up to an application of the Prime Number Theorem is completely
elementary. It is reasonable to conjecture that for n ≥ 2 every Q ∈ Ln has at most
c log n zeros at 1. It is easy to see that for every integer n ≥ 2 there areQn ∈ Ln with
at least c log n zeros at 1 with an absolute constant c > 0. Indeed, the polynomials
Pk defined by

Pk(z) =
k∏
j=0

(z2j − 1) , k = 1, 2, . . .
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has degree 2k+1 − 1 and a zero of multiplicity k + 1 at 1. By using Boyd’s elegant
method, it is easy to prove also that if Mk denotes the largest possible multiplicity
that a zero of a P ∈ Lk can have at 1 and (Ck) is an arbitrary sequence of positive
integers tending to∞, then

lim
n→∞

1

n
|k ∈ {1, 2, . . . , n} : Mk ≥ Ck| = 0 .

This was proposed as a problem in the Monthly [40] in 2009, and a few people have
solved it.

As far as Problem 3 is concerned, one may suspect that for n ≥ 2 everyQ ∈ Kn
has at most c log n zeros at 1. However, just to see if Boyd’s bound (2.1) holds for
everyQ ∈ Kn seems quite challenging and beyond reach at the moment.

Problem 4 How many zeros can a polynomial P ∈ Fn have at α if |α| �= 1 and
α �= 0? Can it have as many as we want?

Problem 5 How many zeros can a polynomial P ∈ Ln have at α if |α| �= 1 and
α �= 0? Can it have as many as we want?

The Mahler measure

M0(P ) := exp

(
1

2π

∫ 2π

0
log |P(eit )| dt

)

is defined for bounded measurable functions P defined on the unit circle. It is well
known that

M0(P ) := lim
q→0+Mq(P ) ,

where, for q > 0,

Mq(P ) :=
(

1

2π

∫ 2π

0

∣∣∣P(eit )
∣∣∣q dt

)1/q

.

It is a simple consequence of the Jensen formula that

M0(P ) = |c|
n∏
k=1

max{1, |zk|}

for every polynomial of the form

P(z) = c
n∏
k=1

(z− zk) , c, zk ∈ C .
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Lehmer’s conjecture is a problem in number theory raised by Derrick Henry
Lehmer. The conjecture asserts that there is an absolute constant μ > 1 such that
for every polynomial P with integer coefficients satisfying P(0) �= 0 we have either
M0(P ) = 1 (that is, P is monic and has all its zeros on the unit circle) orM0(P ) ≥
μ.

The smallest known Mahler measure greater than 1 is taken for the “Lehmer’s
polynomial”

P(z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z+ 1,

for which

M0(P ) = 1.176280818 . . . .

It is widely believed that this example represents the true minimal value: that is,

μ = 1.176280818 . . .

in Lehmer’s conjecture.
In 1973, Pathiaux [57] proved that ifQ is an irreducible polynomial with integer

coefficients and M0(Q) < 2, then there exists a polynomial P ∈ Fn such that Q
divides P . A remark at the end of this paper notes that the proof may be modified to
establish the same result for reducible polynomials. Mignotte [52] found a simpler
proof of this statement for irreducible polynomials Q with integer coefficients and
derived an upper bound on the degree of P in terms of the degree ofQ andM0(Q).
His proof may also be extended to the reducible case. These results were generalized
and strengthened by Bombieri and Vaaler in [6], as an application of their improved
formulation of Siegel’s lemma.

Similarly, it is a simple counting argument to show that if k ≥ 2 is an integer, the
monic polynomial Q has only integer coefficients, and M0(Q) < k, then there is a
polynomial P with integer coefficients in [−k + 1, k − 1] such that Q divides P .
See the hint to E.8 on page 23 of [7].

The result of Pathiaux [57] leads us to the following observations.

Remark 1 If

Q(z) := (z10 + z9 − z7 − z6 − z5 − z4 − z3 + z+ 1)4 ,

then M0(Q) = (1.176280818 . . .)4 < 2, hence there is a polynomial P ∈ Fn such
thatQ divides P .

Remark 2 If Lehmer’s conjecture is false, then the answer to Problem 4 is yes.
Indeed, if Lehmer’s conjecture is false, then for every 1 < μ < 2 there is a monic
polynomial Q such that 1 < M0(Q) ≤ μ, so if k := (log 2/ logμ) − 1, then Qk

divides a polynomial P ∈ Fn.
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Remark 3 It remains open whether or not a polynomial P ∈ Fn with P(0) = 1 can
have a zero α of multiplicity at least 5 outside the unit circle.

To find examples of Newman polynomials with constant term 1 and with at least
one repeated zero outside the unit circle had been asked by Odlyzko and Poonen
[56]. This question was later answered by Mossinghoff [54] who found examples of
several such polynomials with repeated zeros outside the unit circle.

To find examples of Littlewood polynomials with at least one repeated zero
outside the unit circle is also a very interesting problem. It is easy to see that such
Littlewood polynomials must have odd degree. Drungilas, Jankauskas, and Šiurys
[29] have found a Littlewood polynomial P of degree 195 such that (x3 − x + 1)2

divides P . See more in [29, 30, 34, 48].
We close this section by a version of an old and hard unsolved problem known

as the already mentioned Tarry–Escott Problem.

Problem 6 Let N ∈ N be fixed. Let a(N) be the smallest value of m for which
there is a polynomial P ∈ ∪∞n=1Fn with exactly m non-zero terms in it and with a
zero at 1 with multiplicity at least N . Prove or disprove that a(N) = 2N .

To prove that a(N) ≥ 2N is simple. The fact that a(N) ≤ 2N is known for
N = 1, 2, . . . , 12, but the problem is open for every N ≥ 13. In 1999, S. Chen
found the first ideal solution with N ≥ 12:

0k + 11k + 24k+65k+90k+129k+173k+212k+237k+278k + 291k + 302k

=3k + 5k + 30k+57k+104k+116k+186k+198k+245k+272k + 297k + 299k ,

valid for all k = 1, 2, . . . , 11.
The best known upper bound for a(N) in general seems to be a(N) ≤ cN2 logN

with an absolute constant c > 0. See [21]. Even improving this (like dropping
the factor logN ) would be a significant achievement. Note that for every integer
n ≥ 2 there is a polynomial Q ∈ Fn having at least c(n/ log n)1/2 zeros at 1
with an absolute constant c > 0. This was observed in [17] based on a simple
counting argument. The inequality a(N) ≤ cN2 logN with an absolute constant
c > 0 follows simply from this.
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43. P. Erdős, P. Turán, On the distribution of roots of polynomials. Ann. Math. 57, 105–119 (1950)
44. L.B.O. Ferguson, Approximation by Polynomials with Integral Coefficients (American Mathe-

matical Society, Providence, 1980)
45. W. Foster, I. Krasikov, An improvement of a Borwein-Erdélyi-Kós result. Methods Appl. Anal.

7(4), 605–614 (2000)
46. C.S. Güntürk, Approximation by power series with ±1 coefficients. Int. Math. Res. Not. 26,

1601–1610 (2005)
47. G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers (Clarendon Press, Oxford,

1938)
48. K.G. Hare, J. Jankauskas, On Newman and Littlewood polynomials with a prescribed number

of zeros inside the unit disk, Math. Comput. (published electronically: October 27, 2020)
49. L.K. Hua, Introduction to Number Theory (Springer, Berlin/Heidelberg/New York, 1982)
50. G. Kós, P. Ligeti, P. Sziklai, Reconstruction of matrices from submatrices. Math. Comput. 78,

1733–1747 (2009)
51. I. Krasikov, Multiplicity of zeros and discrete orthogonal polynomials. Results Math. 45(1–2),

59–66 (2004)
52. M. Mignotte, Sur les multiples des polynmes irrductibles. Bull. Soc. Math. Belg. 27, 225–229

(1975)
53. M. Minsky, S. Papert, Perceptrons: An Introduction to Computational Geometry (MIT Press,

Cambridge, MA, 1968)
54. M.J. Mossinghoff, Polynomials with restricted coefficients and prescribed noncyclotomic

factors, (electronic). Lond. Math. Soc. J. Comput. Math. 6, 314–325 (2003)
55. N. Nisan, M. Szegedy, On the degree of Boolean functions as real polynomials. Earlier version

in STOC92. Comput. Complex. 4(4), 301–313 (1994)
56. A.M. Odlyzko, B. Poonen, Zeros of polynomials with 0, 1 coefficients. Enseign. Math. 39,

317–348 (1993)
57. M. Pathiaux, Sur les multiples de polynômes irréductibles associés à certains nombres

algébriques, 9 pp., Séminaire Delange-Pisot-Poitou 14 (1972–1973)
58. C. Pinner, Double roots of [−1, 1] power series and related matters. Math. Comput. 68(2),

1149–1178 (1999)
59. I.E. Pritsker, A.A. Sola, Expected discrepancy for zeros of random algebraic polynomials. Proc.

Am. Math. Soc. 142, 4251–4263 (2014)
60. E.A. Rakhmanov, Bounds for polynomials with a unit discrete norm. Ann. Math. 165, 55–88

(2007)



On the Multiplicity of the Zeros of Polynomials with Constrained Coefficients 177

61. F. Rodier, Sur la non-linéarité des fonctions booléennes. Acta Arith. 115(1), 1–22 (2004)
62. I. Schur, Untersuchungen über algebraische Gleichungen. Sitz. Preuss. Akad. Wiss. Phys.-

Math. Kl. 403–428 (1933)
63. I.E. Shparlinski, Finite Fields: Theory and Computation – The Meeting Point of Number

Theory, Computer Science, Coding Theory and Cryptography, Dordrecht/London, 1999
64. K. Soundararajan, Equidistribution of zeros of polynomials. Am. Math. Mon. 126(3), 226236

(2019)
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Generalized Barycentric Coordinates
and Sharp Strongly Negative Definite
Multidimensional Numerical Integration

Allal Guessab and Tahere Azimi Roushan

Abstract This paper is devoted to study and construct a family of multidimensional
numerical integration formulas (cubature formulas), which approximate all strongly
convex functions from above. We call them strongly negative definite cubature
formulas (or for brevity snd-formulas). We attempt to quantify their sharp approx-
imation errors when using continuously differentiable functions with Lipschitz
continuous gradients. We show that the error estimates based on such cubature
formulas are always controlled by the Lipschitz constants of the gradients and
the error associated with using the quadratic function. Moreover, assuming the
integrand is itself strongly convex, we establish sharp upper as well as lower refined
bounds for their error estimates. Based on the concepts of barycentric coordinates
with respect to an arbitrary polytope P , we provide a necessary and sufficient
condition for the existence of a class of snd-formulas on P. It consists of checking
that such coordinates exist on P . Then, the Delaunay triangulation is used as a
convenient partition of the integration domain for constructing the best piecewise
snd-formulas in L1 metric. Finally, we present numerical examples illustrating the
proposed method.

1 Introduction, Motivation, and Terminology

This paper constitutes the progression of previous works [4, 5, 7, 8], which focused
on the study of some classes of multidimensional numerical integration in the
context of the classical notion of convexity. Here, our objective is to extend the
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results given there for strongly convex functions. To describe our problem of
integration from a numerical standpoint more precisely, letΩ ⊂ R

d be a non-empty
compact convex set and f : Ω → R be a given function. We sometimes know
beforehand that the function f satisfies various known structural and regularity
properties. For example, it may be known that f has some additional kind of
convexity; therefore, we would wish to use this information in order to get most
appropriate methods for numerical integration of f. In this paper, to get a better
approximation of the integral of our function, we try to approximate it using
cubature formulas, which approximate the integral of all strongly convex functions
from above. The strongly convex functions are widely applied in economic theory
(see [23]) and are also central to optimization theory (see [14]). Indeed, in the
framework of function minimization, this convexity notion has important and well-
known implications. As we will see, the key advantage of using cubature formulas
of such kind is that their associated approximation errors can always be controlled
by the error associated with using the quadratic function. Hence, if we want a more
accurate approximation of the integral of our function, we need to find a better
approximation of the integral of the quadratic function.

To appreciate the problem more clearly, let us start by describing briefly a specific
one-dimensional example, since its simplicity helps us better understand all the
necessary steps through very simple explicit computations. Assume that μ is a
fixed nonnegative real number. In one-dimensional numerical integration, say on an
interval [a, b], a simple way of approximating the integral of a given real μ-strongly
convex function f : [a, b] → R is first to choose a partition P := {x0, x1, . . . , xn}
of the interval [a, b], such that a = x0 < x1 < . . . < xn = b, and then to apply the
classical local trapezoidal quadrature rule Ti(f ) = f (xi−1)+f (xi )

2 on each subinterval
Ii := [xi−1, xi], i = 1, . . . , n, and to sum up the results. Among its many important
properties, this rule satisfies the well-known Hermite–Hadamard inequality, which
ensures an upper estimate for the exact value of the integral of any convex function:

1

xi − xi−1

∫ xi

xi−1

f (t)dt ≤ Ti(f ), (i = 1, . . . , n), (1)

where the sign of equality being achieved if f is an affine function. Recall that
the local trapezoidal rule Ti(f ) could be obtained by integrating the barycentric
approximation operator:

Bi[f ](x) := λi−1(x)f (xi−1)+ λi(x)f (xi), (x ∈ Ii),

where λi−1(x) and λi(x) are the barycentric coordinates of x with respect to Ii,
which are defined as

λi−1(x) := x − xi
xi−1 − xi , λi(x) :=

x − xi−1

xi − xi−1
, (x ∈ Ii).
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Observe that Bi is a first-order barycentric polynomial interpolating f at two points,
xi−1 and xi and that the weights λi−1 and λi can expressed as

λi−1(x) = 1

length(Ii)

∣∣∣∣1 x1 xi

∣∣∣∣, λi(x) = 1

length(Ii)

∣∣∣∣1 xi−1

1 x

∣∣∣∣.

Rearranging terms, it is clear that these weights are nonnegative on Ii , and moreover
they satisfy

λi−1(x)+ λi(x) = 1, x = λi−1(x)xi−1 + λi(x)xi, (x ∈ Ii). (2)

The trapezoidal rule is the simplest, most well-known, and widely used quadrature
rule. The reason for this popularity lies in the large number of useful theoretical
and computational properties of this rule. It actually served as basic ingredients for
constructing more accurate and adaptive formulas. For this reason, this rule together
with its fundamental inequality (1) has been an effective starting point for several
subsequent investigations, see [2, 6]. Furthermore, in the local error analysis of the
rule Ti(f ),

ETi(f ) := Ti(f )− 1

xi − xi−1

∫ xi

xi−1

f (t)dt,

estimate of (1) is a very useful tool. Indeed, let (.)2 denote the square function
t → t2, and assume that the first derivative of f is a Lipschitz function with a
Lipschitz constant L(f ′) in [a, b] ( or f ∈ C1,1[a, b]), then Hermite–Hadamard
inequality implies the following upper local estimation:

|ETi(f )| ≤ ETi
(
(.)2

)
2

L(f ′) (3)

=
Ti

((
.− xi−1+xi

2

)2
)

3
L(f ′) (4)

= (xi − xi−1)
2

12
L(f ′), (5)

where equality is attained for all quadratic functions. The literature contains a
number of variations of these estimations, some statements employing the largest
absolute value of the second derivative over the interval [a, b]. In addition, if f
is μ-strongly convex, then the following lower local estimation also holds for all
i = 1, . . . , n,

ETi(f ) ≥ ETi
(
(.)2

)
2

μ (6)
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=
Ti

((
.− xi−1+xi

2

)2
)

3
μ (7)

= (xi − xi−1)
2

12
μ. (8)

We did not find any reference to such result. However, the abovementioned
estimates can be derived as an immediate consequence of our multivariate general
results, see Remark 3. Estimates (3) and (6) say that for the trapezoidal rule, we
can always control its approximation error by the Lipschitz constants of the first
derivative, the parameter (of the strong convexity), and the error associated with
using the quadratic function. It should also be noted that equalities in (3) and (6) are
satisfied for all μ-strongly convex functions of the form

f (x) = a(x)+ μ
2
x2, (9)

where a(·) is any affine function. Therefore, in this sense, the error estimates (3)
and (6) are sharp for the class of μ-strongly convex functions having Lipschitz
continuous first derivatives. This provides the starting point of the present study.
Indeed, the present contributions of this paper are twofold: first, we would like
to consider the general multivariate variable case. More precisely, this paper deals
with the problem of approximation of the integral of multivariate functions by snd-
formulas, that is, those which approximate from above all strongly convex functions
with Lipschitz continuous gradients. Geometrically, if a function f belongs to
such class, then its gradient ∇f cannot change too quickly and it cannot change
too slowly either. Functions satisfying these conditions are widely used in the
optimization literature, we refer to Nesterov’s book [14].

Hence, the questions that arise, as a natural consequence of the estimates (3)
and (6), are the following:

• Can we extend the one-dimensional approach to construct a natural multivariate
version of the trapezoidal quadrature rule in any polytope?

• Can the approximation errors for such cubature formulas satisfy similar lower
and upper bounds in the multidimensional case?

We will answer these questions positively by defining and studying a class of snd-
formulas on an arbitrary polytope to approximate the integral of a function by
piecewise cubature formulas. Our extensions are derived in a natural way by using
the generalized barycentric coordinates, which turn out to be appropriate to the
more general multivariate setting. In particular, we will show how the Delaunay
triangulation can be used as a convenient partition of the integration domain for
constructing the best piecewise snd-formulas in L1 metric.

This paper is organized as follows: In the next section, we briefly recall key
notions and notations. Then, we introduce the notion of strong convexity and
establish two general characterization results (see Lemmas 1 and 2). These general
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results provide two equivalent conditions for a linear functional to be negative in the
set of convex functions. We then use them to establish a first characterization of the
approximation error of our class of cubature formulas. In order to provide a second
characterization result, Section 3 defines the notion of generalized barycentric
coordinates on polytopes and gives an existence result of them in any polytope.
Here, we provide a necessary and sufficient condition for the existence of the snd-
formulas. It consists of checking the existence of a set of these coordinates. Section 4
uses the generalized barycentric coordinates to construct a multivariate version of
the classical trapezoidal rule in arbitrary higher-dimensional polytopes. As a result,
we get explicit lower and upper bounds for the approximation error when using
continuously differentiable functions with Lipschitz continuous gradients. Indeed,
analogously to the one-dimensional estimates (3) and (6), we offer sharp error
estimates that only depend on the parameter of the strong convexity, the Lipschitz
constants of the gradients, and the error associated with using the quadratic function.
In Section 5, using the Delaunay triangulation as a partition of a polytope, we
present an explicit construction of our sharp cubature schemes. Finally, Section 6
will provide a numerical example to illustrate the efficiency of this approach.

2 General Setting

Our main results in this section first concern two characterization results of any
negative linear functional in the set of convex functions, which hold in a general
framework and will be repeatedly applied in the sequel. We will start in this section
with some of the basic properties of strong convex functions. But first, we need to
introduce some notations, which follow closely those of [3]. Let Ω be a subset of
R
d . As usual, we mean by Ω◦ the interior of Ω . We say that Ω is measurable if

it has a finite Lebesgue measure, which we denote by |Ω|. For measurable Ω , the
class L1(Ω) comprises all Lebesgue integrable functions f : Ω → R. A property
holds almost everywhere (abbreviated by a.e.) on Ω if it holds on Ω except for a
set of measure zero. Furthermore, we denote by C(Ω) the class of all real-valued
continuous functions onΩ and byCk(Ω), where k ∈ N, the subclass of all functions
that are k times continuously differentiable. It is convenient to agree that C0(Ω) =
C(Ω). We denote by ‖.‖ the Euclidean norm in R

d and 〈x, y〉 the standard inner
product of x, y ∈ R

d . By C1,1(Ω), we denote the subclass of all functions f , which
are continuously differentiable onΩ with Lipschitz continuous gradients, i.e., there
exists L(∇f ) such that

‖∇f (x)−∇f (y)‖ ≤ L(∇f ) ‖x − y‖ , (x, y ∈ Ω).

We now present the notion of strong convexity, which generalizes the classical
definition of convexity.
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Definition 1 A function f is called strongly convex with parameterμ > 0 if domf
is convex and the strong Jensen inequality holds: for any x, y ∈ domf and t ∈
[0, 1],

f (tx + (1− t)y) ≤ tf (x)+ (1− t)f (y)− μ
2
t (1− t) ‖x − y‖2 . (10)

A simple calculation reveals that this definition is equivalent to the convexity of
g := f − μ

2 ‖.‖2 . See [11, Prop 1.1.2] for a direct proof of this result, what was
derived using the identity

(1− t) ‖x‖2 + t ‖y‖2 − ‖(1− t)x + ty‖2 = t (1− t) ‖x − y‖2 .

Obviously, every strongly convex function is convex. Observe also that, for instance,
affine functions are not strongly convex and if μ = 0, we can get the classical
definition of convexity.

Remark 1 For any positive real number μ, the following functions are μ-strongly
convex functions:

1. ρ
2 ‖.‖2 , (μ ≤ ρ).

2. Addition of a convex function to a strongly convex function gives a strongly
convex function with the same modulus of strong convexity. Therefore, adding a
convex function to μ

2 ‖.‖2 does not affect μ-strong convexity.

Now, we state a first characterization result of linear functionals, which are
negative in the set of convex functions. It is shown that in order to prove such
property for the given functional E, it suffices to check that E is negative in a subset
of strongly convex functions with a given fixed strong convexity parameter. Recall
the obvious inclusion, the set of strongly convex functions is contained in the set of
convex functions.

Lemma 1 Let Ω ⊂ R
d be a compact convex set. Let μ be an arbitrary, fixed real

number, and let E be a linear functional defined on C(Ω). Then, the following
conditions are equivalent:

(i) For every convex function f ∈ C(Ω), we have

E(f ) ≤ 0.

(ii) For every μ-strongly convex function f ∈ C(Ω), we have

E(f ) ≤ 0.

Proof (i) implies (ii) is the trivial part of the proof. Indeed, assume that (i) holds. Let
f be μ-strongly convex function. Set g := f − μ

2 ‖.‖2. By definition, g is therefore
convex. Hence, applying property (i), it follows, by linearity of E
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E(f ) ≤ μ
2
E(‖.‖2).

Since ‖.‖2 is convex, then again by (i) we have E(‖.‖2) ≤ 0. This shows that (ii)
holds.
Now, assume that (ii) holds. Let ε be a positive real number, and let f be a convex
function. Define the function g by

g := f + ε
2
‖.‖2.

Noting that

μ

ε
f = μ

ε
g − μ

2
‖.‖2

and since μ
ε
f is convex, then by the definition of strong convexity μ

ε
g is μ-strongly

convex. Hence, by (ii), we can conclude that

E
(μ
ε
g
)
≤ 0.

Thus, it follows that

E(g) ≤ 0,

or equivalently, by virtue of the linearity of E,

E(f ) ≤ −ε
2
E(‖.‖2).

In view of the fact that this inequality holds for all ε > 0, then by letting ε ↓ 0, it
follows that

E(f ) ≤ 0.

Hence, the desired statement (i) is valid and thus means that these two statements
are equivalent. 
�
If, in addition, the functions belong to C1,1(Ω), then our second characterization
result is given in the following:

Lemma 2 Let Ω ⊂ R
d be a compact convex set. Let E : Ck(Ω) → R, where

k ∈ {0, 1}, be a linear functional, and let μ be a positive real number. Then, the two
following statements are equivalent:

(i) For every μ-strongly convex function g ∈ C1,1(Ω), we have

E [g] ≤ 0. (11)
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(ii) For every f ∈ C1,1(Ω) with L(∇f )-Lipschitz gradient, we have

|E [f ] | ≤ −E
[
‖.‖2

]
.
L(∇f )

2
. (12)

Equality is attained for all functions of the form

f (x) := a(x)+ c‖.‖2, (13)

where c ∈ R, and a(·) is any affine function.
Proof First, we prove (i) implies (ii). Let f be any function from C1,1(Ω) with
L(∇f )-Lipschitz gradient. Define the following two functions:

g± := ‖.‖2L(∇f )
2

± f.

Then, according to [3, Proposition 2.2], we know that both of these functions belong
to C1,1(Ω) and are also convex. Hence, by (i) and Lemma 1, it follows that the
functions g− and g+ satisfy

E [g±] ≤ 0.

Then, by linearity of E and a simple manipulation, we find that

E
[
‖.‖2

] L(∇f )
2

≤ E [f ] ≤ −E
[
‖.‖2

] L(∇f )
2

.

This is equivalent to (12) and shows that property (ii) also holds.
Now, let us assume that (ii) holds. Then, we deduce that

E
[
‖.‖2

]
≤ 0, (14)

Let g ∈ C1,1(Ω) be any μ-strongly convex function and set

f := L(∇g)
2
‖.‖2 − g.

Then, according to [3, Proposition 2.2], we have

f ∈ C1,1(Ω) and L(∇f ) ≤ L(∇g). (15)

Since

g = L(∇g)
2
‖.‖2 − f,
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it can be written as follows:

g =
(
‖.‖2L(∇f )

2
− f

)
+ ‖.‖2

(
L(∇g)

2
− L(∇f )

2

)
,

we therefore obtain

E [g] = E
[
‖.‖2L(∇f )

2
− f

]
+ E

[
‖.‖2

](L(∇g)
2

− L(∇f )
2

)
.

Finally, by combining (ii), (14), and (15), we can conclude that (i) is valid. For the
statement on the occurrence of equality, it is enough to note that a linear functional
E satisfying (11) for all convex functions must vanish for affine functions. 
�
We now define our new general class of cubature formulas, which we formulate as
follows:

Definition 2 Let Ω ⊂ R
d be a compact set, and let μ be a positive real number.

For n points x1, . . . , xn ∈ Ω, called nodes, and associated positive numbers
A1, . . . , An, we say that

{
(Ai, xi ) : i = 1, . . . , n

}
(16)

defines the μ-strongly negative definite cubature formula

∫
Ω

f (x)dx =
n∑
i=1

Aif (xi )+ E [f ] , (17)

if the approximation error E satisfies

E [f ] ≤ 0, (18)

for all μ-strongly convex functions f ∈ C(Ω).
We say that (17) is a μ snd-formula for short. We also call (16) a μ snd-system,
which is said to be of length n if the points x1, . . . , xn are distinct. Let us mention
that any μ snd-cubature formula approximates the exact value of the integral of a
μ-strongly convex function from above. This means that the approximation error
for such cubature formulas is negative on the set of μ-strongly convex functions.

Remark 2 Note that a μ snd-cubature formula as specified in Definition 2 is always
of order two. In fact, by Lemma 2 and inequality (12), the functional E vanishes for
affine functions, and so the order is at least two. However, if the order were greater
than two, then (12) would imply that E [f ] = 0 for all f ∈ C1,1(Ω). Recall that, in
the univariate case, a quadrature rule is snd-formula if and only if its second Peano
kernel is greater than zero or less than zero; see [9, Chap.II.4] or [10, Chap. 4.3].
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In the theory of inequalities, inequality (18), with E defined by (17) and valid for
all μ-strongly convex functions, has also been called upper Hermite–Hadamard
inequality.

We now present a characterization of our class of cubature formulas in terms of
their associated error functionals. Indeed, we show that for functions in C1,1(Ω),

the error estimates based on such cubature formulas are always controlled by the
Lipschitz constants of the gradients, the strong convexity parameter, and the error
associated with using the quadratic function. This result is a direct consequence of
Lemmas 1 and 2.

Theorem 1 Let Ω ⊂ R
d be a compact convex set. A cubature formula (17) is μ-

strongly snd-formula if and only if for all μ-strongly convex functions f ∈ C1,1(Ω),
its error functional satisfies

− μ
2
E

[
‖.‖2

]
≤ E [f ] ≤ −E

[
‖.‖2

]
.
L(∇f )

2
. (19)

In (19), equality is attained for all functions of the form

f (x) := a(x)+ μ
2
‖.‖2,

where a(·) is any affine function.
In order to describe the second constructive method, we introduce the following

notion.

3 Generalized Barycentric Coordinates on Polytopes

In this section, we start by giving a brief overview of the basic elements of
barycentric coordinates in d dimensions, see, e.g., [12, pp. 132–135] for more
details. Let us quickly recall how these so-called coordinates are defined. Fix an
integer n ≥ 1, and letW : = {x0, . . . , xn} be a finite subset of distinct but otherwise
arbitrary points in R

d . The following linear combination,

b =
n∑
i=0

αixi (20)

is called a convex combination if the coefficients αi are all nonnegative. All convex
combinations of points of the set W define the convex hull of the set W . The
resulting set is a convex set conv(W), i.e., the smaller convex set containing W .
Following the terminology of [22], a convex polytope Ω , or simply a polytope, we
mean a set that is the convex hull of a non-empty finite set of pointsW ⊂ R

d .
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From now on, let Ω ⊂ R
d be a (convex) polytope generated from a finite subset

of points in R
d , W : = {x0, . . . , xn}, i.e., Ω = conv(W).

A vector x ∈ R
d is an extreme point of Ω if x ∈ Ω and x cannot be expressed

as a convex combination of two vectors of Ω , both of which are different from x.
The set of extreme points of the polytopeΩ shall be denoted by V ert (Ω). It is well
known that the convex hull of a finite setW is compact, and its set of extreme points
is non-empty and included in W . That is, V ert (Ω) �= ∅ and V ert (Ω) ⊂ W . In
what follows, we assume that the number of vertices of Ω is greater than 2.
Introduced by Möbius in 1827 as mass points to define a coordinate-free geometry
[20], barycentric coordinates over polytopes are a very common tool in many
computations and have many useful applications, ranging from Gouraud and Phong
shading, rendering of quadrilaterals, image warping, mesh deformation, and finite
element applications, see, e.g., [15, 21]. Given a polytopeΩ = conv({x0, . . . , xn}),
we wish to construct one coordinate function λi(x) per point xi for all x ∈ Ω . These
functions are called barycentric coordinates with respect to {x0, . . . , xn} (or Ω) if
they satisfy three properties. First, the coordinate functions are nonnegative on Ω ,

λi(x) ≥ 0 (21)

for all x ∈ Ω . Second, the functions form a partition of unity, which means that the
equation

n∑
i=0

λi(x) = 1 (22)

is obtained for all x ∈ Ω . Finally, the functions act as coordinates in that, given a
value of x, weighting each point xi by λi(x) returns back x, i.e.,

x =
n∑
i=0

λi(x)xi . (23)

This last property is also sometimes referred to as linear precision since the
coordinate functions can reproduce linear functions. For most potential applications,
it is also preferable that these coordinate functions are as smooth as possible.
Constructing the barycentric coordinates of a point x with respect to some given
points in a polytope Ω is often not a trivial task. For simplices, barycentric
coordinates are a very common tool in many computations. Basically, they are
defined as follows: let Xd = {v0, . . . , vd} be any linearly independent set of d + 1
points in R

d , and the simplex T with the set of vertices Xd is the convex hull of
Xd (e.g., a triangle in 2D or a tetrahedron in 3D). Let Ai(x) be the signed volume
(or area) of the subsimplex of T created with the vertex vi replaced by x. Then, the
barycentric coordinate functions {λ0, . . . , λd} of the simplex T with respect to its
vertices are uniquely defined by
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λi(x) = Ai(x)

vol(T )
, (24)

where vol(T ) will mean the volume measure of T . It is easily seen that each point x

of T has a (unique) representation and that x = ∑d
i=0 λi(x)vi and the barycentric

coordinates {λ0, . . . , λd} are nonnegative affine functions on T . The uniqueness of
this representation allows the weights λi(x) to be interpreted as an alternative set of
coordinates for point x, the so-called barycentric coordinates. Note that a d-simplex
is a special polytope given as the convex hull of d+1 vertices in d dimensions, each
pair of which is joined by an edge. For n > d, which is the case of interest in this
paper, the linear constraints form an under-determined system.
Barycentric coordinates also exist for more general types of polytopes and will be a
crucial ingredient in what follows. Indeed, we have, see [13, Theorem 2]:

Theorem 2 Let W = {x0, . . . , xn} be a set of finite points of Rd , and let the
polytope Ω = conv(W). Then, there exist nonnegative real-valued continuous
functions λ0, λ1, . . . , λn defined on Ω such that

x =
n∑
i=0

λi(x)xi and
n∑
i=0

λi(x) = 1, , (25)

for each x ∈ Ω.
Thus, from now on, it proves useful to work with barycentric coordinates. Therefore,
unless otherwise indicated, it is assumed that λi(x), i = 0, . . . , n, are the
barycentric coordinates of x with respect to a set of finite fixed points {x0, . . . , xn}
of the polytope

Ω = conv({x0, . . . , xn}).

We shall not always trouble to repeat this at each stage. Furthermore, they do not
need to be the vertices ofΩ , of course, the polytopeΩ may be generated by another
different set of points

{
y0, . . . , yk

}
on Ω.

Note also that Equation (25) can be rewritten in the following general way:

n∑
i=0

λi(x) (x − xi ) = 0, (26)

which obviously implies

n∑
i=0

∫
Ω

λi(x) (x − xi ) dx = 0. (27)
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Characterization of snd-Cubature Formulas in Terms
of the Existence of a Set of Barycentric Coordinates

From now on, let Ω ⊂ R
d be a compact convex polytope of positive measure, and

let X := {x1, . . . , xn} be a finite subset that includes the vertices of Ω . Thus, the
convex hull of X must be equal to Ω . Now, we provide a necessary and sufficient
condition for the existence of the snd-formulas. It consists of checking the existence
of a set of barycentric coordinates.

Theorem 3 A set a = {(Ai, xi ) : i = 1, . . . , n} defines a μ snd-cubature formula
on Ω if and only if there exists a set of barycentric coordinates {λ1, . . . , λn} on Ω
such that

x =
n∑
i=1

λi(x)xi (a.e. on Ω), (28)

and

Ai =
∫
Ω

λi(x)dx (i = 1, . . . , n). (29)

Proof Let {(Ai, xi ) : i = 1, . . . , n} define a μ snd-cubature formula on Ω . Then,
according to the definition, the error functional E satisfies, for any μ-strongly
convex function f ,

E [f ] ≤ 0. (30)

We deduce then by Lemma 1 that, for every convex function g ∈ C(Ω), we have

E [g] ≤ 0. (31)

This means that the estimate

∫
Ω

g(x)dx ≤
n∑
i=1

Aig(xi )

holds for every convex function g ∈ C(Ω). Hence, by [7, Theorem 2.1a, p.97],
there exists a set of barycentric coordinates {λ1, . . . , λn} on Ω, which satisfies the
required conditions (28) and (29).
Conversely, assume that there exists a set of barycentric coordinates {λ1, . . . , λn}
on Ω, such that conditions (28) and (29) hold. Let f be convex on Ω . Then, since
f is convex, by Jensen’s inequality, it follows from (28) that
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f (x) ≤
n∑
i=1

λi(x)f (xi ).

Integrating both sides over Ω and using (29), we obtain the inequality

E [f ] :=
∫
Ω

f (x)dx −
n∑
i=1

Aif (xi ) ≤ 0.

Since the above inequality holds for every convex function, then according to
Lemma 1, we also have, for every μ-strongly convex function,

E [f ] ≤ 0. (32)

This shows that {(Ai, xi ) : i = 1, . . . , n} defines a μ snd-cubature formula on Ω .

�

4 Integral Approximation Using Barycentric Coordinates

Many of useful properties of the classical trapezoidal quadrature rule (1) on
the interval [a, b] can be carried over directly to the d-dimensional hypercube∏d
i=1[ai, bi] by using tensor products of d copies of this latter. Non-tensorial

constructions of the trapezoidal curbature formula are rare in the case of an arbitrary
polytope. In general, leaving the tensor product setting causes a lot of difficulties
in theoretical as well as in computational aspects. From the theoretical point of
view, it gets harder to find a suitable set of barycentric coordinates needed for
their constructions as we did for the one-dimensional case. An example of a non-
tensorial construction on surplices with the derivation of an efficient computational
scheme for the trapezoidal cubature formulas can be found in [6]. Using generalized
barycentric coordinates, this section shows how the simple univariate trapezoidal
rule (1) can be extended to arbitrary higher-dimensional polytopes. To this end, let
Xm = {xi}mi=0 be a given finite set of pairwise distinct points in Ω ⊂ R

d , with
Ω = conv(Xm) denoting the convex hull of the point set Xm. We are interested in
approximating the integral of an unknown function f : Ω → R from given function
values f (y0), . . . , f (yn), where Yn :=

{
yi

}n
i=0 ⊂ Ω. In order to obtain a simple

and stable global approximation of the integral of f on Ω , we may consider a μ
snd-cubature formula of the following form:

In[f ] :=
n∑
i=0

Aif (yi ). (33)
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Theorem 3 tells us that there exists a set of barycentric coordinates {λ1, . . . , λn} on
Ω such that

x =
n∑
i=0

λi(x)yi (a.e. on Ω), (34)

and

Ai =
∫
Ω

λi(x)dx (i = 0, . . . , n). (35)

For any function f ∈ C1,1(Ω), the functional

En[f ] := En[f,λ] = In[f ] −
∫
Ω

f (x) dx (36)

will be reserved exclusively to denote the incurred approximation error between the
integral of f and its approximation In[f ].

We now give a simple expression of the errorEn[‖.‖2] in terms of the barycentric
coordinates {λ0, . . . , λn}.
Lemma 3 The error En[‖.‖2] when approximating the integral of the quadratic
function ‖.‖2 by In[‖.‖2] can be expressed as

En[‖.‖2](x) =
n∑
i=0

∫
Ω

λi(x)
∥∥x − yi

∥∥2
dx. (37)

Proof For f (x) = ‖x‖2 , we find by a simple calculation that

f (x)+ 〈∇f (x), yi − x
〉 = ∥∥yi

∥∥2 − ∥∥x − yi
∥∥2
.

Hence, multiplying on each side by λi , summing up with respect to i from 0 to n,
using the linear precision property of barycentric coordinates, and rearranging, we
get the desired result and complete the proof of the lemma. 
�
The following lemma shows that if the cubature formula In approximates every
strongly convex function from above, then it generates a sharp lower bound for the
error of any strongly convex function.

Lemma 4 Let μ be a positive real number. If the barycentric coordinate approx-
imation functional In approximates every μ-strongly convex function from above,
then for every μ-strongly convex function f , it holds

μ

2

n∑
i=0

∫
Ω

λi(x)
∥∥x − yi

∥∥2
dx ≤ In[f ] −

∫
Ω

f (x) dx. (38)



194 A. Guessab and T. A. Roushan

Equality in (38) is attained for all functions of the form

f (x) = a(x)+ μ
2
‖x‖2, (39)

where a(·) is any affine function.
Proof Let us fix f as a μ-strongly convex function. By the Jensen convexity for
μ-strongly convex functions, see [11], we get

f (yi ) ≥ f (x)+
〈∇f (x), yi − x

〉+ μ
2

∥∥x − yi
∥∥2
.

Hence, multiplying on each side by λi , summing up with respect to i from 0 to n,
and integrating each term, we get the desired result and complete the proof of the
lemma. The case of equality is easily verified. 
�
The following lemma gives an upper bound for the absolute value of the error of
any function possessing Lipschitz continuous gradient:

Lemma 5 The following error estimate holds for every function f ∈ C1,1(Ω) :
∣∣∣∣In[f ] −

∫
Ω

f (x) dx

∣∣∣∣ ≤ L(∇f )2

n∑
i=0

∫
Ω

λi(x)
∥∥x − yi

∥∥2
. (40)

Equality in (40) is attained for all functions of the form

f (x) = a(x)+ μ
2
‖x‖2, (41)

where a(·) is any affine function.
Proof This lemma is an immediate consequence of Theorem 1 and Lemma 3. The
case of equality is easily verified. 
�

Now, everything is set for giving an upper bound and a lower bound for the
approximation error estimate En[f ] = In[f ] −

∫
Ω
f (x) dx of any μ-strongly

convex function f , having Lipschitz continuous gradient.

Theorem 4 Let μ be a positive real number. Then, for every μ-strongly convex
function f ∈ C1,1(Ω) and any x ∈ Ω , it holds

μ

2

n∑
i=0

∫
Ω

λi(x)
∥∥x−yi

∥∥2 ≤ In[f ]−
∫
Ω

f (x) dx ≤ L(∇f )
2

n∑
i=0

∫
Ω

λi(x)
∥∥x−yi

∥∥2
.

(42)
Equality in (42) is attained for all functions of the form

f (x) = a(x)+ μ
2
‖x‖2, (43)
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where a(·) is any affine function.
Proof This is an immediate consequence of Lemmas 3, 4, and 5 and Theorem 1.
The case of equality is easily verified. 
�
Remark 3 In the univariate case, a simple inspection of the error estimates (42)
reveals that (42) is nicely reduced to the simple form given in (3) and (6).

5 Practical Construction of snd-Cubature Formulas

We now turn to a practical construction of snd-cubature formulas. To this end,
let us first consider the case, where Ω is a non-degenerate simplex in R

d with
xi , i = 1, . . . , d + 1, being the set of its vertices. Then, each x ∈ Ω has a unique
representation as a convex combination

x =
d+1∑
i=1

λi(x)xi , (44)

where λi is the restriction toΩ of the affine function that attains the value 1 at xi and
is zero at all the other vertices ofΩ . The value λi(x) is the barycentric coordinate of
x with respect to xi . Then, if f is convex, by Jensen’s inequality it follows from (44)
that

f (x) ≤
n∑
i=1

λi(x)f (xi ).

Integrating both sides over Ω and using the fact that
∫
Ω
λi(x)dx = |Ω|

d+1 , i =
1, . . . , d + 1, we deduce that

∫
Ω

f (x)dx ≤ QTraR(f ), (45)

QTraR(f ) :=
d+1∑
i=1

|Ω|
d + 1

f (xi ). (46)

Consequently, by Lemma 1, the set of barycentric coordinates λ1, . . . , λd+1 pro-
duces the snd-system

{( |Ω|
d + 1

, xi

)
: i = 1, . . . , d + 1

}
.

It is the only snd-system on Ω , which has no other nodes than the vertices.
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Now, let X = {
xi ∈ R

d , i = 1, . . . , n
}

be an arbitrary set of points of Rd . The
previous approach can be generalized when Ω = conv (X) is an arbitrary polytope
in R

d . A triangulation T of Ω with respect to X is a decomposition of Ω into d-
dimensional simplices such that X is the set of all their vertices, and the intersection
of any two simplices consists of a common lower-dimensional simplex or is empty.
Triangulations of compact convex polytopes exist.1 Indeed, given any finite set X

of points that do not all lie on a hyperplane, Chen and Xu [1, p. 301] describe a
lifting-and-projection procedure that results in a triangulation of the convex hull of
X with respect to X. For an explicit statement on the existence of triangulations
with a proof based on an algorithmic method, see [16, Theorem 3, part a].
Now, let S1, . . . ,Sl be the simplices of T , and let Ni be the set of all integers j
such that xi is a vertex of Sj . If x ∈ Sj and j ∈ Ni , then we denote by λij (x)
the barycentric coordinate of x with respect to xi for the simplex Sj . It is easily
verified that if x ∈ Sj

⋂
Sk , then λij (x) = λik(x) if j, k ∈ Ni and λij (x) = 0 if

j ∈ Ni, k /∈ Ni. Therefore, setting

φi(x) :=
{
λij (x) if x ∈ Sj and j ∈ Ni
0 otherwise

for i = 1, . . . , n, we obtain well-defined barycentric coordinates φ1, . . . , ϕn. This
obviously produces the snd-formula

∫
Ω

f (x)dx = Qtra(f )+ E[f ], (47)

where

Qtra(f ) =
n∑
i=1

⎛
⎝∑
j∈Ni

|Sj |
d + 1

⎞
⎠ f (xi ). (48)

Let T (Ω) be any triangulation of the point set Xn. Then, λT (Ω) :=
{
λ
T (Ω)
i

}n
i=0

denotes the set of barycentric coordinates associated with each xi of Xn. Now, we
list the basic properties of λT (Ω), which are particularly relevant to us:

(1) They are well defined, piecewise linear, and nonnegative real-valued continuous
functions.

(2) The function λT (Ω)i satisfies the delta property, which equals 1 at xi and 0 at all

other points in Xn \ {xi} , that is, λT (Ω)i (xj ) = δij (δ is the Kronecker delta).

1It seems that in dimension d = 3, the existence was already known to mathematicians like Euler
and Dirichlet.
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We denote by

ET (Ω)n [f ](x) :=
n∑
i=0

λ
T (Ω)
i (x)f (xi )− f (x). (49)

As regards the error estimates (49), it was shown that Delaunay triangulation is the
triangulation that minimizes the Lp norm of the approximation error ET (Ω)n [‖.‖2]
among all triangulations, see [3, Theorem 4.10]. This optimality condition also
characterizes Delaunay triangulation.

6 Numerical Experiments in 3D

In this section, we provide some numerical tests, which we perform in order to
validate our theoretical predictions. We have considered the following function of
three variables as test function:

g(x, y, z) = exp(ax + by + cz),

and the domain of integration is the pyramid Pyr given in the Cartesian coordinate
system (x, y, z) by the inequalities:

Pyr = {(x, y; z) ∈ R
3 : 0.3z < x < 1− 0.3z, 0.3z < y < 1− 0.3z, 0 < z < 1}.

(50)
The algorithm for computing the approximate values of the integral is as follows:

1. Pyramid should be decomposed into tetrahedra, see figure 1a.
2. Each of tetrahedra should be mapped onto the reference one, see figure 1b.
3. For integration of function g over the reference tetrahedron, the methodQTraR(g)

should be applied. WhereQTraR(g) is defined by formula (46).
4. The results are the sums of approximate values of integrals over all tetrahedra in

the decomposition of the pyramid.

Let us give more details about these steps.
For decomposition of the domain Pyr , the DistMesh package was used that is a

simple triangular mesh generator in MATLAB based on Delaunay triangulation.
A detailed description of the program is provided in [18, 19] or http://persson.
berkeley.edu/distmesh. Specifically, we used the code of the Problem #3 from the
web page available at the address:

https://people.sc.fsu.edu/~jburkardt/m_src/distmesh_3d/distmesh_3d.html.
For computing the errors of our methods, we need to compute the exact value of

integral of function g(x, y, z) over the pyramid Pyr , assuming that Pyr is given by
its H-representation (50) or, alternatively, by its corresponding V-representation. We
should mention that some useful methods for computing such integrals are discussed

http://persson.berkeley.edu/distmesh
http://persson.berkeley.edu/distmesh
https://people.sc.fsu.edu/~jburkardt/m_src/distmesh_3d/distmesh_3d.html
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Fig. 1 Domain of the pyramid and its decomposition into tetrahedra generated by DistMesh (a).
The characteristic linear size of tetrahedra is 1/21. Reference tetrahedron (b)

in [17, Section 2]. The exact value of this integral is

Ipyr (g)=K
(
Aa3+Ba2b+Ca2c+Db2a+Eb2c+Fb3+Gc3+Hc2a+Ic2b+Jabc),

whereK = 10

ab(3a − 3b − 10c)(3a + 3b − 10c)(3a − 3b + 10c)(3a + 3b + 10c)
,

A = 27(eb − ea + ea+b + α + β − γ − θ − 1),
B = 27(eb − ea − ea+b − α + β − γ + θ + 1),
C = 90(ea+b − ea − eb − α + β + γ − θ + 1),
D = 27(ea − eb − ea+b − α − β + γ + θ + 1),
E = 90(−ea − eb + ea+b − α + β + γ − θ + 1),
F = 27(ea − eb + ea+b + α − β + γ − θ − 1),
G = 1000(ea + eb − ea+b + α − β − γ + θ − 1),
H = 300(ea − eb − ea+b − α − β + γ + θ + 1),
I = 300(eb − ea − ea+b − α + β − γ + θ + 1),
J = 180(−ea − eb − ea+b + α + β + γ + θ − 1),
α = e0.3a+0.3b+c, β = e0.7a+0.3b+c, γ = e0.3a+0.7b+c, θ = e0.7a+0.7b+c.
After applying the above algorithm, we got the asymptotics of the relative errors

of our formulas for the case of function g with a = 1, b = 2, and c = 3. The
expression of the relative error forQ3 cubature formula is as follows:

ETra
N (g) =

Qtra(g)− Ipyr (g)
Ipyr (g)

,

whereQtra(g) is defined by formula (48). In Table 1, the values of the relative errors
of integration are given for the case of test with a = 1, b = 2, and c = 3.

Table 2 shows the orders of convergence obtained for the test with a = 1, b = 2,
and c = 3. The orders are close to 2.
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Table 1 Errors obtained while integrating g with a = 1, b = 2, and c = 3 over pyramid Pyr

N 4 8 16 32 64 128

ETra
N (g) 3.441E-01 6.520E-02 1.478E-02 3.420E-03 8.312E-04 2.074E-04

Table 2 Orders of convergence obtained while integrating g with a = 1, b = 2, and c = 3 over
the pyramid Pyr

N 8 16 32 64

ETra
N (g) 2.46763 2.14976 2.13358 2.05323
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Further Results on Continuous Random
Variables via Fractional Integrals

Ibrahim Slimane, Zoubir Damani, Shilpi Jain, and Praveen Agarwal

Abstract In this paper, some new fractional weighted inequalities related to
Čebyšev, Ostrowski, and Lupaş inequalities are established, and some of their
applications for continuous random variables having the probability density function
(p.d.f.) defined on a finite interval are derived. Furthermore, some upper bounds for
fractional expectation and fractional variance are given.

1 Introduction

The well-known results of Čebyšev, Grüss, Ostrowski, and Lupaş inequalities have
attracted much attention over the years, and many variants of these inequalities have
appeared in the literature [1–6]. These inequalities are crucial due to their numerous
applications in various areas of mathematics such as the applications on random
variables via Fractional Calculus for which we would like to refer the reader to
[7–11].

Motivated and inspired by the works mentioned above and the references therein,
in this paper, we provide new fractional integral inequalities of Čebyšev, Ostrowski,
and Lupaş type as well as applications for continuous random variables.

Let us initially recall the classical results for the Čebyšev functional for two
Lebesgue integrable functions f, g : [a, b] → R:
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C(f, g) := 1

b − a
∫ b

a

f (τ )g(τ )dτ − 1

b − a
∫ b

a

f (τ )dτ
1

b − a
∫ b

a

g(τ )dτ

In [12] , Čebyšev derived the following interesting result involving two absolutely
continuous functions whose first derivatives are continuous and bounded:

|C(f, g)| ≤ 1

12
(b − a)2||f ′||∞||g′||∞, (1)

where ||f ′||∞ := supt∈[a,b] |f ′(t)|.
Another inequality for C(f, g) was derived by Grüss [13], under the assumption

that m < f ≤ M and n < g ≤ N , namely,

|C(f, g)| ≤ 1

4
(M −m)(N − n).

In 1970, Ostrowski [14] proved, among others, the following result that is—in a
sense—a combination of the results by Čebyšev and Grüss:

|C(f, g)| ≤ 1

8
(b − a)(M −m)||g′||∞. (2)

Finally, a result by Lupaş [15] states that

|C(f, g)| ≤ 1

π2
(b − a)||f ′||2||g′||2, (3)

where f, g are absolutely continuous and f ′, g′ ∈ L2[a, b].
In the following, we present some basic definitions.

2 Some Definitions

Definition 1 ([16]) The Riemann–Liouville fractional integral operator of order
α > 0, for a continuous function f on [a, b], is defined as

Jαa [f (t)] = 1

Γ (α)

t∫
a

(t − τ)α−1 f (τ) dτ, α > 0, a < t ≤ b.

Definition 2 ([11]) The fractional expectation of order α > 0, for a random
variable X with a probability density function h defined on [a, b], is given by
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EαX := 1

QΓ (α)

b∫
a

(b − τ)α−1 τh (τ) dτ, α > 0, (4)

where Q := Jαa [h(b)].
For any continuous function v, the fractional expectation of order α > 0 of v(X)

is defined by

Eαv (X) := 1

QΓ (α)

b∫
a

(b − τ)α−1 v (τ) h (τ) dτ, α > 0. (5)

Definition 3 ([11]) The fractional variance of order α > 0, for X, is defined as

Varα(X) = 1

QΓ (α)

∫ b

a

(b − τ)α−1(τ − Eα(X))2h(τ)dτ.

Using the above definitions, the authors in [11] prove the following property for
the fractional variance:

Theorem 1

Varα(X) = Eα(X2)− Eα(X)2, α > 0

3 Main Results

Theorem 2

0 ≤ Varα(X) ≤ 1

2
(b − a), α > 0

Proof Due to the following Grüss type inequality:

0 ≤
∫ b
a
p(τ)g2(τ )dτ∫ b
a
p(τ)dτ

−
(∫ b

a
p(τ)g(τ )dτ∫ b
a
p(τ)dτ

)2

≤ 1

4
(M −m)2 , (6)

provided that p and g are measurable on [a, b], and all the integrals in (6) exist and
are finite,

∫ b

a

p(τ)dτ > 0 and m ≤ g ≤ M, a.e., on [a, b].
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We set in (6),

p(τ) = 1

Γ (α)
(b − τ)α−1f (τ), g(τ ) = τ − Eα(X), τ ∈ [a, b].

We observe that in this case m = a − Eα(X),M = b − Eα(X) from which we can
derive the desired result.

Let us introduce a fractional weighted type Čebyšev functional:

Cα,s′(f, g) := 1

Jαa [s′(b)]
Jαa [f (b)g(b)s′(b)] −

1

Jαa [s′(b)]
Jαa [f (b)s′(b)]

1

Jαa [s′(b)]
Jαa [g(b)s′(b)],

where

I(t) := 1

Γ (α)

∫
(b − τ)α−1s′(τ )dτ

is assumed to be absolutely continuous, and f, g are Lebesgue measurable on [a, b]
and such that the above integrals exist.

Theorem 3 Let I : [a, b] → [I(a),I(b)] be a continuous strictly increasing
function on ]a,b[, and f, g are as above. One can verify that

I*: m ≤ f (t) ≤ M ∀t ∈ [a, b].
I**: g : [a, b] → R is absolutely continuous on [a, b].
Additionally, g

′
I′ ∈ L∞[a, b],

|Cα,s′(f, g)| ≤ 1

8
Jαa [s′(b)](M −m)

∣∣∣∣
∣∣∣∣ g′
(b−t)α−1

Γ (α)
s′

∣∣∣∣
∣∣∣∣∞. (7)

The constant 1
8 is the best possible.

Proof By (2), for the functions f ◦ I−1 and g ◦ I−1 on [I(a),I(b)], we get

∣∣∣∣ 1

I(a)− I(b)

∫ I(b)

I(a)

f ◦ I−1(u)g ◦ I−1(u)du

− 1

[I(a)− I(b)]2
∫ I(b)

I(a)

f ◦ I−1(u)du.

∫ I(b)

I(a)

g ◦ I−1(u)du

∣∣∣∣
≤ 1

8
[I(a)− I(b)](M −m)||(g ◦ I−1)′||∞.

(8)
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By the change of variable t = I−1(u), we can prove that

1

I(a)− I(b)

∫ I(b)

I(a)

f ◦ I−1(u)g ◦ I−1(u)du = 1

Jαa [s′(b)]
Jαa [f (b)g(b)s′(b)]

1

I(a)− I(b)

∫ I(b)

I(a)

f ◦ I−1(u)du = 1

Jαa [s′(b)]
Jαa [f (b)s′(b)]

1

I(a)− I(b)

∫ I(b)

I(a)

g ◦ I−1(u)du = 1

Jαa [s′(b)]
Jαa [g(b)s′(b)]

Also,

∣∣∣∣
∣∣∣∣(g ◦ I−1)′

∣∣∣∣
∣∣∣∣∞ =

∣∣∣∣
∣∣∣∣ g′
(b−t)α−1

Γ (α)
s′

∣∣∣∣
∣∣∣∣∞

This completed the proof of the theorem.

Furthermore, let

W(x) := 1

Γ (α)

∫ x

a

(b − τ)α−1w(τ)dτ

be a continuous and strictly increasing function on ]a, b[, wherew(x) : [a, b] → R
∗+

is a continuous function.

Corollary 1 If f, g satisfy the conditions I*, I**, and g
′
w
∈ L∞[a, b], then we have

|Cα,w(f, g)| ≤ 1

8
Jαa [w(b)](M −m)

∣∣∣∣
∣∣∣∣ g′
(b−t)α−1

Γ (α)
w

∣∣∣∣
∣∣∣∣∞. (9)

As a particular case of the above corollary, we obtain the following:

Corollary 2 If w(x) is a continuous p.d.f. on [a, b] of random variable X, we
have

∣∣∣∣Eαfg[X] − Eαf [X]Eαg[X]
∣∣∣∣ ≤ 1

8
Jαa [w(b)](M −m)

∣∣∣∣
∣∣∣∣ g′
(b−X)α−1

Γ (α)
w

∣∣∣∣
∣∣∣∣∞. (10)

Also, for α = 1, we have

∣∣∣∣Efg[X] − Ef [X]Eg[X]
∣∣∣∣ ≤ 1

8
(M −m)

∣∣∣∣
∣∣∣∣g
′

w

∣∣∣∣
∣∣∣∣∞. (11)
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Theorem 4 Let I be as above and f, g be absolutely continuous on [a, b] such that
f ′
I′ ,

g′
I′ ∈ L∞[a, b]. Then, we have

|Cα,s′(f, g)| ≤ 1

12

(
Jαa [s′(b)]

)2∣∣∣∣
∣∣∣∣ f ′
(b−t)α−1

Γ (α)
s′

∣∣∣∣
∣∣∣∣∞

∣∣∣∣
∣∣∣∣ g′
(b−t)α−1

Γ (α)
s′

∣∣∣∣
∣∣∣∣∞. (12)

Proof By making use of (1) for the function f ◦ I−1 and g ◦ I−1 on [I(a),I(b)],
we get the desired result.

Corollary 3 Suppose thatw is as in Corollary 4 and f, g are absolutely continuous
on [a, b], where f ′

w
,
g′
w
∈ L∞[a, b]. Then, we have

|Cα,w(f, g)| ≤ 1

12

(
Jαa [w(b)]

)2∣∣∣∣
∣∣∣∣ f ′
(b−t)α−1

Γ (α)
w

∣∣∣∣
∣∣∣∣∞

∣∣∣∣
∣∣∣∣ g′
(b−t)α−1

Γ (α)
w

∣∣∣∣
∣∣∣∣∞. (13)

Consequently, if w(x) is a continuous p.d.f. on [a, b] of random variable X, we
derive the following result:

Corollary 4

∣∣∣∣Eαfg[X] − Eαf [X]Eαg[X]
∣∣∣∣ ≤ 1

12

(
Jαa [w(b)]

)2∣∣∣∣
∣∣∣∣ f ′
(b−X)α−1

Γ (α)
w

∣∣∣∣
∣∣∣∣∞

∣∣∣∣
∣∣∣∣

g′
(b−X)α−1

Γ (α)
w

∣∣∣∣
∣∣∣∣∞. (14)

If f = g, then
∣∣∣∣Eαf 2[X] − Eαf [X]2

∣∣∣∣ ≤ 1

12

(
Jαa [w(b)]

)2∣∣∣∣
∣∣∣∣ f ′
(b−X)α−1

Γ (α)
w

∣∣∣∣
∣∣∣∣
2

∞
. (15)

Therefore, if f = x
∣∣∣∣Varα(X)

∣∣∣∣ ≤ 1

12

(
Jαa [w(b)]

)2∣∣∣∣
∣∣∣∣ 1
(b−X)α−1

Γ (α)
w

∣∣∣∣
∣∣∣∣
2

∞
. (16)

Corollary 5 For α = 1, we obtain the classical case

∣∣∣∣Efg[X] − Ef [X]Eg[X]
∣∣∣∣ ≤ 1

12

∣∣∣∣
∣∣∣∣f
′

w

∣∣∣∣
∣∣∣∣∞

∣∣∣∣
∣∣∣∣g
′

w

∣∣∣∣
∣∣∣∣∞. (17)



Further Results on Continuous Random Variables via Fractional Integrals 207

If f = g, then
∣∣∣∣Ef 2[X] − Ef [X]2

∣∣∣∣ ≤ 1

12

∣∣∣∣
∣∣∣∣f
′

w

∣∣∣∣
∣∣∣∣
2

∞
. (18)

Therefore, if f = x, we obtain that

∣∣∣∣Var(X)

∣∣∣∣ ≤ 1

12

∣∣∣∣
∣∣∣∣ 1

w

∣∣∣∣
∣∣∣∣
2

∞
. (19)

Theorem 5 Assume that I is as above; f, g : [a, b] → R are absolutely continuous
on [a, b] and f ′

(I′)1/2 ,
g′

(I′)1/2 ∈ L2[a, b]. Thus, we get

|Cα,s′(f, g)| ≤ 1

π2

(
Jαa [s′(b)]

)∣∣∣∣
∣∣∣∣ f ′

(
(b−t)α−1

Γ (α)
s′)1/2

∣∣∣∣
∣∣∣∣
2

∣∣∣∣
∣∣∣∣ g′

(
(b−t)α−1

Γ (α)
s′)1/2

∣∣∣∣
∣∣∣∣
2
. (20)

Proof Using Lupaş inequality (3) for the functions f ◦ I−1 and g ◦ I−1 on
[I(a),I(b)], we have

∣∣∣∣ 1

I(a)− I(b)

∫ I(b)

I(a)

f ◦ I−1(u)g ◦ I−1(u)du

− 1

[I(a)− I(b)]2
∫ I(b)

I(a)

f ◦ I−1(u)du.

∫ I(b)

I(a)

g ◦ I−1(u)du

∣∣∣∣
≤ 1

π2
[I(a)− I(b)]

∣∣∣∣
∣∣∣∣(f ◦ I−1)′

∣∣∣∣
∣∣∣∣
2

∣∣∣∣
∣∣∣∣(g ◦ I−1)′|

∣∣∣∣
∣∣∣∣
2
.

(21)

We can also show that

∫ I(b)

I(a)

∣∣∣∣(f ◦ I−1)′(u)
∣∣∣∣
2

du =
∫ I(b)

I(a)

∣∣∣∣ (f
′ ◦ I−1)(u)

(I′ ◦ I−1)(u)

∣∣∣∣
2

du.

Thanks to the change of variable t = I−1(u), we derive that

∫ I(b)

I(a)

∣∣∣∣ (f
′ ◦ I−1)(u)

(I′ ◦ I−1)(u)

∣∣∣∣
2

du =
∫ b

a

∣∣∣∣f
′(t)

I′(t)

∣∣∣∣
2

I′(t)dt

=
∫ b

a

∣∣∣∣ f ′(t)
[I′(t)]1/2

∣∣∣∣
2

dt.

Corollary 6 Let w(x) : [a, b] → R
∗+ be a continuous function and f, g be

absolutely continuous on [a, b], where f ′
(I′)1/2 ,

g′
(I′)1/2 ∈ L2[a, b]. Then, we have

that
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|Cα,w(f, g)| ≤ 1

π2

(
Jαa [w(b)]

)∣∣∣∣
∣∣∣∣ f ′

(
(b−t)α−1

Γ (α)
w)1/2

∣∣∣∣
∣∣∣∣
2

∣∣∣∣
∣∣∣∣ g′

(
(b−t)α−1

Γ (α)
w)1/2

∣∣∣∣
∣∣∣∣
2
. (22)

From the above, we immediately deduce the following:

Corollary 7 If w is a p.d.f. on [a, b] of random variable X, then

∣∣∣∣Eαfg[X] − Eαf [X]Eαg[X]
∣∣∣∣ ≤ 1

π2

(
Jαa [w(b)]

)∣∣∣∣
∣∣∣∣ f ′

(
(b−X)α−1

Γ (α)
w)1/2

∣∣∣∣
∣∣∣∣
2

∣∣∣∣
∣∣∣∣

g′

(
(b−X)α−1

Γ (α)
w)1/2

∣∣∣∣
∣∣∣∣
2
. (23)

If f = g, then
∣∣∣∣Eαf 2[X] − Eαf [X]2

∣∣∣∣ ≤ 1

π2

(
Jαa [w(b)]

)∣∣∣∣
∣∣∣∣ f ′

(
(b−X)α−1

Γ (α)
w)1/2

∣∣∣∣
∣∣∣∣
2

2
. (24)

If f = x, then
∣∣∣∣Varα(X)

∣∣∣∣ ≤ 1

π2

(
Jαa [w(b)]

)∣∣∣∣
∣∣∣∣ 1

(
(b−X)α−1

Γ (α)
w)1/2

∣∣∣∣
∣∣∣∣
2

2
. (25)

Corollary 8 For α = 1, we deduce the following classical result:

∣∣∣∣Efg[X] − Ef [X]Eg[X]
∣∣∣∣ ≤ 1

π2

∣∣∣∣
∣∣∣∣ f

′

w1/2

∣∣∣∣
∣∣∣∣
2

∣∣∣∣
∣∣∣∣ g

′

w1/2

∣∣∣∣
∣∣∣∣
2
. (26)

If f = g, then
∣∣∣∣Ef 2[X] − Ef [X]2

∣∣∣∣ ≤ 1

π2

∣∣∣∣
∣∣∣∣ f

′

w1/2

∣∣∣∣
∣∣∣∣
2

2
. (27)

Therefore, if f = x, we get
∣∣∣∣Var(X)

∣∣∣∣ ≤ 1

π2

∣∣∣∣
∣∣∣∣ 1

w1/2

∣∣∣∣
∣∣∣∣
2

2
. (28)
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Nonunique Fixed Points on Partial
Metric Spaces Via Control Functions

Erdal Karapınar

Abstract In this note, we aim to emphasize the significance of the nonunique fixed
point results in an abstract space: partial metric space. Indeed, partial metric is a
natural extension of the standard metric from the aspect of computer science. The
presented results aim to cover and unify several results on the topic in the related
literature. We also indicate the validity of the results by a concrete example.

1 Introduction and Preliminaries

The notion of partial metric is one of the most fascinating extensions of the
concept of metric. The main characteristic property of a partial metric, proposed
by Matthews [28], is on the self-distance (indistancy or reflexivity axiom). Despite
the standard metric, in a partial metric, self-distance (the distance of a point to itself)
needs not to be zero. At the first sight, nonzero self-distance can be seen as absurd
and nonsense. On the other hand, the following example indicates that, surprisingly,
this is a very interesting and reasonable case when we consider it in the framework
of computer sciences.

One of the classical metric definitions on the class of all infinite sequences (let
us denote with SI ) can be expressed as follows:

d : SI × SI : [0,∞) such that d(x, y) = 2− sup{n|∀i<n such that xi=yi }. (1)

It is obvious that d(x, y) provides all axioms of standard metric on SI . Now,
we take “the point views of computers sciences” into account and reconsider
the mentioned metric function by extending its domain with combining the class
of all finite sequences (let us denote with SF ) with the class of all infinite
sequences. In computer science programming, usage of the finite sequences is more
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reasonable than the infinite sequences when we regard the termination of a program.
Programming with infinite sequence may cause to infinite loop, and hence a program
creates a terrible fault that it is not terminated. After these rough discussions, we
modify the metric above by keeping the rule same but on the extended domain:
union of the class of finite sequence SF and infinite sequences SI . For simplicity, let
us fix the letter, S := SF ∪SI , for the class of finite and infinite sequences. Now, the
new distance function δ : S × S → [0,∞) creates a new structure with the same
definition

δ : S × S → [0,∞) such that δ(x, y) = 2− sup{n|∀i<n such that xi=yi }. (2)

It is clear that δ is not a metric. Indeed, for the finite sequence x = (x1, x2, · · · , x19),

the self-distance δ(x, y) = 1

219 �= 0. As it is seen, the example makes the idea

reasonable and worthy.
Hereupon, the letters R

+
0 and N0 are occupied to denote the set of nonnegative

real numbers and the set of nonnegative integer numbers, respectively.

In what follows, we recollect the axiomatic definition of partial metric for the
sake of completeness of the text.

Definition 1 (See, e.g., [28, 29]) A function δ : S × S → R
+
0 on a (non-empty) set

S is named as a partial metric if the following axioms are fulfilled:

(P1) x = y ⇔ δ(x, x) = δ(y, y) = δ(x, y),
(P2) δ(x, x) ≤ δ(x, y),
(P3) δ(x, y) = δ(y, x),
(P4) δ(x, y) ≤ δ(x, z)+ δ(z, y)− δ(z, z),
for all x, y, z ∈ S. Here, the coupled letter (S, δ) is said to be a partial metric space.

Although, self-distance needs not to be zero, from (P1) and (P2), we observe that
δ(x, y) = 0 implies x = y (reflexivity axiom).

Throughout the paper, we presume that S is a non-empty set endowed with
a partial metric δ, and F is a self-mapping on a partial metric space (S, δ).
Moreover, we shall use the letter d to denote a metric defined on S.

The basic and classical example of a partial metric is the following.

Example 1 (See, e.g., [28, 29]) Let S = R
+
0 and δ be defined on S by δ(x, y) =

max{x, y} for all x, y ∈ S. Then, (S, δ) is a partial metric space.

Example 2 (See, e.g., [22, 32]) Consider function σi : S × S → R
+
0 (i ∈ {1, 2, 3})

given by

σ1(x, y) = d(x, y)+ δ(x, y),
σ2(x, y) = d(x, y)+max{ν(x), ν(y)},
σ3(x, y) = d(x, y)+ a,
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where ν : S → R
+
0 is an arbitrary function and a ≥ 0. It is easy to see that all these

three functions form partial metrics on S.

Example 3 (See [28, 29]) Let S = {[a, b] : a, b ∈ R, a ≤ b} and define
δ([a, b], [c, d]) = max{b, d} − min{a, c}. Then, (S, δ) is a partial metric space.

Example 4 (See [28]) Let S = [0, 1] ∪ [2, 3] and define δ : S × S → R
+
0 by

δ(x, y) =
{

max{x, y} if {x, y} ∩ [2, 3] �= ∅,
|x − y| if {x, y} ⊂ [0, 1].

Then, (S, δ) is a partial metric space.

On account of the topology of a standard metric space, we are able to define
corresponding topological notions in the setting of a partial metric space, for more
details, see, e.g., [1–32]. In particular, we consider the open ball

Op(x, ε) = {y ∈ S : δ(x, y) < δ(x, x)+ ε} ,

and open cover
{
Op(x, ε) : x ∈ S, ε > 0

}
for all x ∈ S and ε > 0. Moreover, the

topology τδ , induced by a partial metric δ, is classified as T0 topology on S.

Definition 2 A sequence {xn}n∈N in a partial metric space (S, δ) converges to a
point x ∈ S (xn → x, in short) with respect to τδ if and only if δ(x, x) =
limn→∞ δ(x, xn).

Despite the intensive similarity between the definitions and topologies of standard
and partial metrics, the structure of partial metric spaces varies in many aspects.
The most important difference between them is on the uniqueness of a limit. More
precisely, the limit of a sequence in partial metric space is not necessarily unique.
For instance, recon the sequence { 1

n2+n+1
}n∈N in the partial metric space, introduced

in Example 1. It is easy to see that

δ(m,m) = lim
n→∞ δ(m,

1

n2 + n+ 1
) = m for any integer m.

As a result, limit of that sequence depends on the integer m; hence, it is not unique.
To repair and fix this weakness of the partial metric, we add some certain condition
so that we guarantee uniqueness of the limit of a sequence.

Lemma 1 (See, e.g., [22, 32]) Let {xn}n∈N be a sequence in (S, δ) such that xn →
x and xn→ y with respect to τδ . If

lim
n→∞ δ(xn, xn) = δ(x, x) = δ(y, y),

then x = y.
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In what follows, we underline the connection between the usual metric spaces
and the partial metric spaces. On account of a partial metric (S, δ), we deduce the
following functions dδ, dδm, d0 : S × S → R

+
0 with the following definitions

dδ(x, y) = 2δ(x, y)− δ(x, x)− δ(y, y), (3)

dδm(x, y) = max{δ(x, y)− δ(x, x), δ(x, y)− δ(y, y)},
= δ(x, y)−min{δ(x, x), δ(y, y)}, (4)

d0(x, y) =
{

0 if x = y,
δ(x, y) otherwise ,

(5)

form standard metrics on S, for more details, see, e.g., [17, 29].
The following topological inclusions are well known and easy to check:

τp ⊆ τdδ = τdmδ ⊆ τd0 .

Furthermore, the following equivalence will be useful later on:

lim
n→∞ dδ(x, xn) = 0⇔ δ(x, x) = lim

n→∞ δ(x, xn) = lim
n,m→∞ δ(xn, xm). (6)

We emphasize that for the given partial metric example in Example 1, the corre-
sponding standard metrics dδ and dmδ provide the Euclidean metrics on S.

The analog of the topological notions, such as, fundamental (Cauchy), complete-
ness, in the setting of partial metric spaces is given below:

Definition 3 (See, e.g., [21, 28, 29])

1. A sequence {xn}n∈N in (S, δ) is called a fundamental (Cauchy) sequence in (S, δ)
if limn,m→∞ δ(xn, xm) exists and is finite.

2. (S, δ) is called complete if every fundamental sequence {xn}n∈N converges with
respect to τδ to a point x ∈ S such that δ(x, x) = limn,m→∞ δ(xn, xm).

In what follows, we shall give a characterization of fundamental sequence and
completeness in the setting of partial metric spaces.

Lemma 2 (See [29])

1. A sequence {xn}n∈N in (S, δ) is a fundamental sequence in (S, δ) if and only if it
is a fundamental sequence in the metric space (X, dδ).

2. (S, δ) is complete if and only if the metric space (X, dδ) is complete.

We note that the considered partial metric in Examples 1, 3, and 4 provides the
completeness of the corresponding abstract space.

In our context, the following characterization will be useful.
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Lemma 3 (See, e.g., [27]) A sequence {xn}n∈N in (S, δ) is a fundamental (Cauchy)
sequence in (S, δ) if and only if it satisfies the following condition:

(∗) for each ε > 0, there is n0 ∈ N such that δ(xn, xm) − δ(xn, xn) < ε

whenever n0 ≤ n ≤ m.
Lemma 4 Let {xn}n∈N and {yn}n∈N be sequences in (S, δ) such that xn → x and
yn→ y with respect to τdδ . Then,

lim
n→∞ δ(xn, yn) = δ(x, y).

For our purposes, we need to recall the following notion.

Definition 4 (cf. [11])

1. F is called orbitally continuous if

lim
i,j→∞ δ(F

ni x, F nj x) = lim
i→∞ δ(F

ni x, z) = δ(z, z) (7)

implies

lim
i,j→∞ δ(FF

ni x, FFnj x) = lim
i→∞ δ(FF

ni x, Fz) = δ(Fz, Fz), (8)

for each x ∈ S.
Equivalently, F is orbitally continuous provided that if Fni x → zwith respect

to τdδ , then Fni+1x → Fz with respect to τdδ , for each x ∈ S.
2. (S, δ) is called orbitally complete if every fundamental sequence of type
{Fni x}i∈N converges with respect to τdδ , that is, if there is z ∈ S such that

lim
i,j→∞ δ(F

ni x, F nj x) = lim
i→∞ δ(F

ni x, z) = δ(z, z). (9)

In this manuscript, we investigate the existence of a fixed point for certain
mapping in the context of partial metric spaces without caring the uniqueness. More
accurately, this paper is prepared as a typical nonunique fixed point result in the
trend of the famous work of Ćirić [11]. The presented results not only extend and
generalize the existing results in the literature but also unify some and enrich this
trend. We shall also provide an example to indicate the advantages in usage of partial
metric spaces rather than standard metric spaces.

2 The Results

In this section, we shall state and prove the main theorems of the paper.
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From now on, we assume that all partial metric spaces (S, δ) are orbitally
complete, and self-mapping F on (S, δ) is orbitally continuous. Regarding these
assumptions, we shall avoid to put these assumptions to all statements of the
following theorems and corollaries to keep away from the repetitions.

Now, we recall the definition of auxiliary functions that we shall use in the
statements of our results.

A function ϕ : [0,∞)→ [0,∞) is called a comparison function [10, 31] if it is
increasing and ϕn(t) → 0 as n → ∞ for every t ∈ [0,∞), where ϕn is the n-th
iterate of ϕ.

Let Φ be the family of functions φ : [0,∞) → [0,∞) satisfying the following
conditions:

(p1) φ is nondecreasing;

(p2)
+∞∑
n=1

φn(t) <∞ for all t > 0.

Then, a function φ ∈ Φ is called (c)-comparison function.
More details and examples of comparison and (c)-comparison functions can be

found in [31]. The following crucial lemma underlines the interesting properties of
comparison functions.

Lemma 5 ([31]) If φ : [0,∞)→ [0,∞) is a comparison function, then

1. each iterate φk of φ, k ≥ 1 is also a comparison function;
2. φ is continuous at 0;
3. φ(t) < t for all t > 0.

It is clear that if φ is a (c)-comparison function is a comparison function. Hence, the
properties above are also valid for (c)-comparison functions.

Ćirić Type Nonunique Fixed Point Theorems

In what follows, we state and prove the first main result that is inspired from the
work of Ćirić [11].

Theorem 1 If there is φ ∈ Φ such that

min{δ(Fx, Fy), δ(x, Fx), δ(y, Fy)} −min{dδm(x, Fy), dδm(Fx, y)}
≤ φ(δ(x, y)− |δ(x, x)− δ(y, y)|), (10)

for all x, y ∈ S, then for each x0 ∈ S the sequence {Fnx0}n∈N0 converges with
respect to τdδ to a fixed point of F .

Proof Take an arbitrary point x0 ∈ S. We define the iterative sequence {xn}n∈N0 as
follows:
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xn+1 = Fxn, n ∈ N0.

If there exists n0 ∈ N0 such that xn0 = xn0+1, then xn0 is a fixed point of F . Assume
then that xn �= xn+1 for each n ∈ N0.

Substituting x = xn and y = xn+1 in (10), we find the inequality

min{δ(xn+1, xn+2), δ(xn, xn+1), δ(xn+1, xn+2)}
−min{dδm(xn, xn+2), d

δ
m(xn+1, xn+1)}

≤ φ(δ(xn, xn+1)− |δ(xn, xn)− δ(xn+1, xn+1)|),

which imply that

min{δ(xn, xn+1), δ(xn+1, xn+2)}
≤ φ(δ(xn, xn+1)− δ(xn, xn)+ δ(xn+1, xn+1))

≤ φ(δ(xn, xn+1))

< δ(xn, xn+1).

(11)

Suppose δ(xn0, xn0+1) ≤ δ(xn0+1, xn0+2) for some n0 ∈ N0. Then, the inequality
above yields that

δ(xn0 , xn0+1) < δ(xn0 , xn0+1),

a contradiction.
Therefore, δ(xn, xn+1) ≥ δ(xn+1, xn+2) for all n ∈ N0.

Hence, by (11), we get

δ(xn+1, xn+2) ≤ φ(δ(xn, xn+1)) ≤ · · · ≤ φn+1(δ(x0, x1)), (12)

for any n ∈ N. We shall show that {xn}n∈N is a Cauchy sequence in (S, δ). Indeed,
let n,m ∈ N0 with n < m. Then, by using (12) and (P4), we derive that

δ(xn, xm)− δ(xn, xn) ≤ δ(xn, xn+1)+ · · · + δ(xm−1, xm)−
m−1∑
k=n+1

δ(xk, xk)

≤ φn(δ(x0, x1)) · · · + φm−1(δ(x0, x1))

≤
m−1∑
k=n

φk(δ(x0, x1))→ 0 as n→∞.

As a result, the sequence {xn}n∈N0 satisfies condition (∗) of Lemma 3. Conse-
quently, it is a Cauchy sequence in (S, δ). Since xn = Fnx0 for all n, and (S, δ)
is F -orbitally complete, there is z ∈ S such that xn → z with respect to τdδ . By
the orbital continuity of F, we deduce that xn → Fz with respect to τdδ . Hence,
z = Fz, which concludes the proof.
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The following result is an immediate consequence of Theorem 1 by letting
φ(t) = kt where k ∈ (0, 1).
Corollary 1 If there is k ∈ (0, 1) such that

min{δ(Fx, Fy), δ(x, Fx), δ(y, Fy)} −min{δ(x, Fy), δ(Fx, y)}
≤ k(δ(x, y)− |δ(x, x)− δ(y, y)|), (13)

for all x, y ∈ S, then for each x0 ∈ S the sequence {Fnx0}n∈N0 converges to a fixed
point of F .

Regarding the monotonicity of the (c)-comparison function, we derive the
following corollary:

Corollary 2 If there is φ ∈ Φ such that

min{δ(Fx, Fy), δ(x, Fx), δ(y, Fy)} −min{δ(x, Fy), δ(Fx, y)}
≤ φ(δ(x, y)), (14)

for all x, y ∈ S, then for each x0 ∈ S the sequence {Fnx0}n∈N0 converges to a fixed
point of F .

The following result is an immediate consequence of Corollary 2 by letting
φ(t) = kt where k ∈ (0, 1).
Corollary 3 If there is k ∈ (0, 1) such that

min{δ(Fx, Fy), δ(x, Fx), δ(y, Fy)} −min{δ(x, Fy), δ(Fx, y)}
≤ kδ(x, y), (15)

for all x, y ∈ S, then for each x0 ∈ S the sequence {Fnx0}n∈N0 converges to a fixed
point of F .

Notice that each metric forms a partial metric, but the converse is not true. Thus, the
following is the immediate consequence of Corollary 2.

Corollary 4 If there is φ ∈ Φ such that

min{d(Fx, Fy), d(x, Fx), d(y, Fy)} −min{d(x, Fy), d(Fx, y)}
≤ φ(d(x, y)), (16)

for all x, y ∈ S, then for each x0 ∈ S the sequence {Fnx0}n∈N0 converges to a fixed
point of F .

The next result is belong to Ćirić [11] in the context of metric spaces that is
derived from Corollary 4 by letting φ(t) = kt where k ∈ (0, 1).
Corollary 5 ([11, Nonunique Fixed Point Theorem of Ćirić]) If there is k ∈
(0, 1) such that
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min{d(Fx, Fy), d(x, Fx), d(y, Fy)} −min{d(x, Fy), d(Fx, y)}
≤ kd(x, y), (17)

for all x, y ∈ S, then for each x0 ∈ S the sequence {Fnx0}n∈N0 converges to a fixed
point of F .

The following are examples where Theorem 1 can be applied but not Corollary 5
for the metrics dδ and dδm, and d0, respectively.

Example 5 Let S = {0, 1, 2} endowed with a partial metric δ(x, y) = max{x, y}
for all x, y ∈ S. Define F : S → X by F0 = F1 = 0 and F2 = 1. Since (S, δ) is
complete, then it is F -orbitally complete. Moreover, it is obvious that F is orbitally
continuous. An easy computation shows that

min{δ(Fx, Fy), δ(x, Fx), δ(y, Fy)} −min{dδm(x, Fy), dδm(Fx, y)}
≤ φ(δ(x, y)− |δ(x, x)− δ(y, y)|),

for all x, y ∈ S and for certain φ, e.g., by letting ψ(t) = t
3 . So, the conditions of

Theorem 1 are satisfied. However, there is no φ such that

min{dδ(T 1, T 2), dδ(1, T 1), dδ(2, T 2)} −min{dδ(1, T 2), dδ(T 1, 2)}
= 1− 0 = 1 ≤ ψ(dp(1, 2)) < dp(1, 2) = 1

is satisfied. Accordingly, Corollary 5 cannot be applied to the complete metric space
(S, dδ).

Achari Type Nonunique Fixed Point Theorems

The following theorem is based on the interesting result of Achari [3].

Theorem 2 Suppose that there exists ψ ∈ Φ such that

P(x,y)−Q(x,y)
R(x,y)

≤ ψ(δ(x, y)), (18)

for all x, y ∈ S, where

P(x, y) = min{δ(Fx, Fy)δ(x, y), δ(x, Fx)δ(y, Fy)},
Q(x, y) = min{dδm(x, Fx)dδm(x, Fy), dδm(y, Fy)dδm(Fx, y)},
R(x, y) = min{δ(x, Fx), δ(y, Fy)},

with R(x, y) �= 0. Then, for each x0 ∈ S, the sequence {Fnx0}n∈N converges to a
fixed point of F .
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Proof For an arbitrary initial point x0 ∈ S, we construct an iterative sequence
{xn}n∈N0 as follows:

xn+1 = Fxn, n ∈ N0.

Without loss of generality, we suppose then that xn �= xn+1 for each n ∈ N0. Indeed,
if there exists n0 ∈ N0 such that xn0 = xn0+1, then xn0 is a fixed point of F .

By letting x = xn and y = xn+1 in (21) we find the inequality

P(xn, xn+1)−Q(xn, xn+1)

R(xn, xn+1)
≤ ψ(δ(xn, xn+1)),

where

P(xn, xn+1) = min{δ(Fxn, Fxn+1)δ(xn, xn+1), δ(xn, Fxn)δ(xn+1, Fxn+1)},
= min{δ(xn+1, xn+2)δ(xn, xn+1), δ(xn, xn+1)δ(xn+1, xn+2)},

Q(xn, xn+1) = min{dδm(xn, Fxn)dδm(xn, Fxn+1), d
δ
m(xn+1, Fxn+1)d

δ
m(Fxn, xn+1)},

= min{dδm(xn, xn+1)d
δ
m(xn, xn+2), d

δ
m(xn+1, xn+2)d

δ
m(xn+1, xn+1)},

= 0,

R(xn, xn+1) = min{δ(xn, Fxn), δ(xn+1, Fxn+1)}
= min{δ(xn, xn+1), δ(xn+1, xn+2)}.

Consequently, we derive that

δ(xn+1, xn+2)δ(xn, xn+1)

min{δ(xn, xn+1), δ(xn+1, xn+2)} ≤ ψ(δ(xn, xn+1)). (19)

Suppose for some n0, we have δ(xn0+1, xn0+2) ≥ δ(xn0 , xn0+1). Then, the
inequality above yields that

δ(xn0+1, xn0+2)δ(xn0 , xn0+1)

δ(xn0 , xn0+1)
≤ ψ(δ(xn0 , xn0+1)),

and hence

δ(xn0, xn0+1) ≤ ψ(δ(xn0, xn0+1)) < δ(xn0, xn0+1),

a contradiction. Consequently, we deduce that δ(xn+1, xn+2) ≤ δ(xn, xn+1) for all
n ∈ N and further, from (19) , we have

δ(xn0+1, xn0+2) ≤ ψ(δ(xn0, xn0+1)) ≤ · · · ≤ ψn+1(δ(x0, x1)),
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for all n ∈ N.
As a next step, we shall prove that the constructive sequence {xn}n∈N is Cauchy

in (S, δ). Suppose that n,m ∈ N0 with n < m. Then, by using (P4), we find that

δ(xn, xm) ≤ δ(xn, xn+1)+ · · · + δ(xm−1, xm)−
m−1∑
k=n

δ(xk, xk)

≤ ψn(δ(x0, x1)) · · · + ψm−1(δ(x0, x1))

≤
m−1∑
k=n

ψk(δ(x0, x1))→ 0 as n→∞.

Accordingly, we get that

lim
n→∞ dδ(x, xn) = 0⇔ 0 = δ(x, x) = lim

n→∞ δ(x, xn) = lim
n,m→∞ δ(xn, xm). (20)

Consequently, it is a Cauchy sequence in (S, δ). On account of xn = Fnx0 for all n,
and regarding the orbitally completeness of (S, δ), there is z ∈ S such that xn → z

with respect to τdδ . Taking the orbital continuity of F into account, we find that
xn→ Fz with respect to τdδ . Thus, z = Fz, which concludes the proof.

An immediate corollary of Theorem 7 is obtained by letting ψ(t) = kt for k ∈
[0, 1)
Corollary 6 Suppose that there exists ψ ∈ Φ such that

P(x, y)−Q(x, y)
R(x, y)

≤ ψ(δ(x, y)), (21)

for all x, y ∈ S, where

P(x, y) = min{δ(Fx, Fy)δ(x, y), δ(x, Fx)δ(y, Fy)},
Q(x, y) = min{dδm(x, Fx)dδm(x, Fy), dδm(y, Fy)dδm(Fx, y)},
R(x, y) = min{δ(x, Fx), δ(y, Fy)}.

with R(x, y) �= 0. Then, for each x0 ∈ S, the sequence {Fnx0}n∈N converges to a
fixed point of F .

The following is the famous theorem of Achari [3] in the setting of standard
metric spaces.

Corollary 7 ([3, Nonunique fixed point of Achari]) Suppose that there exists k ∈
[0, 1) such that

P(x,y)−Q(x,y)
R(x,y)

≤ kd(x, y), (22)
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for all x, y ∈ S, where

P(x, y) = min{d(Fx, Fy)d(x, y), d(x, Fx)d(y, Fy)},
Q(x, y) = min{(x, Fx)δ(x, Fy), δ(y, Fy)δ(Fx, y)},
R(x, y) = min{d(x, Fx), d(y, Fy)},

with R(x, y) �= 0. Then, for each x0 ∈ S, the sequence {Fnx0}n∈N converges to a
fixed point of F .

Pachpatte Type Nonunique Fixed Point Theorems

Let Θ be the set of all functions ϑ ∈ Φ with an additional condition

ϕ(t2) ≤ [ϕ(t)]2 for all t > 0.

Inspired from the renowned result of Pachpatte [30], we propose the following
result.

Theorem 3 Suppose that there exists ϑ ∈ Θ such that

m(x, y)− n(x, y) ≤ ϑ(δ(x, Fx)δ(y, Fy)), (23)

for all x, y ∈ S, where

m(x, y) = min{[δ(Fx, Fy)]2, δ(x, y)δ(Fx, Fy), [δ(y, Fy)]2},
n(x, y) = min{dδm(x, Fx)dδm(y, Fy), dδm(x, Fy)dδm(y, Fx)}.

Then, for each x0 ∈ S, the sequence {Fnx0}n∈N converges to a fixed point of F .

Proof Fix initial point x0 ∈ S, we set up a recursive sequence {xn}n∈N0 by the
following definition:

xn+1 = Fxn, n ∈ N0.

We assume, without loss of generality, that the adjacent terms are distinct, that is,
xn �= xn+1 for each n ∈ N0. In fact, if there exists n0 ∈ N0 such that xn0 = xn0+1,
then xn0 forms a fixed point of F .

By letting x = xn and y = xn+1 in (23), we derive the following inequality:

m(xn, xn+1)− n(xn, xn+1) ≤ ϑ(δ(xn, Fxn)δ(xn+1, Fxn+1)),

= ϑ(δ(xn, xn+1)δ(xn+1, xn+2)),
(24)

where
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m(xn, xn+1) = min{[δ(Fxn, Fxn+1)]2, δ(xn, xn+1)δ(Fxn, Fxn+1), [δ(xn+1, Fxn+1)]2}
= min{[δ(xn+1, xn+2)]2, δ(xn, xn+1)δ(xn+1, xn+2), [δ(xn+1, xn+2)]2},

n(xn, xn+1) = min{dδm(xn, Fxn)dδm(xn+1, Fxn+1), d
δ
m(xn, Fxn+1)d

δ
m(xn+1, Fxn)}

= min{dδm(xn, xn+1)d
δ
m(xn+1, xn+2), d

δ
m(xn, xn+2)d

δ
m(xn+1, xn+1)}

= 0.

Consequently, the inequality (24) turns into

min{[δ(xn+1, xn+2)]2, δ(xn, xn+1)δ(xn+1, xn+2)} ≤ ϑ(δ(xn, xn+1)δ(xn+1, xn+2)),

(25)

for all n ∈ N. Suppose that δ(xn0, xn0+1) ≤ δ(xn0+1, xn0+2) for some n0 ∈ N. Then,
the inequality (25) becomes

δ(xn0, xn0+1)δ(xn0+1, xn0+2) ≤ ϑ(δ(xn0, xn0+1)δ(xn0+1, xn0+2))

< δ(xn0 , xn0+1)δ(xn0+1, xn0+2),
(26)

a contradiction. Thus, we have δ(xn+1, xn+2) < δ(xn, xn+1) for all n ∈ N.
Moreover, keeping the property of ϑ in mind, we derive, from inequality (26), that

δ(xn, xn+1)
2 ≤ ϑ(δ(xn−1, xn)

2) < [ϑ(δ(xn−1, xn))]2

δ(xn, xn+1) ≤ ϑn(δ(x0, x1)) for all n ∈ N. (27)

In what follows, we indicate that the recursive sequence {xn}n∈N is Cauchy in
(S, δ). Consider n,m ∈ N0 with n < m. Then, by using (P4), we find that

δ(xn, xm) ≤ δ(xn, xn+1)+ · · · + δ(xm−1, xm)−
m−1∑
k=n

δ(xk, xk)

≤ ϑn(δ(x0, x1)) · · · + ϑm−1(δ(x0, x1))

≤
m−1∑
k=n

ϑk(δ(x0, x1))→ 0 as n→∞.

Attendantly, we find that

lim
n→∞ dδ(x, xn) = 0⇔ 0 = δ(x, x) = lim

n→∞ δ(x, xn) = lim
n,m→∞ δ(xn, xm). (28)

As a result, the sequence {xn}n∈N is a Cauchy sequence in (S, δ). Keeping, xn =
Fnx0 for all n, in mind, and regarding the orbitally completeness of (S, δ),we
deduce that there is z ∈ S such that xn → z with respect to τdδ . Employing the
orbital continuity of F , we get that xn→ Fz with respect to τdδ . So, z = Fz.
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An immediate corollary of Theorem 3 is obtained by letting ϑ(t) = kt for k ∈
[0, 1)
Corollary 8 Suppose that there exists k ∈ [0, 1) such that

m(x, y)− n(x, y) ≤ kδ(x, Fx)δ(y, Fy),

for all x, y ∈ S, where

m(x, y) = min{[δ(Fx, Fy)]2, δ(x, y)δ(Fx, Fy), [δ(y, Fy)]2},
n(x, y) = min{dδm(x, Fx)dδm(y, Fy), dδm(x, Fy)dδm(y, Fx)}.

Then, for each x0 ∈ S, the sequence {Fnx0}n∈N converges to a fixed point of F .

In what follows, we deduce the renowned result of Pachpatte [30] in the setting
of standard metric spaces.

Corollary 9 ([30, Nonunique fixed point of Pachpatte]) Suppose that there exists
k ∈ [0, 1) such that

m(x, y)− n(x, y) ≤ kd(x, Fx)d(y, Fy),

for all x, y ∈ S, where

m(x, y) = min{[d(Fx, Fy)]2, d(x, y)d(Fx, Fy), [d(y, Fy)]2},
n(x, y) = min{d(x, Fx)d(y, Fy), d(x, Fy)d(y, Fx)}.

Then, for each x0 ∈ S, the sequence {Fnx0}n∈N converges to a fixed point of F .

Conclusion

It is possible to obtain more consequence of the obtained result by considering
different type control functions. Notice also that all obtained results in the context
of partial metric spaces are valid in the setting of standard metric spaces, either.
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Some New Refinement of Gauss–Jacobi
and Hermite–Hadamard Type Integral
Inequalities

Artion Kashuri and Rozana Liko

Abstract In this paper, the authors discover two interesting identities regarding
Gauss–Jacobi and Hermite–Hadamard type integral inequalities. By using the first
lemma as an auxiliary result, some new bounds with respect to Gauss–Jacobi
type integral inequalities are established. Also, using the second lemma, some
new estimates with respect to Hermite–Hadamard type integral inequalities via
general fractional integrals are obtained. It is pointed out that some new special
cases can be deduced from main results. Some applications to special means for
different positive real numbers and new error estimates for the trapezoidal formula
are provided as well. These results give us the generalizations, refinement and
significant improvements of the new and previous known results. The ideas and
techniques of this paper may stimulate further research.

1 Introduction

The following notations are used throughout this paper. We use I to denote an
interval on the real line R = (−∞,+∞). For any subset K ⊆ R

n, K◦ is the
interior of K. The set of integrable functions on the interval [a1, a2] is denoted by
L[a1, a2].

The following inequality, named Hermite–Hadamard inequality, is one of the
most famous inequalities in the literature for convex functions.

Theorem 1 Let f : I ⊆ R −→ R be a convex function on I and a1, a2 ∈ I with
a1 < a2. Then, the following inequality holds:

f

(
a1 + a2

2

)
≤ 1

a2 − a1

∫ a2

a1

f (x)dx ≤ f (a1)+ f (a2)

2
. (1)
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This inequality (1) is also known as trapezium inequality.

The trapezium type inequality has remained an area of great interest due to its
wide applications in the field of mathematical analysis. For other recent results that
generalize, improve and extend the inequality (1) through various classes of convex
functions, interested readers are referred to [1–33, 35, 37, 38].
The Gauss–Jacobi type quadrature formula has the following:

∫ a2

a1

(x − a1)
p(a2 − x)qf (x)dx =

+∞∑
k=0

Bm,kf (γk)+ R"m|f |, (2)

for certain Bm,k, γk and rest R"m|f |, see [34].
Recently in [20], Liu obtained several integral inequalities for the left-hand

side of (2). Also in [28], Özdemir et al. established several integral inequalities
concerning the left-hand side of (2) via some kinds of convexity.
Let us recall some special functions and evoke some basic definitions as follows.

Definition 1 For k ∈ R
+ and x ∈ C, the k-gamma function is defined by

Γk(x) = lim
n−→∞

n!kn(nk) xk−1

(x)n,k
. (3)

Its integral representation is given by

Γk(α) =
∫ ∞

0
tα−1e−

tk

k dt. (4)

One can note that

Γk(α + k) = αΓk(α). (5)

For k = 1, (4) gives integral representation of gamma function.

Definition 2 ([24]) Let f ∈ L[a1, a2]. Then, k-fractional integrals of order α, k >
0 with a1 ≥ 0 are defined as

I
α,k

a+1
f (x) = 1

kΓk(α)

∫ x

a1

(x − t) αk−1f (t)dt, x > a1

and

I
α,k

a−2
f (x) = 1

kΓk(α)

∫ a2

x

(t − x) αk−1f (t)dt, a2 > x. (6)

For k = 1, k-fractional integrals give Riemann–Liouville integrals.
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Definition 3 ([36]) A set S ⊆ R
n is said to be an invex set with respect to the

mapping η : S × S −→ R
n, if x + tη(y, x) ∈ S for every x, y ∈ S and t ∈ [0, 1].

The invex set S is also termed an η-connected set.

Definition 4 Let S ⊆ R
n be an invex set with respect to η : S × S −→ R

n.

A function f : S −→ [0,+∞) is said to be preinvex with respect to η, if for every
x, y ∈ S and t ∈ [0, 1],

f
(
x + tη(y, x)) ≤ (1− t)f (x)+ tf (y). (7)

Also, let us define a function ϕ : [0,∞) −→ [0,∞) satisfying the following
conditions:

∫ 1

0

ϕ(t)

t
dt <∞, (8)

1

A
≤ ϕ(s)
ϕ(r)

≤ A for
1

2
≤ s
r
≤ 2 (9)

ϕ(r)

r2 ≤ B ϕ(s)
s2 for s ≤ r (10)

∣∣∣∣ϕ(r)r2
− ϕ(s)

s2

∣∣∣∣ ≤ C|r − s|ϕ(r)r2
for

1

2
≤ s
r
≤ 2, (11)

where A,B,C > 0 are independent of r, s > 0. If ϕ(r)rα is increasing for some
α ≥ 0 and ϕ(r)

rβ
is decreasing for some β ≥ 0, then ϕ satisfies (8), (9), (10) and (11),

see [31]. Therefore, we define the following left-sided and right-sided generalized
fractional integral operators, respectively, as follows:

a+1
Iϕf (x) =

∫ x

a1

ϕ(x − t)
x − t f (t)dt, x > a1, (12)

a−2
Iϕf (x) =

∫ a2

x

ϕ(t − x)
t − x f (t)dt, x < a2. (13)

The most important feature of generalized fractional integrals is that they gen-
eralize some types of fractional integrals such as Riemann–Liouville fractional
integral, k-Riemann–Liouville fractional integral, Katugampola fractional integrals,
conformable fractional integral, Hadamard fractional integrals, etc., see [30].
Motivated by the above literatures, the main objective of this paper is to discover
in Sects. 2 and 3 two interesting identities and to establish some new bounds
regarding Gauss–Jacobi and Hermite–Hadamard type integral inequalities. By using
in Sect. 2 the first lemma as an auxiliary result, some new bounds with respect
to Gauss–Jacobi type integral inequalities will be given. Also, using in Sect. 3
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the second lemma, some new estimates with respect to Hermite–Hadamard type
integral inequalities via general fractional integrals will be obtained. It is pointed
out that some new special cases will be deduced from main results. In Sect. 4,
some applications to special means for different positive real numbers and new
error estimates for the trapezoidal formula will be given. These results will give
us the generalizations, refinement and significant improvements of the new and
previous known results. The ideas and techniques of this paper may stimulate further
research.

2 Some New Bounds of the Quadrature Formula
of Gauss–Jacobi Type

Throughout this study, for brevity, we define

Λ∗m.n(t) =
∫ t

0

ϕ
(
η(a2,ma1)

x
n+1

)
x
n+1

dx <∞, η(a2,ma1) > 0.

For establishing some new bounds integral inequalities for Gauss–Jacobi type, we
need the following lemma.

Lemma 1 Suppose that n = 0, 1, 2, . . . , and m ∈ (0, 1] be a fixed number. Let
P = [ma1,ma1 + η(a2,ma1)] ⊆ R be an open m-invex subset. Assume that f :
P −→ R be a continuous mapping on P ◦ with respect to η : P × P −→ R for
η(a2,ma1) > 0. Then, for any fixed p, q > 0, we have

∫ ma1+ η(a2,ma1)n+1

ma1

[
Λ∗m,n

(
(n+ 1)(x −ma1)

η(a2,ma1)

)]p

×
[
Λ∗m,n

(
m(n+ 1)a1 + η(a2,ma1)− (n+ 1)x

η(a2,ma1)

)]q
f (x)dx

= η(a2,ma1)

n+ 1

∫ 1

0

[
Λ∗m,n(t)

]p[
Λ∗m,n(1− t)

]q
f

(
ma1 + t

n+ 1
η(a2,ma1)

)
dt.

(14)
We denote

T
p,q
f,Λ∗m,n(a1, a2) := η(a2,ma1)

n+ 1
(15)

×
∫ 1

0

[
Λ∗m,n(t)

]p[
Λ∗m,n(1− t)

]q
f

(
ma1 + t

n+ 1
η(a2,ma1)

)
dt.
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Proof Using (15) and changing the variable x = ma1 + t

n+ 1
η(a2,ma1), we have

T
p,q
f,Λ∗m,n(a1, a2) = η(a2,ma1)

n+ 1

∫ ma1+ η(a2,ma1)n+1

ma1

[
Λ∗m,n

(
(n+ 1)(x −ma1)

η(a2,ma1)

)]p

×
[
Λ∗m,n

(
m(n+ 1)a1 + η(a2,ma1)− (n+ 1)x

η(a2,ma1)

)]q
f (x)

(n+ 1)

η(a2,ma1)
dx

=
∫ ma1+ η(a2,ma1)n+1

ma1

[
Λ∗m,n

(
(n+ 1)(x −ma1)

η(a2,ma1)

)]p

×
[
Λ∗m,n

(
m(n+ 1)a1 + η(a2,ma1)− (n+ 1)x

η(a2,ma1)

)]q
f (x)dx.

This completes the proof of the lemma.

Corollary 1 Taking n = 0, m = 1, η(a2,ma1) = a2 − ma1 and ϕ(x) = x, in
Lemma 1, we get the following identity:

∫ a2

a1

(x−a1)
p(a2−x)qf (x)dx = (a2−a1)

p+q+1
∫ 1

0
tp(1−t)qf (a1+t (a2−a1))dt.

(16)

With the help of Lemma 1, we have the following results.

Theorem 2 Suppose that n = 0, 1, 2, . . . , and m ∈ (0, 1] be a fixed number. Let
P = [ma1,ma1 + η(a2,ma1)] ⊆ R be an open m-invex subset. Assume that f :
P −→ R be a continuous mapping on P ◦ with respect to η : P × P −→ R for

η(a2,ma1) > 0. If |f | kk−1 is preinvex mapping on P for k > 1, then for any fixed
p, q > 0, we have

∣∣∣T p,qf,Λ∗m,n(a1, a2)

∣∣∣ ≤
(

1

2(n+ 1)

) k−1
k η(a2,ma1)

n+ 1
k

√
A
p,q
Λ∗m,n(k) (17)

×
[
(2n+ 1)|f (ma1)| kk−1 + |f (a2)| kk−1

] k−1
k
,

where

A
p,q
Λ∗m,n(k) :=

∫ 1

0

[
Λ∗m,n(t)

]kp[
Λ∗m,n(1− t)

]kq
dt.



232 A. Kashuri and R. Liko

Proof Since |f | kk−1 is preinvex mapping on P, combining with Lemma 1, Hölder
inequality and properties of the modulus, we get

∣∣∣T p,qf,Λ∗m,n(a1, a2)

∣∣∣ ≤ η(a2,ma1)

n+ 1

×
∫ 1

0

[
Λ∗m,n(t)

]p[
Λ∗m,n(1− t)

]q ∣∣∣∣f
(
ma1 + t

n+ 1
η(a2,ma1)

) ∣∣∣∣dt

≤ η(a2,ma1)

n+ 1

[ ∫ 1

0

[
Λ∗m,n(t)

]kp[
Λ∗m,n(1− t)

]kq
dt

] 1
k

××
[ ∫ 1

0

∣∣∣∣f
(
ma1 + t

n+ 1
η(a2,ma1)

) ∣∣∣∣
k
k−1

dt

] k−1
k

≤ η(a2,ma1)

n+ 1
k

√
A
p,q
Λ∗m,n(k)

×
[ ∫ 1

0

((
1− t

n+ 1

)
|f (ma1)| kk−1 + t

n+ 1
|f (a2)| kk−1

)
dt

] k−1
k

=
(

1

2(n+ 1)

) k−1
k η(a2,ma1)

n+ 1
k

√
A
p,q
Λ∗m,n(k)×

[
(2n+1)|f (ma1)| kk−1+|f (a2)| kk−1

] k−1
k
.

So, the proof of this theorem is completed.

We point out some special cases of Theorem 2.

Corollary 2 Under the assumption of Theorem 2 with n = 0 and ϕ(t) = t, we get
∣∣∣T p,qf,Λ∗1

(a1, a2)

∣∣∣ ≤ ηp+q+1(a2,ma1)
k
√
β(kp + 1, kq + 1) (18)

×
[ |f (ma1)| kk−1 + |f (a2)| kk−1

2

] k−1
k

,

where Λ∗1 := η(a2,ma1)t.

Corollary 3 Under the assumption of Theorem 2 with n = 0 and ϕ(t) = tα

Γ (α)
, we

get

∣∣∣T p,qf,Λ∗2
(a1, a2)

∣∣∣ ≤ ηα(p+q)+1(a2,ma1)

Γ p+q(α + 1)
k
√
β(αkp + 1, αkq + 1) (19)

×
[ |f (ma1)| kk−1 + |f (a2)| kk−1

2

] k−1
k

,
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where Λ∗2 := ηα(a2,ma1)
Γ (α+1) t

α.

Corollary 4 Under the assumption of Theorem 2 with n = 0 and ϕ(t) = t
α
k1

k1Γk1 (α)
,

we get

∣∣∣T p,qf,Λ∗3
(a1, a2)

∣∣∣ ≤ η
α
k1
(p+q)+1

(a2,ma1)[
k1Γk1(α + k1)

]p+q k

√
β

(
αkp

k1
+ 1,

αkq

k1
+ 1

)
(20)

×
[ |f (ma1)| kk−1 + |f (a2)| kk−1

2

] k−1
k

,

where Λ∗3 := η
α
k1 (a2,ma1)
k1Γk1 (α+k1)

t
α
k1 .

Corollary 5 Under the assumption of Theorem 2 with n = 0 and ϕ(t) = t (ma1 +
η(a2,ma1)− t)α−1 and f (x) is symmetric to x = ma1 + η(a2,ma1)

2 , we get

∣∣∣T p,qf,Λ∗4
(a1, a2)

∣∣∣ ≤ η
k−1
k
(p+q)+1(a2,ma1)

αp+q
k
√
Cp,q,m(α, k) (21)

×
[ |f (ma1)| kk−1 + |f (a2)| kk−1

2

] k−1
k

,

where

Cp,q,m(α, k) :=
∫ ma1+η(a2,ma1)

ma1

[
(ma1 + η(a2,ma1))

α − tα]kp (22)

×[
(ma1 + η(a2,ma1))

α − (2ma1 + η(a2,ma1)− t)α
]kq
dt

and Λ∗4 := (ma1+η(a2,ma1))
α−(ma1+(1−t)η(a2,ma1))

α

α
.

Theorem 3 Suppose that n = 0, 1, 2, . . . , and m ∈ (0, 1] be a fixed number. Let
P = [ma1,ma1 + η(a2,ma1)] ⊆ R be an open m-invex subset. Assume that f :
P −→ R be a continuous mapping on P ◦ with respect to η : P × P −→ R for
η(a2,ma1) > 0. If |f |l is preinvex mapping on P for l ≥ 1, then for any fixed
p, q > 0, we have

∣∣∣T p,qf,Λ∗m,n(a1, a2)

∣∣∣≤η(a2,ma1)

n+ 1

[
A
p,q
Λ∗m,n(1)

] l−1
l × l

√
B
p,q
Λ∗m,n |f (ma1)|l+Cp,qΛ∗m,n |f (a2)|l ,

(23)
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where

B
p,q
Λ∗m,n :=

∫ 1

0

(
1− t

n+ 1

) [
Λ∗m,n(t)

]p[
Λ∗m,n(1− t)

]q
dt,

C
p,q
Λ∗m,n :=

1

n+ 1

∫ 1

0
t
[
Λ∗m,n(t)

]p[
Λ∗m,n(1− t)

]q
dt,

and Ap,qΛ∗m,n(1) is defined as in Theorem 2.

Proof Since |f |l is preinvex mapping on P, combining with Lemma 1, the well-
known power mean inequality and properties of the modulus, we get

∣∣∣T p,qf,Λ∗m,n(a1, a2)

∣∣∣ ≤ η(a2,ma1)

n+ 1

×
∫ 1

0

[
Λ∗m,n(t)

]p[
Λ∗m,n(1− t)

]q ∣∣∣∣f
(
ma1 + t

n+ 1
η(a2,ma1)

) ∣∣∣∣dt

≤ η(a2,ma1)

n+ 1

[ ∫ 1

0

[
Λ∗m,n(t)

]p[
Λ∗m,n(1− t)

]q
dt

] l−1
l

×
[ ∫ 1

0

[
Λ∗m,n(t)

]p[
Λ∗m,n(1− t)

]q ∣∣∣∣f
(
ma1 + t

n+ 1
η(a2,ma1)

) ∣∣∣∣
l

dt

] 1
l

≤ η(a2,ma1)

n+ 1

[
A
p,q
Λ∗m,n(1)

] l−1
l

×
[ ∫ 1

0

[
Λ∗m,n(t)

]p[
Λ∗m,n(1−t)

]q ((
1− t

n+ 1

)
|f (ma1)|l+ t

n+ 1
|f (a2)|l

)
dt

] 1
l

= η(a2,ma1)

n+ 1

[
A
p,q
Λ∗m,n(1)

] l−1
l × l

√
B
p,q
Λ∗m,n |f (ma1)|l + Cp,qΛ∗m,n |f (a2)|l .

So, the proof of this theorem is completed.

We point out some special cases of Theorem 3.

Corollary 6 Under the assumption of Theorem 3 with n = 0 and ϕ(t) = t, we get
∣∣∣T p,qf,Λ∗1

(a1, a2)

∣∣∣ ≤ ηp+q+1(a2,ma1)× β l−1
l (p + 1, q + 1) (24)

× l

√
β(p + 1, q + 2)|f (ma1)|l + β(q + 1, p + 2)|f (a2)|l .
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Corollary 7 Under the assumption of Theorem 3 with n = 0 and ϕ(t) = tα

Γ (α)
, we

get

∣∣∣T p,qf,Λ∗2
(a1, a2)

∣∣∣ ≤ ηα(p+q)+1(a2,ma1)

Γ p+q(α + 1)
× β l−1

l (αp + 1, αq + 1) (25)

× l

√
β(αp + 1, αq + 2)|f (ma1)|l + β(αq + 1, αp + 2)|f (a2)|l .

Corollary 8 Under the assumption of Theorem 3 with n = 0 and ϕ(t) = t
α
k1

k1Γk1 (α)
,

we get

∣∣∣T p,qf,Λ∗3
(a1, a2)

∣∣∣ ≤ η
α
k1
(p+q)+1

(a2,ma1)[
k1Γk1(α + k1)

]p+q × β l−1
l

(
pα

k1
+ 1,

qα

k1
+ 1

)
. (26)

× l

√
β

(
pα

k1
+ 1,

qα

k1
+ 2

)
|f (ma1)|l + β

(
qα

k1
+ 1,

pα

k1
+ 2

)
|f (a2)|l .

Corollary 9 Under the assumption of Theorem 3 with n = 0 and ϕ(t) = t (ma1 +
η(a2,ma1)− t)α−1 and f (x) is symmetric to x = ma1 + η(a2,ma1)

2 , we get

∣∣∣T p,qf,Λ∗4
(a1, a2)

∣∣∣ ≤ η(a2,ma1)

[
Cp,q,m(α, 1)

αp+q

] l−1
l

(27)

× l

√
Dp,q,m|f (ma1)|l +Dq,p,m|f (a2)|l ,

where

Dp,q,m := 1

αp+qη2(a2,ma1)
(28)

×
∫ ma1+η(a2,ma1)

ma1

(t − a1)
[
(ma1 + η(a2,ma1))

α − tα]p

×[
(ma1 + η(a2,ma1))

α − (2ma1 + η(a2,ma1)− t)α
]q
dt.
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3 Some New Refinement of Hermite–Hadamard Type via
General Fractional Integral Inequalities

Theorem 4 Suppose that n = 0, 1, 2, . . . , and m ∈ (0, 1] be a fixed number. Let
f : P = [ma1,ma1 + η(a2,ma1)] −→ R be a preinvex function on P with
η(a2,ma1) > 0, then the following inequalities for generalized fractional integral
hold:

f

(
ma1 + η(a2,ma1)

2

)
≤ 1

2Λ∗m,n(1)
(29)

×
[
(ma1)

+Iϕf
(
ma1 + η(a2, ma1)

n+ 1

)
+ (

ma1+ η(a2,ma1)n+1

)−Iϕf (ma1)

]
≤ f (ma1)+ f (a2)

2
.

Proof For t ∈ [0, 1], let x = ma1 + t

n+ 1
η(a2,ma1) and y = ma1 +

(
1− t

n+1

)
η(a2,ma1). From the preinvexity of f, we get

f

(
ma1 + η(a2,ma1)

2

)
= f

(
x + y

2

)
≤ f (x)+ f (y)

2
,

i.e.,

2f

(
ma1 + η(a2,ma1)

2

)
≤ f

(
ma1 + t

n+ 1
η(a2,ma1)

)
(30)

+f
(
ma1 +

(
1− t

n+ 1

)
η(a2,ma1)

)
.

Multiplying both sides of (30) by
ϕ
(
η(a2,ma1)

t
n+1

)
t
n+1

and integrating the resulting

inequality with respect to t over (0, 1], we obtain

2f

(
ma1 + η(a2,ma1)

2

)∫ 1

0

ϕ
(
η(a2,ma1)

t
n+1

)
t
n+1

dt

≤
∫ 1

0

ϕ
(
η(a2,ma1)

t
n+1

)
t
n+1

f

(
ma1 + t

n+ 1
η(a2,ma1)

)
dt

+
∫ 1

0

ϕ
(
η(a2,ma1)

t
n+1

)
t
n+1

f

(
ma1 +

(
1− t

n+ 1

)
η(a2,ma1)

)
dt.
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Hence,

2f

(
ma1 + η(a2,ma1)

2

)∫ 1

0

ϕ
(
η(a2,ma1)

t
n+1

)
t
n+1

dt

≤
[
(ma1)

+Iϕf

(
ma1 + η(a2,ma1)

n+ 1

)
+ (

ma1+ η(a2,ma1)n+1

)−Iϕf (ma1)

]
.

So, the first inequality is proved.
To prove the other half of the inequality in (29), since f is preinvex, we have

f

(
ma1 + t

n+ 1
η(a2,ma1)

)
+ f

(
ma1 +

(
1− t

n+ 1

)
η(a2,ma1)

)
(31)

≤ f (ma1)+ f (a2).

Multiplying both sides of (31) by
ϕ
(
η(a2,ma1)

t
n+1

)
t
n+1

and integrating the resulting

inequality with respect to t over (0, 1], we obtain

[
(ma1)

+Iϕf

(
ma1 + η(a2,ma1)

n+ 1

)
+ (

ma1+ η(a2,ma1)n+1

)−Iϕf (ma1)

]

≤ [
f (ma1)+ f (a2)

] ∫ 1

0

ϕ
(
η(a2,ma1)

t
n+1

)
t
n+1

dt.

Therefore, the second inequality is proved. The proof of this theorem is complete.

We point out some special cases of Theorem 4.

Corollary 10 Taking n = 0, m = 1 and η(a2,ma1) = a2 −ma1 in Theorem 4, we
get [[30], Theorem 5].

Corollary 11 If in Theorem 4, we get n = 0 and ϕ(t) = t, then the inequalities
in (29) become the inequalities

f

(
ma1 + η(a2,ma1)

2

)
≤ 1

2η(a2,ma1)
(32)

×
[
I(ma1)

+f (ma1 + η(a2,ma1))+ I(ma1+η(a2,ma1))
−f (ma1)

]
≤ f (ma1)+ f (a2)

2
,

where Ia+1
f and Ia−2

f are the classical Riemann integrals.
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Corollary 12 If in Theorem 4, we get n = 0 and ϕ(t) = tα

Γ (α)
, then the inequalities

in (29) become the inequalities

f

(
ma1 + η(a2,ma1)

2

)
≤ Γ (α + 1)

2ηα(a2,ma1)
(33)

×
[
Jα
(ma1)

+f (ma1 + η(a2,ma1))+ Jα(ma1+η(a2,ma1))
−f (ma1)

]
≤ f (ma1)+ f (a2)

2
,

where Jα
a+1
f and Jα

a−2
f are the fractional Riemann integrals.

Corollary 13 If in Theorem 4, we get n = 0 and ϕ(t) = t
α
k

kΓk(α)
, then the

inequalities in (29) become the inequalities

f

(
ma1 + η(a2,ma1)

2

)
≤ Γk(α + k)

2η
α
k (a2,ma1)

(34)

×
[
I
α,k

(ma1)
+f (ma1 + η(a2,ma1))+ Iα,k(ma1+η(a2,ma1))

−f (ma1)
]
≤ f (ma1)+ f (a2)

2
.

Corollary 14 If in Theorem 4, we get n = 0 and ϕ(t) = t (ma1+η(a2,ma1)−t)α−1

and f (x) is symmetric to x = ma1+ η(a2,ma1)
2 , then the inequalities in (29) become

the inequalities

f

(
ma1+η(a2,ma1)

2

)
≤ α

(ma1+η(a2,ma1))α−(ma1)α
×
∫ ma1+η(a2,ma1)

ma1

f (t)dαt

(35)

≤ f (ma1)+ f (a2)

2
.

Corollary 15 If in Theorem 4, we get n = 0 and ϕ(t) = t
α

exp
[ (
− 1−α

α

)
t
]
, α ∈

(0, 1), then the inequalities in (29) become the inequalities

f

(
ma1 + η(a2,ma1)

2

)
≤ 1− α

2(1− exp(−D)) (36)

×
[
I α
(ma1)

+f (ma1+η(a2,ma1))+I α
(ma1+η(a2,ma1))

−f (ma1)
]
≤ f (ma1)+ f (a2)

2
,
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where I α

a+1
f and I α

a−2
f are the right-side and left-side fractional integral operators

with exponential kernel and D =
(

1−α
α

)
η(a2,ma1).

For establishing some new results regarding general fractional integrals, we need to
prove the following lemma.

Lemma 2 Suppose that n = 0, 1, 2, . . . , and m ∈ (0, 1] be a fixed number. Let f :
P = [ma1,ma1 + η(a2,ma1)] −→ R be a differentiable mapping on (ma1,ma1 +
η(a2,ma1)) with η(a2,ma1) > 0. If f ′ ∈ L(P ), then the following identity for
generalized fractional integrals holds:

f (ma1)+ f
(
ma1 + η(a2,ma1)

n+1

)
2(n+ 1)

− 1

2Λ∗m,n(1)
×

[
(ma1)

+Iϕf

(
ma1 + η(a2,ma1)

n+ 1

)
+ (

ma1+ η(a2,ma1)n+1

)−Iϕf (ma1)

]

= η(a2,ma1)

2(n+ 1)2Λ∗m,n(1)
(37)

×
∫ 1

0

[
Λ∗m,n(t)−Λ∗m,n(1− t)

]
f ′

(
ma1 + t

n+ 1
η(a2,ma1)

)
dt.

We denote

Hf,Λ∗m,n(a1, a2) := η(a2,ma1)

2(n+ 1)2Λ∗m,n(1)
(38)

×
∫ 1

0

[
Λ∗m,n(t)−Λ∗m,n(1− t)

]
f ′

(
ma1 + t

n+ 1
η(a2,ma1)

)
dt.

Proof Integrating by parts (38) and changing the variable of integration, we have

Hf,Λ∗m,n(a1, a2) = η(a2,ma1)

2(n+ 1)2Λ∗m,n(1)

×
{∫ 1

0
Λ∗m,n(t)f ′

(
ma1 + t

n+ 1
η(a2,ma1)

)
dt

−
∫ 1

0
Λ∗m,n(1− t)f ′

(
ma1 + t

n+ 1
η(a2,ma1)

)
dt

}
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= η(a2,ma1)

2(n+ 1)2Λ∗m,n(1)
×

{ (n+ 1)Λ∗m,n(t)f
(
ma1 + t

n+1η(a2,ma1)
)

η(a2,ma1)

∣∣∣∣
1

0

− n+ 1

η(a2,ma1)

∫ 1

0

ϕ
(
η(a2,ma1)

t
n+1

)
t
n+1

f

(
ma1 + t

n+ 1
η(a2,ma1)

)
dt

−
(n+ 1)Λ∗m,n(1− t)f

(
ma1 + t

n+1η(a2,ma1)
)

η(a2,ma1)

∣∣∣∣
1

0

− n+ 1

η(a2,ma1)

∫ 1

0

ϕ
(
η(a2,ma1)

(1−t)
n+1

)
1−t
n+1

f

(
ma1 + t

n+ 1
η(a2,ma1)

)
dt

}

=
f (ma1)+ f

(
ma1 + η(a2,ma1)

n+1

)
2(n+ 1)

− 1

2Λ∗m,n(1)
×

[
(ma1)

+Iϕf

(
ma1 + η(a2,ma1)

n+ 1

)
+ (

ma1+ η(a2,ma1)n+1

)−Iϕf (ma1)

]
.

This completes the proof of the lemma.

Remark 1 Taking n = 0, m = 1 and η(a2,ma1) = a2 −ma1 in Lemma 2, we get

Hf,Λ∗1,0(a1, a2) = f (a1)+ f (a2)

2
− 1

2Λ∗1,0(1)
×

[
a+1
Iϕf (a2)+ a−2

Iϕf (a1)

]
.

(39)

Theorem 5 Suppose that n = 0, 1, 2, . . . , andm ∈ (0, 1] be a fixed number. Let f :
P = [ma1,ma1 + η(a2,ma1)] −→ R be a differentiable mapping on (ma1,ma1 +
η(a2,ma1)) with η(a2,ma1) > 0. If |f ′|q is preinvex on P for q > 1 and p−1 +
q−1 = 1, then the following inequality for generalized fractional integrals holds:

∣∣Hf,Λ∗m,n(a1, a2)
∣∣ ≤ η(a2,ma1)

21+ 1
q (n+ 1)2+

1
q Λ∗m,n(1)

p

√
KΛ∗m,n(p) (40)

× q
√
(2n+ 1)|f ′(ma1)|q + |f ′(a2)|q,

where

KΛ∗m,n(p) :=
∫ 1

0

∣∣∣Λ∗m,n(t)−Λ∗m,n(1− t)
∣∣∣pdt. (41)
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Proof From Lemma 2, the preinvexity of |f ′|q, Hölder inequality and properties of
the modulus, we have

∣∣Hf,Λ∗m,n(a1, a2)
∣∣ ≤ η(a2,ma1)

2(n+ 1)2Λ∗(1)

×
∫ 1

0

∣∣Λ∗m,n(t)−Λ∗m,n(1− t)∣∣
∣∣∣∣f ′

(
ma1 + t

n+ 1
η(a2,ma1)

) ∣∣∣∣dt

≤ η(a2,ma1)

2(n+ 1)2Λ∗(1)

(∫ 1

0

∣∣Λ∗m,n(t)−Λ∗m,n(1− t)∣∣pdt
) 1
p

×
(∫ 1

0

∣∣∣∣f ′
(
ma1 + t

n+ 1
η(a2,ma1)

) ∣∣∣∣
q

dt

) 1
q

≤ η(a2, ma1)

2(n+1)2Λ∗(1)
p

√
KΛ∗m,n(p)

(∫ 1

0

((
1− t

n+ 1

) ∣∣f ′(ma1)
∣∣q+ t

n+1

∣∣f ′(a2)
∣∣q) dt

) 1
q

= η(a2,ma1)

21+ 1
q (n+ 1)2+

1
q Λ∗m,n(1)

p

√
KΛ∗m,n(p)× q

√
(2n+ 1)|f ′(ma1)|q + |f ′(a2)|q .

The proof of this theorem is complete.

We point out some special cases of Theorem 5.

Corollary 16 Taking n = 0, m = 1 and η(a2,ma1) = a2 −ma1 in Theorem 5, we
get

∣∣Hf,Λ∗1,0(a1, a2)
∣∣ ≤ (a2 − a1)

21+ 1
q Λ∗1,0(1)

p

√
KΛ∗1,0(p)× q

√|f ′(a1)|q + |f ′(a2)|q . (42)

Corollary 17 Taking p = q = 2 in Theorem 5, we get

∣∣Hf,Λ∗m,n(a1, a2)
∣∣ ≤ η(a2,ma1)

2
√

2(n+ 1)(n+ 1)2Λ∗m,n(1)

√
KΛ∗m,n(2) (43)

×
√
(2n+ 1)|f ′(ma1)|2 + |f ′(a2)|2.

Corollary 18 Taking n = 0, m = 1, η(a2,ma1) = a2 − ma1 and ϕ(t) = t in
Theorem 5, we get [[7], Theorem 2.3].

Corollary 19 Taking n = 0, m = 1, η(a2,ma1) = a2 − ma1 and ϕ(t) = tα

Γ (α)
in

Theorem 5, we get [[27], Theorem 8].
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Corollary 20 Taking n = 0, m = 1, η(a2,ma1) = a2 −ma1 and ϕ(t) = t
α
k

kΓk(α)
in

Theorem 5, we get [[12], Theorem 8].

Corollary 21 Taking n = 0, m = 1, η(a2,ma1) = a2 −ma1 and ϕ(t) = t (ma1 +
η(a2,ma1) − t)α−1 and f (x) is symmetric to x = ma1 + η(a2,ma1)

2 , in Theorem 5,
we get

∣∣Hf,Λ∗4 (a1, a2)
∣∣ ≤

q

√
η(a2,ma1)

2

p
√
pα + 1×

[
(ma1 + η(a2,ma1))

α − (ma1)α
] (44)

× p

√
(ma1)pα+1 + (ma1 + η(a2,ma1))

pα+1 − (2ma1 + η(a2,ma1))
pα+1

2pα

× q

√ |f ′(ma1)|q + |f ′(a2)|q
2

.

Theorem 6 Suppose that n = 0, 1, 2, . . . , andm ∈ (0, 1] be a fixed number. Let f :
P = [ma1,ma1 + η(a2,ma1)] −→ R be a differentiable mapping on (ma1,ma1 +
η(a2,ma1)) with η(a2,ma1) > 0. If |f ′|q is preinvex on P for q ≥ 1, then the
following inequality for generalized fractional integrals holds:

∣∣Hf,Λ∗m,n(a1, a2)
∣∣ ≤ η(a2,ma1)

2(n+ 1)2+
1
q Λ∗m,n(1)

[
KΛ∗m,n(1)

]1− 1
q

(45)

× q

√
LΛ∗m,n |f ′(ma1)|q + FΛ∗m,n |f ′(a2)|q,

where

LΛ∗m,n :=
∫ 1

0
(n+ 1− t)

∣∣∣Λ∗m,n(t)−Λ∗m,n(1− t)
∣∣∣dt, (46)

FΛ∗m,n :=
∫ 1

0
t

∣∣∣Λ∗m,n(t)−Λ∗m,n(1− t)
∣∣∣dt, (47)

and KΛ∗m,n(1) is defined as in Theorem 5.

Proof From Lemma 2, the preinvexity of |f ′|q, power mean inequality and
properties of the modulus, we have



Some New Refinement of Gauss–Jacobi and Hermite–Hadamard Type Integral. . . 243

∣∣Hf,Λ∗m,n(a1, a2)
∣∣ ≤ η(a2,ma1)

2(n+ 1)2Λ∗m,n(1)

×
∫ 1

0

∣∣Λ∗m,n(t)−Λ∗m,n(1− t)∣∣
∣∣∣∣f ′

(
ma1 + t

n+ 1
η(a2,ma1)

) ∣∣∣∣dt

≤ η(a2,ma1)

2(n+ 1)2Λ∗m,n(1)

(∫ 1

0

∣∣Λ∗m,n(t)−Λ∗m,n(1− t)∣∣dt
)1− 1

q

×
(∫ 1

0

∣∣Λ∗m,n(t)−Λ∗m,n(1− t)∣∣
∣∣∣∣f ′

(
ma1 + t

n+ 1
η(a2,ma1)

) ∣∣∣∣
q

dt

) 1
q

≤ η(a2,ma1)

2(n+ 1)2Λ∗m,n(1)

[
KΛ∗m,n(1)

]1− 1
q

×
(∫ 1

0

∣∣Λ∗m,n(t)−Λ∗m,n(1−t)∣∣
((

1− t

n+ 1

) ∣∣f ′(ma1)
∣∣q+ t

n+ 1

∣∣f ′(a2)
∣∣q) dt

) 1
q

= η(a2,ma1)

2(n+ 1)2+
1
q Λ∗m,n(1)

[
KΛ∗m,n(1)

]1− 1
q × q

√
LΛ∗m,n |f ′(ma1)|q + FΛ∗m,n |f ′(a2)|q .

The proof of this theorem is complete.

We point out some special cases of Theorem 6.

Corollary 22 Taking n = 0, m = 1 and η(a2,ma1) = a2 −ma1 in Theorem 6, we
get

∣∣Hf,Λ∗1,0(a1, a2)
∣∣ ≤ (a2 − a1)

2Λ∗1,0(1)

[
KΛ∗1,0(1)

]1− 1
q × q

√
LΛ∗1,0 |f ′(a1)|q + FΛ∗1,0 |f ′(a2)|q .

(48)

Corollary 23 Taking q = 1 in Theorem 6, we get

∣∣Hf,Λ∗m,n(a1, a2)
∣∣ ≤ η(a2,ma1)

2(n+ 1)3Λ∗m,n(1)
×

[
LΛ∗m,n |f ′(ma1)| + FΛ∗m,n |f ′(a2)|

]
.

(49)
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Corollary 24 Under the assumption of Theorem 6 with n = 0 and ϕ(t) = t, we get
∣∣Hf,Λ∗1 (a1, a2)

∣∣ ≤ η(a2,ma1)

22+ 1
q

× q
√|f ′(ma1)|q + |f ′(a2)|q . (50)

Corollary 25 Under the assumption of Theorem 6 with n = 0 and ϕ(t) = tα

Γ (α)
,

we get

∣∣Hf,Λ∗2 (a1, a2)
∣∣ ≤

(
2α − 1

2α+1

)
q

√
Γ (α + 1)

Γ (α + 2)
η(a2,ma1)× q

√|f ′(ma1)|q + |f ′(a2)|q .
(51)

Corollary 26 Under the assumption of Theorem 6 with n = 0 and ϕ(t) = t
α
k1

k1Γk1 (α)
,

we get

∣∣Hf,Λ∗3 (a1, a2)
∣∣ ≤

(
2
α
k1 − 1

2
α
k1
+1

)
q

√
Γk1(α + k1)

Γk1(α + k1 + 1)
η(a2,ma1) (52)

× q
√|f ′(ma1)|q + |f ′(a2)|q .

Corollary 27 Under the assumption of Theorem 6 with n = 0 and ϕ(t) = t (ma1+
η(a2,ma1)− t)α−1 and f (x) is symmetric to x = ma1 + η(a2,ma1)

2 , we get

∣∣Hf,Λ∗4 (a1, a2)
∣∣ ≤ η(a2,ma1)

2Λ∗m,0(1)

[
KΛ∗m(1)

]1− 1
q q

√
KΛ∗m × q

√|f ′(ma1)|q + |f ′(a2)|q,
(53)

where

Λ∗m,0(1) := (ma1 + η(a2,ma1))
α

α
,

KΛ∗m(1) :=
2

α

[
(ma1 + η(a2,ma1))

α+1−2

(
ma1 + η(a2,ma1)

2

)α+1

+(ma1)
α+1

]
,

KΛ∗m :=
1

α

[
F
(m)
11 − F (m)12 + F (m)21 − F (m)22

]
,

and

F
(m)
11 :=

1

η2(a2,ma1)
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×
{
(ma1 + η(a2,ma1))

α + 1

[
(ma1 + η(a2,ma1))

α+1 −
(
ma1 + η(a2,ma1)

2

)α+1 ]

− 1

α + 2

[
(ma1 + η(a2,ma1))

α+2 −
(
ma1 + η(a2,ma1)

2

)α+2 ]}
,

F
(m)
12 :=

1

η2(a2,ma1)

{
1

α + 2

[(
ma1 + η(a2,ma1)

2

)α+2

− (ma1)
α+2

]

− ma1

α + 1

[(
ma1 + η(a2,ma1)

2

)α+1

− (ma1)
α+1

]}
,

F
(m)
21 :=

1

η2(a2,ma1)

{
1

α + 2

[
(ma1+η(a2,ma1))

α+2−
(
ma1+η(a2,ma1)

2

)α+2 ]

− ma1

α + 1

[
(ma1+η(a2,ma1))

α+1−
(
ma1+η(a2,ma1)

2

)α+1 ]}
,

F
(m)
22 :=

1

η2(a2,ma1)

{
(ma1+η(a2,ma1))

α+1

[(
ma1+η(a2,ma1)

2

)α+1

−(ma1)
α+1

]

− 1

α + 2

[
(ma1 + η(a2,ma1))

α+2 − (ma1)
α+2

]}
.

4 Applications to Special Means

Consider the following special means for different real numbers α, β and αβ �= 0:

1. The arithmetic mean:

A := A(α, β) = α + β
2

.

2. The harmonic mean:

H := H(α, β) = 2
1
α
+ 1
β

.
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3. The logarithmic mean:

L := L(α, β) = β − α
ln |β| − ln |α| .

4. The generalized log-mean:

Ln := Ln(α, β) =
[
βn+1 − αn+1

(n+ 1)(β − α)
] 1
n

; n ∈ Z \ {−1, 0}.

It is well known that Ln is monotonic nondecreasing over n ∈ Z with L−1 := L.
In particular, we have the following inequality H ≤ L ≤ A. Now, using the theory
results in Sect. 3, we give some applications to special means for different real
numbers.

Proposition 1 Let m ∈ (0, 1] be a fixed number, a1, a2 ∈ R \ {0}, where a1 < a2
and η(a2,ma1) > 0. Then, for r ≥ 2, where q > 1 and p−1 + q−1 = 1, the
following inequality holds:

∣∣∣A (
(ma1)

r , (ma1 + η(a2,ma1))
r
)− Lr (ma1,ma1 + η(a2,ma1))

∣∣∣

≤ r
2

η(a2,ma1)
p
√
p + 1

× q

√
A

(|ma1|q(r−1), |a2|q(r−1)
)
. (54)

Proof Applying Theorem 5 for f (x) = xr and ϕ(t) = t, one can obtain the result
immediately.

Proposition 2 Let m ∈ (0, 1] be a fixed number, a1, a2 ∈ R \ {0}, where a1 < a2
and η(a2,ma1) > 0. Then, for q > 1 and p−1 + q−1 = 1, the following inequality
holds:

∣∣∣∣ 1

H (ma1,ma1 + η(a2,ma1))
− 1

L (ma1,ma1 + η(a2,ma1))

∣∣∣∣ ≤ η(a2,ma1)

2 p
√
p + 1

(55)

× 1

q

√
H

(
(ma1)2q, a

2q
2

) .

Proof Applying Theorem 5 for f (x) = 1

x
and ϕ(t) = t, one can obtain the result

immediately.

Proposition 3 Let m ∈ (0, 1] be a fixed number, a1, a2 ∈ R \ {0}, where a1 < a2
and η(a2,ma1) > 0. Then, for r ≥ 2 and q ≥ 1, the following inequality holds:
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∣∣∣A (
(ma1)

r , (ma1 + η(a2,ma1))
r
)− Lr (ma1,ma1 + η(a2,ma1))

∣∣∣

≤ r

22+ 1
q

η(a2,ma1)× q

√
A

(|ma1|q(r−1), |a2|q(r−1)
)
. (56)

Proof Applying Theorem 6 for f (x) = xr and ϕ(t) = t, one can obtain the result
immediately.

Proposition 4 Let m ∈ (0, 1] be a fixed number, a1, a2 ∈ R \ {0}, where a1 < a2
and η(a2, a1) > 0. Then, for q ≥ 1, the following inequality holds:

∣∣∣∣ 1

H (ma1,ma1 + η(a2,ma1))
− 1

L (ma1,ma1 + η(a2,ma1))

∣∣∣∣ ≤ η(a2,ma1)

22+ 1
q

(57)

× 1

q

√
H

(
(ma1)2q, a

2q
2

) .

Proof Applying Theorem 6 for f (x) = 1

x
and ϕ(t) = t, one can obtain the result

immediately.

Remark 2 Applying our Theorems 5 and 6 for appropriate choices of function

ϕ(t) = tα

Γ (α)
, t

α
k1

k1Γk1 (α)
; ϕ(t) = t (ma1 + η(a2,ma1) − t)α−1, where f (x) is

symmetric to x = ma1 + η(a2,ma1)
2 and m ∈ (0, 1] is a fixed number, ϕ(t) =

t
α

exp
[ (
− 1−α

α

)
t
]

for α ∈ (0, 1), such that |f ′|q to be preinvex, we can deduce

some new general fractional integral inequalities using above special means. The
details are left to the interested reader.

Remark 3 Also, in Remark 2, if we choose η(a2,ma1) = a2 − ma1, where
m ∈ (0, 1] is a fixed number, we can deduce some new general fractional integral
inequalities for convex functions using above special means. The details are left to
the interested reader.

Next, we provide some new error estimates for the trapezoidal formula.
Let Q be the partition of the points a1 = x0 < x1 < . . . < xk = a2 of the

interval [a1, a2]. Let us consider the following quadrature formula:
∫ a2

a1

f (x)dx = T (f,Q)+ E(f,Q),

where

T (f,Q) =
k−1∑
i=0

f (xi)+ f (xi+1)

2
(xi+1 − xi)
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is the trapezoidal version, andE(f,Q) denotes their associated approximation error.

Proposition 5 Let f : [a1, a2] −→ R be a differentiable function on (a1, a2),

where a1 < a2. If |f ′|q is convex on [a1, a2] for q > 1 and 1
p
+ 1
q
= 1, then the

following inequality holds:

∣∣E(f,Q)∣∣ ≤ 1

2
q+1
q p
√
p + 1

k−1∑
i=0

(xi+1 − xi)2 × q
√|f ′(xi)|q + |f ′(xi+1)|q . (58)

Proof Applying Theorem 5 for n = 0, m = 1, η(a2,ma1) = a2−ma1 and ϕ(t) =
t on the subintervals [xi, xi+1] (i = 0, . . . , k − 1) of the partitionQ, we have

∣∣∣∣f (xi)+ f (xi+1)

2
− 1

xi+1 − xi
∫ xi+1

xi

f (x)dx

∣∣∣∣

≤ (xi+1 − xi)
2 p
√
p + 1

[ |f ′(xi)|q + |f ′(xi+1)|q
2

] 1
q

. (59)

Hence, from (59), we get

∣∣E(f,Q)∣∣ =
∣∣∣∣
∫ a2

a1

f (x)dx − T (f,Q)
∣∣∣∣

≤
∣∣∣∣
k−1∑
i=0

{∫ xi+1

xi

f (x)dx − f (xi)+ f (xi+1)

2
(xi+1 − xi)

}∣∣∣∣

≤
k−1∑
i=0

∣∣∣∣
{ ∫ xi+1

xi

f (x)dx − f (xi)+ f (xi+1)

2
(xi+1 − xi)

}∣∣∣∣

≤ 1

2
q+1
q p
√
p + 1

k−1∑
i=0

(xi+1 − xi)2 × q
√|f ′(xi)|q + |f ′(xi+1)|q .

The proof of this proposition is complete.

Proposition 6 Let f : [a1, a2] −→ R be a differentiable function on (a1, a2),

where a1 < a2. If |f ′|q is convex on [a1, a2] for q ≥ 1, then the following inequality
holds:

∣∣E(f,Q)∣∣ ≤ 1

22+ 1
q

k−1∑
i=0

(xi+1 − xi)2 × q
√|f ′(xi)|q + |f ′(xi+1)|q . (60)
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Proof The proof is analogous as to that of Proposition 5 but uses Theorem 6 for
η(a2,ma1) = a2 −ma1 and ϕ(t) = t, where n = 0 and m = 1.

Remark 4 Applying our Theorems 5 and 6, where n = 0 andm = 1, for appropriate

choices of function ϕ(t) = tα

Γ (α)
, t

α
k1

k1Γk1 (α)
; ϕ(t) = t (a2 − t)α−1, where f (x) is

symmetric to x = a1+a2
2 , and ϕ(t) = t

α
exp

[ (
− 1−α

α

)
t
]

for α ∈ (0, 1), such that

|f ′|q to be convex, we can deduce some new general fractional integral inequalities
using above ideas and techniques. The details are left to the interested reader.
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New Trapezium Type Inequalities for
Preinvex Functions Via Generalized
Fractional Integral Operators and Their
Applications

Artion Kashuri and Themistocles M. Rassias

Abstract The authors have proved an identity for trapezium type inequalities of
differentiable preinvex functions with respect to another function via generalized
integral operator. The obtained results provide unifying inequalities of trapezium
type. Various special cases have been identified. Also, some applications of
presented results to special means and new error estimates for the trapezium formula
have been analyzed. The ideas and techniques of this paper may stimulate further
research in the field of integral inequalities.

1 Introduction

The following inequality, named Hermite–Hadamard inequality, is one of the most
famous inequalities in the literature for convex functions.

Theorem 1 Let f : I ⊆ R −→ R be a convex function and p1, p2 ∈ I with
p1 < p2. Then, the following inequality holds:

f

(
p1 + p2

2

)
≤ 1

p2 − p1

∫ p2

p1

f (x)dx ≤ f (p1)+ f (p2)

2
. (1)

This inequality (1) is also known as trapezium inequality.

The trapezium inequality has remained an area of great interest due to its wide
applications in the field of mathematical analysis. Authors of recent decades have
studied (1) in the premises of newly invented definitions due to motivation of convex
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function. Interested readers see the references [1–6, 8, 10, 11, 13, 14, 18–24, 26–
29, 31–33].

The aim of this paper is to establish trapezium type generalized integral inequal-
ities for preinvex functions with respect to another function, some applications to
special means, and new error bounds for the trapezium formula. Interestingly, the
special cases of presented results are fractional integral inequalities. Therefore, it is
important to summarize the study of fractional integrals. At start, let us recall some
mathematical preliminaries and definitions that will be helpful for further study.

Definition 1 ([30]) A set S ⊆ R
n is said to be invex set with respect to the

mapping η : S × S −→ R
n, if x + tη(y, x) ∈ S for every x, y ∈ S and t ∈ [0, 1].

The invex set is also termed as an η-connected set.

Definition 2 ([25]) Let S ⊆ R
n be an invex set with respect to η : S × S −→ R

n.

A function f : S −→ [0,+∞) is said to be preinvex with respect to η, if for every
x, y ∈ S and t ∈ [0, 1],

f
(
x + tη(y, x)) ≤ (1− t)f (x)+ tf (y). (2)

The concept of preinvexity is more general than convexity since every convex
function is preinvex with respect to the mapping η(y, x) = y − x, but the converse
is not true.

Definition 3 ([22]) Let f ∈ L[p1, p2]. Then k-fractional integrals of order α, k >
0 with p1 ≥ 0 are defined by

I
α,k

p+1
f (x) = 1

kΓk(α)

∫ x

p1

(x − t) αk−1f (t)dt, x > p1

and

I
α,k

p−2
f (x) = 1

kΓk(α)

∫ p2

x

(t − x) αk−1f (t)dt, p2 > x, (3)

where Γk(·) is the k-gamma function.

For k = 1, k-fractional integrals give Riemann–Liouville integrals. For α = k = 1,
k-fractional integrals give classical integrals.

Definition 4 ([15, 16]) Let g : [p1, p2] → R be an increasing and positive
monotone function on [p1, p2], having a continuous derivative on (p1, p2). The
left-sided fractional integral of f with respect to g on [p1, p2] of order α > 0 is
defined by

I
α,g
p1+f (x) =

1

Γ (α)

∫ x

p1

g′(u)f (u)
[g(x)− g(u)]1−α du, x > p1, (4)
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provided that the integral exists. The right-sided fractional integral of f with respect
to g on [p1, p2] of order α > 0 is defined by

I
α,g
p2−f (x) =

1

Γ (α)

∫ p2

x

g′(u)f (u)
[g(u)− g(x)]1−α du, x < p2, (5)

provided that the integral exists.

Jleli and Samet in [10] proved the Hadamard type inequality for Riemann–Liouville
fractional integral of a convex function f with respect to another function g.
Also in [26], Sarikaya and Ertuğral defined a function ϕ : [0,∞) −→ [0,∞)
satisfying the following conditions:

∫ 1

0

ϕ(t)

t
dt <∞, (6)

1

A
≤ ϕ(s)
ϕ(r)

≤ A for
1

2
≤ s
r
≤ 2, (7)

ϕ(r)

r2 ≤ B ϕ(s)
s2 for s ≤ r, (8)

∣∣∣∣ϕ(r)r2 −
ϕ(s)

s2

∣∣∣∣ ≤ C|r − s|ϕ(r)r2 for
1

2
≤ s
r
≤ 2, (9)

where A,B,C > 0 are independent of r, s > 0. If ϕ(r)rα is increasing for some
α ≥ 0 and ϕ(r)

rβ
is decreasing for some β ≥ 0, then ϕ satisfies (6)–(9), see [27].

Therefore, the left-sided and right-sided generalized integral operators are defined
as follows:

p+1
Iϕf (x) =

∫ x

p1

ϕ(x − t)
x − t f (t)dt, x > p1, (10)

p−2
Iϕf (x) =

∫ p2

x

ϕ(t − x)
t − x f (t)dt, x < p2. (11)

The most important feature of generalized integrals is that they produce Riemann–
Liouville fractional integrals, k-Riemann–Liouville fractional integrals, Katugam-
pola fractional integrals, conformable fractional integrals, Hadamard fractional
integrals, etc., see [9, 12, 26].

Recently, Farid in [7] generalized the above integral by introducing an increasing
and positive monotone function g on [p1, p2], having continuous derivative on
(p1, p2). The generalized fractional integral operator defined by Farid may be given
as follows.
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Definition 5 The left- and right-sided generalized fractional integral of a function
f with respect to another function g may be given, respectively, as follows:

G
ϕ,g
p1+f (x) =

∫ x

p1

ϕ (g(x)− g(u))
g(x)− g(u) g′(u)f (u) du, x > p1, (12)

G
ϕ,g
p2−f (x) =

∫ p2

x

ϕ (g(u)− g(x))
g(u)− g(x) g′(u)f (u) du, x < p2. (13)

This operator generalizes the various fractional integrals of a function f with respect
to another function g.
The following special cases are focused in our study.

(i) If we take ϕ(u) = u, then the operators (12) and (13) reduce to Riemann–
Liouville integral of f with respect to function g.

I
g
p1+f (x) =

∫ x

p1

g′(u)f (u) du, x > p1, (14)

I
g
p2−f (x) =

∫ p2

x

g′(u)f (u) du, x < p2. (15)

If g(u) = u, then (14) and (15) will reduce to Riemann integral of f .
(ii) If we take ϕ(u) = uα

Γ (α)
, then the operators (12) and (13) reduce to Riemann–

Liouville fractional integral of f with respect to function g.

I
ϕ,g
p1+f (x) =

1

Γ (α)

∫ x

p1

[g(x)− g(u)]α−1 g′(u)f (u) du, x > p1, (16)

I
ϕ,g
p2−f (x) =

1

Γ (α)

∫ p2

x

[g(u)− g(x)]α−1 g′(u)f (u) du, x < p2. (17)

If g(u) = u, then (16) and (17) will reduce to left- and right-sided Riemann–
Liouville fractional integrals of f , respectively.

(iii) If we take ϕ(u) = u
α
k

kΓk(α)
, then the operators (12) and (13) reduce to k-

Riemann–Liouville fractional integral of f with respect to function g.

I
ϕ,g
p1+,kf (x) =

1

kΓk(α)

∫ x

p1

[g(x)− g(u)] αk−1 g′(u)f (u) du, x > p1,

(18)

I
ϕ,g
p2−,kf (x) =

1

kΓk(α)

∫ p2

x

[g(u)− g(x)]α−1 g′(u)f (u) du, x < p2.

(19)

If g(u) = u, then these operators in (18) and (19) reduce to k-fractional integral
operators given in [22].
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(iv) If we take ϕg(u) = u(g(p2) − u)α−1 for α ∈ (0, 1), then the operator given
in (12) and (13) reduces to conformable fractional integral operator of f with
respect to a function g.

K
α,g
p1 f (x) =

∫ x

p1

[g(u)]α−1 g′(u)f (u) du, x > p1. (20)

This operator (20) generalizes conformable fractional integral operator that
was given by Khalil et al. in [17].

(v) If we take ϕ(u) = u
α

exp(−Au), where A = 1−α
α

and α ∈ (0, 1), then the
operators given in (12) and (13) reduce to fractional integral operator of f
with respect to function g with exponential kernel.

J
α,g
p1+f (x) =

1

α

∫ x

p1

exp (−A(g(x)− g(u))) g′(u)f (u) du, x > p1, (21)

J
α,g
p2−f (x) =

1

α

∫ p2

x

exp (−A(g(x)− g(u))) g′(u)f (u) du, x < p2.

(22)
Operators in (21) and (22) generalize fractional integral operator with expo-
nential kernel that was introduced by Kirane and Torebek in [18].

Motivated by the above literature, the main objective of this paper is to discover
in Section 2 an interesting identity in order to study some new bounds regarding
trapezium type inequalities of differentiable preinvex functions with respect to
another function via generalized integral operator. By using the established identity
as an auxiliary result, some new estimates for trapezium type integral inequalities
via generalized integrals are obtained. It is pointed out that some new fractional
integral inequalities have been deduced from main results. In Section 3, some
applications to special means and new error estimates for the trapezium formula
are given. The ideas and techniques of this paper may stimulate further research in
the field of integral inequalities.

2 Main Results

Throughout this study, let P = [mp1,mp1 + η(p2,mp1)] be an invex subset with
respect to η : P ×P −→ R, where p1 < p2 and m ∈ (0, 1]. Also for all t ∈ [0, 1],
for brevity, we define

Λ
ϕ,g
m (t) :=

∫ t

0

ϕ (g (mp1 + uη(p2,mp1))− g(mp1))

g (mp1 + uη(p2,mp1))− g(mp1)
(23)

×g′ (mp1 + uη(p2,mp1)) du <∞
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and

Δ
ϕ,g
m (t) :=

∫ 1

t

ϕ (g (mp1 + η(p2,mp1))− g (mp1 + uη(p2,mp1)))

g (mp1 + η(p2,mp1))− g (mp1 + uη(p2,mp1))
(24)

×g′ (mp1 + uη(p2,mp1)) du <∞,

where g is an increasing and positive monotone function on P, having continuous
derivative on P ◦ = (mp1,mp1 + η(p2,mp1)).

For establishing some new results regarding general fractional integrals, we need to
prove the following lemma.

Lemma 1 Let f : P −→ R be a differentiable mapping on P ◦. If f ′ ∈ L(P ), then
the following identity for generalized fractional integrals hold:

f (mp1)+ f (mp1 + η(p2,mp1))

2

− 1

2η(p2,mp1)
×

[Gϕ,g
(mp1)

+f (mp1 + η(p2,mp1))

Δ
ϕ,g
m (0)

+
G
ϕ,g

(mp1+η(p2,mp1))
−f (mp1)

Λ
ϕ,g
m (1)

]

= η(p2,mp1)

2Λϕ,gm (1)
×

∫ 1

0
Λ
ϕ,g
m (t)f ′ (mp1 + tη(p2,mp1)) dt (25)

−η(p2,mp1)

2Δϕ,gm (0)
×

∫ 1

0
Δ
ϕ,g
m (t)f ′ (mp1 + tη(p2,mp1)) dt.

We denote

Tf,Λϕ,gm ,Δ
ϕ,g
m
(p1, p2) := η(p2,mp1)

2Λϕ,gm (1)
×

∫ 1

0
Λ
ϕ,g
m (t)f ′ (mp1 + tη(p2,mp1)) dt

(26)

−η(p2,mp1)

2Δϕ,gm (0)
×

∫ 1

0
Δ
ϕ,g
m (t)f ′ (mp1 + tη(p2,mp1)) dt.

Proof Integrating by parts Eq. (26) and changing the variable of integration, we
have

Tf,Λϕ,gm ,Δ
ϕ,g
m
(p1, p2) = η(p2,mp1)

2Λϕ,gm (1)

×
{
Λ
ϕ,g
m (t)f (mp1 + tη(p2,mp1))

η(p2,mp1)

∣∣∣1
0
− 1

η(p2,mp1)
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×
∫ 1

0

ϕ (g (mp1 + tη(p2,mp1))− g(mp1))

g (mp1 + tη(p2,mp1))− g(mp1)

×g′ (mp1 + tη(p2,mp1)) f (mp1 + tη(p2,mp1)) dt

}

−η(p2,mp1)

2Δϕ,gm (0)
×

{
Δ
ϕ,g
m (t)f (mp1 + tη(p2,mp1))

η(p2,mp1)

∣∣∣1
0

− 1

η(p2,mp1)
×

∫ 1

0

ϕ (g (mp1 + η(p2,mp1))− g (mp1 + tη(p2,mp1)))

g (mp1 + η(p2,mp1))− g (mp1 + tη(p2,mp1))

×g′ (mp1 + tη(p2,mp1)) f (mp1 + tη(p2,mp1)) dt

}

= η(p2,mp1)

2Λϕ,gm (1)

×
{
Λ
ϕ,g
m (1)f (mp1 + η(p2,mp1))

η(p2,mp1)
− 1

η2(p2,mp1)
×Gϕ,g

(mp1+η(p2,mp1))
−f (mp1)

−η(p2,mp1)

2Δϕ,gm (0)

×
{−Δϕ,gm (0)f (mp1)

η(p2,mp1)
+ 1

η2(p2,mp1)
×Gϕ,g

(mp1)
+f (mp1 + η(p2,mp1))

= f (mp1)+ f (mp1 + η(p2,mp1))

2

− 1

2η(p2,mp1)
×

[Gϕ,g
(mp1)

+f (mp1 + η(p2,mp1))

Δ
ϕ,g
m (0)

+
G
ϕ,g

(mp1+η(p2,mp1))
−f (mp1)

Λ
ϕ,g
m (1)

]
.

This completes the proof of the lemma.

Remark 1 Taking m = 1, ϕ(t) = g(t) = t and η(p2,mp1) = p2 − mp1 in
Lemma 1, we get

Tf (p1, p2) := f (p1)+ f (p2)

2
− 1

p2 − p1

∫ p2

p1

f (t)dt.
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Theorem 2 Let f : P −→ R be a differentiable mapping on P ◦ and η(p2,mp1) >

0. If |f ′|q is preinvex on P for q > 1 and p−1 + q−1 = 1, then the following
inequalities for generalized fractional integrals hold:

∣∣Tf,Λϕ,gm ,Δ
ϕ,g
m
(p1, p2)

∣∣ ≤ η(p2,mp1)

2
q

√ |f ′(mp1)|q + |f ′(p2)|q
2

(27)

×
[ p

√
B
ϕ,g
Λm
(p)

Λ
ϕ,g
m (1)

+
p

√
B
ϕ,g
Δm
(p)

Δ
ϕ,g
m (0)

]
,

where

B
ϕ,g
Λm
(p) :=

∫ 1

0

[
Λ
ϕ,g
m (t)

]p
dt, B

ϕ,g
Δm
(p) :=

∫ 1

0

[
Δ
ϕ,g
m (t)

]p
dt. (28)

Proof From Lemma 1, preinvexity of |f ′|q, Hölder inequality and properties of the
modulus, we have

∣∣Tf,Λϕ,gm ,Δ
ϕ,g
m
(p1, p2)

∣∣ ≤ η(p2,mp1)

2Λϕ,gm (1)
×

∫ 1

0
Λ
ϕ,g
m (t)

∣∣f ′ (mp1 + tη(p2,mp1))
∣∣dt

+η(p2,mp1)

2Δϕ,gm (0)
×

∫ 1

0
Δ
ϕ,g
m (t)

∣∣f ′ (mp1 + tη(p2,mp1))
∣∣dt

≤ η(p2,mp1)

2Λϕ,gm (1)
×

(∫ 1

0

[
Λ
ϕ,g
m (t)

]p
dt

) 1
p
(∫ 1

0

∣∣f ′ (mp1 + tη(p2,mp1))
∣∣qdt

) 1
q

+η(p2,mp1)

2Δϕ,gm (0)
×

(∫ 1

0

[
Δ
ϕ,g
m (t)

]p
dt

) 1
p
(∫ 1

0

∣∣f ′ (mp1 + tη(p2,mp1))
∣∣qdt

) 1
q

≤ η(p2,mp1)

2Λϕ,gm (1)
p

√
B
ϕ,g
Λm
(p)×

(∫ 1

0

[
(1− t)∣∣f ′(mp1)

∣∣q + t∣∣f ′(p2)
∣∣q]dt

) 1
q

+η(p2,mp1)

2Δϕ,gm (0)
p

√
B
ϕ,g
Δm
(p)×

(∫ 1

0

[
(1− t)∣∣f ′(mp1)

∣∣q + t∣∣f ′(p2)
∣∣q]dt

) 1
q

= η(p2,mp1)

2
q

√ |f ′(mp1)|q + |f ′(p2)|q
2

×
[ p

√
B
ϕ,g
Λm
(p)

Λ
ϕ,g
m (1)

+
p

√
B
ϕ,g
Δm
(p)

Δ
ϕ,g
m (0)

]
.

The proof of this theorem is complete.
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We point out some special cases of Theorem 2.

Corollary 1 Taking p = q = 2 in Theorem 2, we get

∣∣Tf,Λϕ,gm ,Δ
ϕ,g
m
(p1, p2)

∣∣ ≤ η(p2,mp1)

2

√
|f ′(mp1)|2 + |f ′(p2)|2

2
(29)

×
[√
B
ϕ,g
Λm
(2)

Λ
ϕ,g
m (1)

+
√
B
ϕ,g
Δm
(2)

Δ
ϕ,g
m (0)

]
.

Corollary 2 Taking |f ′| ≤ K in Theorem 2, we get

∣∣Tf,Λϕ,gm ,Δ
ϕ,g
m
(p1, p2)

∣∣ ≤ Kη(p2,mp1)

2
×

[ p

√
B
ϕ,g
Λm
(p)

Λ
ϕ,g
m (1)

+
p

√
B
ϕ,g
Δm
(p)

Δ
ϕ,g
m (0)

]
. (30)

Corollary 3 Taking ϕ(t) = t in Theorem 2, we get

∣∣Tf,Λgm,Δgm(p1, p2)
∣∣ ≤ q
√
η(p2,mp1)

2
q

√ |f ′(mp1)|q + |f ′(p2)|q
2

(31)

×
[ p

√
B
g

1 (p)+ p

√
B
g

2 (p)

g(mp1 + η(p2,mp1))− g(mp1)

]
,

where

B
g

1 (p) :=
∫ mp1+η(p2,mp1)

mp1

[
g(t)− g(mp1)

]p
dt, (32)

and

B
g

2 (p) :=
∫ mp1+η(p2,mp1)

mp1

[
g(mp1 + η(p2,mp1))− g(t)

]p
dt. (33)

Corollary 4 Taking ϕ(t) = tα

Γ (α)
in Theorem 2, we get

∣∣Tf,Λgm,Δgm(p1, p2)
∣∣ ≤ q
√
η(p2,mp1)

2
q

√ |f ′(mp1)|q + |f ′(p2)|q
2

(34)

×
[ p

√
B
g

3 (p, α)+ p

√
B
g

4 (p, α)[
g(mp1 + η(p2,mp1))− g(mp1)

]α
]
,
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where

B
g

3 (p, α) :=
∫ mp1+η(p2,mp1)

mp1

[
g(t)− g(mp1)

]pα
dt, (35)

and

B
g

4 (p, α) :=
∫ mp1+η(p2,mp1)

mp1

[
g(mp1 + η(p2,mp1))− g(t)

]pα
dt. (36)

Corollary 5 Taking ϕ(t) = t
α
k

kΓk(α)
in Theorem 2, we get

∣∣Tf,Λgm,Δgm(p1, p2)
∣∣ ≤ q
√
η(p2,mp1)

2
q

√ |f ′(mp1)|q + |f ′(p2)|q
2

(37)

×
[ p

√
B
g

5 (p, α, k)+ p

√
B
g

6 (p, α, k)[
g(mp1 + η(p2,mp1))− g(mp1)

] α
k

]
,

where

B
g

5 (p, α, k) :=
∫ mp1+η(p2,mp1)

mp1

[
g(t)− g(mp1)

] pα
k dt, (38)

and

B
g

6 (p, α, k) :=
∫ mp1+η(p2,mp1)

mp1

[
g(mp1 + η(p2,mp1))− g(t)

] pα
k dt. (39)

Corollary 6 Taking ϕg(t) = t (g(mp1+ η(p2,mp1))− t)α−1 in Theorem 2, we get

∣∣Tf,Λgm,Δgm(p1, p2)
∣∣ ≤ q

√
η(p2,mp1)

2
[
gα(mp1 + η(p2,mp1))− gα(mp1)

] (40)

× q

√ |f ′(mp1)|q + |f ′(p2)|q
2

×
[
p

√
B
g

7 (p)+ p

√
B
g

8 (p, α)

]
,

where

B
g

7 (p) :=
∫ mp1+η(p2,mp1)

mp1

[
g(t)− g(mp1)

]p
dt, (41)
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and

B
g

8 (p, α) :=
∫ mp1+η(p2,mp1)

mp1

[
gα(mp1 + η(p2,mp1))− gα(t)

]p
dt. (42)

Corollary 7 Taking ϕ(t) = t
α

exp(−At), where A = 1−α
α

, in Theorem 2, we get

∣∣Tf,Λgm,Δgm(p1, p2)
∣∣ ≤ η(p2,mp1)

2

{
1− exp

[
A (g(mp1)− g(mp1 + η(p2,mp1)))

]}

(43)

× q

√ |f ′(mp1)|q + |f ′(p2)|q
2

×
[
p

√
B
g

9 (p)+ p

√
B
g

10(p)

]
,

where

B
g

9 (p) :=
∫ mp1+η(p2,mp1)

mp1

{
1− exp

[
A (g(mp1)− g(t))

]}p
dt, (44)

and

B
g

10(p) :=
∫ mp1+η(p2,mp1)

mp1

{
1− exp

[
A (g(t)− g(mp1 + η(p2,mp1)))

]}p
dt.

(45)

Theorem 3 Let f : P −→ R be a differentiable mapping on P ◦ and η(p2,mp1) >

0. If |f ′|q is preinvex on P for q ≥ 1, then the following inequalities for generalized
fractional integrals hold:

∣∣Tf,Λϕ,gm ,Δ
ϕ,g
m
(p1, p2)

∣∣ ≤ η(p2,mp1)

2Λϕ,gm (1)

[
B
ϕ,g
Λm
(1)

]1− 1
q

(46)

× q

√
C
ϕ,g
Λm
|f ′(mp1)|q +Dϕ,gΛm |f ′(p2)|q

+η(p2,mp1)

2Δϕ,gm (0)

[
B
ϕ,g
Δm
(1)

]1− 1
q q

√
E
ϕ,g
Δm
|f ′(mp1)|q + Fϕ,gΔm |f ′(p2)|q,

where

C
ϕ,g
Λm
:=

∫ 1

0
(1− t)Λϕ,gm (t)dt, D

ϕ,g
Λm
:=

∫ 1

0
tΛ
ϕ,g
m (t)dt, (47)

E
ϕ,g
Δm
:=

∫ 1

0
(1− t)Δϕ,gm (t)dt, F

ϕ,g
Δm
:=

∫ 1

0
tΔ
ϕ,g
m (t)dt (48)

and Bϕ,gΛm (1), B
ϕ,g
Δm
(1) are defined as in Theorem 2.
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Proof From Lemma 1, preinvexity of |f ′|q, power mean inequality, and properties
of the modulus, we have

∣∣Tf,Λϕ,gm ,Δ
ϕ,g
m
(p1, p2)

∣∣ ≤ η(p2,mp1)

2Λϕ,gm (1)
×

∫ 1

0
Λ
ϕ,g
m (t)

∣∣f ′ (mp1 + tη(p2,mp1))
∣∣dt

+η(p2,mp1)

2Δϕ,gm (0)
×

∫ 1

0
Δ
ϕ,g
m (t)

∣∣f ′ (mp1 + tη(p2,mp1))
∣∣dt

≤ η(p2,mp1)

2Λϕ,gm (1)
×
(∫ 1

0
Λ
ϕ,g
m (t)dt

)1− 1
q
(∫ 1

0
Λ
ϕ,g
m (t)

∣∣f ′ (mp1+tη(p2,mp1))
∣∣qdt

) 1
q

+η(p2,mp1)

2Δϕ,gm (0)
×
(∫ 1

0
Δ
ϕ,g
m (t)dt

)1− 1
q
(∫ 1

0
Δ
ϕ,g
m (t)

∣∣f ′ (mp1+tη(p2,mp1))
∣∣qdt

) 1
q

≤ η(p2,mp1)

2Λϕ,gm (1)

[
B
ϕ,g
Λm
(1)

]1− 1
q ×

(∫ 1

0
Λ
ϕ,g
m (t)

[
(1−t)∣∣f ′(mp1)

∣∣q+t∣∣f ′(p2)
∣∣q]dt

) 1
q

+η(p2,mp1)

2Δϕ,gm (0)

[
B
ϕ,g
Δm
(1)

]1− 1
q×

(∫ 1

0
Δ
ϕ,g
m (t)

[
(1− t)∣∣f ′(mp1)

∣∣q + t∣∣f ′(p2)
∣∣q]dt

) 1
q

= η(p2,mp1)

2Λϕ,gm (1)

[
B
ϕ,g
Λm
(1)

]1− 1
q q

√
C
ϕ,g
Λm
|f ′(mp1)|q +Dϕ,gΛm |f ′(p2)|q

+η(p2,mp1)

2Δϕ,gm (0)

[
B
ϕ,g
Δm
(1)

]1− 1
q q

√
E
ϕ,g
Δm
|f ′(mp1)|q + Fϕ,gΔm |f ′(p2)|q .

The proof of this theorem is complete.

We point out some special cases of Theorem 3.

Corollary 8 Taking q = 1 in Theorem 3, we get

∣∣Tf,Λϕ,gm ,Δ
ϕ,g
m
(p1, p2)

∣∣ ≤ η(p2,mp1)

2Λϕ,gm (1)

[
C
ϕ,g
Λm
|f ′(mp1)| +Dϕ,gΛm |f ′(p2)|

]
(49)

+η(p2,mp1)

2Δϕ,gm (0)

[
E
ϕ,g
Δm
|f ′(mp1)| + Fϕ,gΔm |f ′(p2)|

]
.

Corollary 9 Taking |f ′| ≤ K in Theorem 3, we get

∣∣Tf,Λϕ,gm ,Δ
ϕ,g
m
(p1, p2)

∣∣ ≤ Kη(p2,mp1)

2
×

[
B
ϕ,g
Λm
(1)

Λ
ϕ,g
m (1)

+ B
ϕ,g
Δm
(1)

Δ
ϕ,g
m (0)

]
. (50)
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Corollary 10 Taking ϕ(t) = t in Theorem 3, we get

∣∣Tf,Λgm,Δgm(p1, p2)
∣∣ ≤ 1

2 q
√
η(p2,mp1)

[
g(mp1 + η(p2,mp1))− g(mp1)

] (51)

×
{[
B
g

1 (1)
]1− 1

q q

√[
B
g

1 (1)η(p2,mp1)− Cg1
]
|f ′(mp1)|q + Cg1 |f ′(p2)|q

+
[
B
g

2 (1)
]1− 1

q q

√[
B
g

2 (1)η(p2,mp1)− Eg1
]
|f ′(mp1)|q + Eg1 |f ′(p2)|q

}
,

where

C
g

1 :=
∫ mp1+η(p2,mp1)

mp1

(t −mp1)(g(t)− g(mp1))dt, (52)

E
g

1 :=
∫ mp1+η(p2,mp1)

mp1

(t −mp1)(g(mp1 + η(p2,mp1))− g(t))dt, (53)

and Bg1 (1), B
g

2 (1) are defined as in Corollary 3 for value p = 1.

Corollary 11 Taking ϕ(t) = tα

Γ (α)
in Theorem 3, we get

∣∣Tf,Λgm,Δgm(p1, p2)
∣∣ ≤ 1

2 q
√
η(p2,mp1)

[
g(mp1 + η(p2,mp1))− g(mp1)

]α
(54)

×
{[
B
g

3 (1, α)
]1− 1

q q

√[
B
g

3 (1, α)η(p2,mp1)− Cg1 (α)
]
|f ′(mp1)|q + Cg1 (α)|f ′(p2)|q

+
[
B
g

4 (1, α)
]1− 1

q q

√[
B
g

4 (1, α)η(p2,mp1)−Eg1 (α)
]
|f ′(mp1)|q + Eg1 (α)|f ′(p2)|q

}
,

where

C
g

1 (α) :=
∫ mp1+η(p2,mp1)

mp1

(t −mp1)(g(t)− g(mp1))
αdt, (55)

E
g

1 (α) :=
∫ mp1+η(p2,mp1)

mp1

(t −mp1)(g(mp1 + η(p2,mp1))− g(t))αdt, (56)

and Bg3 (1, α), B
g

4 (1, α) are defined as in Corollary 4 for value p = 1.
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Corollary 12 Taking ϕ(t) = t
α
k

kΓk(α)
in Theorem 3, we get

∣∣Tf,Λgm,Δgm(p1, p2)
∣∣ ≤ 1

2 q
√
η(p2,mp1)

[
g(mp1 + η(p2,mp1))− g(mp1)

] α
k

(57)

×
{[
B
g

5 (1, α, k)
]1− 1

q

× q

√[
B
g

5 (1, α, k)η(p2,mp1)− Cg1 (α, k)
]
|f ′(mp1)|q + Cg1 (α, k)|f ′(p2)|q

+
[
B
g

6 (1, α, k)
]1− 1

q

× q

√[
B
g

6 (1, α, k)η(p2,mp1)− Eg1 (α, k)
]
|f ′(mp1)|q + Eg1 (α, k)|f ′(p2)|q

}
,

where

C
g

1 (α, k) :=
∫ mp1+η(p2,mp1)

mp1

(t −mp1)(g(t)− g(mp1))
α
k dt, (58)

E
g

1 (α, k) :=
∫ mp1+η(p2,mp1)

mp1

(t −mp1)(g(mp1+η(p2,mp1))−g(t)) αk dt, (59)

and Bg5 (1, α, k), B
g

6 (1, α, k) are defined as in Corollary 5 for value p = 1.

Corollary 13 Taking ϕg(t) = t (g(mp1 + η(p2,mp1)) − t)α−1 in Theorem 3, we
get

∣∣Tf,Λgm,Δgm(p1, p2)
∣∣ ≤ q

√
αη2(p2,mp1)

2
[
gα(mp1 + η(p2,mp1))− gα(mp1)

] (60)

×
{[
B
g

7 (1)
]1− 1

q q

√
C
"g
Λm
(α)|f ′(mp1)|q +D"gΛm(α)|f ′(p2)|q

+
[
B
g

8 (1, α)
]1− 1

q q

√
E
"g
Δm
(α)|f ′(mp1)|q + F"gΔm(α)|f ′(p2)|q

}
,

where
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C
"g
Λm
(α) := B

g

7 (1)

αη2(p2,mp1)
− 1

αη(p2,mp1)
(61)

×
[
gα(mp1 + η(p2,mp1))

2
+ E

g

2 (α)

η2(p2,mp1)

]
,

D
"g
Λm
(α) := 1

αη(p2,mp1)

[
gα(mp1 + η(p2,mp1))

2
+ E

g

2 (α)

η2(p2,mp1)

]
, (62)

E
"g
Δm
(α) := B

g

8 (1, α)

αη2(p2,mp1)
− 1

αη(p2,mp1)
(63)

×
[
gα(mp1 + η(p2,mp1))

2
− E

g

3 (α)

η2(p2,mp1)

]
,

F
"g
Δm
(α) := 1

αη(p2,mp1)

[
gα(mp1 + η(p2,mp1))

2
− E

g

3 (α)

η2(p2,mp1)

]
, (64)

E
g

2 (α) :=
∫ mp1+η(p2,mp1)

mp1

(t −mp1) (65)

×
[
g(mp1)+ g(mp1 + η(p2,mp1))− g(t)

]α
dt,

E
g

3 (α) :=
∫ mp1+η(p2,mp1)

mp1

(t −mp1)g
α(t)dt, (66)

where Bg7 (1) and B
g

8 (1, α) are defined as in Corollary 6 for value p = 1.

Corollary 14 Taking ϕ(t) = t
α

exp(−At), where A = 1−α
α

, in Theorem 3, we get

∣∣Tf,Λgm,Δgm(p1, p2)
∣∣ ≤ (1− α)η q+1

q (p2,mp1)

2

{
1− exp

[
A (g(mp1)− g(mp1 + η(p2,mp1)))

]}

(67)

×
{[
B
g

9 (1)
]1− 1

q q

√√√√
(
B
g

9 (1)−
D
-g
Λm

(1− α)η(p2,mp1)

)
|f ′(mp1)|q +D-gΛm |f ′(p2)|q

+
[
B
g

10(1)
]1− 1

q q

√√√√
(
B
g

10(1)−
F
-g
Δm

(1− α)η(p2,mp1)

)
|f ′(mp1)|q + F -gΔm |f ′(p2)|q

}
,
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where

D
-g
Λm
:= 1

η2(p2,mp1)
(68)

×
∫ mp1+η(p2,mp1)

mp1

(t −mp1)
[
1− exp

[
A(g(mp1)− g(t))

]]
dt,

F
-g
Δm
:= 1

η2(p2,mp1)
, (69)

×
∫ mp1+η(p2,mp1)

mp1

(t −mp1)
[
1− exp

[
A(g(t)− g(mp1 + η(p2,mp1)))

]]
dt,

and Bg9 (1), B
g

10(1) are defined as in Corollary 7 for value p = 1.

Remark 2 Applying our Theorems 2 and 3 for appropriate choices of function

g(t) = t; g(t) = ln t, ∀ t > 0; g(t) = et , etc., where ϕ(t) = t, tα

Γ (α)
, t

α
k

kΓk(α)
;

ϕg(t) = t (g(p2)− t)α−1 for α ∈ (0, 1); ϕ(t) = t
α

exp
[ (
− 1−α

α

)
t
]

for α ∈ (0, 1),
we can deduce some new general fractional integral inequalities. The details are left
to the interested reader.

3 Applications

Consider the following special means for different real numbers p1, p2 and p1p2 �=
0, as follows:

1. the arithmetic mean:

A := A(p1, p2) = p1 + p2

2
,

2. the harmonic mean:

H := H(p1, p2) = 2
1
p1
+ 1
p2

,

3. the logarithmic mean:

L := L(p1, p2) = p2 − p1

ln |p2| − ln |p1| ,
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4. the generalized log mean:

Lr := Lr(p1, p2) =
[
pr+1

2 − pr+1
1

(r + 1)(p2 − p1)

] 1
r

; r ∈ Z \ {−1, 0}.

It is well known that Lr is monotonic nondecreasing over r ∈ Z with L−1 := L.
In particular, we have the following inequality H ≤ L ≤ A. Now, using the theory
results in Section 2, we give some applications to special means for different real
numbers.

Proposition 1 Let p1, p2 ∈ R \ {0}, where p1 < p2 and η(p2,mp1) > 0. Then for
r ∈ N and r ≥ 2, where q > 1 and p−1 + q−1 = 1, the following inequality holds:

∣∣∣A((mp1)
r , (mp1 + η(p2,mp1))

r )− Lrr(mp1,mp1 + η(p2,mp1))

∣∣∣

≤ rη(p2,mp1)
p
√
p + 1

× q

√
A

(|mp1|q(r−1), |p2|q(r−1)
)
. (70)

Proof Taking f (t) = t r and g(t) = ϕ(t) = t, in Theorem 2, one can obtain the
result immediately.

Proposition 2 Let p1, p2 ∈ R \ {0}, where p1 < p2 and η(p2,mp1) > 0. Then for
q > 1 and p−1 + q−1 = 1, the following inequality holds:

∣∣∣∣ 1

H(mp1,mp1 + η(p2,mp1))
− 1

L(mp1,mp1 + η(p2,mp1))

∣∣∣∣ ≤ η(p2,mp1)
p
√
p + 1

(71)

× 1

q

√
H

(|mp1|2q, |p2|2q
) .

Proof Taking f (t) = 1

t
and g(t) = ϕ(t) = t, in Theorem 2, one can obtain the

result immediately.

Proposition 3 Let p1, p2 ∈ R \ {0}, where p1 < p2 and η(p2,mp1) > 0. Then for
r ∈ N and r ≥ 2, where q ≥ 1, the following inequality holds:

∣∣∣A((mp1)
r , (mp1 + η(p2,mp1))

r )− Lrr(mp1,mp1 + η(p2,mp1))

∣∣∣

≤ r2 1−2q
q η

q−3
q (p2,mp1) (72)

×
{
q

√
η3(p2,mp1)

3
q

√
A

(|mp1|q(r−1), 2|p2|q(r−1)
)+ q

√
H(m, r, q, p1, p2)

}
,
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where

H(m, r, q, p1, p2) :=
(
η3(p2,mp1)

2
− P(m, p1, p2)

)
|mp1|q(r−1) (73)

+P(m, p1, p2)|p2|q(r−1),

and

P(m, p1, p2) := (mp1 + η(p2,mp1))η
2(p2,mp1)

2
(74)

− (mp1 + η(p2,mp1))
3 − (mp1)

3

3
+ (mp1)

(mp1 + η(p2,mp1))
2 − (mp1)

2

2
.

Proof Taking f (t) = t r and g(t) = ϕ(t) = t, in Theorem 3, one can obtain the
result immediately.

Proposition 4 Let p1, p2 ∈ R \ {0}, where p1 < p2 and η(p2,mp1) > 0. Then for
q ≥ 1, the following inequality holds:

∣∣∣∣ 1

H(mp1,mp1 + η(p2,mp1))
− 1

L(mp1,mp1 + η(p2,mp1))

∣∣∣∣

≤ 2
1−2q
q η

q−3
q (p2,mp1) (75)

×
{
q

√
η3(p2,mp1)

3

1

q

√
H

(
2|mp1|2q, |p2|2q

) + q
√
G(m, q, p1, p2)

}
,

where

G(m, q, p1, p2) :=
η3(p2,mp1)

2 − P(m, p1, p2)

|mp1|2q + P(m, p1, p2)

|p2|2q , (76)

and P(m, p1, p2) is defined as in Proposition 3.

Proof Taking f (t) = 1

t
and g(t) = ϕ(t) = t, in Theorem 3, one can obtain the

result immediately.

Remark 3 Applying our Theorems 2 and 3 for appropriate choices of function

g(t) = t; g(t) = ln t, ∀ t > 0; , g(t) = et , etc., where ϕ(t) = t, tα

Γ (α)
, t

α
k

kΓk(α)
;

ϕg(t) = t (g(p2)− t)α−1 for α ∈ (0, 1); ϕ(t) = t
α

exp
[ (
− 1−α

α

)
t
]

for α ∈ (0, 1),
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such that |f ′|q to be convex, we can deduce some new general fractional integral
inequalities using special means. The details are left to the interested reader.

Next, we provide some new error estimates for the trapezium formula. LetQ be the
partition of the points p1 = x0 < x1 < . . . < xk = p2 of the interval [p1, p2]. Let
us consider the following quadrature formula:

∫ p2

p1

f (x)dx = T (f,Q)+ E(f,Q),

where

T (f,Q) =
k−1∑
i=0

f (xi)+ f (xi+1)

2
(xi+1 − xi)

is the trapezium version and E(f,Q) denotes their associated approximation error.

Proposition 5 Let f : [p1, p2] −→ R be a differentiable function on (p1, p2),

where p1 < p2. If |f ′|q is convex on [p1, p2] for q > 1 and p−1 + q−1 = 1, then
the following inequality holds:

∣∣E(f,Q)∣∣ ≤ 1
q
√

2 p
√
p + 1

×
k−1∑
i=0

(xi+1 − xi)2 q
√|f ′(xi)|q + |f ′(xi+1)|q . (77)

Proof Applying Theorem 2 form = 1, η(p2,mp1) = p2−mp1 and g(t) = ϕ(t) =
t on the subintervals [xi, xi+1] (i = 0, . . . , k − 1) of the partitionQ, we have

∣∣∣∣f (xi)+ f (xi+1)

2
− 1

xi+1 − xi
∫ xi+1

xi

f (x)dx

∣∣∣∣

≤ (xi+1 − xi)
q
√

2 p
√
p + 1

q
√|f ′(xi)|q + |f ′(xi+1)|q . (78)

Hence from (78), we get

∣∣E(f,Q)∣∣ =
∣∣∣∣
∫ p2

p1

f (x)dx − T (f,Q)
∣∣∣∣

≤
∣∣∣∣
k−1∑
i=0

{∫ xi+1

xi

f (x)dx − f (xi)+ f (xi+1)

2
(xi+1 − xi)

}∣∣∣∣

≤
k−1∑
i=0

∣∣∣∣
{ ∫ xi+1

xi

f (x)dx − f (xi)+ f (xi+1)

2
(xi+1 − xi)

}∣∣∣∣

≤ 1
q
√

2 p
√
p + 1

×
k−1∑
i=0

(xi+1 − xi)2 q
√|f ′(xi)|q + |f ′(xi+1)|q .
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The proof of this proposition is complete.

Proposition 6 Let f : [p1, p2] −→ R be a differentiable function on (p1, p2),

where p1 < p2. If |f ′|q is convex on [p1, p2] for q ≥ 1, then the following
inequality holds:

∣∣E(f,Q)∣∣ ≤ 2
1−2q
q ×

k−1∑
i=0

(xi+1 − xi)
2q−3
q (79)

×
{
q

√
(xi+1 − xi)3 (|f ′(xi)|q + 2|f ′(xi+1)|q)

6
+ q

√
Sf (q, xi, xi+1)

}
,

where

Sf (q, xi, xi+1) :=
(
(xi+1 − xi)3

2
− P(xi, xi+1)

)
|f ′(xi)|q (80)

+P(xi, xi+1)|f ′(xi+1)|q

and

P(xi, xi+1) := xi+1(xi+1 − xi)2
2

− x
3
i+1 − x3

i

3
+ xi(x

2
i+1 − x2

i )

2
. (81)

Proof The proof is analogous as to that of Proposition 5 but uses Theorem 3.

Remark 4 Applying our Theorems 2 and 3 for appropriate choices of function

g(t) = t; g(t) = ln t, ∀ t > 0; , g(t) = et , etc., where ϕ(t) = t, tα

Γ (α)
, t

α
k

kΓk(α)
;

ϕg(t) = t (g(p2)− t)α−1 for α ∈ (0, 1); ϕ(t) = t
α

exp
[ (
− 1−α

α

)
t
]

for α ∈ (0, 1),
such that |f ′|q to be convex, we can deduce some new bounds for the trapezium
formula using above ideas and techniques. The details are left to the interested
reader.
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New Trapezoid Type Inequalities
for Generalized Exponentially Strongly
Convex Functions

Kuang Jichang

Abstract By using a new general identity and introducing some very general new
notions of generalized exponentially strongly convex functions, new trapezoid type
inequalities are established. We apply these inequalities to provide approximations
for the integral of a real valued function. Approximations for some new weighted
means of two positive numbers are also obtained.

Mathematics Subject Classification: 26D15, 26A51

1 Introduction

In 2018, Awan et al. introduced the new notion of exponentially convex function:

Definition 1 ([1]) A function f : [a, b] → R is called exponentially convex if

f (tx1 + (1− t)x2) ≤ t f (x1)

erx1
+ (1− t)f (x2)

erx2
, (1)

for ∀x1, x2 ∈ [a, b],∀t ∈ [0, 1] and r ∈ R.

In particular, if r = 0, then (1) reduces to convex function in the classical sense.
Let f : [a, b] → R be a convex function, then the inequality

f (
a + b

2
) ≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)
2

(2)

is known in the literature as the Hermite–Hadamard inequality (see, for instance,
[2, 3]). In fact, the inequality (2) holds if and only if f is a convex function. The
Hermite–Hadamard inequality provides approximations for integral mean of a real
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valued function f . The concept of convex function was extended in many directions
and frameworks due to its numerous applications in optimization, variational
methods, geometry, and artificial intelligence. Hence, the inequality (2) has also
been extended and generalized for different classes of generalized convex functions
(see [14] and the references therein).

In 2019, Mehreen and Anwar [8] extended the above Definition 1 by introducing
the new notions of exponentially p-convex function and exponentially s-convex
function in the second sense, respectively. In fact, they can be generalized uniformly
as follows:

Definition 2 Let [a, b] ⊂ (0,∞). A function f : [a, b] → R is called
exponentially (α, s)-convex if

f ((txα1 + (1− t)xα2 )1/α) ≤ t s
f (x1)

erx1
+ (1− t)s f (x2)

erx2
, (3)

for ∀x1, x2 ∈ [a, b], ∀t ∈ [0, 1], s ∈ (0, 1], α �= 0 and r ∈ R.

In particular, if s = 1, then (3) reduces to exponentially α-convex function in [8];
if α = 1, then (3) reduces to exponentially s-convex function in [8]; if r = 0, α = 1,
then (3) reduces to s- convex function in [4].

Definition 3 Let [a, b] ⊂ R − {0}. A function f : [a, b] → R is called
exponentially harmonically s-convex, if

f (
x1x2

tx2 + (1− t)x1
) ≤ t s f (x1)

erx1
+ (1− t)s f (x2)

erx2
, (4)

for ∀x1, x2 ∈ [a, b],∀t ∈ [0, 1], s ∈ (0, 1] and r ∈ R.

If s = 1, r = 0, then (4) reduces to harmonically convex function in [5].

F(α, β, γ, z) = 1

B(γ − α, α)
∫ 1

0
tα−1(1− t)γ−α−1(1− zt)−βdt (5)

is the hypergeometric function, where |z| < 1, γ > α > 0, and

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt, , α, β > 0

is the Beta function.
An interesting question in (2) was estimating the difference between the left and

middle terms and between the right and middle terms. Such as

Theorem 1 ([10]) Let f ∈ BV [a, b], then

|f (a)+ f (b)
2

− 1

b − a
∫ b

a

f (u)du| ≤ 1

2
V ba (f ). (6)
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The constant 1
2 is the best possible.

Theorem 2 ([6]) Let |f ′ | is convex on [a, b], then

|f (a)+ f (b)
2

− 1

b − a
∫ b

a

f (u)du| ≤ b − a
8
(|f ′(a)| + |f ′(b)|). (7)

Theorem 3 ([16]) Let f ∈ L[a, b] and |f ′ |q is convex on [a, b], then

|f (a)+ f (b)
2

− 1

b − a
∫ b

a

f (u)du| ≤ b − a
4× 21/q

(|f ′(a)|q + |f ′(b)|q)1/q . (8)

Theorem 4 ([26]) Let |f ′ | is h-convex on [a, b], that is,

|f ′(ta + (1− t)b)| ≤ h(t)|f ′(a)| + 1− λ
λ
h(1− t)|f ′(b)|,

then

|f (a)+ f (b)
2

− 1

b − a
∫ b

a

f (u)du| ≤ b − a
2
(

∫ 1

0
h(t)dt)(|f ′(a)| + |f ′(b)|).

(9)

Theorem 5 ([23]) Let f
′ ∈ Lp[a, b], 1 < p <∞, 1

p
+ 1
q
= 1, then

|f (a)+ f (b)
2

− 1

b − a
∫ b

a

f (u)du| ≤ (b − a)1/q
2× (q + 1)1/q

‖f ′ ‖p. (10)

Theorem 6 ([7]) Let |f ′′ |q is s-convex on [a, b], if q = 1, then

|f (a)+ f (b)
2

− 1

b − a
∫ b

a

f (u)du| ≤ (b − a)2
2(s + 2)(s + 3)

(|f ′′(a)| + |f ′′(b)|);
(11)

if 1 < q <∞, then

∣∣∣∣f (a)+ f (b)2
− 1

b − a
∫ b

a

f (u)du

∣∣∣∣
≤ (b − a)2

2× 41−(1/q)(s+2)1/q(s + 3)1/q
(|f ′′(a)|q + |f ′′(b)|q)1/q . (12)

Theorem 7 ([8] Theorem 3. 6, 3. 7, 3. 3, 3. 5) Let |f ′ |q is exponentially s-convex
on [a, b]. If 1 < p <∞, 1

p
+ 1
q
= 1, then
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∣∣∣∣f (a)+ f (b)2
− 1

b − a
∫ b

a

f (u)du

∣∣∣∣
≤ (b − a)

2(1/p)+1{(s + 1)(s + 2)}1/q (s+
1

2s
)1/q{( |f

′
(a)|
era

)q+( |f
′
(b)|
erb

)q}1/q,
(13)

and ∣∣∣∣f (a)+ f (b)2
− 1

b − a
∫ b

a

f (u)du

∣∣∣∣
≤ (b − a)

2(p + 1)1/p(s + 1)1/q
{( |f

′
(a)|
era

)q + ( |f
′
(b)|
erb

)q}1/q . (14)

If p = 1, then
∣∣∣∣f (a)+ f (b)2

− 1

b − a
∫ b

a

f (u)du

∣∣∣∣
≤ (b − a)

2(s + 1)(s + 2)
{(3s + 4)

|f ′(a)|
era

+ (s + 4)
|f ′(b)|
erb

} (15)

and ∣∣∣∣f (a)+ f (b)2
− 1

b − a
∫ b

a

f (u)du

∣∣∣∣
≤ (b − a)

2(s + 1)(s + 2)
(s + 1

2s
){ |f

′
(a)|
era

+ |f
′
(b)|
erb

}. (16)

Remark 1
( |f ′ (a)|
era

)q + ( |f ′ (b)|
erb

)q in (13) and (14) should be replaced by |f
′
(a)|q
era

+
|f ′ (b)|q
erb

, see Theorems 29 and 30 below.

The above (6)–(16) are called trapezoid type inequalities, and they have been
developed for other types of functions and have wide applications in numerical
analysis and in the theory of some special estimating error bounds for some means
and quadrature rules, etc. (see [7–9, 12, 15, 23, 25, 30, 31] and the references
therein).

The paper is categorized as follows:
In Sect. 2, we introduce some very general new notions of generalized expo-

nentially strongly convex functions (or exponentially (α, β, λ, λ1, λ2, s0, t, h1, h)-
strongly convex functions ). They unified and generalized many known and new
classes of convex functions. In Sect. 3, by using a new general identity and the
above convex functions, new trapezoid type inequalities are established. These
trapezoid type inequalities provide the estimations of integral mean of a real valued
function f and improve and generalize the corresponding results in [8]. In Sect. 5,
approximations for some new weighted means of two positive numbers are also
obtained.
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2 Generalized Exponentially Strongly Convex Functions

Throughout this paper, let h : [a, b] → (0,∞) h1 : (0, 1) → (0,∞) be given
functions.

Definition 4 Let D be a α-convex set, [a, b] ⊂ D. A function f : [a, b] → R is
called exponentially (α, h1)-convex if

f ((txα1 + (1− t)xα2 )1/α) ≤ h1(t)
f (x1)

erx1
+ h1(1− t)f (x2)

erx2
, (17)

for ∀x1, x2 ∈ [a, b],∀t ∈ [0, 1], s ∈ (0, 1] and r ∈ R.

In particular, if D = (0,∞), h1(t) = t s , then Definition 4 reduces to Definition 2.

Remark 2 ([11]) An intervalD is said to be a α-convex set, if (txα1+(1−t)xα2 )1/α ∈
D for all x1, x2 ∈ D, t ∈ [0, 1], where α = 2k + 1 or α = n

m
, n = 2r + 1,m =

2k + 1, k, r ∈ N . If D = (0,∞), then α ∈ R− {0}.
Definition 5 LetD be a α-convex set, [a, b] ⊂ D. A function f : [a, b] → (0,∞)
is called (α, β, λ, λ1, λ2, s0, t, h1)- convex if

f ((λxα1 +λ1(1−λ)xα2 )1/α) ≤ {h1(t
s0)(f β(x1)+λ2h1(1−t s0)f β(x2)}1/β, (18)

∀x1, x2 ∈ [a, b], ∀λ, λ1, λ2, s0, t ∈ [0, 1], and β > 0.

If λ1 = λ2 = λ0, s0 = 1, then (18) reduces to (α, β, λ, λ0, t, h1)- convex
function in [18], that is,

f ((λxα1 + λ0(1− λ)xα2 )1/α) ≤ {h1(t)f
β(x1)+ λ0h1(1− t)f β(x2)}1/β, (19)

∀x1, x2 ∈ [a, b], ∀λ, λ0, t ∈ [0, 1], and β > 0.
In the above inequalities (18) and (19), the most innovative part consists of the

fact that possibly different parameters α, β, λ, λ1, λ2, λ0, t, s0, and h1, are allowed,
for example:

If β = λ0 = 1, then (19) reduces to (α, h1)-convex function in [18];
If α = β = 1, λ = t , then (19) reduces to (h1, λ0)-convex function in [27];
If α = β = 1, λ = t, λ0 = 1, then (19) reduces to h1-convex function in [27];
If α = β = 1, λ = t, h1(t) = t , then (19) reduces to λ0-convex function in [27];
If α = β = 1, λ0 = 1, h1(t) = t , then (19) reduces to (λ, t)-convex function
in [2];

In (18), after replacing λ with t , let α = β = 1, λ1 = λ2 = λ, we get

f (tx1 + λ(1− t)x2) ≤ h1(t
s0)f (x1)+ λh1(1− t s0)f (x2), (20)

then (20) reduces to (s0, λ, h1)-convex function in [29].

If h1(t) = t , then (20) reduces to (s0, λ)-convex function in [28].
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If h1(t) = 1, then (20) reduces to (λ, P )-convex function in [28].
If h1(t) = t s , s ∈ (0, 1], then (20) reduces to (s0, λ, s)-convex function in [28].
If h1(t) = t s , s ∈ (0, 1], s0 = 1, then (20) reduces to (λ, s)-convex function in [28].
If h1(t) = t (1− t), s0 = 1, then (20) reduces to (λ, tgs)-convex function in [28].

If h1(t) =
√

1−t
2
√
t
, s0 = 1, then (20) reduces to (λ,MT )-convex function in [28].

In (18), after replacing λ with t , let α = β = 1, s0 = 1, λ1 = 1, λ2 = 1−λ
λ

,
λ ∈ (0, 1), then (18) reduces to h1-convex function of the second sense in [26].

In (18), after replacing λwith t , let λ1 = λ2 = λ, s0 = 1, h1(t) = t s , 0 < |s| ≤ 1,
then (18) is said to be a (α, β, λ, s)-convex function:

f ((txα1 + λ(1− t)xα2 )1/α) ≤ {t sf β(x1)+ λ(1− t)sf β(x2)}1/β . (21)

If s = β = 1, λ = 1, then (21) reduces to α-convex function in [11].
If α = β = s = 1, λ = 1, then (21) reduces to convex function in the classical

sense.
If α = −1, β = 1, λ = 1, then (21) reduces to harmonically s-convex function

in [5].
If α = −1, s = β = 1, λ = 1, then (21) reduces to harmonically convex function

in [5].
If α = β = 1, 0 < s ≤ 1, λ = 1, then (21) reduces to s-convex function in [4].
If s = 0, α = β = 1, λ = 1, then (21) reduces to P - function in [2].
If s = −1, α = β = 1, λ = 1, then (21) reduces to Godunova-Levin function

in [2].
If −1 ≤ s ≤ 0, α = β = 1, λ = 1, then (21) reduces to Godunova-Levin

s-convex function in [21].
If α = s = 1, λ = 1, then (21) reduces to β-convex function in [2].
If s = 1, α = −1, λ = 1, then (21) reduces to harmonically β-convex function

in [13].
If α = 1, β = −1, 0 < |s| ≤ 1, then (21) is said to be a (AH, s)-convex function,

where AH means the arithmetic-harmonic means.
If α = −1, β = 1, 0 < |s| ≤ 1, then (21) is said to be a (HA, s)-convex

function.
If α = β = −2, then (21) is said to be a (AS, s)- convex function, where AS

means the arithmetic-square harmonic means.
If λ = t, λ0 = 0, α = β = 1, h1(t) = t in (19), then

f (tx1) ≤ tf (x1),

we say that f is a star-shaped function (see [17]).

Definition 6 ([19]) A function f : [a, b] → R is called strongly convex with
modulus c if

f (tx1 + (1− t)x2) ≤ tf (x1)+ (1− t)f (x2)− ct (1− t)(x1 − x2)
2, (22)

∀x1, x2 ∈ [a, b],∀t ∈ [0, 1], c > 0.
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Strongly convex functions have been introduced by Polyak [19] and play an
important role in optimization theory and mathematical economics. Many properties
and applications of them can be found in the literature (see, for instance, [20, 22]
and the references therein).

In 2016, Adamek [24] generalized (21) to the following:

Definition 7 ([24]) A function f : [a, b] → R is called h-strongly convex if

f (tx1 + (1− t)x2) ≤ tf (x1)+ (1− t)f (x2)− t (1− t)h(x1 − x2), (23)

∀x1, x2 ∈ [a, b],∀t ∈ [0, 1], and h : [a, b] → [0,∞).
In particular, if h(x1 − x2) = c(x1 − x2)

2, c > 0, then (23) reduces to (22).
In this section, we want to extend the above definitions to the follow-

ing generalized exponentially strongly convex functions or exponentially
(α, β, λ, λ1, λ2, s0, t, h1, h)- strongly convex functions:

Definition 8 Let (X, ‖ · ‖) denote the real normed linear spaces, D be a convex
subset of X, and h, h1 : (0,∞) → (0,∞) be given functions, in which h, h1
is not identical to 0. A function f : D → (0,∞) is called exponentially
(α, β, λ, λ1, λ2, s0, t, h1, h)-strongly convex if

f ((λ‖x1‖α + λ1(1− λ)‖x2‖α)1/α) ≤ {h1(t
s0)(
f (‖x1‖)
er‖x1‖ )

β

+λ2h1(1− t s0)(f (‖x2‖)
er‖x2‖ )

β}1/β − t (1− t)h(|x1 − x2|),

∀x1, x2 ∈ D,∀λ, λ1, λ2, s0, t ∈ [0, 1], r ∈ R, α, β are real numbers and α, β �= 0.

In particular, if X = R
�, we get:

Definition 9 Let D be a α-convex set of R�, [a, b] ⊂ D. A function f : [a, b] →
(0,∞) is called exponentially (α, β, λ, λ1, λ2, s0, t, h1, h)-strongly convex if

f ((λxα1 + λ1(1− λ)xα2 )1/α) ≤ {h1(t
s0)(
f (x1)

erx1
)β + λ2h1(1− t s0)(f (x2)

erx2
)β}1/β

−t (1− t)h(|x1 − x2|), (24)

∀x1, x2 ∈ [a, b],∀λ, λ1, λ2, s0, t ∈ [0, 1], r ∈ R, α and β are the real numbers, and
α, β �= 0.

After replacing λ with t , let λ1 = λ2 = λ, h1(t) = t s , s0 = 1 in (24), that is,

f ((txα1 + λ(1− t)xα2 )1/α) ≤ {t s(
f (x1)

erx1
)β + λ(1− t)s(f (x2)

erx2
)β}1/β

−t (1− t)h(|x1 − x2|), (25)
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∀x1, x2 ∈ [a, b], ∀λ, s, t ∈ [0, 1], r ∈ R, α and β are the real numbers, and α, β �=
0, then (25) is said to exponentially (α, β, λ, s, h)-strongly convex function.

If α = −1, then (25) is said to be an exponentially harmonically (β, λ, s, h)-
strongly convex function.

If α = −1, λ = 1, then (25) is said to be an exponentially harmonically (β, s, h)-
strongly convex function;

If α = −1, β = λ = 1, then (25) is said to be an exponentially harmonically
(s, h)-strongly convex function. With condition s = 1, (25) is said to be an
exponentially harmonically h-strongly convex function.

If r = 0, then (25) is said to be a (α, β, λ, s, h)- strongly convex function.
If r = 0, α = 1, then (25) is said to be a (β, λ, s, h)-strongly convex function.
If r = 0, h = 0, then (25) reduces to (21).
If r = 0, α = β = λ = s = 1, then (25) reduces to (23).
If α = 1, λ = 1, then (25) is said to be an exponentially (β, s, h)-strongly convex

function.
If α = 1, β = λ = 1, then (25) is said to be an exponentially (s, h)-strongly

convex function.
If α = 1, β = λ = s = 1, then (25) is said to be an exponentially h-strongly

convex function.
Hence, Definitions 8 and 9 are very general notions of convex functions. They

unified and generalized many known and new classes of convex functions.

3 Main Results

Lemma 1 Let D be a α-convex set, [a, b] ⊂ D. If f
′′ ∈ L[a, b], then

(λbα − aα)2
α2

∫ 1

0
t (1− t)(taα + λ(1− t)bα)4/αf ′′((taα + λ(1− t)bα)1/α)dt

= a2α+2f (a)+ (λ1/αb)2α+2f (λ1/αb)+ 1

α(λbα − aα)
∫ λ1/αb

a

f (u)w(u)du,

(26)

where

w(u) = 2(α + 1)(2α + 3)(aα + λbα)u2α+1 − 3(α + 1)(3α + 2)u3α+1

− λ(α + 2)(α + 3)aαbαuα+1. (27)

Proof Setting u = (taα + λ(1− t)bα)1/α , and by integration by parts, we get

∫ 1

0
t (1− t)(taα + λ(1− t)bα)4/αf ′′((taα + λ(1− t)bα)1/α)dt
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= α

(λbα − aα)3
∫ λ1/αb

a

(uα − λbα)(aα − uα)uα+3f
′′
(u)du

= −α
(λbα − aα)3

∫ λ1/αb

a

{(2α + 3)(aα + λbα)u2α+2

−3(α + 1)u3α+2 − λ(α + 3)aαbαuα+2}f ′(u)du

= α2

(λbα − aα)2 {(λ
1/αb)2α+2f (λ1/αb)+ a2α+2f (a)

+ 1

α(λbα − aα)
∫ λ1/αb

a

f (u)w(u)du}. (28)

Multiplying both sides of (28) by (λbα−aα)2
α2 , we get required equality (26).

In particular, if α = −1, then by Lemma 1, we get:

Corollary 1 Let [a, b] ⊂ R− {0}, f ′′ ∈ L[a, b], then

f (a)+ f (λ−1b)

2
− 1

λ−1b − a
∫ λ−1b

a

f (u)du

= (b−λa)
2

2a2b2

∫ 1

0
t (1−t)[ta−1+λ(1− t)b−1]−4f

′′
((ta−1+λ(1− t)b−1)−1)dt.

(29)

If λ = 1, then by Corollary 1, we get:

Corollary 2 Let [a, b] ⊂ R− {0}, f ′′ ∈ L[a, b], then

f (a)+ f (b)
2

− 1

b − a
∫ b

a

f (u)du

= (b − a)
2

2a2b2

∫ 1

0
t (1− t)[ta−1+(1− t)b−1]−4f

′′
((ta−1+(1− t)b−1)−1)dt.

(30)

Lemma 2 ([25]) Let f : [a, b] → R. If f
′′ ∈ L[a, b], then

f (a)+ f (b)
2

− 1

b − a
∫ b

a

f (u)du

= (b − a)
2

2

∫ 1

0
t (1− t)f ′′(ta + (1− t)b)dt. (31)
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Lemma 3 ([32]) Let f : [a, b] → R. If f
′ ∈ L[a, b], α �= 0, then

f (a)+ f (b)
2

− α

bα − aα
∫ b

a

f (u)

u1−α du

= (b
α−aα)
2α

∫ 1

0

1−2t

(taα+(1−t)bα)1−(1/α) f
′
((taα+(1− t)bα)1/α)dt. (32)

Taking α = 1 in (32), we get the following identity in [6]:

f (a)+ f (b)
2

− 1

b − a
∫ b

a

f (u)du

= (b − a)
2

∫ 1

0
(1− 2t)f

′
(ta + (1− t)b)dt.

Theorem 8 Let [a, b] ⊂ (0,∞), f ′′ ∈ L[a, b], and |f ′′ |p is exponentially
(α, β, λ, s, h)-strongly convex on [a, b], 1 ≤ p < ∞, 1

p
+ 1
q
= 1, and for p = 1,

define q = ∞, 1
∞ = 0, then

|a2α+2f (a)+ (λ1/αb)2α+2f (λ1/αb)+ 1

α(λbα − aα)
∫ λ1/αb

a

f (u)w(u)du|

≤ (λb
α − aα)2

61/qα2
(λ1/αb)4{F(2,− 4

α
, 4, 1− 1

λ
(
a

b
)α)}1/q

×{Cβ β2

(s + 2β)(s + 3β)
[F(2+ s

β
,− 4

α
, 4+ s

β
, 1− 1

λ
(
a

b
)α)
|f ′′(a)|p
era

+λ1/βF (2,− 4

α
, 4+ s

β
, 1− 1

λ
(
a

b
)α)
|f ′′(b)|p
erb

]

− 1

30
F(3,− 4

α
, 6, 1− 1

λ
(
a

b
)α)h(b − a)}1/p, (33)

where w(u) is defined by (27) and

Cβ =
{

1, β ≥ 1,
2(1/β)−1, 0 < β < 1.

Proof By Lemma 1 and using the Hölder inequality, we have

|a2α+2f (a)+ (λ1/αb)2α+2f (λ1/αb)+ 1

α(λbα − aα)
∫ λ1/αb

a

f (u)w(u)du|
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≤ (λb
α−aα)2
α2

∫ 1

0
t (1− t)(taα+λ(1− t)bα)4/α|f ′′((taα+λ(1− t)bα)1/α)|dt

≤ (λb
α − aα)2
α2

× I 1/q
1 × I 1/p

2 , (34)

where

I1 =
∫ 1

0
t (1− t)(taα + λ(1− t)bα)4/αdt,

I2 =
∫ 1

0
t (1− t)(taα + λ(1− t)bα)4/α|f ′′((taα + λ(1− t)bα)1/α)|pdt.

By (5), we get

I1 = (λ1/αb)4
∫ 1

0
t (1− t)[1− (1− 1

λ
(
a

b
)α)t]4/αdt

= (λ
1/αb)4

6
F(2,− 4

α
, 4, 1− 1

λ
(
a

b
)α). (35)

By using the exponentially (α, β, λ, s, h)-strongly convexity of |f ′′ |p on [a, b] and
Cp-inequality (see [2]), we obtain

I2 ≤ (λ1/αb)4
∫ 1

0
t (1− t)[1− (1− 1

λ
(
a

b
)α)t]4/α

× {[t s( |f
′′
(a)|p
era

)β + λ(1− t)s( |f
′′
(b)|p
erb

)β ]1/β − t (1− t)h(b − a)}dt

≤ (λ1/αb)4
∫ 1

0
t (1− t)[1− (1− 1

λ
(
a

b
)α)t]4/α

× {Cβ [t s/β |f
′′
(a)|p
era

+ λ1/β(1− t)s/β |f
′′
(b)|p
erb

] − t (1− t)h(b − a)}dt

= (λ1/αb)4{Cβ [I3 |f
′′
(a)|p
era

+ λ1/βI4
|f ′′(b)|p
erb

] − I5h(b − a)}, (36)

where

I3 =
∫ 1

0
t1+(s/β)(1− t)[1− (1− 1

λ
(
a

b
)α)t]4/αdt,

I4 =
∫ 1

0
t (1− t)1+(s/β)[1− (1− 1

λ
(
a

b
)α)t]4/αdt,

I5 =
∫ 1

0
t2(1− t)2[1− (1− 1

λ
(
a

b
)α)t]4/αdt.
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By (5), we get

I3 = β2

(s + 2β)(s + 3β)
F (2+ s

β
,− 4

α
, 4+ s

β
, 1− 1

λ
(
a

b
)α), (37)

I4 = β2

(s + 2β)(s + 3β)
F (2,− 4

α
, 4+ s

β
, 1− 1

λ
(
a

b
)α), (38)

I5 = 1

30
F(3,− 4

α
, 6, 1− 1

λ
(
a

b
)α). (39)

A combination of (34)–(39) gives the required result.

Taking α = −1 in (33), we get the following:

Theorem 9 Let [a, b] ⊂ (0,∞), f ′′ ∈ L[a, b], and |f ′′ |p is exponentially
harmonically (β, λ, s, h)-strongly convex on [a, b], 1 ≤ p < ∞, 1

p
+ 1

q
= 1,

and for p = 1, define q = ∞, 1
∞ = 0, then

|f (a)+ f (λ
−1b)

2
− 1

λ−1b − a
∫ λ−1b

a

f (u)du| ≤ b2/p(b − λa)2
2× 61/qλ2(2−(1/q))a2/p

≤ {Cβ β2

(s + 2β)(s + 3β)
[F(2+ s

β
, 4, 4+ s

β
, 1− b

λa
)
|f ′′(a)|p
era

+λ1/βF (2, 4, 4+ s
β
, 1− b

λa
)
|f ′′(b)|p
erb

]

− 1

30
F(3, 4, 6, 1− b

λa
)h(b − a)}1/p. (40)

Taking β = 1 in (40), we get the following:

Theorem 10 Let [a, b] ⊂ (0,∞), f ′′ ∈ L[a, b], and |f ′′ |p is exponentially
harmonically (β, s, h)-strongly convex on [a, b], 1 ≤ p < ∞, 1

p
+ 1
q
= 1, and

for p = 1, define q = ∞, 1
∞ = 0, then

|f (a)+ f (b)
2

− 1

b − a
∫ b

a

f (u)du| ≤ b
2/p(b − a)2

2× 61/qa2/p

×{Cβ β2

(s + 2β)(s + 3β)
[F(2+ s

β
, 4, 4+ s

β
, 1− b

a
)
|f ′′(a)|p
era

+F(2, 4, 4+ s
β
, 1− b

a
)
|f ′′(b)|p
erb

]

− 1

30
F(3, 4, 6, 1− b

a
)h(b − a)}1/p. (41)
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Taking β = 1 in (41), we get the following:

Theorem 11 Let [a, b] ⊂ (0,∞), f ′′ ∈ L[a, b], and |f ′′ |p is exponentially
harmonically (s, h)-strongly convex on [a, b], 1 ≤ p < ∞, 1

p
+ 1
q
= 1, and for

p = 1, define q = ∞, 1
∞ = 0, then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ b
2/p(b − a)2

2× 61/qa2/p × {
1

(s + 2)(s + 3)

×[F(2+ s, 4, 4+ s, 1− b
a
)
|f ′′(a)|p
era

+F(2, 4, 4+ s, 1−b
a
)
|f ′′(b)|p
erb

]− 1

30
F(3, 4, 6, 1−b

a
)h(b − a)}1/p. (42)

Taking s = 1, h = 0 in (42), we get

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ 1

12
{G(a, b)( |f

′′
(a)|p
era

)+G(b, a)( |f
′′
(b)|p
erb

)}1/p,

where G(a, b) is defined by

G(a, b) = a{2b
3 + 3ab2 − 6a2b + a3 − 6ab2 log( b

a
)}

(b − a)2(2−p) .

Similarly, by different decompositions of the integrand and the Hölder inequality,
under the same conditions, we can get different interesting results:

Example 1 By using the Hölder inequality,

∫ 1

0
t (1− t)(ta−1 + λ(1− t)b−1)−4|f ′′((ta−1 + λ(1− t)b−1)−1)|dt

≤ {
∫ 1

0
tq(1− t)q(ta−1 + λ(1− t)b−1)−4qdt}1/q

×{
∫ 1

0
|f ′′((ta−1 + λ(1− t)b−1)−1)|pdt}1/p, (43)

and the exponentially harmonically (β, λ, s, h)-strongly convexity of |f ′′ |p on
[a, b], we get:
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Theorem 12 Under the assumptions of Theorem 9, by Corollary 1, we have

|1
2
[f (a)+ f (λ−1b)] − 1

λ−1b − a
∫ λ−1b

a

f (u)du|

≤ b
2(b − λa)2

2λ4a2 {B(q + 1, q + 1)F (q + 1, 4q, 2q + 2, 1− b

λa
)}1/q

×{Cβ( β

β + s )[
|f ′′(a)|p
era

+ λ1/β |f ′′(b)|p
erb

] − 1

6
h(b − a)}1/p. (44)

Theorem 13 Under the assumptions of Theorem 11, we have

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ b
2(b − a)2

2a2
{B(q + 1, q + 1)F (q + 1, 4q, 2q + 2, 1− b

a
)}1/q

×{ 1

1+ s [
|f ′′(a)|p
era

+ |f
′′
(b)|p
erb

] − 1

6
h(b − a)}1/p. (45)

Example 2 By using the Hölder inequality,

∫ 1

0
t (1− t)(ta−1 + λ(1− t)b−1)−4|f ′′((ta−1 + λ(1− t)b−1)−1)|dt

≤ {
∫ 1

0
tqdt}1/q × {

∫ 1

0
(1− t)p(ta−1 + λ(1− t)b−1)−4p

×|f ′′((ta−1 + λ(1− t)b−1)−1)|pdt}1/p, (46)

and the exponentially harmonically (β, λ, s, h)-strongly convexity of |f ′′ |p on
[a, b], we get:

Theorem 14 Under the assumptions of Theorem 9, by Corollary 1, we have

|1
2
[f (a)+ f (λ−1b)] − 1

λ−1b − a
∫ λ−1b

a

f (u)du|

≤ b
2(b − λa)2
2× λ4a2 (

1

q + 1
)1/q

×{Cβ [B(1+ s
β
, p + 1)F (1+ s

β
, 4p, p + s

β
+ 2, 1− b

λa
)
|f ′′(a)|p
era

+λ1/β β

s + β(1+ p)F(1, 4p, p +
s

β
+ 2, 1− b

λa
)
|f ′′(b)|p
erb

]
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− 1

p + 2
F(1, 4p, p + 3, 1− b

λa
)h(b − a)}1/p. (47)

Theorem 15 Under the assumptions of Theorem 11, we have

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ b
2(b − a)2

2a2
(

1

q + 1
)1/q{B(s + 1, p + 1)F (s + 1, 4p, p + s + 2, 1

−( b
a
))(
|f ′′(a)|p
era

)

+ 1

s + p + 1
F(1, 4p, p + s + 2, 1− ( b

a
))
|f ′′(b)|p
erb

− 1

p + 2
F(1, 4p, p + 3, 1− b

a
)h(b − a)}1/p. (48)

Example 3 By using the Hölder inequality,

∫ 1

0
t (1− t)(ta−1 + λ(1− t)b−1)−4|f ′′((ta−1 + λ(1− t)b−1)−1)|dt

≤ {
∫ 1

0
(1− t)qdt}1/q × {

∫ 1

0
tp(ta−1 + λ(1− t)b−1)−4p

×|f ′′((ta−1 + λ(1− t)b−1)−1)|pdt}1/p, (49)

and the exponentially harmonically (β, λ, s, h)-strongly convexity of |f ′′ |p on
[a, b], we get:

Theorem 16 Under the assumptions of Theorem 9, by Corollary 1, we have

|1
2
[f (a)+ f (λ−1b)] − 1

λ−1b − a
∫ λ−1b

a

f (u)du|

≤ b
2(b − λa)2
2× λ4a2

{ 1

q + 1
}1/q

{Cβ [ β

s + β(p + 1)
F (p + 1+ s

β
, 4p, p + s

β
+ 2, 1− b

λa
)
|f ′′(a)|p
era

+λ1/βB(p + 1,
s

β
+ 1)F (p + 1, 4p, p + s

β
+ 2, 1− b

λa
)
|f ′′(b)|p
erb

]

− 1

(p + 2)(p + 3)
F (p + 2, 4p, p + 4, 1− b

λa
)h(b − a)}1/p. (50)
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Theorem 17 Under the assumptions of Theorem 11, we have

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ b
2(b − a)2

2a2 (
1

q + 1
)1/q

×{ 1

s + p + 1
F(p + s + 1, 4p, p + s + 2, 1− b

a
)
|f ′′(a)|p
era

+B(p + 1, s + 1)F (p + 1, 4p, p + s + 2, 1− b
a
)
|f ′′(b)|p
erb

− 1

(p + 2)(p + 3)
F (p + 2, 4p, p + 4, 1− b

a
)h(b − a)}1/p. (51)

Example 4 By using the Hölder inequality,

∫ 1

0
t (1− t)(ta−1 + λ(1− t)b−1)−4|f ′′((ta−1 + λ(1− t)b−1)−1)|dt

≤ {
∫ 1

0
tq(1− t)qdt}1/q

×{
∫ 1

0
(ta−1+λ(1− t)b−1)−4p|f ′′((ta−1+λ(1−t)b−1)−1)|pdt}1/p, (52)

and the exponentially harmonically (β, λ, s, h)-strongly convexity of |f ′′ |p on
[a, b], we get:

Theorem 18 Under the assumptions of Theorem 9, by Corollary 1, we have

|1
2
[f (a)+ f (λ−1b)] − 1

λ−1b − a
∫ λ−1b

a

f (u)du|

≤ b
2(b − λa)2
2× λ4a2 {B(q + 1, q + 1)}1/q

×{Cβ β

s + β [F(
s

β
+ 1, 4p,

s

β
+ 2, 1− b

λa
)
|f ′′(a)|p
era

+λ1/βF (1, 4p,
s

β
+ 2, 1− b

λa
)
|f ′′(b)|p
erb

]

−1

6
F(2, 4p, 4, 1− b

λa
)h(b − a)}1/p. (53)
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Theorem 19 Under the assumptions of Theorem 11, we have

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ b
2(b − a)2

2a2 {B(q + 1, q + 1)}1/q

×{ 1

s + 1
[F(s + 1, 4p, s + 2, 1− b

a
)
|f ′′(a)|p
era

+F(1, 4p, s + 2, 1− b
a
)
|f ′′(b)|p
erb

]

−1

6
F(2, 4p, 4, 1− b

a
)h(b − a)}1/p. (54)

Example 5 By using the Hölder inequality,

∫ 1

0
t (1− t)(ta−1 + λ(1− t)b−1)−4|f ′′((ta−1 + λ(1− t)b−1)−1)|dt

≤ {
∫ 1

0
tq(1− t)q(ta−1 + λ(1− t)b−1)−2qdt}1/q

×{
∫ 1

0
(ta−1+λ(1− t)b−1)−2p|f ′′((ta−1+λ(1− t)b−1)−1)|pdt}1/p, (55)

and the exponentially harmonically (β, λ, s, h)-strongly convexity of |f ′′ |p on
[a, b], we get:

Theorem 20 Under the assumptions of Theorem 9, by Corollary 1, we have

|1
2
[f (a)+ f (λ−1b)] − 1

λ−1b − a
∫ λ−1b

a

f (u)du|

≤ b
2(b − λa)2
2× λ4a2

{B(q + 1, q + 1)F (q + 1, 2q, 2q + 2, 1− b

λa
)}1/q

×{Cβ β

s + β [F(
s

β
+ 1, 2p,

s

β
+ 2, 1− b

λa
)
|f ′′(a)|p
era

+λ1/βF (1, 2p,
s

β
+ 2, 1− b

λa
)
|f ′′(b)|p
erb

]

−1

6
F(2, 2p, 4, 1− b

λa
)h(b − a)}1/p. (56)
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Theorem 21 Under the assumptions of Theorem 11, we have

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ b
2(b − a)2

2a2 {B(q + 1, q + 1)F (q + 1, 2q, 2q + 2, 1− b
a
)}1/q

×{ 1

s+1
[F(s+1, 2p, s+2, 1−b

a
)
|f ′′(a)|p
era

+F(1, 2p, s + 2, 1−b
a
)
|f ′′(b)|p
erb

]

−1

6
F(2, 2p, 4, 1− b

a
)h(b − a)}1/p. (57)

Example 6 By using the Hölder inequality,

∫ 1

0
t (1− t)(ta−1 + λ(1− t)b−1)−4|f ′′((ta−1 + λ(1− t)b−1)−1)|dt

≤ {
∫ 1

0
tq(1− t)q(ta−1 + λ(1− t)b−1)−3qdt}1/q

×{
∫ 1

0
(ta−1+λ(1− t)b−1)−p|f ′′((ta−1+λ(1− t)b−1)−1)|pdt}1/p, (58)

and the exponentially harmonically (β, λ, s, h)-strongly convexity of |f ′′ |p on
[a, b], we get:

Theorem 22 Under the assumptions of Theorem 9, by Corollary 1, we have

|1
2
[f (a)+ f (λ−1b)] − 1

λ−1b − a
∫ λ−1b

a

f (u)du|

≤ b
2(b − λa)2
2× λ4a2

{B(q + 1, q + 1)F (q + 1, 3q, 2q + 2, 1− b

λa
)}1/q

×{Cβ β

β + s [F(1+
s

β
, p,

s

β
+ 2, 1− b

λa
)
|f ′′(a)|p
era

+λ1/βF (1, p,
s

β
+ 2, 1− b

λa
)
|f ′′(b)|p
erb

]

−1

6
F(2, p, 4, 1− b

λa
)h(b − a)}1/p. (59)

Theorem 23 Under the assumptions of Theorem 11, we have

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|
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≤ b
2(b − a)2

2a2
{B(q + 1, q + 1)F (q + 1, 3q, 2q + 2, 1− b

a
)}1/q

×{ 1

s+1
[F(s+1, p, s + 2, 1−b

a
)
|f ′′(a)|p
era

+F(1, p, s+2, 1−b
a
)
|f ′′(b)|p
erb

]

−1

6
F(2, p, 4, 1− b

a
)h(b − a)}1/p. (60)

Example 7 By using the Hölder inequality,

∫ 1

0
t (1− t)[ta−1 + λ(1− t)b−1]−4|f ′′((ta−1 + λ(1− t)b−1)−1)|dt

≤ {
∫ 1

0
[ta−1 + λ(1− t)b−1]−4qdt}1/q

×{
∫ 1

0
tp(1− t)p|f ′′((ta−1 + λ(1− t)b−1)−1)|pdt}1/p, (61)

and the exponentially harmonically (β, λ, s, h)-strongly convexity of |f ′′ |p on
[a, b], we get:

Theorem 24 Under the assumptions of Theorem 9, if q �= 1/4, then by Corollary 1,
we have

|1
2
[f (a)+ f (λ−1b)] − 1

λ−1b − a
∫ λ−1b

a

f (u)du|

≤ (b − λa)
1+(1/p)

2(ab)1+(1/p)
{ (λ
−1b)4q−1 − a4q−1

4q − 1
}1/q

× {CβB(p + 1, p + 1+ s
β
)[ |f

′′
(a)|p
era

+ λ1/β |f ′′(b)|p
erb

]

− B(p + 2, p + 2)h(b − a)}1/p. (62)

Theorem 25 Under the assumptions of Theorem 11, if q �= 1/4, then by Corol-
lary 1, we have

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ 1

2
(

1

a
− 1

b
)
1+( 1

p
){b

4q−1 − a4q−1

4q − 1
}1/q

×{B(p + 1, p + s + 1)}1/p{( |f
′′
(a)|p
era

+ |f
′′
(b)|p
erb

−B(p + 2, p + 2)h(b − a)}1/p. (63)
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In particular, if p = s = 1, then by (63), we have

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ 1

4
(

1

a
− 1

b
)2{1

6
[ |f

′′
(a)|
era

+ |f
′′
(b)|
erb

] − 1

15
h(b − a)}. (64)

Example 8 By Lemma 2 and using the exponentially (β, s, h)-strongly convexity
of |f ′′ |p on [a, b], we have:

Theorem 26 Let f
′′ ∈ L[a, b], and |f ′′ | is exponentially (β, s, h)-strongly convex

on [a, b], then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2

2
{ β2Cβ

(s + 2β)(s + 3β)
(
|f ′′(a)|
era

+ |f
′′
(b)|
erb

)− 1

30
h(b − a)}.

In particular, if β = 1, that is, |f "| is exponentially (s, h)-strongly convex on [a, b],
then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2

2
{ 1

(s + 2)(s + 3)
[ |f

"(a)|
era

+ |f
"(b)|
erb

] − 1

30
h(b − a)}. (65)

If s = 1, in (65), that is, |f ′′ | is exponentially h- strongly convex on [a, b], then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2

12
{1
2
[ |f

′′
(a)|
era

+ |f
′′
(b)|
erb

] − 1

5
h(b − a)}. (66)

Proof By Lemma 2 and using the exponentially (β, s, h)-strongly convexity of |f ′′ |
on [a, b], we have

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2

2

∫ 1

0
t (1− t)|f ′′(ta + (1− t)b)|dt
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≤ (b−a)
2

2

∫ 1

0
t (1−t){[t s( |f

′′
(a)|
era

)β+(1−t)s( |f
′′
(b)|
erb

)β ]1/β−t (1−t)h(a−b)}dt

≤ (b−a)
2

2
{Cβ [(

∫ 1

0
t1+(s/β)(1−t)dt) |f

′′
(a)|
era

+(
∫ 1

0
t (1−t)1+(s/β)dt) |f

′′
(b)|
erb

]

−(
∫ 1

0
t2(1− t)2dt)h(b − a)}

= (b − a)
2

2
{ β2Cβ

(s + 2β)(s + 3β)
(
|f ′′(a)|
era

+ |f
′′
(b)|
erb

)− 1

30
h(b − a)}.

The proof is completed.

Theorem 27 Let [a, b] ⊂ (0,∞), f ′′ ∈ L[a, b], and |f ′′ |p is exponentially
(β, s, h)-strongly convex on [a, b], 1 ≤ p < ∞, 1

p
+ 1

q
= 1, and for p = 1,

define q = ∞, 1
∞ = 0, then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)2
2(q + 1)1/q

{Cβ [B(p + 1,
s

β
+ 1)

|f ′′(a)|p
era

+ β

s + β(p + 1)

|f ′′(b)|p
erb

]

− 1

(p + 2)(p + 3)
h(b − a)}1/p.

In particular, if β = 1, that is, |f "|p is exponentially (s, h)-strongly convex on
[a, b], then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)2
2(q + 1)1/q

{B(p + 1, s + 1)
|f "(a)|p
era

+ 1

s + p + 1

×|f
"(b)|p
erb

− 1

(p + 2)(p + 3)
h(b − a)}1/p. (67)

If s = 1 in (67), that is, |f ′′ |p is exponentially h-strongly convex on [a, b], then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b−a)2
2(p + 2)(q + 1)1/q

{ 1

p+1

|f ′′(a)|p
era

+|f
′′
(b)|p
erb

− 1

p+3
h(b−a)}1/p. (68)
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If p = 1 in (68), then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2

24
{2× |f

′′
(a)|
era

+ 4× |f
′′
(b)|
erb

− h(b − a)}. (69)

Proof By Lemma 2 and using the exponentially (β, s, h)-strongly convexity of
|f ′′ |p on [a, b], we have

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2

2

∫ 1

0
t (1− t)|f ′′(ta + (1− t)b)|dt

≤ (b − a)
2

2
(

∫ 1

0
tqdt)1/q{

∫ 1

0
(1− t)p|f ′′(ta + (1− t)b)|pdt}1/p

≤ (b − a)2
2(q + 1)1/q

{
∫ 1

0
(1− t)p[(ts( |f

′′
(a)|p
era

)β + (1− t)s( |f
′′
(b)|p
erb

)β)1/β

−t (1− t)h(b − a)]dt}1/p

≤ (b − a)2
2(q + 1)1/q

{Cβ [(
∫ 1

0
t s/β(1− t)pdt) |f

′′
(a)|p
era

+(
∫ 1

0
(1− t)p+(s/β)dt) |f

′′
(b)|p
erb

] − (
∫ 1

0
t (1− t)p+1dt)h(b − a)}1/p

≤ (b − a)2
2(q + 1)1/q

{Cβ [B(p + 1,
s

β
+ 1)

|f ′′(a)|p
era

+ β

s + β(p + 1)

|f ′′(b)|p
erb

]

− 1

(p + 2)(p + 3)
h(b − a)}1/p.

The proof is completed.

Theorem 28 Under the assumptions of Theorem 27, we have

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2

2
{B(q + 1, q + 1)}1/q{ βCβ

s + β (
|f "(a)|p
era

+ |f
"(b)|p
erb

)

−1

6
h(b − a)}1/p.
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In particular, if β = 1, that is, |f "|p is exponentially (s, h)-strongly convex on
[a, b], then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2

2
{B(q + 1, q + 1)}1/q{ 1

s + 1
(
|f ′′(a)|p
era

+ |f
′′
(b)|p
erb

)

−1

6
h(b − a)}1/p. (70)

If s = 1 in (70), that is, |f ′′ |p is exponentially h-strongly convex on [a, b], then

|1
2
[f (a)+f (b)]− 1

b−a
∫ b

a

f (u)du|

≤ (b−a)
2

4
{B(q+1, q + 1)}1/q{ |f

′′
(a)|p
era

+|f
′′
(b)|p
erb

−1

3
h(b − a)}1/p. (71)

If p = 1 in (70), then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2

2
{ 1

s + 1
[ |f

′′
(a)|
era

+ |f
′′
(b)|
erb

] − 1

6
h(b − a)}. (72)

Proof By Lemma 2 and using the exponentially (β, s, h)-strongly convexity of
|f ′′ |p on [a, b], we have

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2

2
(

∫ 1

0
tq(1− t)qdt)1/q{

∫ 1

0
|f ′′(ta + (1− t)b)|pdt}1/p

≤ (b−a)
2

2
{B(q+1, q+1)}1/q{

∫ 1

0
[(ts( |f

′′
(a)|p
era

)β+(1− t)s( |f
′′
(b)|p
erb

)β)1/β

−t (1− t)h(b − a)]dt}1/p

≤ (b − a)
2

2
{B(q + 1, q + 1)}1/q{Cβ [(

∫ 1

0
t s/βdt)

|f ′′(a)|p
era

+(
∫ 1

0
(1− t)s/βdt) |f

′′
(b)|p
erb

] − (
∫ 1

0
t (1− t)dt)h(b − a)}1/p
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≤ (b − a)
2

2
{B(q + 1, q + 1)}1/q{ βCβ

s + β (
|f ′′(a)|p
era

+ |f
′′
(b)|p
erb

)

−1

6
h(b − a)}1/p.

The proof is completed.

Example 9 By Lemma 3 and using the exponentially (α, β, s, h)-strongly convexity
of |f ′′ |p on [a, b], we can prove analogously

Theorem 29 Let [a, b] ⊂ (0,∞), f ′ ∈ L[a, b], and |f ′ |p is exponentially
(β, s, h)-strongly convex on [a, b], 1 ≤ p < ∞, 1

p
+ 1

q
= 1, and for p = 1,

define q = ∞, 1
∞ = 0.

(i) If α �= 0, 1, then

|1
2
[f (a)+ f (b)] − α

bα − aα
∫ b

a

f (u)

u1−α du|

≤ b
1−α|bα − aα|

2|α|(q + 1)1/q
{ βCβ
β + s [F(1+

s

β
, (1− 1

α
)p, 2+ s

β
, 1− (a

b
)α)

×|f
′
(a)|p
era

+ F(1, (1− 1

α
)p, 2+ s

β
, 1− (a

b
)α)
|f ′(b)|p
erb

]

−1

6
F(2, (1− 1

α
)p, 4, 1− (a

b
)α)h(b − a)}1/p.

(ii) If α = 1, then

|1
2
[f (a)+f (b)]− 1

b − a
∫ b

a

f (u)du|

≤ (b−a)
2(q+1)1/q

{( βCβ
(s+β) )(

|f ′(a)|p
era

+|f
′
(b)|p
erb

)−1

6
h(b − a)}1/p. (73)

In particular, if β = 1, that is, |f ′ |p is exponentially (s, h)-strongly convex on
[a, b], then

|1
2
[f (a)+f (b)]− 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2(q+1)1/q

{ 1

s+1
(
|f ′(a)|p
era

+|f
′
(b)|p
erb

)−1

6
h(b − a)}1/p. (74)
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If p = 1 in (74), then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2
{ 1

s + 1
[ |f

′
(a)|
era

+ |f
′
(b)|
erb

] − 1

6
h(b − a)}. (75)

Remark 3 When h = 0, (74) reduces to Theorem 3.7 in [8].

Theorem 30 Under the assumptions of Theorem 29, we have:

(i) If p = 1, then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ b − a
2
{ βCβ

(s + β)(s + 2β)
(s + β

2s/β
)

×[|f
′
(a)|
era

+ |f
′
(b)|
erb

] − 1

16
h(b − a)}. (76)

In particular, if β = 1, that is, |f ′ | is exponentially (s, h)-strongly convex on
[a, b], then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ b − a
2
{ 1

(s + 1)(s + 2)
(s + 1

2s
)

×[|f
′
(a)|
era

+ |f
′
(b)|
erb

] − 1

16
h(b − a)}. (77)

(ii) If 1 < p <∞, then

|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2(1/q)+1

{ βCβ

(s + β)(s + 2β)
(s + β

2s/β
)

×[|f
′
(a)|p
era

+ |f
′
(b)|p
erb

] − 1

16
h(b − a)}1/p. (78)

In particular, if β = 1, that is, |f ′ |p is exponentially (s, h)-strongly convex on
[a, b], then
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|1
2
[f (a)+ f (b)] − 1

b − a
∫ b

a

f (u)du|

≤ (b − a)
2(1/q)+1

{ 1

(s + 1)(s + 2)
(s + 1

2s
)

×[|f
′
(a)|p
era

+ |f
′
(b)|p
erb

] − 1

16
h(b − a)}1/p. (79)

Remark 4 Equations (76) and (78) improve and generalize the corresponding
results of Theorems 3.3 and 3.6 in [8].

4 Approximations for the Integral of f

Let P = {a = x0 < x1 < · · · < xn = b} be a partition of [a, b]. By applying the
trapezoidal rule:

∫ b

a

f (x)dx = f (a)+ f (b)
2

(b − a)− (b − a)
3

12
f "(ζ ), ζ ∈ [a, b],

one obtain

∫ b

a

f (x)dx = Sn(f )+ Rn(f ), (80)

where

Sn(f ) =
n∑
k=1

f (xk−1)+ f (xk)
2

(xk − xk−1) (81)

and

Rn(f ) = −
n∑
k=1

(xk − xk−1)
3

12
f "(ζk), ζk ∈ [xk−1, xk]. (82)

The remainder term Rn(f ) represents the error in approximating
∫ b
a
f (x)dx by

Sn(f ). If f " ∈ L∞[a, b], then the remainder term is given by

∣∣∣∣
∫ b

a

f (x)dx − Sn(f )
∣∣∣∣ = |Rn(f )| ≤ ‖f

"‖∞
12

n∑
k=1

(xk − xk−1)
3. (83)
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Taking xk − xk−1 = b−a
n

in (83), we get a classical result in numerical analysis (see
[33] P. 885.):

∣∣∣∣
∫ b

a

f (x)dx − Sn(f )
∣∣∣∣ = |Rn(f )| ≤ ‖f

"‖∞
12n2

(b − a)3.

Using some results in the above section, under different conditions, we can get new
approximations for the integral of f . In what follows, let

Mj,p = max{ |f
j (xk)|

e(rxk)/p
: 1 ≤ k ≤ n}, j = 1, 2. (84)

Theorem 31 Let [a, b] ⊂ (0,∞), f " ∈ L[a, b], and 1 ≤ p <∞, 1
p
+ 1
q
= 1, and

for p = 1, define q = ∞, 1
∞ = 0. If |f "|p is exponentially s-convex on [a, b], then

in (80), for every partition P of [a, b], we get:
(i) If 1 < p <∞, then

|Rn(f )| ≤ M2,p

2(q + 1)1/q
{B(p + 1, s + 1)+ 1

s + p + 1
}1/p

n∑
k=1

(xk − xk−1)
3.

(85)
If xk − xk−1 = b−a

n
, then (85) reduces to

|Rn(f )| ≤ M2,p(b − a)3
2n2(q + 1)1/q

{B(p + 1, s + 1)+ 1

s + p + 1
}1/p.

(ii) If p = 1, then

|Rn(f )| ≤ M2,1

(s + 2)(s + 3)

n∑
k=1

(xk − xk−1)
3. (86)

If xk − xk−1 = b−a
n

, then (86) reduces to

|Rn(f )| ≤ M2,1(b − a)3
n2(s + 2)(s + 3)

.

Proof By letting h = 0 in (67), we get

∣∣∣∣f (xk−1)+ f (xk)
2

(xk − xk−1)−
∫ xk

xk−1

f (u)du

∣∣∣∣

≤ (xk − xk−1)
3

2(q + 1)1/q
{B(p + 1, s + 1)

|f "(xk−1)|p
erxk−1

+ 1

s + p + 1

|f "(xk)|p
erxk

}1/p

≤ M2,p(xk − xk−1)
3

2(q + 1)1/q
{B(p + 1, s + 1)+ 1

s + p + 1
}1/p.
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Summing over k from 1 to n, we get

∣∣∣∣
∫ b

a

f (u)du−Sn(f )
∣∣∣∣ ≤ M2,p

2(q+1)1/q
{B(p+1, s+1)+ 1

s+p+1
}1/p

n∑
k=1

(xk−xk−1)
3.

By letting h = 0 in (65) and similar arguments, we get (86). The proof is completed.
By letting h = 0 in (70), (72), and similar arguments, we get

Theorem 32 Under the assumptions of Theorem 31, we have

(i) If 1 < p <∞, then

|Rn(f )| ≤ M2,p

(s + 1)1/p
{B(q + 1, q + 1)}1/q

n∑
k=1

(xk − xk−1)
3. (87)

If xk − xk−1 = b−a
n

, then (87) reduces to

|Rn(f )| ≤ M2,p(b − a)3
n2(s + 1)1/p

{B(q + 1, q + 1)}1/q .

(ii) If p = 1, then

|Rn(f )| ≤ M2,1

s + 1

n∑
k=1

(xk − xk−1)
3. (88)

If xk − xk−1 = b−a
n

, then (88) reduces to

|Rn(f )| ≤ M2,1(b − a)3
n2(s + 1)

.

By letting h = 0 in (74), (75), and similar arguments, we get:

Theorem 33 Let [a, b] ⊂ (0,∞), f ′ ∈ L[a, b], and 1 ≤ p <∞, 1
p
+ 1
q
= 1, and

for p = 1, define q = ∞, 1
∞ = 0. If |f ′ |p is exponentially s-convex on [a, b], then

in (80), for every partition P of [a, b], we get:
(i) If 1 < p <∞, then

|Rn(f )| ≤ M1,p

(q + 1)1/q(s + 1)1/p

n∑
k=1

(xk − xk−1)
2. (89)

If xk − xk−1 = b−a
n

, then (89) reduces to

|Rn(f )| ≤ M1,p(b − a)2
n2(q + 1)1/q(s + 1)1/p

.
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(ii) If p = 1, then

|Rn(f )| ≤ M1,1

s + 1

n∑
k=1

(xk − xk−1)
2. (90)

If xk − xk−1 = b−a
n

, then (90) reduces to

|Rn(f )| ≤ M1,1(b − a)2
n2(s + 1)

.

By letting h = 0 in (79), (77), and similar arguments, we get

Theorem 34 Under the assumptions of Theorem 33, we have

(i) If 1 < p <∞, then

|Rn(f )| ≤ M1,p

2(2/q)
{ 1

(s + 1)(s + 2)
(s + 1

2s
)}1/p

n∑
k=1

(xk − xk−1)
2. (91)

If xk − xk−1 = b−a
n

, then (91) reduces to

|Rn(f )| ≤ M1,p(b − a)2
2(2/q)n2

{ 1

(s + 1)(s + 2)
(s + 1

2s
)}1/p.

(ii) If p = 1, then

|Rn(f )| ≤ M1,1

(s + 1)(s + 2)
(s + 1

2s
)

n∑
k=1

(xk − xk−1)
2. (92)

If xk − xk−1 = b−a
n

, then (92) reduces to

|Rn(f )| ≤ M1,1(b − a)2
n2(s + 1)(s + 2)

(s + 1

2s
).

5 Approximations for Some New Means

We consider the means for 0 < a < b as follows:

(1) Defining the new weighted mean

Kp,q(a, b) = {a
p + ω(ab)p/2 + bp
(ω + 1)aq + bq } 1

p−q , (93)
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where the weight ω ≥ 0, p �= q, and p and q cannot both be zero. If we take
q = 0, then (93) reduces to the Heron mean:

Hp(a, b) = {a
p + ω(ab)p/2 + bp

ω + 2
}1/p. (94)

Taking ω = 0 in (94), we get the power mean :

Mp(a, b) = (a
p + bp

2
)1/p.

Taking ω = 0, q = p − 1 in (93), we get the Lehmer mean:

Lp(a, b) = ap + bp
ap−1 + bp−1 . (95)

In particular,

L0(a, b) = 2ab

a + b
is the harmonic mean;

L1(a, b) = A(a, b) = a + b
2

is the arithmetic mean;

L2(a, b) = a
2 + b2

a + b
is the inverse harmonic mean of the first kind;

L3(a, b) = a
3 + b3

a2 + b2

is the inverse harmonic mean of the second kind.
(2) The logarithmic mean

L(a, b) = b − a
log b − log a

.

(3) The Stolarsky mean

Sp(a, b) = { b
p − ap
p(b − a) }

1/(p−1), p �= 0, 1.
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(4) The identric mean

lim
p→1

Sp(a, b) = I (a, b) = 1

e

(bb
aa

) 1
b−a .

Theorem 35 Let 1 ≤ p <∞, 1
p
+ 1
q
= 1, and

�s = |A(as+2, bs+2)− Ss+2
s+3(a, b)|,

then

�s ≤ (s + 1)(s + 2)(b − a)2
12

{1
2
(
as

era
+ bs

erb
)− 1

5
h(b − a)}; (96)

�s ≤ (s + 1)(s + 2)(b − a)2
24

{2a
s

era
+ 4bs

erb
− h(b − a)}; (97)

�s ≤ (s + 1)(s + 2)(b − a)2
2

{ 1

s + 1
(
as

era
+ bs

erb
)− 1

6
h(b − a)}; (98)

�s ≤ (s + 1)(s + 2)(b − a)2(ab)s+2

2

×(B(q + 1, q + 1))1/q × S−(s+4)
1−(s+4)p(a, b). (99)

In particular, if s = 1, that is,

�1 = |A(a3, b3)− S3
4(a, b)|.

then

�1 ≤ (b − a)
2

2
{1
2
(
a

era
+ b

erb
)− 1

5
h(b − a)};

�1 ≤ (b − a)
2

4
{ 2a

era
+ 4b

erb
− h(b − a)};

�1 ≤ 3(b − a)2{ a
era
+ b

erb
− 1

6
h(b − a)};

�1 ≤ 3a3b3(b − a)2{B(q + 1, q + 1)}1/qS−5
1−5p(a, b).

Proof Let f (x) = xs+2

(s+1)(s+2) , s �= −1,−2, then f
′′
(x) = xs . Using (66), (69),

and (72), we get (96), (97), and (98), respectively. To prove (99) holds, we apply the
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integral representation of Sp:

Sp+1(a, b) = {
∫ 1

0
[tb + (1− t)a]pdt}1/p,

and Corollary 2, we get

1

(s + 1)(s + 2)
|A(as+2, bs+2)− Ss+2

s+3(a, b)|

= (b − a)
2(ab)2+s

2

∫ 1

0
t (1− t)[tb + (1− t)a]−(4+s)dt

≤ (b − a)
2(ab)2+s

2
{
∫ 1

0
tq(1− t)qdt}1/q{

∫ 1

0
[tb + (1− t)a]−(4+s)pdt}1/p

= (b − a)
2(ab)2+s

2
{B(q + 1, q + 1)}1/qS−(4+s)1−(4+s)p(a, b),

which implies that (99) holds. The proof is completed.

Theorem 36 Let 1 ≤ p <∞, 1
p
+ 1
q
= 1, and

�2(p) = |A(a(1/p)+2, b(1/p)+2)− S(1/p)+2
(1/p)+3(a, b)|.

(i) If 1 < p <∞, then

�2(p) ≤ (p + 1)(2p + 1)(b − a)2
2p2(p + 2)(q + 1)1/q

{ 1

p + 1

a

era
+ b

erb
− 1

p + 3
h(b − a)}1/p; (100)

�2(p) ≤ (p + 1)(2p + 1)(b − a)2
4p2 {B(q + 1, q + 1)}1/q

{ a
era
+ b

erb
− 1

3
h(b − a)}1/p; (101)

�2(p) ≤ (p + 1)(2p + 1)(b − a)
2× p2(q + 1)1/q

{ 1

s + 1
(
a

era
+ b

erb
)− 1

6
h(b − a)}1/p.

(102)
(ii) If p = 1, then
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�2(1) ≤ (b − a)
2

4
(

2a

era
+ 4b

erb
− h(b − a)};

�2(1) ≤ 3(b − a)2
2

{ a
era
+ b

erb
− 1

3
h(b − a)};

�2(1) ≤ 3(b − a){ 1

s + 1
(
a

era
+ b

erb
)− 1

6
h(b − a)}.

Proof Let f (x) = p2

(p+1)(2p+1) x
(1/p)+2, x > 0, then f

′
(x) = p

p+1x
(1/p)+1,

|f ′′(x)|p = x. Using (68), (71), and (74), respectively, we get the required results.

Theorem 37 Let

�3(p) = |A(e(p+1)a, e(p+1)b)− L(ea, eb)Spp+1(e
a, eb)|, p �= −1, 0.

Then

�3(p) ≤ (b − a)
2

24
{(p + 1)2(2e(p+1−r)a + 4e(p+1−r)b)− h(b − a)}; (103)

�3(p) ≤ (b − a)
2

2
{ (p + 1)2

s + 1
(e(p+1−r)a + e(p+1−r)b)− 1

6
h(b − a)}; (104)

�3(p) ≤ (b − a)
2
{p + 1

s + 1
[e(p+1−r)a + e(p+1−r)b] − 1

6
h(b − a)}. (105)

Proof Let f (x) = e(p+1)x , then |f ′′(x)| = (p + 1)2e(p+1)x . Using (69), (72),
and (75), respectively, we get the required results.

Theorem 38 Let 1 < p <∞, and

�4 = | logG(a, b)− log I (a, b)|.
Then

�4 ≤ (b − a)
2

12
{1
2
(a−2pe−ra + b−2pe−rb)− 1

5
h(b − a)};

�4 ≤ (b − a)
2

24
{2a−2e−ra + 4b−2e−rb − h(b − a)};

�4 ≤ (b − a)
2

2
{ 1

s + 1
[a−2e−ra + b−2e−rb] − 1

6
h(b − a)};

�4 ≤ (b − a)
2
{ 1

s + 1
[a−1e−ra + b−1e−rb] − 1

6
h(b − a)}.
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Proof Let f (x) = log x, x > 0, then f
′
(x) = x−1, f

′′
(x) = −x−2. Using (66),

(69), (72), and (75), respectively, we get the required results.

Theorem 39 Let 1 < p <∞, and

�5 = |A(ap, bp)− Spp+1(a, b)+ ω[A(ap/2, bp/2)− S(p/2)(p/2)+1(a, b)]|.

Then

�5 ≤ (b − a)
2

24
{ 2p

era
[(p − 1)ap−2 + ω

2
(
p

2
− 1)a(p/2)−2]

+ 4p

erb
[(p − 1)bp−2 + ω

2
(
p

2
− 1)b(p/2)−2] − (ω + 2)h(b − a)};

�5 ≤ (b − a)
2

2
{ 1

s + 1
[ p
era
((p − 1)ap−2 + ω

2
(
p

2
− 1)a(p/2)−2)

+ p
erb
((p − 1)bp−2 + ω

2
(
p

2
− 1)b(p/2)−2)] − 1

6
(ω + 2)h(b − a)};

�5 ≤ (b − a)
2
{ 1

s + 1
[ p
era
(ap−1 + ω

2
a(p/2)−1)

+ p
erb
(bp−1 + ω

2
b(p/2)−1)] − 1

6
(ω + 2)h(b − a)}.

Proof Let f (x) = xp+ωxp/2+1
ω+2 , x > 0, then f

′
(x) = p

ω+2 (x
p−1 + ω

2 x
(p/2)−1),

f
′′
(x) = p

ω+2 [(p − 1)xp−2 + ω
2 (
p
2 − 1)x(p/2)−2]. Using (69), (72), and (75),

respectively, we get the required results.

Taking ω = 0 in Theorem 39, we get the following results similar to Theorem 35:

Theorem 40 Let 1 < p <∞, and

�6 = |A(ap, bp)− Spp+1(a, b)|,

then�6 ≤ (b−a)2
12 {p(p−1)[ ap−2

era
+ 2bp−2

erb
]−h(b−a)};�6 ≤ (b−a)2

2 {p(p−1)
s+1 [ a

p−2

era
+

bp−2

erb
] − 1

3h(b − a)};�6 ≤ (b−a)
2 { p

s+1 [ a
p−1

era
+ bp−1

erb
] − 1

3h(b − a)}.
Remark 5 Kuang [2] introduced the following double weight mean:

K(ω1, ω2, p) =
(ω1(a

p + bp)+ 2ω2(ab)
p/2

2(ω1 + ω2)

)1/p
, (106)
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where p �= 0, ω1, ω2 ≥ 0, ω1 + ω2 > 0.
It is easy to note thatK(1, ω2 , p) = Hp(a, b). Hence, by replacingHp(a, b) with

K(ω1, ω2, p), we can get some results similar to Theorem 39.
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1 Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[13] concerning the stability of group homomorphisms.

The functional equation f (x+ y) = f (x)+f (y) is called the Cauchy equation.
In particular, every solution of the Cauchy equation is said to be an additive
mapping. Hyers [7] gave a first affirmative partial answer to the question of Ulam for
Banach spaces. Hyers’ theorem was generalized by Aoki [2] for additive mappings
and by Rassias [10] for linear mappings by considering an unbounded Cauchy
difference. A generalization of the Rassias’ theorem was obtained by Găvruta [6]
by replacing the unbounded Cauchy difference by a general control function in the
spirit of Rassias’ approach.

The functional equation f (x + y) + f (x − y) = 2f (x) + 2f (y) is called
the quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. The stability of quadratic
functional equation was proved by Skof [12] for mappings f : E1 → E2, where
E1 is a normed space and E2 is a Banach space. Cholewa [3] noticed that the
theorem of Skof is still true if the relevant domain E1 is replaced by an Abelian
group. The stability problems of various functional equations have been extensively
investigated by a number of authors (see [1, 4, 5, 8, 9, 14, 15]).

Definition 1 Let X be a linear space. A nonnegative-valued function ‖ · ‖ is an
F -norm if it satisfies the following conditions:

(FN1 ) ‖x‖ = 0 if and only if x = 0;
(FN2 ) ‖λx‖ = ‖x‖ for all x ∈ X and all λ with |λ| = 1;
(FN3 ) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X;
(FN4 ) ‖λnx‖ → 0 provided λn→ 0;
(FN5 ) ‖λxn‖ → 0 provided xn→ 0.

Then, (X, ‖ · ‖) is called an F ∗-space. An F -space is a complete F ∗-space.

An F -norm is called β-homogeneous (β > 0) if ‖tx‖ = |t |β‖x‖ for all x ∈ X
and all t ∈ C (see [11]).

In Section 2, we solve the additive-quadratic ρ-functional inequality (1) and
prove the Hyers–Ulam stability of the additive-quadratic ρ-functional inequality (1)
in β2-homogeneous complex Banach space. In Section 3, we solve the additive-
quadratic ρ-functional inequality (2) and prove the Hyers–Ulam stability of the
additive-quadratic ρ-functional inequality (2) in β2-homogeneous complex Banach
space.

Throughout this paper, let β1 and β2 be positive real numbers with β1 ≤ 1 and
β2 ≤ 1. Assume that X is a β1-homogeneous real or complex normed space with
norm ‖ · ‖ and that Y is a β2-homogeneous complex Banach space with norm ‖ · ‖.
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2 Additive-Quadratic ρ-Functional Inequality (1)
in β-Homogeneous Complex Banach Spaces

Throughout this section, assume that ρ is a complex number with |ρ| < 1
2 .

We solve and investigate the additive-quadratic ρ-functional inequality (1) in
complex normed spaces.

Lemma 1 (i) If a mapping f : X → Y satisfies M1f (x, y) = 0, then f =
fo + fe, where fo(x) := f (x)−f (−x)

2 is the Cauchy additive mapping and

fe(x) := f (x)+f (−x)
2 is the quadratic mapping.

(ii) If a mapping f : X → Y satisfies M2f (x, y) = 0, then f = fo + fe, where
fo(x) := f (x)−f (−x)

2 is the Cauchy additive mapping and fe(x) := f (x)+f (−x)
2

is the quadratic mapping.

Proof (i)

M1fo(x, y) = fo(x + y)− fo(x)− fo(y) = 0

for all x, y ∈ X. So, fo is the Cauchy additive mapping.

M1fe(x, y) = 1

2
fe(x + y)+ 1

2
fe(x − y)− fe(x)− fe(y) = 0

for all x, y ∈ X. So, fo is the quadratic mapping.
(ii)

M2fo(x, y) = 2fo

(
x + y

2

)
− fo(x)− fo(y) = 0

for all x, y ∈ X. SinceM2f (0, 0) = 0, f (0) = 0 and fo is the Cauchy additive
mapping.

M2fe(x, y) = 2fe

(
x + y

2

)
+ 2fe

(
x − y

2

)
− fe(x)− fe(y) = 0

for all x, y ∈ X. Since M2f (0, 0) = 0, f (0) = 0 and fe is the quadratic
mapping.

Therefore, the mapping f : X → Y is the sum of the Cauchy additive
mapping and the quadratic mapping.

Lemma 2 (i) If an odd mapping f : X→ Y satisfies

‖M1f (x, y)‖ ≤ ‖ρM2f (x, y)‖ (3)

for all x, y ∈ X, then f : X→ Y is additive.
(ii) If an even mapping f : X→ Y satisfies (3), then f : X→ Y is quadratic.
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Proof (i) Assume that f : X→ Y satisfies (3).
Since f is an odd mapping, f (0) = 0.
Letting y = x in (3), we get

‖f (2x)− 2f (x)‖ ≤ 0,

and so f (2x) = 2f (x) for all x ∈ X. Thus,

f
(x

2

)
= 1

2
f (x) (4)

for all x ∈ X.
It follows from (3) and (4) that

‖f (x + y)− f (x)− f (y)‖ ≤
∥∥∥∥ρ

(
2f

(
x + y

2

)
− f (x)− f (y)

)∥∥∥∥
= |ρ|β2‖f (x + y)− f (x)− f (y)‖,

and so

f (x + y) = f (x)+ f (y)

for all x, y ∈ X.
(ii) Assume that f : X→ Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get

‖f (0)‖ ≤ ‖2ρf (0)‖.

So, f (0) = 0.
Letting y = x in (2.1), we get

∥∥∥∥1

2
f (2x)− 2f (x)

∥∥∥∥ ≤ 0,

and so f (2x) = 4f (x) for all x ∈ X. Thus,

f
(x

2

)
= 1

4
f (x) (5)

for all x ∈ X.
It follows from (3) and (5) that

∥∥∥∥1

2
f (x + y)+ 1

2
f (x − y)− f (x)− f (y)

∥∥∥∥
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≤
∥∥∥∥ρ

(
2f

(
x + y

2

)
+ 2f

(
x − y

2

)
− f (x)− f (y)

)∥∥∥∥
= |ρ|β2

∥∥∥∥1

2
f (x + y)+ 1

2
f (x − y)− f (x)− f (y)

∥∥∥∥ ,
and so

f (x + y)+ f (x − y) = 2f (x)+ 2f (y)

for all x, y ∈ X.

We prove the Hyers–Ulam stability of the additive-quadratic ρ-functional
inequality (3) in β-homogeneous complex Banach spaces for an odd mapping
case.

Theorem 1 Let r > β2
β1

and θ be nonnegative real numbers, and let f : X→ Y be
an odd mapping such that

‖M1f (x, y)‖ ≤ ‖ρM2f (x, y)‖ + θ(‖x‖r + ‖y‖r ) (6)

for all x, y ∈ X. Then, there exists a unique additive mapping A : X→ Y such that

‖f (x)− A(x)‖ ≤ 2θ

2β1r − 2β2
‖x‖r (7)

for all x ∈ X.
Proof Letting y = x in (6), we get

‖f (2x)− 2f (x)‖ ≤ 2θ‖x‖r (8)

for all x ∈ X. So,

∥∥∥f (x)− 2f
(x

2

)∥∥∥ ≤ 2

2β1r
θ‖x‖r

for all x ∈ X. Hence,

∥∥∥2lf
( x

2l

)
− 2mf

( x
2m

)∥∥∥ ≤
m−1∑
j=l

∥∥∥2j f
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥

≤ 2

2β1r

m−1∑
j=l

2β2j

2β1rj
θ‖x‖r (9)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (9)
that the sequence {2kf ( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the

sequence {2kf ( x
2k
)} converges. So, one can define the mapping A : X→ Y by

A(x) := lim
k→∞ 2kf

( x
2k

)

for all x ∈ X. Since f is an odd mapping, A is an odd mapping. Moreover, letting
l = 0 and passing the limit m→∞ in (9), we get (7).

It follows from (6) that

‖A(x + y)− A(x)− A(y)‖ = lim
n→∞

∥∥∥∥2n
(
f

(
x + y

2n

)
− f

( x
2n

)
− f

( y
2n

))∥∥∥∥
≤ lim
n→∞

∥∥∥∥2nρ

(
2f

(
x + y
2n+1

)
− f

( x
2n

)
− f

( y
2n

))∥∥∥∥
+ lim
n→∞

2β2n

2β1rn
θ(‖x‖r + ‖y‖r )

=
∥∥∥∥ρ

(
2A

(
x + y

2

)
− A(x)− A(y)

)∥∥∥∥
for all x, y ∈ X. So,

‖A(x + y)− A(x)− A(y)‖ ≤
∥∥∥∥ρ

(
2A

(
x + y

2

)
− A(x)− A(y)

)∥∥∥∥
for all x, y ∈ X. By Lemma 2, the mapping A : X→ Y is additive.

Now, let T : X→ Y be another additive mapping satisfying (7). Then, we have

‖A(x)− T (x)‖ =
∥∥∥2qA

( x
2q

)
− 2qT

( x
2q

)∥∥∥
≤

∥∥∥2qA
( x

2q

)
− 2qf

( x
2q

)∥∥∥+
∥∥∥2qT

( x
2q

)
− 2qf

( x
2q

)∥∥∥
≤ 4θ

2β1r − 2β2

2β2q

2β1qr
‖x‖r ,

which tends to zero as q →∞ for all x ∈ X. So, we can conclude thatA(x) = T (x)
for all x ∈ X. This proves the uniqueness of A, as desired.

Theorem 2 Let r < β2
β1

and θ be nonnegative real numbers, and let f : X → Y

be an odd mapping satisfying (6). Then, there exists a unique additive mapping
A : X→ Y such that

‖f (x)− A(x)‖ ≤ 2θ

2β2 − 2β1r
‖x‖r (10)

for all x ∈ X.
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Proof It follows from (8) that

∥∥∥∥f (x)− 1

2
f (2x)

∥∥∥∥ ≤ 2

2β2
θ‖x‖r

for all x ∈ X. Hence,

∥∥∥∥ 1

2l
f (2lx)− 1

2m
f (2mx)

∥∥∥∥ ≤
m−1∑
j=l

∥∥∥∥ 1

2j
f

(
2j x

)
− 1

2j+1 f
(

2j+1x
)∥∥∥∥

≤ 2

2β2

m−1∑
j=l

2β1rj

2β2j
θ‖x‖r (11)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(11) that the sequence { 1

2n f (2
nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
2n f (2

nx)} converges. So, one can define the mapping
A : X→ Y by

A(x) := lim
n→∞

1

2n
f (2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (11), we
get (10).

The rest of the proof is similar to the proof of Theorem 1.

Now, we prove the Hyers–Ulam stability of the additive-quadratic ρ-functional
inequality (3) in β-homogeneous complex Banach spaces for an even mapping case.

Theorem 3 Let r > 2β2
β1

and θ be nonnegative real numbers, and let f : X→ Y be
an even mapping satisfying f (0) = 0 and (6). Then, there exists a unique quadratic
mappingQ : X→ Y such that

‖f (x)−Q(x)‖ ≤ 2 · 2β2θ

2β1r − 4β2
‖x‖r (12)

for all x ∈ X.
Proof Letting y = x in (6), we get

∥∥∥∥1

2
f (2x)− 2f (x)

∥∥∥∥ ≤ 2θ‖x‖r (13)

for all x ∈ X. So,

∥∥∥f (x)− 4f
(x

2

)∥∥∥ ≤ 2 · 2β2θ

2β1r
‖x‖r
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for all x ∈ X. Hence,

∥∥∥4lf
( x

2l

)
− 4mf

( x
2m

)∥∥∥ ≤
m−1∑
j=l

∥∥∥4j f
( x

2j

)
− 4j+1f

( x

2j+1

)∥∥∥

≤ 2 · 2β2

2β1r

m−1∑
j=l

4β2j

2β1rj
θ‖x‖r (14)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (14)
that the sequence {4kf ( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the

sequence {4kf ( x
2k
)} converges. So, one can define the mappingQ : X→ Y by

Q(x) := lim
k→∞ 4kf

( x
2k

)

for all x ∈ X. Since f is an even mapping,Q is an even mapping. Moreover, letting
l = 0 and passing the limit m→∞ in (14), we get (12).

It follows from (6) that

∥∥∥∥1

2
Q

(
x + y

2

)
+ 1

2
Q

(
x − y

2

)
−Q(x)−Q(y)

∥∥∥∥
= lim
n→∞

∥∥∥∥4n
(

1

2
f

(
x + y

2n

)
+ 1

2
f

(
x − y

2n

)
− f

( x
2n

)
− f

( y
2n

))∥∥∥∥
≤ lim
n→∞

∥∥∥∥4nρ

(
2f

(
x + y
2n+1

)
+ 2f

(
x − y
2n+1

)
− f

( x
2n

)
− f

( y
2n

))∥∥∥∥
+ lim
n→∞

4β2n

2β1rn
θ(‖x‖r + ‖y‖r )

=
∥∥∥∥ρ

(
2Q

(
x + y

2

)
+ 2Q

(
x − y

2

)
−Q(x)−Q(y)

)∥∥∥∥
for all x, y ∈ X. So,

∥∥∥∥1

2
Q

(
x + y

2

)
+ 1

2
Q

(
x − y

2

)
−Q(x)−Q(y)

∥∥∥∥
≤

∥∥∥∥ρ
(

2Q

(
x + y

2

)
+ 2Q

(
x − y

2

)
−Q(x)−Q(y)

)∥∥∥∥
for all x, y ∈ X. By Lemma 2, the mappingQ : X→ Y is quadratic.

Now, let T : X → Y be another quadratic mapping satisfying (12). Then, we
have
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‖Q(x)− T (x)‖ =
∥∥∥4qQ

( x
2q

)
− 4qT

( x
2q

)∥∥∥
≤

∥∥∥4qQ
( x

2q

)
− 4qf

( x
2q

)∥∥∥+ ∥∥∥4qT
( x

2q

)
− 4qf

( x
2q

)∥∥∥
≤ 2 · 2β2θ

2β1r − 4β2

4β2q

2β1qr
‖x‖r ,

which tends to zero as q →∞ for all x ∈ X. So, we can conclude thatQ(x) = T (x)
for all x ∈ X. This proves the uniqueness ofQ, as desired.

Theorem 4 Let r < 2β2
β1

and θ be nonnegative real numbers, and let f : X→ Y be
an even mapping satisfying f (0) = 0 and (6). Then, there exists a unique quadratic
mappingQ : X→ Y such that

‖f (x)−Q(x)‖ ≤ 2 · 2β2θ

4β2 − 2β1r
‖x‖r (15)

for all x ∈ X.
Proof It follows from (13) that

∥∥∥∥f (x)− 1

4
f (2x)

∥∥∥∥ ≤ 2θ

2β2
‖x‖r

for all x ∈ X. Hence,

∥∥∥∥ 1

4l
f (2lx)− 1

4m
f (2mx)

∥∥∥∥ ≤
m−1∑
j=l

∥∥∥∥ 1

4j
f

(
2j x

)
− 1

4j+1 f
(

2j+1x
)∥∥∥∥

≤ 2θ

2β2

m−1∑
j=l

2β1r

4β2j
‖x‖r (16)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(16) that the sequence { 1

4n f (2
nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
4n f (2

nx)} converges. So, one can define the mapping
Q : X→ Y by

Q(x) := lim
n→∞

1

4n
f (2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (16), we
get (15).

The rest of the proof is similar to the proof of Theorem 7.
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Remark 1 If ρ is a real number such that − 1
2 < ρ <

1
2 and Y is a β-homogeneous

real Banach space, then all the assertions in this section remain valid.

3 Additive-Quadratic ρ-Functional Inequality (2)
in β-Homogeneous Complex Banach Spaces

Throughout this section, assume that ρ is a complex number with |ρ| < 1.
We solve and investigate the additive-quadratic ρ-functional inequality (2) in β-

homogeneous complex normed spaces.

Lemma 3 (i) If an odd mapping f : X→ Y satisfies

‖M2f (x, y)‖ ≤ ‖ρM1f (x, y)‖ (17)

for all x, y ∈ X, then f : X→ Y is additive.
(ii) If an even mapping f : X → Y satisfies f (0) = 0 and (17), then f : X → Y

is quadratic.

Proof (i) Assume that f : X→ Y satisfies (17).
Letting y = 0 in (17), we get

∥∥∥2f
(x

2

)
− f (x)

∥∥∥ ≤ 0, (18)

and so f
(
x
2

) = 1
2f (x) for all x ∈ X.

It follows from (17) and (18) that

‖f (x + y)− f (x)− f (y)‖ =
∥∥∥∥2f

(
x + y

2

)
− f (x)− f (y)

∥∥∥∥
≤ |ρ|β2‖f (x + y)− f (x)− f (y)‖,

and so

f (x + y) = f (x)+ f (y)

for all x, y ∈ X.
(ii) Assume that f : X→ Y satisfies (17).
Letting y = 0 in (17), we get

∥∥∥4f
(x

2

)
− f (x)

∥∥∥ ≤ 0, (19)

and so f
(
x
2

) = 1
4f (x) for all x ∈ X.
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It follows from (17) and (19) that

∥∥∥∥1

2
f (x + y)+ 1

2
f (x − y)− f (x)− f (y)

∥∥∥∥
=

∥∥∥∥2f

(
x + y

2

)
+ 2f

(
x − y

2

)
− f (x)− f (y)

∥∥∥∥
≤ |ρ|β2

∥∥∥∥1

2
f (x + y)+ 1

2
f (x − y)− f (x)− f (y)

∥∥∥∥ ,
and so

f (x + y)+ f (x − y) = 2f (x)+ 2f (y)

for all x, y ∈ X.

We prove the Hyers–Ulam stability of the additive-quadratic ρ-functional
inequality (17) in β-homogeneous complex Banach spaces for an odd mapping
case.

Theorem 5 Let r > β2
β1

and θ be nonnegative real numbers, and let f : X→ Y be
an odd mapping satisfying

‖M2f (x, y)‖ ≤ ‖ρM1f (x, y)‖ + θ(‖x‖r + ‖y‖r ) (20)

for all x, y ∈ X. Then, there exists a unique additive mapping A : X→ Y such that

‖f (x)− A(x)‖ ≤ 2β1r θ

2β1r − 2β2
‖x‖r (21)

for all x ∈ X.
Proof Letting y = 0 in (20), we get

∥∥∥f (x)− 2f
(x

2

)∥∥∥ =
∥∥∥2f

(x
2

)
− f (x)

∥∥∥ ≤ θ‖x‖r (22)

for all x ∈ X. So,

∥∥∥2lf
( x

2l

)
− 2mf

( x
2m

)∥∥∥ ≤
m−1∑
j=l

∥∥∥2j f
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥

≤
m−1∑
j=l

2β2j

2β1rj
θ‖x‖r (23)
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for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (23)
that the sequence {2kf ( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the

sequence {2kf ( x
2k
)} converges. So, one can define the mapping A : X→ Y by

A(x) := lim
k→∞ 2kf

( x
2k

)

for all x ∈ X. Since f is an odd mapping, A is an odd mapping. Moreover, letting
l = 0 and passing the limit m→∞ in (23), we get (21).

The rest of the proof is similar to the proof of Theorem 1.

Theorem 6 Let r < β2
β1

and θ be nonnegative real numbers, and let f : X → Y

be an odd mapping satisfying (20). Then, there exists a unique additive mapping
A : X→ Y such that

‖f (x)− A(x)‖ ≤ 2β1r θ

2β2 − 2β1r
‖x‖r (24)

for all x ∈ X.
Proof It follows from (22) that

∥∥∥∥f (x)− 1

2
f (2x)

∥∥∥∥ ≤ 2β1r

2β2
θ‖x‖r

for all x ∈ X. Hence,

∥∥∥∥ 1

2l
f (2lx)− 1

2m
f (2mx)

∥∥∥∥ ≤
m−1∑
j=l

∥∥∥∥ 1

2j
f

(
2j x

)
− 1

2j+1 f
(

2j+1x
)∥∥∥∥

≤
m∑

j=l+1

2β1r j

2β2j
θ‖x‖r (25)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(25) that the sequence { 1

2n f (2
nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
2n f (2

nx)} converges. So, one can define the mapping
A : X→ Y by

A(x) := lim
n→∞

1

2n
f (2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (25), we
get (24).

The rest of the proof is similar to the proof of Theorem 1.



Additive-Quadratic ρ-Functional Equations in β-Homogeneous Normed Spaces 321

Now, we prove the Hyers–Ulam stability of the additive-quadratic ρ-functional
inequality (17) in β-homogeneous complex Banach spaces for an even mapping
case.

Theorem 7 Let r > 2β2
β1

and θ be nonnegative real numbers, and let f : X → Y

be an even mapping satisfying f (0) = 0 and (20). Then, there exists a unique
quadratic mappingQ : X→ Y such that

‖f (x)−Q(x)‖ ≤ 2β1r θ

2β1r − 4β2
‖x‖r (26)

for all x ∈ X.
Proof Letting y = 0 in (20), we get

∥∥∥f (x)− 4f
(x

2

)∥∥∥ = ∥∥∥4f
(x

2

)
− f (x)

∥∥∥ ≤ θ‖x‖r (27)

for all x ∈ X. So,

∥∥∥4lf
( x

2l

)
− 4mf

( x
2m

)∥∥∥ ≤
m−1∑
j=l

∥∥∥4j f
( x

2j

)
− 4j+1f

( x

2j+1

)∥∥∥

≤
m−1∑
j=l

4β2j

2β1rj
θ‖x‖r (28)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (28)
that the sequence {4kf ( x

2k
)} is Cauchy for all x ∈ X. Since Y is a Banach space, the

sequence {4kf ( x
2k
)} converges. So, one can define the mappingQ : X→ Y by

Q(x) := lim
k→∞ 4kf

( x
2k

)

for all x ∈ X. Since f is an even mapping,Q is an even mapping. Moreover, letting
l = 0 and passing the limit m→∞ in (28), we get (26).

The rest of the proof is similar to the proof of Theorem 3

Theorem 8 Let r < 2β2
β1

and θ be nonnegative real numbers, and let f : X → Y

be an even mapping satisfying f (0) = 0 and (20). Then, there exists a unique
quadratic mappingQ : X→ Y such that

‖f (x)−Q(x)‖ ≤ 2β1r θ

4β2 − 2β1r
‖x‖r (29)

for all x ∈ X.



322 J. R. Lee et al.

Proof It follows from (27) that

∥∥∥∥f (x)− 1

4
f (2x)

∥∥∥∥ ≤ 2β1r

4β2
θ‖x‖r

for all x ∈ X. Hence,

∥∥∥∥ 1

4l
f (2lx)− 1

4m
f (2mx)

∥∥∥∥ ≤
m−1∑
j=l

∥∥∥∥ 1

4j
f

(
2j x

)
− 1

4j+1 f
(

2j+1x
)∥∥∥∥

≤
m∑

j=l+1

2β1rj

4β2j
θ‖x‖r (30)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(30) that the sequence { 1

4n f (2
nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
4n f (2

nx)} converges. So, one can define the mapping
Q : X→ Y by

Q(x) := lim
n→∞

1

4n
f (2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (30), we
get (29).

The rest of the proof is similar to the proof of Theorem 3.

Remark 2 If ρ is a real number such that −1 < ρ < 1 and Y is a β-homogeneous
real Banach space, then all the assertions in this section remain valid.
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Stability of Bi-additive s-Functional
Inequalities and Quasi-multipliers

Jung Rye Lee, Choonkil Park, Themistocles M. Rassias, and Sungsik Yun

Abstract Park et al. (Rocky Mt J Math 49, 593–607 (2019)) solved the following
bi-additive s-functional inequalities:

‖f (x+y, z−w)+f (x−y, z+w)−2f (x, z)+2f (y,w)‖ (1)

≤
∥∥∥∥s

(
2f

(
x+y

2
, z−w

)
+2f

(
x−y

2
, z+w

)
−2f (x, z)+2f (y,w)

)∥∥∥∥ ,

∥∥∥∥2f

(
x + y

2
, z− w

)
+ 2f

(
x − y

2
, z+ w

)
− 2f (x, z)+ 2f (y,w)

∥∥∥∥ (2)

≤ ‖s (f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w))‖ ,

where s is a fixed nonzero complex number with |s| < 1. Using the direct method,
we prove the Hyers–Ulam stability of quasi-multipliers on Banach algebras,
associated with the bi-additive s-functional inequalities (1) and (2).
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1 Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[19] concerning the stability of group homomorphisms. The functional equation
f (x + y) = f (x) + f (y) is called the Cauchy equation. In particular, every
solution of the Cauchy equation is said to be an additive mapping. Hyers [12] gave
a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
Theorem was generalized by Aoki [2] for additive mappings and by Rassias [17] for
linear mappings by considering an unbounded Cauchy difference. A generalization
of the Rassias theorem was obtained by Găvruta [9] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Rassias’ approach.

Gilányi [10] showed that if f satisfies the functional inequality

‖2f (x)+ 2f (y)− f (x − y)‖ ≤ ‖f (x + y)‖, (3)

then f satisfies the Jordan-von Neumann functional equation

2f (x)+ 2f (y) = f (x + y)+ f (x − y).

See also [18]. Fechner [8] and Gilányi [11] proved the Hyers–Ulam stability of the
functional inequality (3).

Park [14, 15] defined additive ρ-functional inequalities and proved the Hyers–
Ulam stability of the additive ρ-functional inequalities in Banach spaces and
non-Archimedean Banach spaces. The stability problems of various functional
equations and functional inequalities have been extensively investigated by a
number of authors (see [3, 5–7]).

The notion of a quasi-multiplier is a generalization of the notion of a multiplier
on a Banach algebra, which was introduced by Akemann and Pedersen [1] for
C∗-algebras. McKennon [13] extended the definition to a general complex Banach
algebra with bounded approximate identity as follows.

Definition 1 ([13]) Let A be a complex Banach algebra. A C-bilinear mapping P :
A× A→ A is called a quasi-multiplier on A if P satisfies

P(xy, zw) = xP (y, z)w

for all x, y, z,w ∈ A.

This paper is organized as follows: In Sections 2 and 3, we prove the Hyers–Ulam
stability of the bi-additive s-functional inequalities (1) and (2) in complex Banach
spaces by using the direct method. In Section 4, we investigate quasi-multipliers
on Banach algebras associated with the bi-additive s-functional inequalities (1)
and (2).
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Throughout this paper, let X be a complex normed space and Y be a complex
Banach space. LetA be a complex Banach algebra. Assume that s is a fixed nonzero
complex number with |s| < 1.

2 Bi-additive s-Functional Inequality (1)

In [16], Park solved the bi-additive s-functional inequality (1) in complex normed
spaces.

Lemma 1 ([16, Lemma 2.1]) If a mapping f : X2 → Y satisfies f (0, z) =
f (x, 0) = 0 and

‖f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w)‖ (4)

≤
∥∥∥∥s

(
2f

(
x + y

2
, z− w

)
+ 2f

(
x − y

2
, z+ w

)
− 2f (x, z)+ 2f (y,w)

)∥∥∥∥
for all x, y, z,w ∈ X, then f : X2 → Y is bi-additive.

Using the direct method, we prove the Hyers–Ulam stability of the bi-additive
s-functional inequality (4) in complex Banach spaces.

Theorem 1 Let ϕ : X2 → [0,∞) be a function satisfying

Ψ (x, y) :=
∞∑
j=1

2j ϕ
( x

2j
,
y

2j

)
<∞ (5)

for all x, y ∈ X. Let f : X2 → Y be a mapping satisfying f (x, 0) = f (0, z) = 0
and

‖f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w)‖ (6)

≤
∥∥∥∥s

(
2f

(
x + y

2
, z− w

)
+ 2f

(
x − y

2
, z+ w

)
− 2f (x, z)+ 2f (y,w)

)∥∥∥∥
+ϕ(x, y)ϕ(z,w)

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping P : X2 → Y

such that

‖f (x, z)− P(x, z)‖ ≤ 1

2
Ψ (x, x)ϕ(z, 0) (7)

for all x, z ∈ X.
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Proof Letting w = 0 and y = x in (6), we get

‖f (2x, z)− 2f (x, z)‖ ≤ ϕ(x, x)ϕ(z, 0) (8)

for all x, z ∈ X.
It follows from (8) that

∥∥∥f (x, z)− 2f
(x

2
, z

)∥∥∥ ≤ ϕ (x
2
,
x

2

)
ϕ(z, 0)

for all x, z ∈ X. Hence,

∥∥∥2lf
( x

2l
, z

)
− 2mf

( x
2m
, z

)∥∥∥ ≤
m−1∑
j=l

∥∥∥2j f
( x

2j
, z

)
− 2j+1f

( x

2j+1 , z
)∥∥∥ (9)

≤ 1

2

m∑
j=l+1

2j ϕ
( x

2j
,
x

2j

)
ϕ(z, 0)

for all nonnegative integers m and l with m > l and all x, z ∈ X. It follows from
(9) that the sequence {2kf ( x

2k
, z)} is Cauchy for all x, z ∈ X. Since Y is a Banach

space, the sequence {2kf ( x
2k
, z)} converges. So one can define the mapping P :

X2 → Y by

P(x, z) := lim
k→∞ 2kf

( x
2k
, z

)

for all x, z ∈ X. Moreover, letting l = 0 and passing to the limit m → ∞ in (9),
we get (7).

It follows from (5) and (6) that

‖P(x + y, z− w)+ P(x − y, z+ w)− 2P(x, z)+ 2P(y,w)‖

= lim
n→∞

∥∥∥∥2n
(
f

(
x+y
2n

, z−w
)
+f

(
x−y
2n

, z+ w
)
−2f

( x
2n
, z

)
+2f

( y
2n
,w

))∥∥∥∥
≤ lim
n→∞

∥∥∥∥2ns

(
2f

(
x+y
2n+1

, z−w
)
+2f

(
x−y
2n+1

, z+w
)
−2f

( x
2n
, z

)
+2f

( y
2n
,w

))∥∥∥∥
+ lim
n→∞ 2nϕ

( x
2n
,
x

2n

)
ϕ(z, 0)

≤
∥∥∥∥s

(
2P

(
x + y

2
, z− w

)
+ 2P

(
x − y

2
, z+ w

)
− 2P(x, z)+ 2P(y,w)

)∥∥∥∥
for all x, y, z,w ∈ X. So

‖P(x + y, z− w)+ P(x − y, z+ w)− 2P(x, z)+ 2P(y,w)‖
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≤
∥∥∥∥s

(
2P

(
x + y

2
, z− w

)
+ 2P

(
x − y

2
, z+ w

)
− 2P(x, z)+ 2P(y,w)

)∥∥∥∥
for all x, y, z,w ∈ X. By Lemma 1, the mapping P : X2 → Y is bi-additive.

Now, let T : X2 → Y be another bi-additive mapping satisfying (7). Then we
have

‖P(x, z)− T (x, z)‖ =
∥∥∥2qP

( x
2q
, z

)
− 2qT

( x
2q
, z

)∥∥∥
≤

∥∥∥2qP
( x

2q
, z

)
−2qf

( x
2q
, z

)∥∥∥+
∥∥∥2qT

( x
2q
, z

)
−2qf

( x
2q
, z

)∥∥∥
≤ 2qΦ

( x
2q
,
x

2q

)
ϕ(z, 0),

which tends to zero as q →∞ for all x, z ∈ X. So we can conclude that P(x, z) =
T (x, z) for all x, z ∈ X. This proves the uniqueness of P , as desired.

Corollary 1 Let r > 1 and θ be nonnegative real numbers and f : X2 → Y be a
mapping satisfying f (x, 0) = f (0, z) = 0 and

‖f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w)‖ (10)

≤
∥∥∥∥s

(
2f

(
x + y

2
, z− w

)
+ 2f

(
x − y

2
, z+ w

)
− 2f (x, z)+ 2f (y,w)

)∥∥∥∥
+θ(‖x‖r + ‖y‖r )(‖z‖r + ‖w‖r )

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping A : X2 → Y

such that

‖f (x, z)− A(x, z)‖ ≤ 2θ

2r − 2
‖x‖r‖z‖r

for all x, z ∈ X.
Proof The proof follows from Theorem 1 by taking ϕ(x, y) = √θ(‖x‖r + ‖y‖r )
for all x, y ∈ X.

Theorem 2 Let ϕ : X2 → [0,∞) be a function satisfying

Ψ (x, y) :=
∞∑
j=0

1

2j
ϕ
(

2j x, 2j y
)
<∞ (11)

for all x, y ∈ X. Let f : X2 → Y be a mapping satisfying (6) and f (x, 0) =
f (0, z) = 0 for all x, z ∈ X. Then there exists a unique bi-additive mapping P :
X2 → Y such that
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‖f (x, z)− P(x, z)‖ ≤ 1

2
Ψ (x, x) ϕ(z, 0)

for all x, z ∈ X.
Proof It follows from (8) that

∥∥∥∥f (x, z)− 1

2
f (2x, z)

∥∥∥∥ ≤ 1

2
ϕ(x, x)ϕ(z, 0)

for all x, z ∈ X.
The rest of the proof is similar to the proof of Theorem 1.

Corollary 2 Let r < 1 and θ be nonnegative real numbers and f : X2 → Y be a
mapping satisfying (10) and f (x, 0) = f (0, z) = 0 for all x, z ∈ X. Then there
exists a unique bi-additive mapping P : X2 → Y such that

‖f (x, z)− P(x, z)‖ ≤ 2θ

2− 2r
‖x‖r‖z‖r

for all x, z ∈ X.
Proof The proof follows from Theorem 2 by taking ϕ(x, y) = √θ(‖x‖r + ‖y‖r )
for all x, y ∈ X.

3 Bi-additive s-Functional Inequality (2)

In [16], Park solved the bi-additive s-functional inequality (2) in complex normed
spaces.

Lemma 2 ([16, Lemma 3.1]) If a mapping f : X2 → Y satisfies f (0, z) =
f (x, 0) = 0 and

∥∥∥∥2f

(
x + y

2
, z− w

)
+ 2f

(
x − y

2
, z+ w

)
− 2f (x, z)+ 2f (y,w)

∥∥∥∥ (12)

≤ ‖s (f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w))‖

for all x, y, z,w ∈ X, then f : X2 → Y is bi-additive.

Using the direct method, we prove the Hyers–Ulam stability of the bi-additive
s-functional inequality (12) in complex Banach spaces.

Theorem 3 Let ϕ : X2 → [0,∞) be a function satisfying (5). Let f : X2 → Y be
a mapping satisfying f (x, 0) = f (0, z) = 0 and
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∥∥∥∥2f

(
x + y

2
, z− w

)
+ 2f

(
x − y

2
, z+ w

)
− 2f (x, z)+ 2f (y,w)

∥∥∥∥ (13)

≤ ‖s (f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w))‖
+ϕ(x, y)ϕ(z,w)

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping P : X2 → Y

such that

‖f (x, z)− P(x, z)‖ ≤ 1

4
Ψ (2x, 0)ϕ(z, 0) (14)

for all x, z ∈ X, where Ψ is given in the statement of Theorem 1.

Proof Letting y = w = 0 in (13), we get

∥∥∥4f
(x

2
, z

)
− 2f (x, z)

∥∥∥ ≤ ϕ(x, 0)ϕ(z, 0) (15)

for all x, z ∈ X.
It follows from (15) that

∥∥∥f (x, z)− 2f
(x

2
, z

)∥∥∥ ≤ 1

2
ϕ(x, 0)ϕ(z, 0)

for all x, z ∈ X.
The rest of the proof is similar to the proof of Theorem 1.

Corollary 3 Let r > 1 and θ be nonnegative real numbers and f : X2 → Y be a
mapping satisfying f (x, 0) = f (0, z) = 0 and

∥∥∥∥2f

(
x + y

2
, z− w

)
+ 2f

(
x − y

2
, z+ w

)
− 2f (x, z)+ 2f (y,w)

∥∥∥∥ (16)

≤ ‖s (f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w))‖
+θ(‖x‖r + ‖y‖r )(‖z‖r + ‖w‖r )

for all x, y, z,w ∈ X. Then there exists a unique bi-additive mapping P : X2 → Y

such that

‖f (x, z)− P(x, z)‖ ≤ 2r−1θ

2r − 2
‖x‖r‖z‖r

for all x, z ∈ X.
Proof The proof follows from Theorem 3 by taking ϕ(x, y) = √θ(‖x‖r + ‖y‖r )
for all x, y ∈ X.
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Theorem 4 Let ϕ : X2 → [0,∞) be a function satisfying (11). Let f : X2 → Y

be a mapping satisfying (13) and f (x, 0) = f (0, z) = 0 for all x, z ∈ X. Then
there exists a unique bi-additive mapping P : X2 → Y such that

‖f (x, z)− P(x, z)‖ ≤ 1

4
Ψ (2x, 0) ϕ(z, 0)

for all x, z ∈ X, where Ψ is given in the statement of Theorem 2.

Proof It follows from (15) that

∥∥∥∥f (x, z)− 1

2
f (2x, z)

∥∥∥∥ ≤ 1

4
ϕ(2x, 0)ϕ(z, 0)

for all x, z ∈ X.
The rest of the proof is similar to the proofs of Theorems 1 and 3.

Corollary 4 Let r < 1 and θ be nonnegative real numbers and f : X2 → Y be a
mapping satisfying (16) and f (x, 0) = f (0, z) = 0 for all x, z ∈ X. Then there
exists a unique bi-additive mapping P : X2 → Y such that

‖f (x, z)− P(x, z)‖ ≤ 2r−1θ

2− 2r
‖x‖r‖z‖r

for all x, z ∈ X.
Proof The proof follows from Theorem 4 by taking ϕ(x, y) = √θ(‖x‖r + ‖y‖r )
for all x, y ∈ X.

4 Quasi-multipliers in Banach Algebras

In this section, we investigate quasi-multipliers on complex Banach algebras
associated with the bi-additive s-functional inequalities (4) and (12).

Lemma 3 ([4, Lemma 2.1]) Let f : X2 → Y be a bi-additive mapping such that
f (λx, μz) = λμf (x, z) for all x, z ∈ X and λ,μ ∈ S1 := {ν ∈ C : |ν| = 1}.
Then f is C-bilinear.

Theorem 5 Let ϕ : A2 → [0,∞) be a function satisfying

Ψ (x, y) :=
∞∑
j=1

2j ϕ
( x

2j
,
y

2j

)
<∞ (17)

for all x, y ∈ A. Let f : A2 → A be a mapping satisfying f (x, 0) = f (0, z) = 0
and
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‖f (λ(x + y), μ(z− w))+f (λ(x − y), μ(z+ w))−2λμf (x, z)+2λμf (y,w)‖

≤
∥∥∥∥s

(
2f

(
x + y

2
, z−w

)
+2f

(
x − y

2
, z+w

)
−2f (x, z)+2f (y,w)

)∥∥∥∥ (18)

+ϕ(x, y)ϕ(z,w)

for all λ,μ ∈ S1 and all x, y, z,w ∈ A. Then there exists a unique C-bilinear
mapping P : A2 → A such that

‖f (x, z)− P(x, z)‖ ≤ 1

2
Ψ (x, x)ϕ(z, 0) (19)

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies

‖f (xy, zw)− xf (y, z)w‖ ≤ ϕ(x, y)2ϕ(z,w)2 (20)

for all x, y, z,w ∈ A, then the mapping P : A2 → A is a quasi-multiplier.
Furthermore, if, in addition, the mapping f : A2 → A satisfies f (2x, z) =

2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-multiplier.

Proof Let λ = μ = 1 in (18). By Theorem 1, there is a unique bi-additive mapping
P : A2 → A satisfying (19) defined by

P(x, z) := lim
n→∞ 2nf

( x
2n
, z

)

for all x, z ∈ A.
Letting y = x and w = 0 in (18), we get

‖f (2λx,μz)− 2λμf (x, z)‖ ≤ ϕ(x, 0)ϕ(z, 0)

for all x, z ∈ A and all λ,μ ∈ S1. So

‖P(2λx,μz)− 2λμP(x, z)‖ = lim
n→∞ 2n

∥∥∥f (
2λ
x

2n
, μz

)
− 2λμf

( x
2n
, z

)∥∥∥
≤ lim
n→∞ 2nϕ

( x
2n
,
x

2n

)
ϕ(z, 0) ≤ lim

n→∞
2nLn

2n
ϕ(x, x)ϕ(z, 0) = 0

for all x, z ∈ A and all λ,μ ∈ S1. Hence, P(2λx,μz) = 2λμP(x, z) and so
P(λx,μz) = λμP(x, z) for all x, z ∈ A and all λ,μ ∈ S1. By Lemma 3, the
bi-additive mapping P : A2 → A is C-bilinear.

It follows from (20) that

‖P(xy, zw)− xP (y, z)w‖ = lim
n→∞ 4n

∥∥∥f ( xy

2n · 2n , zw
)
− x

2n
f

( y
2n
, z

)
w

∥∥∥
≤ lim
n→∞ 4nϕ

( x
2n
,
y

2n

)2
ϕ (z,w)2 = 0
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for all x, y, z,w ∈ A. Thus,

P(xy, zw) = xP (y, z)w

for all x, y, z,w ∈ A.
If f (2x, z) = 2f (x, z) for all x, z ∈ A, then we can easily show that P(x, z) =

f (x, z) for all x, z ∈ A. Hence, the mapping f : A2 → A is a quasi-multiplier.

Corollary 5 Let r > 2 and θ be nonnegative real numbers, and f : A2 → A be a
mapping satisfying f (x, 0) = f (0, z) = 0 and

‖f (λ(x + y), μ(z− w))+f (λ(x−y), μ(z+w))−2λμf (x, z)+2λμf (y,w)‖

≤
∥∥∥∥s

(
2f

(
x+y

2
, z−w

)
+2f

(
x−y

2
, z+w

)
−2f (x, z)+2f (y,w)

)∥∥∥∥ (21)

+θ(‖x‖r + ‖y‖r )(‖z‖r + ‖w‖r )

for all λ,μ ∈ S1 and all x, y, z,w ∈ A. Then there exists a unique C-bilinear
mapping P : A2 → A such that

‖f (x, z)− P(x, z)‖ ≤ 2θ

2r − 2
‖x‖r‖z‖r

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies

‖f (xy, zw)− xf (y, z)w‖ ≤ θ2(‖x‖r + ‖y‖r )2(‖z‖r + ‖w‖r )2 (22)

for all x, y, z,w ∈ A, then the mapping P : A2 → A is a quasi-multiplier.
Furthermore, if, in addition, the mapping f : A2 → A satisfies f (2x, z) =

2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-multiplier.

Proof The proof follows from Theorem 5 by taking ϕ(x, y) = √θ(‖x‖r + ‖y‖r )
for all x, y ∈ X.

Theorem 6 Let ϕ : A2 → [0,∞) be a function satisfying

Ψ (x, y) :=
∞∑
j=0

1

2j
ϕ
(

2j x, 2j y
)
<∞ (23)

for all x, y ∈ A. Let f : A2 → A be a mapping satisfying (18) and f (x, 0) =
f (0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping P :
A2 → A such that

‖f (x, z)− P(x, z)‖ ≤ 1

2
Ψ (x, x)ϕ(z, 0)
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for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (20), then the mapping P :

A2 → A is a quasi-multiplier.
Furthermore, if, in addition, the mapping f : A2 → A satisfies f (2x, z) =

2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-multiplier.

Proof The proof is similar to the proof of Theorem 5.

Corollary 6 Let r < 1 and θ be nonnegative real numbers, and f : A2 → A be
a mapping satisfying (21) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping P : A2 → A such that

‖f (x, z)− P(x, z)‖ ≤ 2θ

2− 2r
‖x‖r‖z‖r

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (22), then the mapping P :

A2 → A is a quasi-multiplier.
Furthermore, if, in addition, the mapping f : A2 → A satisfies f (2x, z) =

2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-multiplier.

Proof The proof follows from Theorem 6 by taking ϕ(x, y) = √θ(‖x‖r + ‖y‖r )
for all x, y ∈ X.

Similarly, we can obtain the following results.

Theorem 7 Let ϕ : A2 → [0,∞) be a function satisfying (17). Let f : A2 → A

be a mapping satisfying f (x, 0) = f (0, z) = 0 and

∥∥∥∥2f

(
λ
x+y

2
, μ(z−w)

)
+2f

(
λ
x−y

2
, μ(z+w)

)
−2λμf (x, z)+2λμf (y,w)

∥∥∥∥
≤ ‖s (f (x + y, z− w)+ f (x − y, z+ w)− 2f (x, z)+ 2f (y,w))‖ (24)

+ϕ(x, y)ϕ(z,w)

for all λ,μ ∈ S1 and all x, y, z,w ∈ A. Then there exists a unique C-bilinear
mapping P : A2 → A such that

‖f (x, z)− P(x, z)‖ ≤ 1

4
Ψ (2x, 0)ϕ(z, 0),

for all x ∈ A, where Ψ is given in the statement of Theorem 5.
If, in addition, the mapping f : A2 → A satisfies (20), then the mapping P :

A2 → A is a quasi-multiplier.
Furthermore, if, in addition, the mapping f : A2 → A satisfies f (2x, z) =

2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-multiplier.
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Corollary 7 Let r > 2 and θ be nonnegative real numbers, and f : A2 → A be a
mapping satisfying f (x, 0) = f (0, z) = 0 and

∥∥∥∥2f

(
λ
x+y

2
, μ(z−w)

)
+2f

(
λ
x−y

2
, μ(z+w)

)
−2λμf (x, z)+2λμf (y,w)

∥∥∥∥
≤ ‖s (f (x+y, z−w)+f (x−y, z+w)−2f (x, z)+2f (y,w))‖ (25)

+θ(‖x‖r + ‖y‖r )(‖z‖r + ‖w‖r )

for all λ,μ ∈ S1 and all x, y, z,w ∈ A. Then there exists a unique C-bilinear
mapping P : A2 → A such that

‖f (x, z)− P(x, z)‖ ≤ 2r−1θ

2r − 2
‖x‖r‖z‖r

for all x ∈ A.
If, in addition, the mapping f : A2 → A satisfies (22), then the mapping P :

A2 → A is a quasi-multiplier.
Furthermore, if, in addition, the mapping f : A2 → A satisfies f (2x, z) =

2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-multiplier.

Proof The proof follows from Theorem 7 by taking ϕ(x, y) = √θ(‖x‖r + ‖y‖r )
for all x, y ∈ X.

Theorem 8 Let ϕ : A2 → [0,∞) be a function satisfying (23). Let f : A→ A be
a mapping satisfying (24) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping P : A2 → A such that

‖f (x, z)− P(x, z)‖ ≤ 1

4
Ψ (2x, 0)ϕ(z, 0)

for all x, z ∈ A, where Ψ is given in the statement of Theorem 6.
If, in addition, the mapping f : A2 → A satisfies (20), then the mapping P :

A2 → A is a quasi-multiplier.
Furthermore, if, in addition, the mapping f : A2 → A satisfies f (2x, z) =

2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-multiplier.

Corollary 8 Let r < 1 and θ be nonnegative real numbers, and f : A → A be a
mapping satisfying (25) and f (x, 0) = f (0, z) = 0 for all x, z ∈ A. Then there
exists a unique C-bilinear mapping P : A2 → A such that

‖f (x, z)− P(x, z)‖ ≤ 2r−1θ

2− 2r
‖x‖r‖z‖r

for all x, z ∈ A.
If, in addition, the mapping f : A2 → A satisfies (22), then the mapping P :

A2 → A is a quasi-multiplier.
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Furthermore, if, in addition, the mapping f : A2 → A satisfies f (2x, z) =
2f (x, z) for all x, z ∈ A, then the mapping f : A2 → A is a quasi-multiplier.

Proof The proof follows from Theorem 8 by taking ϕ(x, y) = √θ(‖x‖r + ‖y‖r )
for all x, y ∈ X.
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9. P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive
mappings. J. Math. Anal. Appl. 184, 431–436 (1994)

10. A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung. Aequationes Math.
62, 303–309 (2001)

11. A. Gilányi, On a problem by K. Nikodem. Math. Inequal. Appl. 5, 707–710 (2002)
12. D.H. Hyers, On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27,

222–224 (1941)
13. M. McKennon, Quasi-multipliers. Trans. Am. Math. Soc. 233, 105–123 (1977)
14. C. Park, Additive ρ -functional inequalities and equations. J. Math. Inequal. 9, 17–26 (2015)
15. C. Park, Additive ρ -functional inequalities in non-Archimedean normed spaces. J. Math.

Inequal. 9, 397–407 (2015)
16. C. Park, Y. Jin, X. Zhang, Bi-additive s -functional inequalities and quasi-multipliers on

Banach algebras. Rocky Mt. J. Math. 49, 593–607 (2019)
17. T.M. Rassias, On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc.

72, 297–300 (1978)
18. J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation. Aequa-

tiones Math. 66, 191–200 (2003)
19. S.M. Ulam, A Collection of the Mathematical Problems (Interscience Publisher, New York,

1960)



On the Stability of Some Functional
Equations and s-Functional Inequalities

B. Noori, M. B. Moghimi, A. Najati, and Themistocles M. Rassias

Abstract In this work, the Hyers–Ulam type stability and the hyperstability of the
following functional equations

f (x + y)+ f (x − y) = f (2x)+ f (y)+ f (−y),
f (ax + y)+ f (ax − y) = f (ax)+ af (x),
f (ax + y)+ f (ax − y) = f (ax)+ af (x)+ f (y)+ f (−y)

are proved. We also introduce and solve some s-functional inequalities, and we
prove their Hyers–Ulam stabilities.

1 Introduction

The functional equation (ξ) is called stable if any function g satisfying the equation
(ξ) approximately is near to true solution of (ξ). S. M. Ulam in 1940 [16] introduced
the stability of homomorphisms between two groups. More precisely, he proposed
the following problem: Given a group (G1, .), a metric group (G2, ∗, d) and a
positive number ε, does there exist a δ > 0 such that if a function f : G1 → G2
satisfies the inequality d(f (x.y), f (x) ∗ f (y)) < δ for all x, y ∈ G1, then there
exists a homomorphism T : G1 → G2 such that d(f (x), T (x)) < ε for all x ∈ G1?
If this problem has a solution, we say that the homomorphisms from G1 to G2
are stable. In 1941, D. H. Hyers [7] gave a partial solution of Ulam’s problem for
the case of approximate additive mappings under the assumption that G1 and G2
are Banach spaces. T. Aoki [1] and Th.M. Rassias [14] provided a generalization
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of the Hyers’ theorem for additive and linear mappings, respectively, by allowing
the Cauchy difference to be unbounded. During the last decades, several stability
problems of functional equations have been investigated by several mathematicians.
A large list of references concerning the stability of functional equations can be
found in [2, 4, 5, 8–13, 15].

In this paper, we deal with the following functional equations:

f (x + y)+ f (x − y) = f (2x)+ f (y)+ f (−y), (1)

f (ax + y)+ f (ax − y) = f (ax)+ af (x), (2)

f (ax + y)+ f (ax − y) = f (ax)+ af (x)+ f (y)+ f (−y). (3)

2 Solutions of Functional Equations (1), (2) and (3)

Theorem 1 Let X and Y be vector spaces. A function f : X → Y satisfies (1) if
and only if f is additive.

Proof Let f satisfy (1). Letting x = 0 in (1), we get f (0) = 0. Letting y = x
in (1), we infer that f is odd. Therefore, (1) implies f (x+ y)+f (x− y) = f (2x).
Replacing x by x+y

2 and y by x−y
2 in the last equation, we get f is additive.

Conversely, if f is additive, it is easy to check that f satisfies (1).

Theorem 2 Let X and Y be vector spaces. If functions f, g : X→ Y satisfy

f (x + y)+ f (x − y) = f (2x)+ g(y)+ g(−y), x, y ∈ X, (4)

then f − f (0) is additive and g(x)+ g(−x) = f (0) for all x ∈ X.
Proof Letting x = 0 in (4), we get f (y)+ f (−y) = f (0)+ g(y)+ g(−y) for all
y ∈ X. Therefore, f satisfies f (x+y)+f (x−y) = f (2x)+f (y)+f (−y)−f (0)
for all x, y ∈ X. It is easy to see that f−f (0) satisfies (1). Then, f−f (0) is additive
by Theorem 1.

Letting y = x in (4), we infer that g(x)+ g(−x) = f (0) for all x ∈ X.

Theorem 3 Let X and Y be vector spaces. If functions f, g : X→ Y satisfy

f (x + y)+ f (x − y) = g(2x)+ g(y)+ g(−y), x, y ∈ X, (5)

then there exist an additive function A : X→ Y and a quadratic functionQ : X→
Y such that f = A+Q+ f (0) and g = A+ 1

2Q+ g(0).
Proof Letting y = 0 in (5), we get g(2x) = 2f (x) − 2g(0) for all x ∈ X. Letting
x = 0 in (5), we get g(y)+g(−y) = f (y)+f (−y)−g(0) for all y ∈ X. Therefore,
3g(0) = 2f (0), and f satisfies



On the Stability of Some Functional Equations and s-Functional Inequalities 341

f (x + y)+ f (x − y) = 2f (x)+ f (y)+ f (−y)− 2f (0), x, y ∈ X. (6)

It is easy to see that F = f −f (0) satisfies F(x+y)+F(x−y) = 2F(x)+F(y)+
F(−y) for all x, y ∈ X. Then, F has the form F = A +Q, where A : X → Y is
additive andQ : X→ Y is quadratic (see [3]). This proves that f = A+Q+f (0).
Since g(2x)− g(0) = 2F(x), we get g(x) = g(0)+ A(x)+ 1

2Q(x) for all x ∈ X.

Theorem 4 Let X and Y be vector spaces. If functions f, g, h : X→ Y satisfy

f (x + y)+ f (x − y) = h(x)+ g(y)+ g(−y), x, y ∈ X, (7)

then there exist an additive function A : X→ Y and a quadratic functionQ : X→
Y such that f = A+Q+ f (0), h = 2A+ 2Q+ h(0), and ge = Q+ g(0), where
ge is the even part of g.

Proof Letting y = 0 in (7), we get h(x) = 2f (x) − 2g(0) for all x ∈ X. Letting
x = 0 in (7), we get g(y)+g(−y) = f (y)+f (−y)−h(0) for all y ∈ X. Therefore,
2f (0) = 2g(0)+ h(0), and f satisfies

f (x + y)+ f (x − y) = 2f (x)+ f (y)+ f (−y)− 2f (0), x, y ∈ X.

It is easy to see that F = f −f (0) satisfies F(x+y)+F(x−y) = 2F(x)+F(y)+
F(−y) for all x, y ∈ X. Then, F has the form F = A +Q, where A : X → Y is
additive and Q : X → Y is quadratic. This proves that f = A +Q + f (0). Since
h(x)− h(0) = 2F(x), we get h(x) = h(0)+ 2A(x)+ 2Q(x) for all x ∈ X. On the
other hand, we have

g(y)+ g(−y) = f (y)+ f (−y)− h(0)
= F(y)+ F(−y)+ 2f (0)− h(0)
= 2Q(y)+ 2g(0), y ∈ X,

which completes the proof.

Theorem 5 Let X and Y be vector spaces, and let a �= 0, 1. If a function f : X→
Y satisfies (2), then f is additive.

Proof Letting x = y = 0 in (2), we get f (0) = 0. If we put x = 0 in (2), we
infer that f is odd. Letting y = 0 in (2), we obtain f (ax) = af (x) for all x ∈ X.
Therefore, f satisfies f (ax + y)+ f (ax − y) = 2f (ax) for all x ∈ X. Replacing
x by x/a in the last equation, we get f (x + y)+ f (x − y) = 2f (x) for all x ∈ X.
This shows f is additive.

Theorem 6 LetX and Y be vector spaces, and let a �= 0. If functions f, g : X→ Y

satisfy f (0) = 0 and

f (ax + y)+ f (ax − y) = g(x)+ af (x), x, y ∈ X, (8)
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then f and g are additive.

Proof Letting y = 0 in (8), we get 2f (ax) = g(x)+ af (x). Therefore, f satisfies
f (ax + y) + f (ax − y) = 2f (ax) for all x ∈ X. Replacing x by x/a in the last
equation, we get f (x + y)+ f (x − y) = 2f (x) for all x ∈ X. Then, f is additive.
It follows from 2f (ax) = g(x)+ af (x) that

g(x + y) = 2f (ax + ay)− af (x + y)
= [2f (ax)− af (x)] + [2f (ay)− af (y)]
= g(x)+ g(y), x, y ∈ X.

Therefore, g is additive.

Theorem 7 Let X and Y be vector spaces, and let a ∈ Z \ {0,±1}. If a function
f : X→ Y satisfies (3), then f is additive.

Proof We may suppose that f �= 0. Letting x = y = 0 in (3), we get f (0) = 0. If
we put y = 0 in (3), we obtain f (ax) = af (x) for all x ∈ X. Therefore, f satisfies

f (ax + y)+ f (ax − y) = 2f (ax)+ f (y)+ f (−y), x, y ∈ X. (9)

Replacing x by x/a in (9), we get

f (x + y)+ f (x − y) = 2f (x)+ f (y)+ f (−y), x, y ∈ X. (10)

We claim that if f is even, then f = 0. If f is even, it follows from (10) that
f (ax) = a2f (x) for all x ∈ X. On the other hand, we have f (ax) = af (x) for
all x ∈ X. Hence, a2 = a, which is a contradiction. Since fe (the even part of f )
satisfies in (3), we infer that fe = 0 and f is odd. Therefore, (10) implies that f is
additive.

Theorem 8 Let X and Y be vector spaces, and let a ∈ Z \ {0}. If functions f, g :
X→ Y satisfy

f (ax + y)+ f (ax − y) = g(x)+ f (y)+ f (−y), x, y ∈ X, (11)

then there exist a quadratic functionQ : X→ Y and an additive function A : X→
Y such that f = Q+ A+ f (0) and g = 2[a2Q+ aA].
Proof Letting y = 0 in (11), we get 2f (ax) = g(x) + 2f (0) for all x ∈ X.
Therefore, f satisfies

f (ax+y)+f (ax−y) = 2f (ax)+f (y)+f (−y)−2f (0), x, y ∈ X. (12)

Replacing x by x/a in (12), we get
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f (x + y)+ f (x − y) = 2f (x)+ f (y)+ f (−y)− 2f (0), x, y ∈ X. (13)

Therefore, the function h : f −f (0) satisfies h(x+y)+h(x−y) = 2h(x)+h(y)+
h(−y) for all x, y ∈ X. Then, there exist a quadratic function Q : X → Y and an
additive function A : X→ Y such that h = Q+A. Hence, f = Q+A+ f (0) and
g = 2[a2Q+ aA].

3 Some s-Functional Inequalities

Lemma 1 LetX be a vector space and Y be a normed space, and let s be a complex
number with 2|s|2 < 1. If a function f : X→ Y satisfies

‖f (x + y)− f (x)− f (y)‖
� ‖s[f (x + y)+ f (x − y)− f (2x)− f (y)− f (−y)]‖, (14)

for all x, y ∈ X, then f is additive.

Proof Letting x = y = 0 in (14), we get f (0) = 0. Letting y = −x in (14) and
using f (0) = 0, we get ‖f (x) + f (−x)‖ � |s|‖f (x) + f (−x)‖ for all x ∈ X.
Since |s| < 1, we infer that f is odd. Therefore, (14) means

‖f (x + y)− f (x)− f (y)‖
� ‖s[f (x + y)+ f (x − y)− f (2x)]‖, (15)

for all x, y ∈ X. Letting y = x in (15), we get f (2x) = 2f (x) for all x ∈ X. It
follows from (15) that

‖f (x + y)+ f (x − y)− f (2x)‖
� ‖s[f (2x)+ f (2y)− f (2x + 2y)]‖
� 2‖s[f (x)+ f (y)− f (x + y)]‖,

for all x, y ∈ X. Therefore,

‖f (x + y)− f (x)− f (y)‖ � 2|s|2‖f (x + y)− f (x)− f (y)‖, x, y ∈ X.

Since 2|s|2 < 1, we get f (x + y)− f (x)− f (y) = 0 for all x, y ∈ X. This proves
that f is additive.

Lemma 2 LetX be a vector space and Y be a normed space, and let s be a complex
number with |s| < 1. If a function f : X→ Y satisfies

‖f (x + y)+ f (x − y)− f (2x)− f (y)− f (−y)‖
� ‖s[f (x + y)− f (x)− f (y)]‖, (16)



344 B. Noori et al.

for all x, y ∈ X, then f is additive.

Proof Letting x = y = 0 in (16), we get f (0) = 0. Letting y = −x in (16) and
using f (0) = 0, we get ‖f (x) + f (−x)‖ � |s|‖f (x) + f (−x)‖ for all x ∈ X.
Since |s| < 1, we infer that f is odd. Therefore, (16) means

‖f (x + y)+ f (x − y)− f (2x)‖
� ‖s[f (x + y)− f (x)− f (y)]‖, (17)

for all x, y ∈ X. Letting y = 0 in (17), we get f (2x) = 2f (x) for all x ∈ X. It
follows from (17) that

2‖f (x)+ f (y)− f (x + y)‖ = ‖f (2x)+ f (2y)− f (2x + 2y)‖
� ‖s[f (2x)− f (x + y)− f (x − y)]‖
� |s|2‖f (x)+ f (y)− f (x + y)‖,

for all x, y ∈ X. Since |s| < 1, we get f (x+y)−f (x)−f (y) = 0 for all x, y ∈ X.
This proves that f is additive.

Theorem 9 Let X be a normed space and Y be a Banach space. Suppose that s is
a complex number with 2|s|2 < 1. Let a function f : X→ Y satisfy

‖f (x + y)− f (x)− f (y)‖
� ‖s[f (x + y)+ f (x − y)− f (2x)− f (y)− f (−y)]‖
+ ε(‖x‖r + ‖y‖r ), x, y ∈ X,

(18)

for some nonnegative real numbers r < 1 and ε. Then, there exists a unique additive
mapping A : X→ Y such that

‖f (x)− A(x)‖ � 2ε

(1− |s|)(2− 2r )
‖x‖r , x ∈ X. (19)

Proof Letting y = −x in (18), we get

‖f (0)− f (x)− f (−x)‖
� ‖s[f (0)− f (x)− f (−x)]‖ + 2ε‖x‖r , x ∈ X.

Therefore, we have

‖f (0)− f (x)− f (−x)‖ � 2ε

1− |s| ‖x‖
r , x ∈ X. (20)

Letting y = x in (18) and using (20), we get
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‖f (2x)− 2f (x)‖ � 2ε

1− |s| ‖x‖
r , x ∈ X. (21)

Replacing x by 2nx in (21) and dividing the resulting inequality by 2n+1, we obtain

∥∥∥f (2n+1x)

2n+1 − f (2
nx)

2n

∥∥∥ �
(2r

2

)n ε

1− |s| ‖x‖
r , x ∈ X, n ∈ N.

Hence,

∥∥∥f (2nx)
2n

− f (2
mx)

2m

∥∥∥ =
∥∥∥
n−1∑
k=m

[f (2k+1x)

2k+1
− f (2

kx)

2k

]∥∥∥

�
n−1∑
k=m

∥∥∥f (2k+1x)

2k+1 − f (2
kx)

2k

∥∥∥

� ε‖x‖r
1− |s|

n−1∑
k=m

(2r

2

)k
, x ∈ X,

(22)

for all nonnegative integers m and n with n > m. It follows from (22) that the
sequence {f (2nx)2n }n is Cauchy for all x ∈ X. Since Y is a Banach space, the sequence

{f (2nx)2n }n converges. So, one can define the mapping A : X→ Y by

A(x) := lim
n→∞

f (2nx)

2n
, x ∈ X.

Moreover, letting m = 0 and passing the limit n→ ∞ (22), we get (19). We now
show A is additive. It follows from the definition of A and (18) that

‖A(x + y)− A(x)− A(y)‖

= lim
n→∞

1

2n

∥∥∥f (2n(x + y))− f (2nx)− f (2ny)∥∥∥
� lim
n→∞

1

2n

∥∥∥s[f (2nx+2ny)+f (2nx−2ny)−f (2n+1x)−f (2ny)−f (−2ny)]
∥∥∥

+ lim
n→∞

(2r

2

)n
ε(‖x‖r + ‖y‖r )

= ‖s[A(x + y)+ A(x − y)− A(2x)− A(y)− A(−y)]‖, x, y ∈ X.

By Lemma 1, we infer that A is additive. Finally, it remains to prove the uniqueness
of the additive mapping A. Assume that T : X → Y be another additive mapping
satisfying (19). Then, we have
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‖A(x)− T (x)‖ = 1

2n

∥∥∥A(2nx)− T (2nx)∥∥∥
� 1

2n

∥∥∥A(2nx)− f (2nx)∥∥∥+ 1

2n

∥∥∥f (2nx)− T (2nx)∥∥∥
�

(2r

2

)n 4ε

(1− |s|)(2− 2r )
‖x‖r ,

which tends to zero as n→∞ for all x ∈ X. So, we can conclude that A = T , and
this proves the uniqueness of A, as desired.

Theorem 10 Let X be a normed space and Y be a Banach space. Suppose that s
is a complex number with 2|s|2 < 1. Let a function f : X → Y satisfy (18) for
some nonnegative real numbers r > 1 and ε. Then, there exists a unique additive
mapping A : X→ Y such that

‖f (x)− A(x)‖ � 2ε

(1− |s|)(2r − 2)
‖x‖r , x ∈ X. (23)

Proof A similar argument as in the proof of Theorem 9 yields the inequality (21).
Replacing x by x/2n+1 in (21) and multiplying the resulting inequality by 2n, we
obtain

∥∥∥2n+1f
( x

2n+1

)
− 2nf

( x
2n

)∥∥∥ �
( 2

2r

)n+1 ε

1− |s| ‖x‖
r , x ∈ X, n ∈ N.

Hence,

∥∥∥2nf
( x

2n

)
− 2mf

( x
2m

)∥∥∥ = ∥∥∥
n−1∑
k=m

[
2k+1f

( x

2k+1

)
− 2kf

( x
2k

)]∥∥∥

�
n−1∑
k=m

∥∥∥2k+1f
( x

2k+1

)
− 2kf

( x
2k

)∥∥∥

� ε‖x‖r
1− |s|

n−1∑
k=m

( 2

2r

)k+1
, x ∈ X,

(24)

for all nonnegative integers m and n with n > m. It follows from (24) that the
sequence {2nf ( x2n )}n is Cauchy for all x ∈ X. Since Y is a Banach space, the
sequence {2nf ( x2n )}n converges. So, one can define the mapping A : X→ Y by

A(x) := lim
n→∞ 2nf

( x
2n

)
, x ∈ X.
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Moreover, letting m = 0 and passing the limit n → ∞ in (24), we get (23). Since
the rest of the proof is similar to the proof of Theorem 9, we omit the rest of the
proof.

Remark 1 By using Gajda’s function (see [6]), we infer that Theorems 9 and 10 are
false for r = 1.

Theorem 11 Let X be a normed space and Y be a Banach space. Suppose that s is
a complex number with |s| < 1. Let a function f : X→ Y satisfy

‖f (x + y)+ f (x − y)− f (2x)− f (y)− f (−y)‖
� ‖s[f (x + y)− f (x)− f (y)]‖
+ ε(‖x‖r + ‖y‖r ), x, y ∈ X,

(25)

for some nonnegative real numbers r < 1 and ε. Then, there exists a unique additive
mapping A : X→ Y such that

‖f (x)− A(x)‖ � ε

2− 2r
‖x‖r , x ∈ X. (26)

Proof Letting x = y = 0 in (25), we get f (0) = 0. If we let y = 0 in (25), we have

‖f (2x)− 2f (x)‖ � ε‖x‖r , x ∈ X. (27)

Replacing x by 2nx in (27) and dividing the resulting inequality by 2n+1, we obtain

∥∥∥f (2n+1x)

2n+1
− f (2

nx)

2n

∥∥∥ � ε

2

(2r

2

)n‖x‖r , x ∈ X, n ∈ N.

Hence,

∥∥∥f (2nx)
2n

− f (2
mx)

2m

∥∥∥ = ∥∥∥
n−1∑
k=m

[f (2k+1x)

2k+1 − f (2
kx)

2k

]∥∥∥

�
n−1∑
k=m

∥∥∥f (2k+1x)

2k+1
− f (2

kx)

2k

∥∥∥

� ε‖x‖r
2

n−1∑
k=m

(2r

2

)k
, x ∈ X,

(28)

for all nonnegative integers m and n with n > m. It follows from (28) that the
sequence {f (2nx)2n }n is Cauchy for all x ∈ X. Since Y is a Banach space, the sequence

{f (2nx)2n }n converges. So, one can define the mapping A : X→ Y by
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A(x) := lim
n→∞

f (2nx)

2n
, x ∈ X.

Moreover, letting m = 0 and passing the limit n→∞ (28), we get (26). Since the
rest of the proof is similar to the proof of Theorem 9, we omit the rest of the proof.

Theorem 12 Let X be a normed space and Y be a Banach space. Suppose that s
is a complex number with |s| < 1. Let a function f : X → Y satisfy (25) for some
nonnegative real numbers r > 1 and ε. Then, there exists a unique additive mapping
A : X→ Y such that

‖f (x)− A(x)‖ � ε

2r − 2
‖x‖r , x ∈ X. (29)

Proof A similar argument as in the proof of Theorem 11 yields the inequality (27).
Replacing x by x/2n+1 in (21) and multiplying the resulting inequality by 2n, we
obtain

∥∥∥2n+1f
( x

2n+1

)
− 2nf

( x
2n

)∥∥∥ � ε

2

( 2

2r

)n+1‖x‖r , x ∈ X, n ∈ N.

Hence,

∥∥∥2nf
( x

2n

)
− 2mf

( x
2m

)∥∥∥ =
∥∥∥
n−1∑
k=m

[
2k+1f

( x

2k+1

)
− 2kf

( x
2k

)]∥∥∥

�
n−1∑
k=m

∥∥∥2k+1f
( x

2k+1

)
− 2kf

( x
2k

)∥∥∥

� ε‖x‖r
2

n−1∑
k=m

( 2

2r

)k+1
, x ∈ X,

(30)

for all nonnegative integers m and n with n > m. It follows from (30) that the
sequence {2nf ( x2n )}n is Cauchy for all x ∈ X. Since Y is a Banach space, the
sequence {2nf ( x2n )}n converges. So, one can define the mapping A : X→ Y by

A(x) := lim
n→∞ 2nf

( x
2n

)
, x ∈ X.

Moreover, letting m = 0 and passing the limit n → ∞ in (30), we get (29). Since
the rest of the proof is similar to the proof of Theorem 9, we omit the proof.

Remark 2 By using Gajda’s function (see [6]), we infer that Theorems 11 and 12
are false for r = 1.

Theorem 13 Let X be a normed space and Y be a Banach space. Suppose that s is
a complex number with |s|2 < 2 and that ϕ : X ×X→ [0,+∞) is a function such
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that ϕ(x, 0) = 0 for all x ∈ X and satisfies one of the following conditions:

lim
n→∞

ϕ(2nx, 2ny)

2n
= 0, or lim

n→∞ 2nϕ
( x

2n
,
y

2n

)
= 0, x, y ∈ X.

Let a function f : X→ Y satisfy

‖f (x + y)+ f (x − y)− f (2x)− f (y)− f (−y)‖
� ‖s[f (x + y)− f (x)− f (y)]‖ + ϕ(x, y), x, y ∈ X. (31)

Then, f is additive.

Proof Letting x = y = 0 in (33), we get f (0) = 0. If we let y = 0 in (33), we have
f (2x) = 2f (x) for all x ∈ X. Two cases arise: If limn→∞ ϕ(2nx,2ny)

2n = 0, then

‖f (x + y)+ f (x − y)− f (2x)− f (y)− f (−y)‖

= 1

2n
‖f (2nx + 2ny)+ f (2nx − 2ny)− f (2n+1x)− f (2ny)− f (−2ny)‖

� 1

2n
‖s[f (2nx + 2ny)− f (2nx)− f (2ny)]‖ + 1

2n
ϕ(2nx, 2ny)

= ‖s[f (x + y)− f (x)− f (y)]‖ + 1

2n
ϕ(2nx, 2ny), x, y ∈ X, n ∈ N.

Therefore,

‖f (x + y)+ f (x − y)− f (2x)− f (y)− f (−y)‖

� ‖s[f (x + y)− f (x)− f (y)]‖ + 1

2n
ϕ(2nx, 2ny), x, y ∈ X, n ∈ N.

Letting n→ +∞ in the above inequality, we obtain (16). Hence, we conclude that
f is additive by Lemma 2.

If limn→∞ 2nϕ
(
x
2n ,

y
2n

)
= 0, then

‖f (x + y)+ f (x − y)− f (2x)− f (y)− f (−y)‖

= 2n
∥∥∥f ( x

2n
+ y

2n

)
+ f

( x
2n
− y

2n

)
− f

(2x

2n

)
− f

( y
2n

)
− f

(
− y

2n

)∥∥∥
� 2n

∥∥∥s[f ( x
2n
+ y

2n

)
− f

( x
2n

)
− f

( y
2n

)]∥∥∥+ 2nϕ
( x

2n
,
x

2n

)

= ‖s[f (x + y)− f (x)− f (y)]‖ + 2nϕ
( x

2n
,
x

2n

)
, x, y ∈ X, n ∈ N.
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Therefore,

‖f (x + y)+ f (x − y)− f (2x)− f (y)− f (−y)‖
� ‖s[f (x + y)− f (x)− f (y)]‖ + 2nϕ

( x
2n
,
x

2n

)
, x, y ∈ X, n ∈ N.

Letting n→ +∞ in the above inequality, we obtain (16). Hence, we conclude that
f is additive by Lemma 2.

Corollary 1 Let X be a normed space and Y be a Banach space. Suppose that s is
a complex number with |s| < 1 and that α, β and γ are nonnegative real numbers
satisfy one of the following conditions:

β > 0, α + β, γ ∈ (0, 1), or β > 0, α + β, γ ∈ (1,+∞).

Let a function f : X→ Y satisfy

‖f (x + y)+ f (x − y)− f (2x)− f (y)− f (−y)‖
� ‖s[f (x + y)− f (x)− f (y)]‖
+ ε‖x‖α‖y‖β + θ‖y‖γ , x, y ∈ X,

for some nonnegative constants θ and ε. Then, f is additive.

Lemma 3 LetX be a vector space and Y be a normed space, and let s be a complex
number with |s| < 1. If a function f : X→ Y satisfies

‖f (x + y)+ f (x − y)− f (2x)‖
� ‖s[f (x + y)− f (x)− f (y)]‖, (32)

for all x, y ∈ X, then f is additive.

Proof Letting x = y = 0 in (32), we get f (0) = 0. Letting y = 0 in (32) and using
f (0) = 0, we get f (2x) = 2f (x) for all x ∈ X. It follows from (32) that

2‖f (x)+ f (y)− f (x + y)‖ = ‖f (2x)+ f (2y)− f (2x + 2y)‖
� ‖s[f (2x)− f (x + y)− f (x − y)]‖
� |s|2‖f (x)+ f (y)− f (x + y)‖,

for all x, y ∈ X. Since |s| < 1, we get f (x+y)−f (x)−f (y) = 0 for all x, y ∈ X.
This proves that f is additive.

Applying a similar method given in the proof of Theorem 13, we obtain the
following:
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Theorem 14 Let X be a normed space and Y be a Banach space. Suppose that s is
a complex number with |s| < 1 and that ϕ : X × X → [0,+∞) is a function such
that ϕ(x, 0) = 0 for all x ∈ X and satisfies one of the following conditions:

lim
n→∞

ϕ(2nx, 2ny)

2n
= 0, or lim

n→∞ 2nϕ
( x

2n
,
y

2n

)
= 0, x, y ∈ X.

Let a function f : X→ Y satisfy

‖f (x + y)+ f (x − y)− f (2x)‖
� ‖s[f (x + y)− f (x)− f (y)]‖ + ϕ(x, y), x, y ∈ X. (33)

Then, f is additive.

Corollary 2 Let X be a normed space and Y be a Banach space. Suppose that s is
a complex number with |s| < 1 and that α, β and γ are nonnegative real numbers
satisfy one of the following conditions:

β > 0, α + β, γ ∈ (0, 1), or β > 0, α + β, γ ∈ (1,+∞).

Let a function f : X→ Y satisfy

‖f (x + y)+ f (x − y)− f (2x)‖
� ‖s[f (x + y)− f (x)− f (y)]‖
+ ε‖x‖α‖y‖β + θ‖y‖γ , x, y ∈ X,

for some nonnegative constants θ and ε. Then, f is additive.

Lemma 4 LetX be a vector space and Y be a normed space, and let s be a complex
number with 2|s|2 < 1. If a function f : X→ Y satisfies

‖f (x + y)− f (x)− f (y)‖
� ‖s[f (x + y)+ f (x − y)− f (2x)]‖, (34)

for all x, y ∈ X, then f is additive.

Proof Letting x = y = 0 in (34), we get f (0) = 0. Letting y = x in (34) and using
f (0) = 0, we get f (2x) = 2f (x) for all x ∈ X. It follows from (34) that

‖f (2x)− f (x + y)− f (x − y)‖ � |s|‖f (2x)+ f (2y)− f (2x + 2y)‖
� 2|s|2‖f (x + y)+ f (x − y)− f (2x)‖,

for all x, y ∈ X. Since 2|s|2 < 1, we get f (x + y)+ f (x − y)− f (2x) = 0 for all
x, y ∈ X. This proves that f is additive.
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Proposition 1 Let X be a vector space and Y be a normed space, and let s be a
complex number with 2|s|2 < 1. Suppose that a function f : X→ Y satisfies

‖f (x + y)− f (x)− f (y)‖
� ‖s[f (x + y)+ f (x − y)− f (2x)]‖ + ε‖x − y‖r , (35)

for all x, y ∈ X, where ε and r are nonnegative real number with r �= 1. Then, f is
additive.

Proof Letting x = y = 0 in (35), we get f (0) = 0. Letting y = x in (35) and
using f (0) = 0, we get f (2x) = 2f (x) for all x ∈ X. Two cases arise: If r < 1, it
follows from (35) that

‖f (x + y)− f (x)− f (y)‖

= 1

2n
‖f (2nx + 2ny)− f (2nx)− f (2ny)‖

� |s|
2n
‖f (2nx + 2ny)+ f (2nx − 2ny)− f (2n+1x)‖ + 1

2n
‖2nx − 2ny‖r

= ‖s[f (x + y)+ f (x − y)− f (2x)]‖ + 1

2n
‖2nx − 2ny‖r , x, y ∈ X, n ∈ N.

Therefore,

‖f (x + y)− f (x)− f (y)‖

� ‖s[f (x + y)+ f (x − y)− f (2x)]‖ + 1

2n
‖2nx − 2ny‖r , x, y ∈ X, n ∈ N.

Letting n → +∞ in the above inequality, we get (34). Hence, f is additive by
Lemma 4. If r > 1, it follows from (35) that

‖f (x + y)− f (x)− f (y)‖

= 2n
∥∥∥f (x + y

2n

)
− f

( x
2n

)
− f

( y
2n

)∥∥∥
� 2n|s|

∥∥∥f (x + y
2n

)
+ f (

(x − y
2n

)
)− f

(2x

2n

)∥∥∥+ 2n
∥∥∥x − y

2n

∥∥∥r

= ‖s[f (x + y)+ f (x − y)− f (2x)]‖ + 2n
∥∥∥x − y

2n

∥∥∥r , x, y ∈ X, n ∈ N.

Therefore,

‖f (x + y)− f (x)− f (y)‖

� ‖s[f (x + y)+ f (x − y)− f (2x)]‖ + 2n
∥∥∥x − y

2n

∥∥∥r , x, y ∈ X, n ∈ N.
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Letting n → +∞ in the above inequality, we get (34). Hence, f is additive by
Lemma 4.
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Stability of the Cosine–Sine Functional
Equation on Amenable Groups

Ajebbar Omar and Elqorachi Elhoucien

Abstract In this paper, we establish the stability of the functional equation

f (xy) = f (x)g(y)+ g(x)f (y)+ h(x)h(y)

on amenable groups.

1 Introduction

The stability problem of functional equations goes back to 1940 when Ulam [14]
proposed a question concerning the stability of group homomorphisms. Hyers [6]
gave a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers’s theorem was generalized by Aoki [3] for additive mappings and Rassias
[10] for linear mappings by considering an unbounded Cauchy difference. The
stability problem of several functional equations has been extensively investigated
by a number of authors. An account on further progress and developments in this
field can be found in [5, 7, 8].

In this paper, we investigate the stability of the trigonometric functional equation

f (xy) = f (x)g(y)+ g(x)f (y)+ h(x)h(y), x, y ∈ G (1)

on amenable groups.
The continuous solutions of the trigonometric functional equations

f (xy) = f (x)g(y)+ g(x)f (y), x, y ∈ G (2)

A. Omar · E. Elhoucien (�)
Department of Mathematics, Faculty of Sciences, University Ibn Zohr, Agadir, Morocco

© Springer Nature Switzerland AG 2021
T. M. Rassias (ed.), Approximation Theory and Analytic Inequalities,
https://doi.org/10.1007/978-3-030-60622-0_19

355

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60622-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-60622-0_19


356 A. Omar and E. Elhoucien

and

f (xy) = f (x)f (y)− g(x)g(y), x, y ∈ G (3)

are obtained by Poulsen and Stetkær [9], where G is a topological group that
need not be abelian. Regular solutions of (2) and (3) were described by Aczél
[1] on abelian groups. Chung et al. [4] solved the functional equation (1) on
groups. Recently, Ajebbar and Elqorachi [2] obtained the solutions of the functional
equation (1) on a semigroup generated by its squares. The stability properties of
the functional equations (2) and (3) have been obtained by Székelyhidi [13] on
amenable groups.

The aim of the present paper is to extend the Székelyhidi’s results [13] to the
functional equation (1).

2 Definitions and Preliminaries

Throughout this paper, G denotes a semigroup (a set with an associative composi-
tion) or a group. We denote by B(G) the linear space of all bounded complex-valued
functions onG. We call a : G→ C additive provided that a(xy) = a(x)+a(y) for
all x, y ∈ G and call m : G→ C multiplicative provided that m(xy) = m(x)m(y)
for all x, y ∈ G.

Let V be a linear space of complex-valued functions on G. We say that the
functions f1, · · ·, fn : G → C are linearly independent modulo V if λ1 f1 + · ·
· + λn fn ∈ V implies that λ1 = · · · = λn = 0 for any λ1, · · ·, λn ∈ C. We say
that the linear space V is two-sided invariant if f ∈ V implies that the functions
x "→ f (xy) and x "→ f (yx) belong to V for any y ∈ G.

Notice that the linear space B(G) is two-sided invariant.

3 Basic Results

Throughout this section, G denotes a semigroup and V a two-sided invariant linear
space of complex-valued functions on G.

Lemma 1 Let f, g, h : G→ C be functions. Suppose that f , g and h are linearly
independent modulo V . If the function

x "→ f (xy)− f (x)g(y)− g(x)f (y)− h(x)h(y)

belongs to V for all y ∈ G, then there exist two functions ϕ1, ϕ2 ∈ V such that

ψ(x, y) = ϕ1(x)f (y)+ ϕ2(x)h(y) (4)
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for all x, y ∈ G, where

ψ(x, y) := f (xy)− f (x)g(y)− g(x)f (y)− h(x)h(y) (5)

for all x, y ∈ G.
Proof We use a similar computation as one of the proofs of [13, Lemma 2.1].

Since the functions f , g and h are linearly independent modulo V so are f and
h, then f and h are linearly independent. Then, there exist y0, z0 ∈ G such that
f (y0)h(z0)−f (z0)h(y0) �= 0, which implies that f (y0)h(z0) �= 0 or f (z0)h(y0) �=
0. We can finally assume that f (y0) �= 0 and h(z0) �= 0. By applying (5) to the pair
(x, y0), we derive

g(x) = α0 f (x)+ α1 h(x)+ α2 f (xy0)− α2 ψ(x, y0) (6)

for all x ∈ G, where α0 := −f (y0)
−1g(y0) ∈ C, α1 := −f (y0)

−1h(y0) ∈ C and
α2 := f (y0)

−1 ∈ C are constants. Similarly, by applying (5) to the pair (x, z0), we
get that

h(x) = β0 f (x)+ β1 g(x)+ β2 f (xz0)− β2 ψ(x, z0) (7)

for all x ∈ G, where β0 := −h(z0)
−1g(z0) ∈ C, β1 := −h(z0)

−1f (z0) ∈ C and
β2 := h(z0)

−1 ∈ C are constants.
Let x ∈ G be arbitrary. Substituting (7) into (6), we obtain

g(x) = α0 f (x)+ α1 [β0 f (x)+ β1 g(x)+ β2 f (xz0)− β2 ψ(x, z0)]
+ α2 f (xy0)− α2 ψ(x, y0)

= (α0 + α1 β0) f (x)+ α1 β1 g(x)+ α1 β2 f (xz0)− α1 β2 ψ(x, z0)

+ α2 f (xy0)− α2 ψ(x, y0).

So that

(1− α1β1) g(x) = (α0 + α1β0) f (x)+ α1β2 f (xz0)− α1β2 ψ(x, z0)

+ α2 f (xy0)− α2 ψ(x, y0).
(8)

Since f (y0)h(z0) − f (z0)h(y0) �= 0 and f (y0)h(z0) �= 0, we get that α1 β1 �= 1.
So, x being arbitrary, we derive from (8) that there exist γ0, γ1, γ2 ∈ C such that

g(x) = γ0 f (x)+ γ1 f (xy0)+ γ2 f (xz0)− γ1 ψ(x, y0)− γ2 ψ(x, z0) (9)

for all x ∈ G. Similarly, we prove that there exist δ0, δ1, δ2 ∈ C such that

h(x) = δ0 f (x)+ δ1 f (xy0)+ δ2 f (xz0)− δ1 ψ(x, y0)− δ2 ψ(x, z0) (10)
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for all x ∈ G. Let x, y, z ∈ G be arbitrary. In the following, we compute f (xyz)
first as f ((xy)z) and then as f (x(yz)). By applying (5) to the pair (xy, z), and
taking (9) and (10) into account, we obtain

f ((xy)z) = f (xy) g(z)+ g(xy) f (z)+ h(xy) h(z)+ ψ(xy, z)
= [f (x)g(y)+ g(x) f (y)+ h(x)h(y)+ ψ(x, y)]g(z)
+[γ0 f (xy)+γ1 f (xyy0)+γ2 f (xyz0)−γ1 ψ(xy, y0)−γ2 ψ(xy, z0)]f (z)
+[δ0 f (xy)+δ1 f (xyy0)+δ2 f (xyz0)−δ1 ψ(xy, y0)−δ2 ψ(xy, z0)]h(z)
+ ψ(xy, z)
= [f (x)g(y)+ g(x)f (y)+ h(x)h(y)+ ψ(x, y)]g(z)
+ γ0 [f (x)g(y)+ g(x)f (y)+ h(x)h(y)+ ψ(x, y)]f (z)
+ γ1 [f (x)g(yy0)+ g(x)f (yy0)+ h(x)h(yy0)+ ψ(x, yy0)]f (z)
+ γ2 [f (x)g(yz0)+ g(x)f (yz0)+ h(x)h(yz0)+ ψ(x, yz0)]f (z)
+ δ0 [f (x)g(y)+ g(x)f (y)+ h(x)h(y)+ ψ(x, y)]h(z)
+ δ1 [f (x)g(yy0)+ g(x)f (yy0)+ h(x)h(yy0)+ ψ(x, yy0)]h(z)
+ δ2 [f (x)g(yz0)+ g(x)f (yz0)+ h(x)h(yz0)+ ψ(x, yz0)]h(z)
−[γ1 ψ(xy, y0)+γ2 ψ(xy, z0)]f (z)− [δ1 ψ(xy, y0)+ δ2 ψ(xy, z0)]h(z)
+ ψ(xy, z).

So that

f ((xy)z) = f (x)[g(y)g(z)+ γ0 g(y)f (z)+ γ1 g(yy0)f (z)+ γ2 g(yz0)f (z)

+ δ0 g(y)h(z)+ δ1 g(yy0)h(z)+ δ2 g(yz0)h(z)]
+ g(x)[f (y)g(z)+ γ0 f (y)f (z)+ γ1 f (yy0)f (z)+ γ2 f (yz0)f (z)

+ δ0 f (y)h(z)+ δ1 f (yy0)h(z)+ δ2 f (yz0)h(z)]
+ h(x)[h(y)g(z)+ γ0 h(y)f (z)+ γ1 h(yy0)f (z)+ γ2 h(yz0)f (z)

+ δ0 h(y)h(z)+ δ1 h(yy0)h(z)+ δ2 h(yz0)h(z)]
+ [γ0 ψ(x, y)+ γ1 ψ(x, yy0)+ γ2 ψ(x, yz0)− γ1 ψ(xy, y0)

− γ2 ψ(xy, z0)]f (z)+ ψ(x, y)g(z)+ [δ0 ψ(x, y)+ δ1 ψ(x, yy0)

+ δ2 ψ(x, yz0)− δ1 ψ(xy, y0)− δ2 ψ(xy, z0)]h(z)+ ψ(xy, z).
(11)

On the other hand, by applying (5) to the pair (x, yz), we get that

f (x(yz)) = f (x)g(yz)+ g(x)f (yz)+ h(x)h(yz)+ ψ(x, yz). (12)
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Now, let y, z ∈ G be arbitrary. By assumption, the functions

x "→ ψ(x, y), x "→ ψ(x, yy0), x "→ ψ(x, yz0), x "→ ψ(x, yz)

belong to V . Moreover, since the linear space V is two-sided invariant, the functions

x "→ ψ(xy, y0), x "→ ψ(xy, z0), x "→ ψ(xy, z)

belong to V . Hence, by using (11), (12) and the fact that f , g and h are linearly
independent modulo V , we get that

f (yz) = f (y)g(z)+ [γ0 f (y)+ γ1 f (yy0)+ γ2 f (yz0)]f (z) (13)

+[δ0 f (y)+ δ1 f (yy0)+ δ2 f (yz0)]h(z).

From (9), (10) and (13), we get

f (yz) = f (y)g(z)+ [g(y)+ γ1 ψ(y, y0)+ γ2 ψ(y, z0)]f (z)
+ [h(y)+ δ1 ψ(y, y0)+ δ2 ψ(y, z0)]h(z)
= f (y)g(z)+ g(y)f (z)+ h(y)h(z)+ [γ1 ψ(y, y0)+ γ2 ψ(y, z0)]f (z)
+ [δ1 ψ(y, y0)+ δ2 ψ(y, z0)]h(z).

Hence, by using (5), we obtain

ψ(y, z) = [γ1 ψ(y, y0)+ γ2 ψ(y, z0)]f (z)+ [δ1 ψ(y, y0)+ δ2 ψ(y, z0)]h(z).

So, y and z being arbitrary, we deduce (4) by putting

ϕ1(x) = γ1 ψ(x, y0)+ γ2 ψ(x, z0)

and

ϕ2(x) = δ1 ψ(x, y0)+ δ2 ψ(x, z0)

for all x ∈ G. This completes the proof of Lemma 1.

Lemma 2 Let f, g, h : G → C be functions. Suppose that f and h are linearly
independent modulo V and g ∈ V . If the function

x "→ f (xy)− f (x)g(y)− g(x)f (y)− h(x)h(y)

belongs to V for all y ∈ G, then g is multiplicative.
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Proof Let y, z ∈ G be arbitrary. By using the same computation as one of the proofs
of Lemma 1, we obtain from (11) and (12), with the same notations, the following
identity:

f (x)g(yz)+ g(x)f (yz)+ h(x)h(yz)+ ψ(x, yz)
= f (x)[g(y)g(z)+ γ0 g(y)f (z)+ γ1 g(yy0)f (z)+ γ2 g(yz0)f (z)+ δ0 g(y)h(z)
+δ1 g(yy0)h(z)+δ2 g(yz0)h(z)]+g(x)[f (y)g(z)+γ0 f (y)f (z)+γ1 f (yy0)f (z)

+γ2 f (yz0)f (z)+δ0 f (y)h(z)+δ1 f (yy0)h(z)+δ2 f (yz0)h(z)]+h(x)[h(y)g(z)
+ γ0 h(y)f (z)+ γ1 h(yy0)f (z)+ γ2 h(yz0)f (z)+ δ0 h(y)h(z)+ δ1 h(yy0)h(z)

+ δ2 h(yz0)h(z)] + [γ0 ψ(x, y)+ γ1 ψ(x, yy0)+ γ2 ψ(x, yz0)− γ1 ψ(xy, y0)

− γ2 ψ(xy, z0)]f (z)− ψ(x, y)g(z)+ [δ0 ψ(x, y)+ δ1 ψ(x, yy0)+ δ2 ψ(x, yz0)

− δ1 ψ(xy, y0)− δ2 ψ(xy, z0)]h(z)+ ψ(xy, z)

for all x ∈ G. So that

f (x)[g(y)g(z)+ γ0 g(y)f (z)+ γ1 g(yy0)f (z)+ γ2 g(yz0)f (z)+ δ0 g(y)h(z)
+ δ1 g(yy0)h(z)+ δ2 g(yz0)h(z)− g(yz)] + h(x)[h(y)g(z)+ γ0 h(y)f (z)

+ γ1 h(yy0)f (z)+ γ2 h(yz0)f (z)+ δ0 h(y)h(z)+ δ1 h(yy0)h(z)

+ δ2 h(yz0)h(z)− h(yz)]
= − g(x)[f (y)g(z)+γ0 f (y)f (z)+γ1 f (yy0)f (z)+γ2 f (yz0)f (z)+δ0 f (y)h(z)
+ δ1 f (yy0)h(z)+ δ2 f (yz0)h(z)− f (yz)] − [γ0 ψ(x, y)+ γ1 ψ(x, yy0)

+ γ2 ψ(x, yz0)− γ1 ψ(xy, y0)− γ2 ψ(xy, z0)]f (z)
− [δ0 ψ(x, y)+ δ1 ψ(x, yy0)+ δ2 ψ(x, yz0)− δ1 ψ(xy, y0)− δ2 ψ(xy, z0)]h(z)
− ψ(xy, z)+ ψ(x, yz)

(14)

for all x ∈ G. Since g ∈ V , the function x "→ ψ(x, t) belongs to V for all t ∈ G
and V is a two-sided invariant linear space of complex-valued functions on G, we
get that the right-hand side of the identity (14) belongs to V as a function of x, so
does the left-hand side of (14). Since f and h are linearly independent modulo V ,
we get that

g(y)g(z)+ γ0 g(y)f (z)+ γ1 g(yy0)f (z)+ γ2 g(yz0)f (z)+ δ0 g(y)h(z)
+ δ1 g(yy0)h(z)+ δ2 g(yz0)h(z)− g(yz) = 0.

(15)
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So, y and z being arbitrary, we get that

g(yz)− g(y)g(z) = [γ0 g(y)+ γ1 g(yy0)+ γ2 g(yz0)]f (z)
+ [δ0 g(y)+ δ1 g(yy0)+ δ2 g(yz0)]h(z)

(16)

for all y, z ∈ G. Now, let y ∈ G be arbitrary. Since g ∈ V and V is a two-sided
invariant linear space of complex-valued functions on G, we derive from (16) that
the function

z "→ [γ0 g(y)+γ1 g(yy0)+γ2 g(yz0)]f (z)+[δ0 g(y)+δ1 g(yy0)+δ2 g(yz0)]h(z)

belongs to V . Hence, seen that f and h are linearly independent modulo V , we get
that γ0 g(y)+ γ1 g(yy0)+ γ2 g(yz0) = 0 and δ0 g(y)+ δ1 g(yy0)+ δ2 g(yz0) = 0.
Substituting this back into (16), we obtain g(yz) = g(y)g(z) for all z ∈ G. So,
y being arbitrary, we deduce that g is multiplicative. This completes the proof of
Lemma 2.

Lemma 3 Let f, g, h : G → C be functions. Suppose that f and h are linearly
dependent modulo V . If the function

x "→ f (xy)− f (x)g(y)− g(x)f (y)− h(x)h(y)

belongs to V for all y ∈ G, then we have one of the following possibilities:

(1) f = 0, g is arbitrary and h ∈ V ;
(2) f, g, h ∈ V ;

(3) g + λ2

2 f = m − λ ϕ, h − λ f = ϕ, where λ ∈ C is a constant, ϕ ∈ V and
m : G→ C is a multiplicative function such that m ∈ V ;

(4) f = α m− α b, g = 1−α λ2

2 m+ 1+α λ2

2 b − λ ϕ, h = αλm− αλ b + ϕ, where
α, λ ∈ C are constants, m : G→ C is a multiplicative function and b, ϕ ∈ V ;

(5) f = f0, g = g0− λ2

2 f0−λ ϕ, h = λ f0+ϕ, where λ ∈ C is a constant, ϕ ∈ V
and f0, g0 : G→ C satisfy the sine addition law

f0(xy) = f0(x)g0(y)+ g0(x)f0(y), x, y ∈ G.

Proof Let ψ be the function defined in (5). If f = 0, then g is arbitrary and the
function x "→ h(x)h(y) belongs to V for all y in G. Hence, h ∈ V . The result
occurs in (1) of Lemma 3. In what follows, we assume that f �= 0. We have the
following cases:
Case 1: h ∈ V . Then, the function x "→ h(x)h(y) belongs to V for all y in G.
So, the function x "→ f (xy) − f (x)g(y) − g(x)f (y) belongs to V for all y in G.
Hence, according to [13, Lemma 2.2] and taking into account that f �= 0, we get
that one of the following possibilities holds:
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(i) f, g, h ∈ V , which occurs in (2) of Lemma 3.
(ii) g = m and h = ϕ, where ϕ ∈ V and m : G→ C is a multiplicative function

such that m ∈ V . This is the result (3) of Lemma 3 for λ = 0.
(iii) f = α m− α b, g = 1

2m+ 1
2b, h = ϕ, where α ∈ C is a constant, m : G→ C

is a multiplicative function and b, ϕ ∈ V . This is the result (4) of Lemma 3 for
λ = 0.

(iv) f (xy) = f (x)g(y) + g(x)f (y) for all x, y ∈ G and h = ϕ, where ϕ ∈ V ,
which is the result (5) of Lemma 3 for λ = 0.

Case 2: h �∈ V . If f ∈ V , then the function x "→ f (xy) belongs to V for all y ∈ G,
because the linear space V is two-sided invariant. As the function x "→ ψ(x, y)

belongs to V for all y ∈ G, we get that the function x "→ g(x)f (y) + h(x)h(y)
belongs to V for all y ∈ G. Since h �∈ V , we have h �= 0. We derive that there exist
a constant α ∈ C \ {0} and a function k ∈ V such that

h = α g + k, (17)

so that

ψ(x, y) = f (xy)− f (x)g(y)− g(x)f (y)− (α g(x)+ k(x))(α g(y)+ k(y))
= f (xy)− f (x)g(y)− g(x)f (y)− α2 g(x)g(y)− α g(x)k(y)− α k(x)g(y)
− k(x)k(y)
= f (xy)− k(x)k(y)− g(x)[f (y)+ α2 g(y)+ α k(y)] − g(y)[f (x)+ α k(x)]
= f (xy)− k(x)k(y)− g(x)[f (y)+ α h(y)] − g(y)[f (x)+ α k(x)]

for all x, y ∈ G. Since the functions x "→ f (xy), x "→ k(x)k(y), x "→ g(y)[f (x)+
α k(x)] and x "→ ψ(x, y) belong to V for all y ∈ G, we derive from the identity
above that the function x "→ g(x)[f (y)+α h(y)] belongs to V for all y ∈ G, which
implies that g ∈ V or f (y)+ α h(y) = 0 for all y ∈ G. Hence, since α ∈ C \ {0},
we get that g ∈ V or h = − 1

α
f . So, taking (17) into account, we get that h ∈ V ;

which contradicts the assumption on h, and hence f �∈ V . As f and h are linearly
dependent modulo V , we infer that there exist a constant λ ∈ C \ {0} and a function
ϕ ∈ V such that

h = λ f + ϕ. (18)

So, we get from (5) that
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ψ(x, y) = f (xy)− f (x)g(y)− g(x)f (y)− (λ f (x)+ ϕ(x))(λ f (y)+ ϕ(y))
= f (xy)−f (x)g(y)−g(x)f (y)−λ2 f (x)f (y)−λ f (x)ϕ(y)−λ ϕ(x)f (y)
− ϕ(x)ϕ(y)

= f (xy)− ϕ(x)ϕ(y)− f (x)[g(y)+ λ
2

2
f (y)+ λ ϕ(y)]

− [g(x)+ λ
2

2
f (x)+ λ ϕ(x)]f (y),

for all x, y ∈ G, which implies that

ψ(x, y)+ ϕ(x)ϕ(y) = f (xy)− f (x)φ(y)− φ(x)f (y) (19)

for all x, y ∈ G, where

φ := g + λ
2

2
f + λ ϕ. (20)

Since ϕ ∈ V and the function x "→ ψ(x, y) belongs to V for all y ∈ G, we get
from (19) that the function

x "→ f (xy)− f (x)φ(y)− φ(x)f (y)

belongs to V for all y ∈ G. Moreover, V is a two-sided invariant linear space
of complex-valued function. Hence, according to [13, Lemma 2.2] and taking into
account that f, h �∈ V , we have one of the following possibilities:

(i) φ = m, where m ∈ V is multiplicative. Then, we get, from (20) and (18), that

g + λ2

2 f = m− λ ϕ and h− λ f = ϕ, where ϕ ∈ V . The result occurs in (3)
of Lemma 3.

(ii) f = α m−α b, φ = 1
2m+ 1

2b, wherem : G→ C is multiplicative, b : G→ C

is in V and α ∈ C is a constant. Taking (20) and (18) into account, we obtain,
respectively,

g = 1

2
m+ 1

2
b − λ

2

2
(α m− α b)− λ ϕ

= 1− α λ2

2
m+ 1+ α λ2

2
b − λ ϕ

and

h = αλm− αλ b + ϕ.
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So, the result (4) of Lemma 3 holds.
(iii) f (xy) = f (x)φ(y) + φ(x)f (y) for all x, y ∈ G. The result (5) of Lemma 3

holds easily by using the identities (18) and (20). This completes the proof of
Lemma 3.

Lemma 4 Let f, g, h : G → C be functions. Suppose that f and h are linearly
independent modulo V . If the functions

x "→ f (xy)− f (x)g(y)− g(x)f (y)− h(x)h(y)

and

x "→ f (xy)− f (yx)

belong to V for all y ∈ G, then we have one of the following possibilities:

(1) f = −λ2 f0 + λ2 ϕ, g = 1+ρ2

2 f0 + ρ g0 + 1−ρ2

2 ϕ, h = λρ f0 + λ g0 − λρ ϕ,
where λ ∈ C \ {0} and ρ ∈ C are constants, ϕ ∈ V and f0, g0 : G→ C satisfy
the cosine addition law

f0(xy) = f0(x)f0(y)− g0(x)g0(y)

for all x, y ∈ G;
(2)

f (xy)− λ2M(xy) = (f (x)− λ2M(x))m(y)+m(x)(f (y)− λ2M(y))

+ λ2m(xy)+ ψ(x, y)

for all x, y ∈ G,

g = 1

2
β2 f + β h+m

and

β f + h = λM − λm,

where β ∈ C and λ ∈ C \ {0} are constants, m,M : G→ C are multiplicative
functions such that m ∈ V ,M �∈ V and ψ is the function defined in (5);

(3)

f (xy) = f (x)m(y)+m(x)f (y)+H(x)H(y)+ ψ(x, y),

g = 1

2
β2 f + β h+m
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and

H(xy)−m(x)H(y)−H(x)m(y) = η1 ψ(x, y)+η2m(x)L1(y)+η3m(x)L2(y)

+η4 ψ(x, l1(y))+ η5 ψ(x, l2(y))+ η6 L1(xy)+ η7 L2(xy)

for all x, y ∈ G, where β, η1, · · ·, η7 ∈ C are constants, m : G → C is
a multiplicative function in V , L1, L2 ∈ V , l1, l2 : G → G are mappings,
H = β f + h and ψ is the function defined in (5);

(4) f (xy) = f (x)g(y)+ g(x)f (y)+ h(x)h(y) for all x, y ∈ G.
Proof We split the discussion into the cases of f, g and h are linearly dependent
modulo V and f, g and h are linearly independent modulo V .
Case A: f, g and h are linearly dependent modulo V . Since f and h are linearly
independent modulo V , we get that there exist a function ϕ ∈ V and two constants
α, β ∈ C such that

g = α f + β h+ ϕ. (21)

By substituting (21) into (5), we obtain

ψ(x, y)=f (xy)−f (x)[α f (y)+β h(y)+ϕ(y)]−[α f (x)+β h(x)+ϕ(x)]f (y)
− h(x)h(y)
=f (xy)−2α f (x)f (y)−f (x)ϕ(y)−ϕ(x)f (y)−β f (x)h(y)−β h(x)f (y)
− h(x)h(y),

for all x, y ∈ G, which implies that

ψ(x, y) = f (xy)− (2α − β2)f (x)f (y)− f (x)ϕ(y)− ϕ(x)f (y)
− [β f (x)+ h(x)][β f (y)+ h(y)]

(22)

for all x, y ∈ G. We have the following subcases:
Subcase A.1: 2α �= β2. Let x, y ∈ G be arbitrary, and let δ ∈ C \ {0} such that

δ2 = −(2α − β2). (23)

Multiplying both sides of (22) by −δ2 and then adding ϕ(xy) − ϕ(x)ϕ(y) to both
sides of the identity obtained, we derive

− δ2 ψ(x, y)+ ϕ(xy)− ϕ(x)ϕ(y) = −δ2 f (xy)+ ϕ(xy)− [δ4 f (x)f (y)

− δ2 f (x)ϕ(y)−δ2 ϕ(x)f (y)+ϕ(x)ϕ(y)] + δ2 [β f (x)+ h(x)][β f (y)+ h(y)].
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So, x and y being arbitrary, we get from the identity above that

− δ2 ψ(x, y)+ ϕ(xy)− ϕ(x)ϕ(y) = f0(xy)− f0(x)f0(y)+ g0(x)g0(y), (24)

for all x, y ∈ G, where

f0 := −δ2 f + ϕ (25)

and

g0 := δ (β f + h). (26)

Let y be arbitrary. As ϕ ∈ V , the function x "→ ϕ(x)ϕ(y) belongs to V , and
since the linear space V is two-sided invariant, we get that the function x "→ ϕ(xy)

belongs to V . Moreover, by assumption the function x "→ ψ(x, y) belongs to V .
Hence, the left-hand side of the identity (24) belongs to V as a function of x. So
that the function

x "→ f0(xy)− f0(x)f0(y)+ g0(x)g0(y)

belongs to V . On the other hand, by using (25), we have

f0(xy)− f0(yx) = −δ2 (f (xy)− f (yx))+ ϕ(xy)− ϕ(yx)

for all x ∈ G. So, y being arbitrary, the function x "→ f0(xy)−f0(yx) belongs to V
for all y ∈ G because the functions x "→ f (xy)− f (yx) and x "→ ϕ(xy)− ϕ(yx)
do. Moreover, f0 and g0 are linearly independent modulo V because f and h are.
Hence, we get, according to [13, Lemma 1], that

f0(xy) = f0(x)f0(y)− g0(x)g0(y)

for all x, y ∈ G. By putting λ = 1

δ
, we get, from (25), that

f = −λ2 f0 + λ2ϕ. (27)

By putting ρ = βλ, we get, from (26), that h = λ g0 − β (−λ2 f0 + λ2ϕ), which
implies that

h = λρ f0 + λ g0 − λρ ϕ. (28)

So, we derive from (21), (27) and (28) that
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g = α (−λ2 f0 + λ2 ϕ)+ β (λρ f0 + λ g0 − λρ ϕ)+ ϕ
= (−αλ2 + βλρ) f0 + βλ g0 + (αλ2 − βλρ + 1) ϕ

= (−αλ2 + ρ2) f0 + ρ g0 + (αλ2 − ρ2 + 1) ϕ.

Using (23), we find, by elementary computations, that αλ2 = 1
2 ρ

2− 1
2 . Hence, from

the identity above, we get that

g = 1+ ρ2

2
f0 + ρ g0 + 1− ρ2

2
ϕ.

The result obtained in this case occurs in (1) of Lemma 4.
Subcase A.2: 2α = β2. In this case, the identity (22) becomes

ψ(x, y) = f (xy)− f (x)ϕ(y)− ϕ(x)f (y)−H(x)H(y) (29)

for all x, y ∈ G, where

H := β f + h. (30)

Since f and h are linearly independent modulo V so are f and H . Moreover, ϕ ∈
V . Hence, according to Lemma 2, there exists a multiplicative functionm : G→ C

in V such that ϕ = m. So, the identities (21) and (29) become, respectively,

g = 1

2
β2 f + β h+m. (31)

and

ψ(x, y) = f (xy)− f (x)m(y)−m(x)f (y)−H(x)H(y) (32)

for all x, y ∈ G. We use similar computations to the ones in the proof of [4,
Theorem]. Let x, y, z ∈ G be arbitrary. First, we compute f (xyz) as f (x(yz))
and then as f ((xy)z). From (32), we get that

f (x(yz)) = f (x)m(yz)+m(x)f (yz)+H(x)H(yz)+ ψ(x, yz)
= f (x)m(yz)+m(x)[f (y)m(z)+m(y)f (z)+H(y)H(z)+ ψ(y, z)]
+H(x)H(yz)+ ψ(x, yz),

so that

f (x(yz)) = f (x)m(yz)+m(xz)f (y)+m(xy)f (z)+m(x)H(y)H(z)
+m(x)ψ(y, z)+H(x)H(yz)+ ψ(x, yz). (33)
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On the other hand,

f ((xy)z) = f (xy)m(z)+m(xy)f (z)+H(xy)H(z)+ ψ(xy, z)
= [f (x)m(y)+m(x)f (y)+H(x)H(y)+ ψ(x, y)]m(z)+m(xy)f (z)
+H(xy)H(z)+ ψ(xy, z),

and hence

f ((xy)z) = f (x)m(yz)+m(xz)f (y)+m(xy)f (z)+H(x)H(y)m(z)
+m(z)ψ(x, y)+H(xy)H(z)+ ψ(xy, z). (34)

From (33) and (34), we get that

H(x)[H(yz)−H(y)m(z)−m(y)H(z)]−H(z)[H(xy)−m(x)H(y)−H(x)m(y)]
= m(z)ψ(x, y)−m(x)ψ(y, z)+ ψ(xy, z)− ψ(x, yz),

(35)

for all x, y, z ∈ G. Since f and H are linearly independent modulo V , they are, in
particular, linearly independent. So, there exist z1, z2 ∈ G such that

f (z1)H(z2)− f (z2)H(z1) �= 0. (36)

Let x, y ∈ G be arbitrary. By putting z = z1 and then z = z2 in (35), we get,
respectively,

H(x)ki(y)−H(zi)[H(xy)−H(x)m(y)−m(x)H(y)] = ψi(x, y), (37)

where

ki(y) := H(yzi)−H(y)m(zi)−m(y)H(zi)

and

ψi(x, y) := m(zi)ψ(x, y)−m(x)ψ(y, zi)− ψ(x, yzi)+ ψ(xy, zi) (38)

for i = 1, 2. Multiplying both sides of (37) by f (z2) for i = 1, and by f (z1) for
i = 2, and then subtracting the identities obtained, we get that

H(x)k3(y)+[f (z1)H(z2)−f (z2)H(z1)][H(xy)−H(x)m(y)−m(x)H(y)]=ψ3(x, y),

(39)
where

k3(y) := f (z2)k1(y)− f (z1)k2(y)
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and

ψ3(x, y) := f (z2)ψ1(x, y)− f (z1)ψ2(x, y). (40)

So, x and y being arbitrary, we get, taking (36) and (39) into account, that

H(xy)−H(x)m(y)−m(x)H(y) = H(x)k(y)+Φ(x, y) (41)

for all x, y ∈ G, where

k(x) := −[f (z1)H(z2)− f (z2)H(z1)]−1k3(x)

and

Φ(x, y) := [f (z1)H(z2)− f (z2)H(z1)]−1ψ3(x, y) (42)

for all x, y ∈ G. Substituting (41) into (35), we get that

H(x)[H(y)k(z)+Φ(y, z)] −H(z)[H(x)k(y)+Φ(x, y)]
= m(z)ψ(x, y)−m(x)ψ(y, z)+ ψ(xy, z)− ψ(x, yz),

which implies that

H(x)[H(y)k(z)−H(z)k(y)+Φ(y, z)] = H(z)Φ(x, y)+m(z)ψ(x, y)
−m(x)ψ(y, z)+ ψ(xy, z)− ψ(x, yz)

(43)

for all x, y, z ∈ G. Now, let y, z ∈ G be arbitrary. Since V is a two-sided invariant
linear space of complex-valued functions on G, and the functions x "→ m(x) and
x "→ ψ(x, y) belong to V , we deduce from (38), (40) and (42) that the functions
x "→ Φ(x, y) and x "→ ψi(x, y) belong to V for i = 1, 2, 3. Hence, the right-hand
side of (43) belongs to V as a function of x. It follows that the left-hand side of (43)
belongs to V as a function of x. As f and H are linearly independent modulo V ,
we derive, from (43), that H(y)k(z)−H(z)k(y)+Φ(y, z) = 0. So, y and z being
arbitrary, we get that

H(z)k(x) = H(x)k(z)+Φ(x, z) (44)

for all x, z ∈ G.
On the other hand, we deduce from (36) that f (z1)H(z2) �= 0 or f (z2)H(z1) �= 0,
so we can assume, without loss of generality, that H(z1) �= 0. Replacing z by z1 in
the identity (44), we derive that

k(x) = γ H(x)+Φ1(x) (45)
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for all x ∈ G, where γ := H(z1)
−1k(z1) and

Φ1(x) := H(z1)
−1Φ(x, z1) (46)

for all x ∈ G. From (41) and (45) we get that

H(xy) = H(x)m(y)+m(x)H(y)+γ H(x)H(y)+H(x)Φ1(y)+Φ(x, y) (47)

for all x, y ∈ G. Since the functionsm and x "→ Φ(x, y) belong to V for all y ∈ G,
we get, from (47), that the function

x "→ H(xy)−H(x)[m(y)+Φ1(y)+ γ H(y)] (48)

belongs to V for all y ∈ G. As H �∈ V , we get from (48), according to [12,
Theorem], that there exists a multiplicative functionM : G→ C such that

m+Φ1 + γ H = M. (49)

We have the following subcases:

Case A.2.1: γ �= 0. Putting λ = 1

γ
∈ C \ {0}, we obtain from (49) the identity

H = λM − λm− λΦ1. (50)

Let x, y ∈ G be arbitrary. Sincem andM are multiplicative, we get from the identity
above that H(xy)−H(yx) = λΦ1(yx)− λΦ1(xy). Taking (47) into account, we
get that H(x)Φ1(y) − H(y)Φ1(x) + Φ(x, y) − Φ(y, x) = λΦ1(yx) − λΦ1(xy).
So, x and y being arbitrary, we obtain

H(x)Φ1(y) = H(y)Φ1(x)+Φ(y, x)−Φ(x, y)+ λΦ1(yx)− λΦ1(xy) (51)

for all x, y ∈ G. Now, let y be arbitrary. As seen earlier, the functions Φ1 and x "→
Φ(x, y) − Φ(y, x) belong to V . So, V being a two-sided invariant linear space of
complex-valued functions onG, we get from (51) that the function x "→ H(x)Φ1(y)

belongs to V . Taking into account that f and H are linearly independent, we get
Φ1(y) = 0. So, y being arbitrary, we obtain Φ1 = 0. Hence, using (50), we get that

H = λM − λm. (52)

Substituting this back into (32), we get, by an elementary computation, that

f (xy)− λ2M(xy) = (f (x)− λ2M(x))m(y)+m(x)(f (y)− λ2M(y))

+ λ2m(xy)+ ψ(x, y),
(53)
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for all x, y ∈ G. We conclude from (30), (31), (52) and (53) that the result (2) of
Lemma 4 holds.
Case A.2.2: γ = 0. Let y ∈ G be arbitrary. The identity (45) implies that k = Φ1.
Hence, we derive from (44) that

H(x)Φ1(y) = H(y)Φ1(x)−Φ(x, y),

for all x ∈ G. Since the function x "→ Φ(x, y) belongs to V , we get, taking the
identity above and (46) into account, that the function x "→ H(x)Φ1(y) belongs to
V . As f and H are linearly independent modulo V , we infer that Φ1(y) = 0. So, y
being arbitrary, we get that Φ1 = 0. Hence, the identity (47) becomes

H(xy) = m(x)H(y)+H(x)m(y)+Φ(x, y). (54)

On the other hand, by using (38), (40) and (42) with the same notations, we derive
that there exist ηi ∈ C with i = 1, · · ·, 7 such that
Φ(x, y) = η1 ψ(x, y) + η2m(x)ψ(y, z1) + η3m(x)ψ(y, z2) + η4 ψ(x, yz1) +
η5 ψ(x, yz2) +η6 ψ(xy, z1)+ η7 ψ(xy, z2)

x, y ∈ G. We get that

Φ(x, y) = η1 ψ(x, y)+ η2m(x)L1(y)+ η3m(x)L2(y)+ η4 ψ(x, l1(y))

+ η5 ψ(x, l2(y))+ η6 L1(xy)+ η7 L2(xy)

(55)
for all x, y ∈ G, where

Li(x) := ψ(x, zi)

for i = 1, 2 and for all x ∈ G, and li : G→ G is defined for i = 1, 2 by li (x) = xzi
for all x ∈ G. Hence, we get, from (54) and (51), the identity

H(xy)−m(x)H(y)−H(x)m(y) = η1 ψ(x, y)+ η2m(x)L1(y)+ η3m(x)L2(y)

+ η4 ψ(x, l1(y))+ η5 ψ(x, l2(y))+ η6 L1(xy)+ η7 L2(xy)

(56)
for all x, y ∈ G.

We conclude from (30), (31), (32) and (56) that the result (3) of Lemma 4 holds.
Case B: f, g and h are linearly independent modulo V . Then, according to

Lemma 1, there exist two functions ϕ1, ϕ2 ∈ V satisfying (4), where ψ is the
function defined in (5). Let y ∈ G be arbitrary. Since the functions x "→ ψ(x, y) and
x "→ f (xy)−f (yx) belong to V by assumption, so does the function x "→ ψ(y, x).
Seeing that ψ(y, x) = ϕ1(y)f (x) + ϕ2(y)h(x), and that f and h are linearly
independent modulo V , we get that ϕ1(y) = ϕ2(y) = 0. So, y being arbitrary,
we deduce that ψ(x, y) = 0 for all x, y ∈ G. Then, the result (4) of Lemma 4
holds. This completes the proof of Lemma 4.
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4 Stability of Equation (1) on Amenable Groups

Throughout this section, G is an amenable group with an identity element that we
denote e. We will extend the Székelyhidi’s results [13, Theorem 2.3], about the
stability of the functional equation (2), to the functional equation (1).

Theorem 1 Let f, g, h : G→ C be functions. The function

(x, y) "→ f (xy)− f (x)g(y)− g(x)f (y)− h(x)h(y)

is bounded if and only if one of the following assertions holds:

(1) f = 0, g is arbitrary and h ∈ B(G);
(2) f, g, h ∈ B(G);
(3)

⎧⎪⎨
⎪⎩
f = a m+ ϕ,
g = (1− λ2

2 a)m− λ b − λ2

2 ϕ,

h = λ a m+ b + λ ϕ,

where λ ∈ C is a constant, a : G → C is an additive function, m : G → C

is a bounded multiplicative function and b, ϕ : G → C are two bounded
functions;

(4)

⎧⎪⎨
⎪⎩
f = α m− α b,
g = 1−αλ2

2 m+ 1+αλ2

2 b − λ ϕ,
h = αλm− αλ b + ϕ,

where α, λ ∈ C are two constants, m : G → C is a multiplicative function
and b, ϕ : G→ C are two bounded functions;

(5)

⎧⎪⎨
⎪⎩
f = f0,

g = g = g0 − λ2

2 f0 − λ b,
h = λ f0 + b,

where λ ∈ C is a constant, b : G → C is a bounded function and f0, g0 :
G→ C are functions satisfying the sine addition law

f0(xy) = f0(x)g0(y)+ g0(x)f0(y), x, y ∈ G;
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(6)

⎧⎪⎨
⎪⎩
f = −λ2 f0 + λ2 b,

g = 1+ρ2

2 f0 + ρ g0 + 1−ρ2

2 b,

h = λρ f0 + λ g0 − λρ b,

where ρ ∈ C and λ ∈ C \ {0} are two constants, b : G → C is a bounded
function and f0, g0 : G→ C are functions satisfying the cosine addition law

f0(xy) = f0(x)f0(y)− g0(x)g0(y), x, y ∈ G;

(7)

⎧⎨
⎩
f = λ2M + am+ b,
g = βλ(1− 1

2βλ)M + (1− βλ)m− 1
2β

2 a m− 1
2β

2 b,

h = λ(1− βλ)M − λm− β a m− β b,

where β ∈ C and λ ∈ C \ {0} are two constants, m,M : G → G are two
multiplicative functions such that m is bounded, a : G → C is an additive
function and b : G→ C is a bounded function;

(8)

⎧⎨
⎩
f = 1

2a
2m+ 1

2a1m+ b,
g = − 1

4β
2 a2m+ β a m− 1

4β
2 a1m+m− 1

2β
2 b,

h = − 1
2β a

2m+ a m− 1
2β a1m− β b,

where β ∈ C is a constant, m : G → C is a nonzero bounded multiplicative
function, a, a1 : G → C are two additive functions such that a �= 0 and
b : G→ C is a bounded function;

(9) g = − 1
2β

2 f + (1+ β a)m+ β b and h = −β f + a m+ b, where β ∈ C is
a constant and a : G → C is an additive function, m : G → C is a nonzero
bounded multiplicative function and b : G → C is a bounded function such
that the function

(x, y) "→ f (xy)m((xy)−1)− 1

2
a2(xy)− (f (x)m(x−1)− 1

2
a2(x))

− (f (y)m(y−1)− 1

2
a2(y))− a(x)b(y)m(y−1)− a(y)b(x)m(x−1)

is bounded;
(10) f (xy) = f (x)g(y)+ g(x)f (y)+ h(x)h(y) for all x, y ∈ G.
Proof First, we prove the necessity. Applying Lemma 3(1), Lemma 3(2), Lemma
3(4), Lemma 3(5), Lemma 4(1) and Lemma 4(4) with V = B(G), we get that
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either one of the conditions (1), (2), (4), (5), (6) and (10) in Theorem 1 is satisfied
or we have one of the following cases:
Case A:

g + λ
2

2
f = m− λ b

and

h− λ f = b,
where λ ∈ C is a constant, b : G → C is a bounded function and m : G → C is
a bounded multiplicative function. From (5) and the identities above, we obtain, by
an elementary computation,

g = −λ
2

2
f +m− λ b, (57)

h = λ f + b (58)

and

f (xy)− f (x)m(y)−m(x)f (y) = ψ(x, y)+ b(x)b(y) (59)

for all x, y ∈ G. If m �= 0, then, by multiplying both sides of (59) by m((xy)−1),
and using the fact thatm is a bounded multiplicative function, and that the functions
b and ψ are bounded, we get that the function (x, y) "→ f (xy)m((xy)−1) −
f (x)m(x−1) − f (y)m(y−1) is bounded. Notice that we have the same result if
m = 0. So, according to Hyers’s theorem [11, Theorem 3.1], there exist an additive
function a : G → C and a function ϕ0 ∈ B(G) such that f (x)m(x−1) − a(x) =
b0(x) for all x ∈ G. Then, by putting ϕ = mϕ0, we get that f = a m + ϕ with
ϕ ∈ B(G). Substituting this back into (57) and (58), we obtain, by an elementary

computation, that g = (1− λ2

2 a)m− λ b − λ2

2 ϕ and h = λ a m+ b + λ ϕ. So, the
result (3) of Theorem 1 holds.
Case B:

f (xy)− λ2M(xy) = (f (x)− λ2M(x))m(y)+m(x)(f (y)− λ2M(y))

+ λ2m(xy)+ ψ(x, y)

for all x, y ∈ G,

g = 1

2
β2 f + β h+m

and

β f + h = λM − λm,



Stability of the Cosine–Sine Functional Equation on Amenable Groups 375

where β ∈ C and λ ∈ C \ {0} are constants, m,M : G → C are multiplicative
functions such that m ∈ B(G), M �∈ B(G) and ψ is the function defined in (5). If
m �= 0, then, by multiplying both sides of the first identity above by m((xy)−1) and
using that m is multiplicative, we get that

(f (xy)− λ2M(xy))m((xy)−1)

= (f (x)−λ2M(x))m(x−1)+(f (y)−λ2M(y))m(y−1)+λ2+m((xy)−1)ψ(x, y)

for all x, y ∈ G. Since the functions m and ψ are bounded, then we get from the
identity above that the function

(x, y) "→ (f (xy)− λ2M(xy))m((xy)−1)− (f (x)− λ2M(x))m(x−1)

− (f (y)− λ2M(y))m(y−1)

is bounded. Notice that we have the same result if m = 0. So, according to Hyers’s
theorem [11, Theorem 3.1], there exist an additive function a : G → C and a
function b0 ∈ B(G) such that

(f (x)− λ2M(x))m(x−1)− a(x) = b0(x)

for all x ∈ G. By putting b = mb0, we derive that

f = λ2M + a m+ b

with b ∈ B(G). As g = 1
2β

2 f + β h+m and β f + h = λM − λm,, we obtain

h = −β(λ2M + a m+ b)+ λM − λm
= λ(1− βλ)M − λm− β a m− β b

and

g = 1

2
β2(λ2M + a m+ b)+ β(λ(1− βλ)M − λm− β a m− β b)+m

= βλ(1− 1

2
βλ)M + (1− βλ)m− 1

2
β2 a m− 1

2
β2 b.

The result occurs in (7) of Theorem 1.
Case C:

f (xy) = f (x)m(y)+m(x)f (y)+H(x)H(y)+ ψ(x, y),
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H(xy)−H(x)m(y)−m(x)H(y) = η1 ψ(x, y)+ η2m(x)L1(y)+ η3m(x)L2(y)

+ η4 ψ(x, l1(y))+ η5 ψ(x, l2(y))+ η6 L1(xy)+ η7 L2(xy)

for all x, y ∈ G,

g = 1

2
β2 f + β h+m

and

H = β f + h,

and where β, η1, · · ·, η7 ∈ C are constants, m : G→ C is a bounded multiplicative
function, L1, L2 ∈ B(G), l1, l2 : G → G are mappings and ψ is the function
defined in (5).

IfH ∈ B(G), then f and h are linearly dependent modulo B(G). So, according
to Lemma 3, one of the assertions (1)–(5) of Theorem 1 holds.

In what follows, we assume that H �∈ B(G). Since the functions m, L1, L2 and
ψ are bounded, we get from the second identity above that the function

(x, y) "→ H(xy)−H(x)m(y)−m(x)H(y)

is bounded. Hence, m �= 0 because H �∈ B(G). Then, according to [13, Theorem
2.3] and taking the assumption on H into account, we have one of the following
subcases:

Subcase C.1: H = a m+ b, where a : G→ C is additive and b ∈ B(G). Then,
β f + h = a m+ b, which implies that

h = −β f + a m+ b.

Moreover, since g = 1
2β

2 f + β h+m, we get that

g = −1

2
β2 f +m+ β a m+ β b.

Let x, y ∈ G be arbitrary. By using the first identity in the present case, we get that

ψ(x, y)=f (xy)−f (x)m(y)−m(x)f (y)−(a(x)m(x)+ b(x))(a(y)m(y)+ b(y))
= f (xy)− f (x)m(y)−m(x)f (y)− a(x)a(y)m(xy)−m(x)a(x)b(y)
−m(y)a(y)b(x)− b(x)b(y).

Since m is a nonzero multiplicative function on the group G, we have m(xy) =
m(x)m(y) �= 0 and m((xy)−1) = m(x−1)m(y−1) = (m(x))−1(m(y))−1. Hence,
by multiplying both sides of the identity above by m((xy)−1), we get that
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m((xy)−1)[ψ(x, y)b(x)b(y)] = f (xy)m((xy)−1)− f (x)m(x−1)− f (y)m(y−1)

− a(x)a(y)− a(x)b(y)m(y−1)− a(y)b(x)m(x−1)

= (f (xy)m((xy)−1)− 1

2
a2(xy))− (f (x)m(x−1)− 1

2
a2(x))

− (f (y)m(y−1)− 1

2
a2(y))− a(x)b(y)m(y−1)− a(y)b(x)m(x−1).

So, x and y being arbitrary and the functionsm, b and ψ being bounded, we deduce
that the function

(x, y) "→ f (xy)m((xy)−1)− 1

2
a2(xy)− (f (x)m(x−1)− 1

2
a2(x))

− (f (y)m(y−1)− 1

2
a2(y))− a(x)b(y)m(y−1)− a(y)b(x)m(x−1)

is bounded. The result occurs in (9) of the list of Theorem 1.
Subcase C.2: H(xy) = H(x)m(y) + H(y)m(x) for all x, y ∈ G. Since m is a
nonzero multiplicative function on the group G, we have m(x) �= 0 for all x ∈ G.
Then, in view of H �∈ B(G), we get from the last functional equation that there
exists a nonzero additive function a : G→ C such that H = a m. Substituting this
back in the first identity in the present case and proceeding exactly as in Subcase
C.1, we get that the function

(x, y) "→ 2f (xy)m((xy)−1)− a2(xy)− (2f (x)m(x−1)− a2(x))

− (2f (y)m(y−1)− a2(y))

is bounded. Hence, according to Hyers’s theorem [11, Theorem 3.1], there exist an
additive function a1 : G→ C and a function b0 ∈ B(G) such that 2f (x)m(x−1)−
a2(x) = a1(x)+ b0(x) for all x, y ∈ G. So, by putting b = 1

2mb0, we deduce that
b ∈ B(G) because m, b0 ∈ B(G) and

f = 1

2
a2m+ 1

2
a1m+ b. (60)

Since H = β f + h and g = 1
2β

2 f + β h + m, we get, by using (60) and an
elementary computation, that g = − 1

4β
2 a2m + β a m − 1

4β
2 a1m + m − 1

2β
2 b

and h = − 1
2β a

2m + a m − 1
2β a1m − β b. The result occurs in (8) of the list of

Theorem 1.
Conversely, we check by elementary computations that if one of the assertions

(1)–(10) in Theorem 1 is satisfied, then the function (x, y) "→ f (xy)− f (x)g(y)−
g(x)f (y)− h(x)h(y) is bounded. This completes the proof of Theorem 1.
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Abstract In this paper, we present an introduction to Halanay lemma, from the
weakly Picard operator theory point of view.
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1 Introduction

For α > β > 0, h > 0 and t0 ∈ R, let x ∈ C([t0 − h,∞[) with x
∣∣[t0,∞[ ∈

C1([t0,∞[) be a solution of the following inequation:

x′(t) ≤ −αx(t)+ β max
θ∈[t−h,t] x(θ), t ∈ [t0,∞[.

By Halanay’s lemma ([14]), there exists k > 0, γ > 0 such that

x(t) ≤ ke−γ (t−t0), for all t ∈ [t0 − h,∞[.

There exist some proofs of Halanay’s Lemma ([9, 12, 14],. . . ) and a large number
of papers on Hanalay’s lemma and Halanay-type lemma ([3, 4, 7, 9, 13, 15, 17, 18,
29, 30], . . . ).

The aim of this paper is to present an introduction to Halanay’s lemma from
the weakly Picard operator theory point of view.
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2 Preliminaries

In this section, we will present several basic notions and results that are important
for a good understanding of our main theorems.

The Operator max
I

on a Space of Continuous Functions

Let t0 ∈ R and a, b ∈ C([t0,+∞[) be two mappings such that a(t) < b(t), ∀ t ≥
t0. Let a0 := inf{a(t) | t ≥ t0}. We suppose that −∞ < a0 < t0. Let I (t) =
[a(t), b(t)], for each t ≥ t0. Now we consider the operator

max
I
: C([a0,+∞[)→ C([t0,+∞[),

defined by

max
I
(x)(t) := max

θ∈I (t)
x(θ).

Lemma 1 For the above max
I

operator, we have the following properties:

(i) the max
I

operator is increasing;

(ii) max
I
(kx) = kmax(x), ∀ k ∈ R

∗+, ∀ x ∈ C([a0,+∞[);
(iii) |max

I
(x)(t)−max

I
(y)(t)| ≤ max

I
(|x − y|)(t), ∀ x, y ∈ C([a0,+∞[).

For examples of max
I

operators, see [1, 2, 8, 9, 11, 14, 20, 21],. . .

Functional Differential Equations with Maxima

Let f ∈ C([t0,+∞[×R2). We consider the functional differential equation

x′(t) = f (t, x(t),max
I
(x)(t)), t ≥ t0. (1)

By a solution of this equation, we understand a function

x ∈ C([a0,+∞[)∩C1([t0,+∞[):={x ∈ C([a0,+∞[)
∣∣ x|[t0,+∞[ ∈ C1([t0,+∞[)},

which satisfies (1).
The Cauchy problem for (1) is the following: given ϕ ∈ C([a0, t0]), the problem

is to study the solution x of (1), for which
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x
∣∣[a0,t0] = ϕ.

For this Cauchy problem, see [1, 2, 5, 9, 14, 16, 19, 24],. . .

Halanay Functional Differential Equation with Maxima

In [14] (pp. 378–380), Halanay has considered the following equation:

x′(t) = −αx(t)+ β max
θ∈[t−h,t] x(θ), t ≥ t0, (2)

where α > β > 0, h > 0 and t0 ∈ R.
In equation (2), the interval function is I (t) = [t − h, t]. In this case,

a(t) = t − h, b(t) = t and a0 = t0 − h.

In his work [14], Halanay remarked that there exists γ > 0 such that the function
x ∈ C([t0−h,+∞[) given by x(t) := e−γ (t−t0) is a solution of (2) on [t0−h,+∞[.

Weakly Picard Operators on (X,→)

We will present now the basic notion related to the weakly Picard operator theory
in the general context of an L-space in the sense of Fréchet.

LetX be a nonempty set. Denote byΔ(X) the diagonal ofX×X. We also denote
by s(X) := {(xn)n∈N |xn ∈ X, n ∈ N} the set of all sequences in X.

Let c(X) ⊂ s(X) a subset of s(X) and Lim : c(X) → X an operator. By
definition, the triple (X, c(X),Lim) is called an L-space ([10]) if the following
conditions are satisfied:

(i) If xn = x, for all n ∈ N , then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.
(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences, (xni )i∈N ,

of (xn)n∈N we have that (xni )i∈N ∈ c(X) and Lim(xni )i∈N = x.
By definition, an element of c(X) is a convergent sequence and x := Lim(xn)n∈N

is the limit of this sequence. In this case, we can also write xn→ x as n→+∞.
Throughout this paper, we denote an L-space by (X,→).
Recall now the following important abstract concept.

Definition 1 (I.A. Rus [26]) Let (X,→) be an L-space. An operator A : X → X

is, by definition, a weakly Picard operator (briefly WPO) if:

(i) FA �= ∅;
(ii) for each x ∈ X, the sequence (An(x))n∈N converges to an element x∗(x) ∈ FA

as n→∞.
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In particular, if FA = {x∗}, then A is said to be a Picard operator (briefly PO).

If (X,→) is an L-space and A is a weakly Picard operator, then the following set
retraction can be defined

A∞ : X→ FA, A
∞(x) := Lim(An(x))n∈N.

Let (X,.) be an ordered set and A : X→ X. Then we denote by

(LF)A := {x ∈ X : x . A(x)} respectively (UF)A := {x ∈ X : A(x) . x},

the lower (respectively upper) fixed point set of A.
Let (X,→) be an L-space and . be an order relation on X. If the following

implication holds

xn . yn, for all n ∈ N, xn→ x ∈ X, yn → y ∈ X⇒ x . y,

then the triple (X,→,.) is called an ordered L-space.
The following results were given in [26] and [21]. See also [23, 27, 28]

Theorem 1 (Abstract Gronwall Lemma) Let (X,→,.) be an ordered L-space
and A : X→ X be an operator. Suppose that:

(i) A is a PO (we denote by x∗A its unique fixed point);
(ii) A is increasing.

Then:

(a) u . x∗A, for every u ∈ (LF)A;
(b) x∗A . v, for every v ∈ (UF)A.

In the case of weakly Picard operators, the following Gronwall-type lemma
holds.

Theorem 2 Let (X,→,.) be an ordered L-space and A : X→ X be an operator.
Suppose that:

(i) A is a WPO;
(ii) A is increasing.

Then:

(a) for each x ∈ X with x . A(x) ⇒ x . A∞(x);
(b) for each x ∈ X with x / A(x) ⇒ x / A∞(x).

In the same setting, the following abstract comparison theorems take place.

Theorem 3 (Abstract Gronwall-Comparison Lemma) Let (X,→,.) be an
ordered L-space and A,B : X→ X be two operators. Suppose that:
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(i) A and B are POs (we denote by x∗A, respectively, x∗B their unique fixed point);
(ii) A is increasing;

(iii) A(x) . B(x), for every x ∈ X.
Then, for each x ∈ X with x . A(x) ⇒ x . x∗B .

In the case of weakly Picard operators, the following theorems hold.

Theorem 4 Let (X,→,.) be an ordered L-space and A,B : X → X be two
operators. Suppose that:

(i) A and B are WPOs;
(ii) A is increasing;

(iii) A(x) . B(x), for every x ∈ X.
Then, the following conclusions hold:

(a) for every x, y ∈ X with x . y ⇒ A∞(x) . B∞(y);
(b) if, additionally, the operator B is increasing, then for each x ∈ X such that

x / A(x) ⇒ x / B∞(x).
Theorem 5 (Abstract Comparison Lemmna) Let (X,→,.) be an ordered L-
space and A,B,C : X→ X be three operators. Suppose that:

(i) A, B, and C are WPOs;
(ii) the operator B is increasing;

(iii) A(x) . B(x) . C(x), for every x ∈ X.
Then, for every x, y, z ∈ X with x . y . z ⇒ A∞(x) . B∞(y) . C∞(z).
In particular, if (X, d) is a metric space and → is the metric convergence, the

following concrete lemmas hold.

Theorem 6 Let (X, d,.) be an ordered and complete metric space and A : X →
X be an operator with closed graph. Suppose that:

(i) A is a graphic contraction, i.e., there exists α ∈ [0, 1[ such that

d(A(x),A2(x)) ≤ αd(x,A(x)), for every x ∈ X;

(ii) A is increasing.

Then:

(a) A is a WPO;
(b) for each x ∈ X with x . A(x) ⇒ x . A∞(x);
(c) for each x ∈ X with x / A(x) ⇒ x / A∞(x).
Theorem 7 Let (X, d,.) be an ordered and complete metric space and A,B :
X→ X be two operators with closed graph. Suppose that:

(i) A and B are graphic contractions;
(ii) A is increasing;
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(iii) A(x) . B(x), for every x ∈ X.
Then, the following conclusions hold:

(a) A and B are WPOs;
(b) for every x, y ∈ X with x . y ⇒ A∞(x) . B∞(y);
(c) if, additionally, the operator B is increasing, then for each x ∈ X such that

x / A(x) ⇒ x / B∞(x);

Fiber Contraction Theorem

The following result will be an important tool in our approach.

Theorem 8 (Fiber Contraction Principle) Let (X, d) and (Y, ρ) be two metric
spaces, such that ρ is a complete metric on Y . Let A : X × Y → X × Y given by

A(x, y) := (B(x), C(x, y))

be a triangular operator, i.e., B : X→ X and C : X × Y → Y . Suppose that:

(i) B is a WPO;
(ii) there exists α ∈ [0, 1[ such that the operator C(x, ·) : Y → Y is an α-

contraction;
(iii) if (x∗, y∗) ∈ FA, then the operator C(·, y∗) : Y → Y is continuous in x∗.

Then, the following conclusions hold:

(a) A is a WPO in the L-space (X × Y,→), where → denotes the termwise
convergence;

(b) if, additionally, B is a PO, then A is a PO too.

3 The Cauchy Problem for Halanay Equation

The Cauchy problem for equation (2) is equivalent to the following functional
integral equation with maxima:

x(t) =
⎧⎨
⎩
ϕ(t), t ∈ [t0 − h, t0],
e−α(t−t0)ϕ(t0)+ β

∫ t

t0

eα(s−t) max
θ∈[s−h,s] x(θ)ds, t ≥ t0,

(3)

in the space C([t0 − h,+∞[).
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Now we consider the operators

Aϕ : C([t0 − h,+∞[)→ C([t0 − h,+∞[),

defined by

Aϕ(x)(t) := the right hand side of (3),

and for each T > t0, the operator

Aϕ,T : C[t0 − h, T ] → C[t0 − h, T ],

defined by

Aϕ,T (x)(t) := the right hand side of (3),

for t ∈ [t0 − h, T ].
In what follows, we shall prove that the operator Aϕ,T has a unique fixed point,

for each T > t0, i.e., the operator Aϕ has a unique fixed point, i.e., the Cauchy
problem for the Halanay equation has a unique solution. For this, we use the Burton
method of progressive contractions ([6]; see also forward step method in [22] and
step by step contraction principle in [25]), in terms of max-norm. In the case of
equations with max

I
operator, we cannot use the Bielecki norm technique.

Theorem 9 The Cauchy problem for Halanay equation has in C([t0 − h,+∞[) ∩
C1([t0,+∞[) a unique solution.

Proof Let T > t0. Let m ∈ N
∗ be such that

l := β(T − t0)
m

< 1 and h ≥ T − t0
m

.

We denote

t1 := t0 + T − t0
m

, . . . , tk := t0 + k T − t0
m

, . . . , tm := T .

We remark that the operator Aϕ,t1 is an l-contraction. Let x∗1 its unique fixed point.
For

Cx∗1 [t0 − h, t2] := {x ∈ C[t0 − h, t2] | x
∣∣∣[t0−h,t1] = x

∗
1 },

we consider the operator

Aϕ,t2 : Cx∗1 [t0 − h, t2] → Cx∗1 [t0 − h, t2].
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This operator is an l-contraction. Let x∗2 be its unique fixed point. We remark that

x∗2
∣∣∣[t0−h,t1] = x

∗
1 .

By induction, we consider the operator

Aϕ,tk+1 : Cx∗k [t0 − h, tk+1] → Cx∗k [t0 − h, tk+1], k = 1,m− 1,

which is an l-contraction with x∗k+1 its unique fixed point and

x∗k+1

∣∣∣[t0−h,tk] = x
∗
k .

So, x∗m is the unique fixed point of Aϕ,T .

Remark 1 By the fiber contraction theorem, it follows that Aϕ is PO with respect
to the uniform convergence on each compact subinterval of [t0 − h,+∞[. For to
prove this, it is sufficient to prove that for each T > t0 the operator Aϕ,T is PO
with respect to uniform convergence on [t0−h, T ]. For to do this, we shall use fiber
contractions principle.

First, let U := C[t0 − h, t1] and V := C[t1, t2] and (3) writing in the following
form:

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(t), t ∈ [t0 − h, t0],
e−α(t−t0)ϕ(t0)+ β

∫ t

t0

eα(s−t) max
θ∈[s−h,s] x(θ)ds, t ∈ [t0, t1],

e−α(t−t0)ϕ(t0)+ β
∫ t1

t0

eα(s−t) max
θ∈[s−h,s] x(θ)ds

+β
∫ t

t1

eα(s−t) max
θ∈[s−h,s] x(θ)ds, t ∈ [t1, t2).

(4)

If we denote u := x
∣∣∣[t0−h,t1] and v := x

∣∣∣[t1,t2], then we can write (4) in the following

form:

u(t) =
⎧⎨
⎩
ϕ(t), t ∈ [t0 − h, t0],
e−α(t−t0)ϕ(t0)+ β

∫ t

t0

eα(s−t) max
θ∈[s−h,s] u(θ)ds, t ∈ [t0, t1],

v(t)=e−α(t−t0)ϕ(t0)+ β
∫ t1

t0

eα(s−t) max
θ∈[s−h,s] u(θ)ds

+β
∫ t

t1

eα(s−t) max

(
max

θ∈[s−h,t1]
u(θ), max

t∈[t1,s]
v(θ)

)
ds, t ∈ [t1, t2]



Introduction to Halanay Lemma, via Weakly Picard Operator Theory 387

or

{
u = A1(u)

v = A2(u, v),

where A1 := Aϕ,t1 and A2 : U × V → U defined by

A2(u, v)(t):=e−α(t−t0)ϕ(t0)+β
∫ t1

t0

max u(θ)ds

+β
∫ t

t1

eα(s−t) max

(
max

θ∈[s−t0,t1]
u(θ), max

θ∈[t1,s]
v(θ)

)
ds.

From the fiber contraction principle, we have that the operator

A : U × V → U × V, A(u, v) = (A1(u), A2(u, v))

is PO.
From the definition of A, we have that the operator Aϕ,t2 is PO. By a similar way,
we prove that Aϕ,t3 is PO, choosing

U := C[t0 − h, t2], V := C[t2, t3], A1 := Aϕ,t2 ,

and A2 suitably defined. By induction, we prove that Aϕ,T is a PO.

Remark 2 Since Aϕ is PO and is increasing, from Abstract Gronwall lemma we
have that

x ∈ C([t0 − h,+∞[), x ≤ Aϕ(x)⇒ x ≤ x∗,

and

x ∈ C([t0 − h,+∞[), x ≥ Aϕ(x)⇒ x ≥ x∗.

Remark 3 Let us consider the operator

E : C([t0 − h,+∞[)→ C([t0 − h,+∞[)

defined by

E(x)(t) :=
⎧⎨
⎩
x(t), t ∈ [t0 − h, t0],
e−α(t−t0)x(t0)+

∫ t

t0

eα(s−t) max
θ∈[s−t1,s]

x(θ)ds, t ∈ [t0,+∞[.
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If we denote for each ϕ ∈ C[t0 − h, t0],

Cϕ([t0 − h,+∞[) := {x ∈ C([t0 − h,+∞[)
∣∣ x|[t0−h,t0] = ϕ}.

It is clear that we have the following:

• C([t0 − h,+∞[) =
⋃

ϕ∈C[t0−h,t0]
([t0 − h,+∞[),

• E(Cϕ([t0,+∞[)) ⊂ Cϕ([t0,+∞[),
• E

∣∣∣
Cϕ([t0,+∞[)

= Aϕ .

From this, we have that the operator E is WPO.
For ϕ ∈ C[t0 − h, t0], we denote by ϕ̃, the function ϕ̃ : C([t0,+∞[) defined by

ϕ̃ =
{
ϕ(t), t ∈ [t0 − h, t0],
ϕ(t0), t ∈ [t0,+∞[.

We remark that for fixed point x∗ϕ of Aϕ , we have that x∗ϕ = E∞(ϕ̃).
Since E is WPO and E is increasing, we have Abstract Gronwall lemma for E,

i.e.,

x ≤ E(x)⇒ x ≤ E∞(x)
x ≥ E(x)⇒ x ≥ E∞(x).

From this, we have that if X∗ϕi is the unique fixed point of Aϕi , i = 1, 2, and if
ϕ1 ≤ ϕ2, then x∗ϕ1

≤ x∗ϕ2
. Indeed, it follows from the increasing of E∞, and from

x∗ϕ1
= E∞(ϕ̃1), x

∗
ϕ2
= E∞(ϕ̃2).

If x∗ ∈ Et and x is such that x ≤ E(x) and x
∣∣∣[t0−h,t0] ≤ x∗

∣∣∣[t0−h,t0], then x ≤ x∗.

4 Halanay Functional Differential Inequation: Halanay
Lemma

For α > β > 0 and t0 ∈ R, we consider the Halanay inequation

x′(t) ≤ −αx(t)+ β max
θ∈[t−h,t] x(θ), t ∈ [t0 − h,+∞[. (5)

Let x ∈ C(t0,+∞[)∩C1([t0−h,+∞[) be a solution of this equation. Then we
have that x ≤ E(x), where E(x) was defined in Remark 3.



Introduction to Halanay Lemma, via Weakly Picard Operator Theory 389

Let γ > 0 be such that e−γ (t−t0), t ∈ [t0 − h,+∞[ is a solution of Halanay
equation (2). Notice that there exists k > 0 such that

x(t) ≤ ke−γ (t−t0), ∀ t ∈ [t0 − h, t0].

Since e−γ (t−t0), t ∈ [t0 − h,+∞[ is a solution of (2), then ke−γ (t−t0), t ∈ [t0 −
h,+∞[ is also a solution of (2), i.e., it is a fixed point of the operator E. From
Remark 3, we have that

x(t) ≤ ke−γ (t−t0), ∀ t ∈ [t0 − h,+∞[.

So we have

Halanay Lemma. If x is a solution of (5), then there exists k > 0, γ > 0, such
that

x(t) ≤ ke−γ (t−t0), ∀ t ∈ [t0 − h,+∞[.

5 Halanay-Type Results

Halanay’s lemma generated several papers concerning functional differential
equations and functional integral equations.

All these results are, in fact, Chaplygin-type results and Gronwall-type results.
In our opinion, it is more appropriate to consider Halanay-type results, concrete
Chaplygin-type results, and concrete Gronwall-type results for equations with
maxima.
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An Inequality Related to Möbius
Transformations

Themistocles M. Rassias and Teerapong Suksumran

Abstract The open unit ball B = {v ∈ R
n : ‖v‖ < 1} is endowed with Möbius

addition ⊕M defined by

u⊕M v = (1+ 2〈u, v〉 + ‖v‖2)u+ (1− ‖u‖2)v
1+ 2〈u, v〉 + ‖u‖2‖v‖2 ,

for all u, v ∈ B. In this article, we prove the inequality

‖u‖ − ‖v‖
1+ ‖u‖‖v‖ ≤ ‖u⊕M v‖ ≤ ‖u‖ + ‖v‖

1− ‖u‖‖v‖
in B. This leads to a new metric on B defined by

dT (u, v) = tan−1 ‖ − u⊕M v‖,

which turns out to be an invariant of Möbius transformations on R
n carrying B onto

itself. We also compute the isometry group of (B, dT ) and give a parametrization of
the isometry group by vectors and rotations.

1 The Unit Ball of n-Dimensional Euclidean Space R
n

Let B denote the open unit ball of n-dimensional Euclidean space R
n, that is,

B = {v ∈ R
n : ‖v‖ < 1}, (1)

T. M. Rassias
Department of Mathematics, National Technical University of Athens, Athens, Greece
e-mail: trassias@math.ntua.gr

T. Suksumran (�)
Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
e-mail: teerapong.suksumran@cmu.ac.th

© Springer Nature Switzerland AG 2021
T. M. Rassias (ed.), Approximation Theory and Analytic Inequalities,
https://doi.org/10.1007/978-3-030-60622-0_21

391

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60622-0_21&domain=pdf
mailto:trassias@math.ntua.gr
mailto:teerapong.suksumran@cmu.ac.th
https://doi.org/10.1007/978-3-030-60622-0_21


392 T. M. Rassias and T. Suksumran

where ‖ ·‖ denotes the usual Euclidean norm on R
n. It is known in the literature that

B forms a bounded symmetric domain, naturally associated with the Poincaré and
Beltrami–Klein models of n-dimensional hyperbolic geometry. In fact, the Poincaré
metric dP corresponding to a curvature of −1 is given by

dP (x, y) = cosh−1
(

1+ 2‖x− y‖2

(1− ‖x‖2)(1− ‖y‖2)

)
, (2)

for all x, y ∈ B [4, p. 1232]. Furthermore, the Cayley–Klein metric associated with
the Beltrami–Klein model is defined via cross-ratios; see, for instance, [4, p. 1233].

From an algebraic point of view, the unit ball has a group-like structure when it
is endowed with Möbius addition ⊕M defined by

u⊕M v = (1+ 2〈u, v〉 + ‖v‖2)u+ (1− ‖u‖2)v
1+ 2〈u, v〉 + ‖u‖2‖v‖2 . (3)

Möbius addition governs the unit ball in the same way that ordinary vector addition
governs the Euclidean space; see, for instance, [3, 6, 11]. Furthermore, Möbius
addition induces the well-known Möbius transformation of B of the form

Lu(v) = u⊕M v = (1+ 2〈u, v〉 + ‖v‖2)u+ (1− ‖u‖2)v
1+ 2〈u, v〉 + ‖u‖2‖v‖2

, (4)

called the hyperbolic translation by u, for all u ∈ B [6, p. 124]. A remarkable
result of Kim and Lawson shows strong connections between the geometric and
algebraic structures of the unit ball. In fact, they relate the Poincaré metric with
Möbius addition:

dP (x, y) = 2 tanh−1 ‖ − x⊕M y‖ (5)

for all x, y ∈ B; see Theorem 3.7 of [4]. Equation (5) includes what Ungar refers to
as a gyrometric [10, Definition 6.8]. More precisely, the (Möbius) gyrometric and
the rapidity metric of (B,⊕M) are defined by

ρM(x, y) = ‖ − x⊕M y‖ (6)

and by

dM(x, y) = tanh−1 (ρM(x, y)) (7)

for all x, y ∈ B, respectively.
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A Nonassociative Structure of the Unit Ball

The space (B,⊕M) shares many properties with abelian groups, called by some a
gyrocommutative gyrogroup and by others a Bruck loop or a K-loop. Henceforth,
(B,⊕M) is referred to as the Möbius gyrogroup.

The group-like axioms satisfied by the Möbius gyrogroup are as follows.

(I) (IDENTITY) The zero vector 0 satisfies 0⊕M v = v = v⊕M 0 for all v ∈ B.
(II) (INVERSE) For each v ∈ B, the negative vector −v belongs to B and satisfies

(−v)⊕M v = 0 = v⊕M (−v).

(III) (THE GYROASSOCIATIVE LAW) For all u, v ∈ B, there are automorphisms
gyr[u, v] and gyr[v,u] in Aut (B,⊕M), such that

u⊕M (v⊕M w) = (u⊕M v)⊕M gyr[u, v]w

and

(u⊕M v)⊕M w = u⊕M (v⊕M gyr[v,u]w)

for all w ∈ B.
(IV) (THE LOOP PROPERTY) For all u, v ∈ B,

gyr[u⊕M v, v] = gyr[u, v] and gyr[u, v⊕M u] = gyr[u, v].

(V) (THE GYROCOMMUTATIVE LAW) For all u, v ∈ B,

u⊕M v = gyr[u, v](v⊕M u).

The automorphism gyr[u, v] mentioned in Item (III) is called the gyroautomor-
phism generated by u and v. It is uniquely determined by its generators via the
gyrator identity described by the formula

gyr[u, v]w = −(u⊕M v)⊕M (u⊕M (v⊕M w)) (8)

for all w ∈ B. Sometimes it is convenient to denote −v by 1v, the (unique) inverse
of v with respect to Möbius addition. Some elementary properties of the Möbius
gyrogroup are collected in Table 1.
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Table 1 Properties of the Möbius gyrogroup (cf. [7, 10])

Gyrogroup identity Name/reference

L1u = L−1
u Inverse of gyrotranslation

1u⊕M (u⊕M v) = v Left cancellation law

1(u⊕M v) = gyr[u, v](1v⊕M 1u) cf. (gh)−1 = h−1g−1

(1u⊕M v)⊕M gyr[1u, v](1v⊕M w) = 1u⊕M w cf. (g−1h)(h−1k) = g−1k

gyr[1u,1v] = gyr[u, v] Even property

gyr[v,u] = gyr−1[u, v], the inverse of gyr[u, v] Inversive symmetry

Isometries of the Unit Ball

It is known in the literature that the transformation Lu : v "→ u ⊕M v preserves
the gyrometric ρM ; see, for instance, [4, Lemma 3.2 (v)]. Thus, Lu preserves the
rapidity metric dM . In fact, every isometry of (B, dM) must be of the form Lu ◦ τ ,
where τ is the restriction of an orthogonal transformation on R

n to the unit ball, due
to the fact that any Möbius transformation that fixes 0 is orthogonal. The following
theorem shows that the metric geometry of B with respect to dM is homogeneous.

Theorem 1 (Homogeneity) For each pair of points x and y in B, there is an
isometry T of (B, dM) such that T (x) = y. In particular, B is homogeneous.

Proof Let x, y ∈ B. Define T = Ly ◦ L1x. Then T is an isometry of B, being the
composite of isometries of B. Furthermore, T (x) = y⊕M (1x⊕M x) = y. 
�

By using the gyrogroup formalism, a point-reflection symmetry of B is easy to
construct, as shown in the following theorem.

Theorem 2 (Symmetry) For each point x ∈ B, there is a symmetry Sx of B; that
is, Sx is an isometry of (B, dM) such that S2

x is the identity transformation I of B
and x is the unique fixed point of Sx.

Proof Let ι be the inversion map of B, that is, ι(v) = 1v for all v ∈ B. Since
1v = −v for all v ∈ B, ι is simply the negative map: v "→ −v. Note that ι is an
isometry of (B, dM) for ι is linear and preserves the Euclidean norm. Furthermore,
ι(v) = v if and only if v = 0.

Given x ∈ B, define Sx = Lx ◦ ι ◦ L1x. Then Sx = Lx ◦ ι ◦ L−1
x , and so

S2
x = (Lx ◦ ι ◦ L−1

x ) ◦ (Lx ◦ ι ◦ L−1
x ) = Lx ◦ ι2 ◦ L−1

x = Lx ◦ L−1
x = I.

Note that Sx �= I ; otherwise, we would have Lx ◦ ι ◦ L−1
x = I and would have

ι = I , a contradiction. It is clear that Sx is an isometry of B. By construction, x is a
fixed point of Sx. Suppose that y is a fixed point of Sx, that is, Sx(y) = y. It follows
that x ⊕M ι(1x ⊕M y) = y, and hence, ι(1x ⊕M y) = 1x ⊕M y. As mentioned
previously, 0 is the unique fixed point of ι and so 1x ⊕M y = 0. This implies that
x = y. 
�
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We close this section with the following theorem whose proof is straightforward
(and so is omitted).

Theorem 3 If τ ∈ Aut (B,⊕M) and ‖τ(v)‖ = ‖v‖ for all v ∈ B, then τ is an
isometry of B with respect to dM . In particular, the gyroautomorphisms of (B,⊕M)
are isometries.

2 The Negative Euclidean Space and Its Clifford Algebra

It seems that the formalism of Clifford algebras is a suitable tool for the study
of the Möbius gyrogroup [2, 5]. Let us begin with the definition of an underlying
vector space that will be used to built a unital associative algebra in which Möbius
addition has a compact formula. The negative Euclidean space has R

n as the
underlying vector space, but its inner product is a variant of the Euclidean inner
product defined by

B(u, v) = −〈u, v〉, u, v ∈ R
n. (9)

Note that (9) defines a nondegenerate symmetric bilinear form on R
n. Also, the

associated quadratic form is given byQ(v) = −‖v‖2 for all v ∈ R
n.

The negative Euclidean space induces a real unital associative algebra, which is
unique up to isomorphism, called the Clifford algebra of (Rn, B) denoted by C�n
[5]. To describe the structure of C�n, let {e1, e2, . . . , en} be the standard basis of Rn.
Then C�n has a basis of the form

{eI : I = ∅ or I = {1 ≤ i1 < i2 < · · · < ik ≤ n}}, (10)

where eI = ei1 ei2 · · · eik for I = {1 ≤ i1 < i2 < · · · < ik ≤ n} and
e∅ = 1, the multiplicative identity of C�n. Hence, a typical element of C�n is of

the form
∑
I

λI eI with λI in R. The binary operations of vector addition and scalar

multiplication in C�n are defined pointwise. The product of two elements in C�n is
obtained by using the distributive law (but not assuming that algebra multiplication
is commutative) subject to the defining relations

e2
i = −1 and eiej = −ej ei (11)

for all i, j ∈ {1, 2, . . . , n} with i �= j . The base field R is embedded into C�n by the
map λ "→ λ1, and the original space Rn is embedded into C�n by the inclusion map
[7, Section 3].

There is a unique involutive algebra antiautomorphism of C�n that extends
the identity automorphism I of R

n, called the reversion, denoted by a "→ ã.
Furthermore, the grade involution denoted by a "→ â is a unique involutive
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automorphism of C�n that extends −I , whereas the (Clifford) conjugation denoted
by a "→ ā is a unique involutive antiautomorphism of C�n that extends −I . The
grade involution is used to define a Clifford group (also called a Lipschitz group),
which is a group under multiplication of C�n defined by

Γn = {g ∈ C�n : g is invertible and ĝvg−1 ∈ R
n for all v ∈ R

n}. (12)

The conjugation of C�n gives rise to a group homomorphism of Γn. In fact, define a
map η by

η(a) = aā, a ∈ C�n. (13)

Then the restriction of η to Γn is a homomorphism from Γn to the multiplicative
group of nonzero numbers, denoted by R

× [8, Proposition 2]. If an element a in
C�n has the property that η(a) ∈ R and η(a) ≥ 0, we define |a| = √η(a). It is not
difficult to see that |v| = ‖v‖ for all v ∈ R

n.
The following theorem summarizes basic properties of C�n that will be used in

Section 3, especially the proof of Theorem 7.

Theorem 4 (Proposition 5, [8]) The following properties hold in the Clifford
algebra C�n.

1. uv+ vu = −2〈u, v〉 for all u, v ∈ R
n.

2. v2 = −‖v‖2 for all v ∈ R
n.

3. 1− uv ∈ Γn and (1− uv)−1 = 1− vu
η(1− uv)

for all u, v ∈ R
n with ‖u‖‖v‖ �= 1.

4. η(w(1− uv)−1) = η(w)
η(1− uv)

for all u, v,w ∈ R
n with ‖u‖‖v‖ �= 1.

In view of Theorem 4 (2), if v �= 0, then v is invertible with respect to

multiplication of C�n and v−1 = − 1

‖v‖2 v. Furthermore, by Lemma 1 of [8],

v̂wv−1 = 1

‖v‖2 vwv

belongs to R
n for all nonzero vectors v ∈ R

n and all w ∈ R
n. This implies that

R
n \ {0} ⊆ Γn, and we obtain the following theorem.

Theorem 5 Every transformation of the form w "→ qwq−1, where w ∈ R
n and

q ∈ Γn, defines an orthogonal transformation on R
n.

Proof Let w ∈ R
n and let q ∈ Γn. Clearly, ‖q0q−1‖ = 0 = ‖0‖. Therefore, we

may assume that w �= 0 and hence w ∈ Γn. Since η is a homomorphism from Γn to
R
×, it follows that η(qwq−1) = η(q)η(w)η(q)−1 = η(w) and so

‖qwq−1‖ =
√
η(qwq−1) = √

η(w) = ‖w‖.
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It is clear that the map w "→ qwq−1 is linear and bijective for w "→ q−1wq defines
its inverse with respect to composition of maps. 
�

Using the Clifford algebra formalism, one gains a compact formula for Möbius
addition, as shown in the following theorem.

Theorem 6 (Theorem 5.2, [5]) In C�n, Möbius addition can be expressed as

u⊕M v = (u+ v)(1− uv)−1 (14)

for all u, v ∈ B. The gyroautomorphisms are given by gyr[u, v]w = qwq−1, where

q = 1− uv
|1− uv| ,

for all u, v,w ∈ B.

3 Metrics on the Möbius Gyrogroup and Their Isometry
Groups

In this section, we prove a useful inequality involving Möbius addition and the
Euclidean norm as an application of the Cauchy–Schwarz inequality, using the
Clifford algebra formalism. This enables us to define a variant of norm metric
on the Möbius gyrogroup. This metric turns out to be a characteristic property of
Möbius transformations on R̂

n carrying B onto itself, where R̂
n is the one-point

compactification of Rn. We then give a complete description of the corresponding
isometry group via a gyrogroup approach.

Theorem 7 The inequality

‖u‖ − ‖v‖
1+ ‖u‖‖v‖ ≤ ‖u⊕M v‖ ≤ ‖u‖ + ‖v‖

1− ‖u‖‖v‖ (15)

holds in the Möbius gyrogroup.

Proof Using the Cauchy–Schwarz inequality, we have

−‖u‖‖v‖ ≤ 〈u, v〉 ≤ ‖u‖‖v‖

for all u, v ∈ R
n. This implies that

η(u+ v) = ‖u‖2 − (uv+ vu)+ ‖v‖2 = ‖u‖2 + 2〈u, v〉 + ‖v‖2 ≤ (‖u‖ + ‖v‖)2

and that η(u + v) ≥ (‖u‖ − ‖v‖)2 for all u, v ∈ R
n. Let u, v ∈ B. As in the proof

of Proposition 5 (4) of [8], we have η(1− uv) ≥ (1− ‖u‖‖v‖)2 and
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η(1− uv) = 1+ 2〈u, v〉 + ‖u‖2‖v‖2 ≤ (1+ ‖u‖‖v‖)2.

Hence, by Theorem 4 (4),

‖u⊕M v‖ =
√
η(u+ v)
η(1− uv)

≤
√
(‖u‖ + ‖v‖)2
(1− ‖u‖‖v‖)2 =

‖u‖ + ‖v‖
1− ‖u‖‖v‖ ,

and similarly

‖u⊕M v‖ =
√
η(u+ v)
η(1− uv)

≥
√
(‖u‖ − ‖v‖)2
(1+ ‖u‖‖v‖)2 ≥

‖u‖ − ‖v‖
1+ ‖u‖v‖‖ ,

as required. 
�
In view of (15) and the well-known trigonometric identity, the tangent function

is needed in order to obtain a bounded metric on the unit ball of Rn. In fact, define
a function ‖ · ‖T by

‖v‖T = tan−1 ‖v‖ (16)

for all v ∈ B. Here, T stands for “tan−1.”

Theorem 8 ‖ · ‖T satisfies the following properties:

1. ‖x‖T ≥ 0 and ‖x‖T = 0 if and only if x = 0;
2. ‖ 1 x‖T = ‖x‖T ;
3. ‖x‖T − ‖y‖T ≤ ‖x⊕M y‖T ≤ ‖x‖T + ‖y‖T ;
4. ‖gyr[u, v]x‖T = ‖x‖T
for all u, v, x, y ∈ B.

Proof Item (1) follows from the fact that tan−1 is a strictly increasing injective
function on (−∞,∞). Item (2) follows from the fact that ‖ − x‖ = ‖x‖.

To prove (3), set x = tan−1 ‖x‖ and y = tan−1 ‖y‖. By Theorem 7,

‖x‖ − ‖y‖
1+ ‖x‖‖y‖ ≤ ‖x⊕M y‖ ≤ ‖x‖ + ‖y‖

1− ‖x‖‖y‖ ,

and so tan (x − y) ≤ ‖x⊕M y‖ ≤ tan (x + y). Since tan−1 is an increasing function,
it follows that x−y ≤ tan−1 ‖x⊕M y‖ ≤ x+y, as claimed. By Theorem 6, there is
an element q ∈ Γn for which gyr[u, v]x = qxq−1. It follows from Theorem 5 that

‖gyr[u, v]x‖T = tan−1 ‖qxq−1‖ = tan−1 ‖x‖ = ‖x‖T ,

which proves (4). 
�
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As a consequence of Theorem 8, we obtain a new metric on the Möbius
gyrogroup. Unlike the Poincaré metric, this metric is bounded as shown in the
following theorem.

Theorem 9 Define dT by

dT (x, y) = ‖ 1 x⊕M y‖T (17)

for all x, y ∈ B. Then dT is a bounded metric on B.

Proof By Theorem 8 (1), dT (x, y) ≥ 0 for all x, y ∈ B and dT (x, y) = 0 if and only
if x = y. Let x, y, z ∈ B. Using appropriate properties of the Möbius gyrogroup in
Table 1, together with Theorem 8, we obtain

‖1 y⊕M x‖T = ‖1 (1y⊕M x)‖T = ‖gyr[1y, x](1x⊕M y)‖T = ‖1 x⊕M y‖T ,

and so dT (y, x) = dT (x, y). Furthermore, we obtain

dT (x, z) = ‖ 1 x⊕M z‖T
= ‖(1x⊕M y)⊕M gyr[1x, y](1y⊕M z)‖T
≤ ‖ 1 x⊕M y‖T + ‖gyr[1x, y](1y⊕M z)‖T
= ‖ 1 x⊕M y‖T + ‖ 1 y⊕M z‖T
= dT (x, y)+ dT (y, z).

This proves that dT satisfies the defining properties of a metric.

Note that dT (0, v) = ‖v‖T = tan−1 ‖v‖ < tan−1 1 = π
4

for all v ∈ B. Hence,

dT (x, y) ≤ dT (x, 0)+ dT (0, y) < π
4
+ π

4
= π

2

for all x, y ∈ B. 
�
Although dT is quite different from the Poincaré metric, both generate the same

topology on the unit ball. It is clear that the Poincaré metric and the rapidity metric
of the Möbius gyrogroup generate the same topology since the former is twice the
latter.

Theorem 10 The topologies induced by dT and dM are equivalent.

Proof Note that dT (u, v) ≤ dM(u, v) for all u, v ∈ B since

f (x) = tanh−1 x − tan−1 x

defines a strictly increasing function on the open interval (0, 1). This implies that
the topology generated by dM is finer than the topology generated by dT . Next, we



400 T. M. Rassias and T. Suksumran

prove that the topology generated by dT is finer than the topology generated by dM .
Let u ∈ B and let ε > 0. Choose δ = tan−1 (tanh ε). Let v ∈ BdT (u, δ). Then
dT (u, v) < δ, that is, ‖ 1 u⊕M v‖T < tan−1 (tanh ε). It follows that

dM(u, v) = tanh−1 ‖ 1 u⊕M v‖ < ε

for tan and tanh−1 are strictly increasing functions. Hence, v ∈ BdM (u, ε). This
proves BdT (u, δ) ⊆ BdM (u, ε). 
�

Let O (Rn) be the orthogonal group of Rn, that is,

O (Rn) = {τ : τ is a bijective orthogonal transformation on R
n}. (18)

Set

O (B) = {τ |B : τ ∈ O (Rn)}, (19)

where τ |B is the restriction of τ to B. It is clear that O (B) forms a group under
composition of maps since B is preserved under orthogonal transformations on R

n.
Given u, v ∈ B, note that gyr[u, v] satisfies the following properties:

1. gyr[u, v]0 = 0;
2. gyr[u, v] is an automorphism of (B,⊕M);
3. gyr[u, v] preserves the Möbius gyrometric.

Hence, by Theorem 3.2 of [1], there is a bijective orthogonal transformation on R
n,

denoted by Gyr[u, v], for which Gyr[u, v]|B= gyr[u, v]. This proves the following
inclusion:

{gyr[u, v] : u, v ∈ B} ⊆ O (B).

Next, we compute the isometry group of (B, dT ).

Lemma 1 The left gyrotranslation Lu : v "→ u⊕M v defines an isometry of (B, dT )
for all u ∈ B.

Proof By Theorem 10 (1) of [9], Lu is a bijective self-map of B. Using appropriate
properties of the Möbius gyrogroup in Table 1, we obtain

‖ 1 (u⊕M x)⊕M (u⊕M y)‖ = ‖gyr[u, x](1x1 u)⊕M (u⊕M y)‖
= ‖(1x1 u)⊕M gyr[x,u](u⊕M y)‖
= ‖(1x1 u)⊕M gyr[1x,1u](u⊕M y)‖
= ‖ 1 x⊕M y‖.

It follows that
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dT (Lu(x), Lu(y)) = ‖ 1 Lu(x)⊕M Lu(y)‖T = ‖ 1 x⊕M y‖T = dT (x, y). 
�

Theorem 11 The isometry group of (B, dT ) is given by

Iso (B, dT ) = {Lu ◦ τ : u ∈ B, τ ∈ O (B)}. (20)

Proof For convenience, if ρ ∈ O (Rn), then the restriction of ρ to B is simply
denoted by ρ. By Lemma 1, Lu is an isometry of B with respect to dT . Let ρ ∈
O (Rn). Using (3), we have ρ(x)⊕M ρ(y) = ρ(x⊕M y) for all x, y ∈ B since ρ is
linear and preserves the Euclidean inner product. Hence, the restriction of ρ to B is
indeed an automorphism of (B,⊕M) since ρ(B) ⊆ B and ρ−1 ∈ O (Rn). It follows
that

dT (ρ(x), ρ(y)) = ‖ρ(1x⊕M y)‖T = ‖ 1 x⊕M y‖T = dT (x, y).

Thus, ρ is an isometry of B and so {Lu ◦ τ : u ∈ B, τ ∈ O (B)} ⊆ Iso (B, dT ).
Let T ∈ Iso (B, dT ). By definition, T is a bijective self-map of B. By Theorem 11

of [9], T = LT (0) ◦ ρ, where ρ is a bijective self-map of B fixing 0. As in the proof
of Theorem 18 (2) of [7], L−1

T (0) = L1T (0) and so ρ = L1T (0) ◦ T . Therefore, ρ is

an isometry of (B, dT ). Since dT (ρ(x), ρ(y)) = dT (x, y), and tan−1 is injective, it
follows that

‖ 1 ρ(x)⊕M ρ(y)‖ = ‖ 1 x⊕M y‖

for all x, y ∈ B. Thus, ρ preserves the Möbius gyrometric. By Theorem 3.2 of [1],
ρ = τ |B, where τ is a bijective orthogonal transformation on R

n. This proves that

Iso (B, dT ) ⊆ {Lu ◦ τ : u ∈ B, τ ∈ O (B)}. 
�

By Theorem 11, every isometry of B with respect to dT can be expressed as the
composite of a left gyrotranslation with an orthogonal transformation restricted to
B. This expression is unique in the sense that if Lu ◦ α = Lv ◦ β with u, v in B

and α, β in O (B), then u = v and α = β. Furthermore, we have the following
composition law of isometries of (B, dT ):

(Lu ◦ α) ◦ (Lv ◦ β) = Lu⊕Mα(v) ◦ (gyr[u, α(v)] ◦ α ◦ β) (21)

for all u, v ∈ B and α, β ∈ O (B), a formula comparable to the composition law of
Euclidean isometries.

Since v "→ Lv defines a one-to-one correspondence from B to the set of left
gyrotranslations of B, we have

Iso (B, dT ) ∼= B �gyr O (B). (22)
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Here, B �gyr O (B) is the semidirect-product-like group whose underlying set is

B �gyr O (B) = {(v, τ ) : v ∈ B, τ ∈ O (B)} (23)

with group law

(u, α)(v, β) = (u⊕M α(v), gyr[u, α(v)] ◦ α ◦ β) (24)

for all u, v ∈ B and α, β ∈ O (B). This is a result analogous to the fact that the
isometry group of the Euclidean space is the semidirect product of Rn and O (Rn):

R
n
� O (Rn) = {(v, τ ) : v ∈ R

n, τ ∈ O (Rn)},

where the group law is given by

(u, α)(v, β) = (u+ α(v), α ◦ β)

for all u, v ∈ R
n and α, β ∈ O (Rn). The group B �gyr O (B) is known as the

gyrosemidirect of B and O (B) [10, Section 2.6].

Theorem 12 Let T be a self-map of B. The following are equivalent:

1. T preserves the Poincaré metric dP ;
2. T preserves the rapidity metric dM ;
3. T preserves the Möbius gyrometric ρM ;
4. T preserves the metric dT generated by ‖ · ‖T .
Proof The theorem follows directly from the fact that dP (x, y) = 2dM(x, y) and
that tanh−1 and tan−1 are injective. 
�
Corollary 1 Iso (B, dP ) = Iso (B, dM) = Iso (B, ρM) = Iso (B, dT ).

Recall that a Möbius transformation of R̂
n that leaves B invariant is called a

Möbius transformation of B [6, p. 120]. It is known that the isometry group of the
Poincaré ball model (B, dP ), also called the conformal ball model, can be identified
with the group of Möbius transformations of B; see, for instance, [6, Corollary 1
on p. 125]. By Corollary 1, Equation (24) provides a parametric realization of the
Möbius transformation group of B in terms of vectors and rotations. Furthermore,
dT is an invariant of Möbius transformations of B in the sense of the following
theorem.

Theorem 13 Every Möbius transformation of B restricts to an isometry of (B, dT ),
and every isometry of (B, dT ) extends to a unique Möbius transformation of B.

Proof Let φ be a Möbius transformation of B. By Theorem 4.5.2 of [6], φ restricts
to an isometry of (B, dP ). By Corollary 1, φ|B is an isometry of (B, dT ). Let σ be an
isometry of (B, dT ). By the same corollary, σ is an isometry of (B, dP ) and, hence,
extends to a unique Möbius transformation of B by the same theorem. 
�
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Abstract In this paper, introducing multi-parameters and using properties of series,
we prove a half-discrete Hilbert-type inequality in the whole plane with kernel in
terms of the hyperbolic tangent function. The constant factor related to the Riemann
zeta function and the gamma function is proved to be the best possible. In the
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1 Introduction

Assuming that p > 1, 1
p
+ 1
q
= 1, am, bn > 0,

0 <
∞∑
m=1

a
p
m <∞, 0 <

∞∑
n=1

b
q
n <∞,

we have the following well-known Hardy–Hilbert inequality with the best possible
constant factor π

sin(π/p) (cf. [1]):

∞∑
n=1

∞∑
m=1

ambn

m+ n <
π

sin(π/p)

( ∞∑
m=1

a
p
m

) 1
p
( ∞∑
n=1

b
q
n

) 1
q

. (1)

If f (x), g(y) ≥ 0,

0 <
∫ ∞

0
f p(x)dx <∞ and 0 <

∫ ∞
0
gq(y)dy <∞,

then the following Hardy–Hilbert integral inequality holds true (cf. [2]):

∫ ∞
0

∫ ∞
0

f (x)g(y)

x + y dxdy <
π

sin(π/p)

(∫ ∞
0
f p(x)dx

) 1
p
(∫ ∞

0
gq(y)dy

) 1
q

,

(2)
where the constant factor π

sin(π/p) is the best possible.
In 2011, the following half-discrete Hardy–Hilbert inequality with the same best

possible constant factor was proved (cf. [3]):

∞∑
n=1

∫ ∞
0

bnf (x)

x + n dx <
π

sin(π/p)

(∫ ∞
0
f p(x)dx

) 1
p

( ∞∑
n=1

b
q
n

) 1
q

. (3)

Inequalities of the form (1), (2) and (3) are essential for various applications in
mathematical analysis (cf. [2, 4–6]).

A survey of the work conducted in the area of Hilbert-type inequalities with
homogeneous kernels of negative degree was presented in 2009 in [7]. Some new
inequalities with homogenous kernels of degree 0 as well as with non-homogenous
kernels were investigated in [8–10]. The inequalities in all of these works are
constructed in the quarter plane of the first quadrant. Other kinds of Hilbert-type
inequalities were also established in [11–32].

In 2007, a Hilbert-type integral inequality in the whole plane was proved by Yang
in [30]. Additionally, the following Hilbert-type integral inequality in the whole
plane was established in [31]:



On a Half-Discrete Hilbert-Type Inequality in the Whole Plane 407

∫ ∞
−∞

∫ ∞
−∞

1

|1+ xy|λ f (x)g(y)dxdy

< kλ

[∫ ∞
−∞
|x|p(1− λ2 )−1f p(x)dx

] 1
p
[∫ ∞
−∞
|y|q(1− λ2 )−1gq(y)dy

] 1
q

, (4)

where the constant factor

kλ = B
(
λ

2
,
λ

2

)
+ 2B

(
1− λ, λ

2

)
(0 < λ < 1)

is the best possible. He et al. have also proved some new Hilbert-type inequalities in
the whole plane with the best possible constant factors (cf. [33–40]).

In this paper, introducing multi-parameters and using properties of series, we
prove the half-discrete Hilbert-type inequality (5) in the whole plane with kernel in
terms of the hyperbolic tangent function:

1− tanh(u) = 1− sinh(u)

cosh(u)
= 2e−u

eu + e−u (u ≥ 0)

and a best possible constant factor:

∞∑
|n|=1

∫ ∞
−∞

(
1− tanh

(
ρ

( |n|
|x|

)γ))
f (x)bndx

<
4(2σ/γ − 2)

γ (4ρ)σ/γ
Γ

(
σ

γ

)
ζ

(
σ

γ

)

×
[∫ ∞
−∞
|x|p(1+σ)−1f p(x)dx

] 1
p

⎡
⎣ ∞∑
|n|=1

|n|q(1−σ)−1b
q
n

⎤
⎦

1
q

, (5)

where ρ > 0, 0 < γ < σ ≤ 1,

ζ(s) :=
∞∑
k=1

1

ks
(Re s > 1)

is the Riemann zeta function and

Γ (s) :=
∫ ∞

0
e−vvs−1dv (Re s > 0)

is the gamma function (cf. [41]).
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Moreover, we also obtain an extension of (5) with multi-parameters. In the form of
applications, we additionally present equivalent forms, a few particular inequalities,
operator expressions and reverses.

2 Weight Functions and Some Lemmas

In what follows, we assume that p ∈ R\{0, 1},
1

p
+ 1

q
= 1, δ ∈ {−1, 1}, a, b ∈ (−1, 1), ρ > 0, 0 < γ < σ ≤ 1.

We set

g(x, y) := 1− tanh

(
ρ

[ |y| + by
(|x| + ax)δ

]γ)

= 2e
−ρ[ |y|+by

(|x|+ax)δ ]
γ

e
ρ[ |y|+by
(|x|+ax)δ ]γ + e−ρ[

|y|+by
(|x|+ax)δ ]γ

(x �= 0, y �= 0), (6)

wherefrom

g(x, y) = 1− tanh

(
ρ[ y(1+ b)
(|x| + ax)δ ]

γ

)
(y > 0),

g(x, y) = 1− tanh

(
ρ{ |y| + by[x(1+ a)]δ }

γ

)
(x > 0),

g(−x, y) = 1− tanh

(
ρ{ |y| + by[x(1− a)]δ }

γ

)
(x > 0),

g(x,−y) = 1− tanh

(
ρ[ y(1− b)
(|x| + ax)δ ]

γ

)
(y > 0).

Lemma 1 We define two weight functions ω(σ, n) and '(σ, x) as follows:

ω(σ, n) : =
∫ ∞
−∞

g(x, n)
(|n| + bn)σ
(|x| + ax)1+δσ dx (|n| ∈ N), (7)

'(σ, x) : =
∞∑
|n|=1

g(x, n)
(|x| + ax)−δσ
(|n| + bn)1−σ (x ∈ R\{0}). (8)
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Then,

(i) we have

ω(σ, n) = ka(σ ) :=
4(2σ/γ − 2)Γ (σ

γ
)ζ( σ

γ
)

γ (4ρ)σ/γ (1− a2)
∈ R+ (|n| ∈ N); (9)

(ii) we also have

kb(σ )(1− θ(σ, x)) < '(σ, x) < kb(σ ) (x ∈ R\{0}), (10)

where

θ(σ, x) := 2σ/γ

2(2σ/γ − 2)Γ (σ
γ
)ζ( σ

γ
)

×
∫ ρ

[
1+b

(|x|+ax)δ
]γ

0
u
σ
γ
−1
(1− tanh(u))du

= O
(

1

(|x| + ax)δσ
)
∈ (0, 1). (11)

Proof We obtain

ω(σ, n) =
∫ 0

−∞
g(x, n)

(|n| + bn)σ dx
[x(a − 1)]1+δσ +

∫ ∞
0
g(x, n)

(|n| + bn)σ dx
[x(a + 1)]1+δσ

=
∫ ∞

0
g(−x, n) (|n| + bn)

σ dx

[x(1− a)]1+δσ +
∫ ∞

0
g(x, n)

(|n| + bn)σ dx
[x(1+ a)]1+δσ .

Setting

u = ρ
{ |n| + bn
[x(1− a)]δ

}γ (
resp. u = ρ

{ |n| + bn
[x(1+ a)]δ

}γ)

in the first (resp. second) integral above, by the Lebesgue term-by-term integration
theorem (cf. [42]), we deduce that

ω(σ, n) =
(

1

1− a +
1

1+ a
)

1

γρσ/γ

∫ ∞
0
u
σ
γ
−1
(1− tanh(u))du

= 4

γρσ/γ (1− a2)

∫ ∞
0

e−2uu
σ
γ
−1

1+ e−2u
du

= 4

γρσ/γ (1− a2)

∫ ∞
0

∞∑
k=0

(−1)ku
σ
γ
−1

e(2k+2)u
du
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= 4

γρσ/γ (1− a2)

∫ ∞
0

∞∑
k=0

[e−(4k+2)u − e−(4k+4)u]uσγ −1
du

= 4

γρσ/γ (1− a2)

∞∑
k=0

∫ ∞
0
[e−(4k+2)u − e−(4k+4)u]uσγ −1

du

= 4

γρσ/γ (1− a2)

∞∑
k=0

∫ ∞
0
(−1)ke−(2k+2)uu

σ
γ
−1
du (v = (2k + 2)u)

= 4

γ (2ρ)σ/γ (1− a2)

∫ ∞
0
e−vv

σ
γ
−1
dv

∞∑
k=0

(−1)k

(k + 1)σ/γ

= 4Γ (σ
γ
)

γ (2ρ)σ/γ (1− a2)

∞∑
k=1

(−1)k−1

kσ/γ
.

Since σ
γ
> 1, we obtain that

∞∑
k=1

(−1)k−1

kσ/γ
=
∞∑
k=1

1

kσ/γ
− 2

∞∑
k=1

1

(2k)σ/γ

= 1

2σ/γ
(
2σ/γ − 2

)
ζ(
σ

γ
).

We then deduce (9).
We have

'(σ, x) =
−∞∑
n=−1

g(x, n)
(|x| + ax)−δσ
(|n| + bn)1−σ +

∞∑
n=1

g(x, n)
(|x| + ax)−δσ
(|n| + bn)1−σ

= (|x| + ax)
−δσ

(1− b)1−σ
∞∑
n=1

g(x,−n)
n1−σ + (|x| + ax)

−δσ

(1+ b)1−σ
∞∑
n=1

g(x, n)

n1−σ . (12)

Since for γ > 0 we have

d

du
(1− tanh(uγ )) = −2γ uγ−1(1− e−2uγ )

(eu
γ + e−uγ )2 − 2γ uγ−1e−uγ

eu
γ + e−uγ < 0 ,

it follows that for 0 < σ ≤ 1 both

g(x,−y)
y1−σ and

g(x, y)

y1−σ
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are strictly decreasing in y ∈ (0,∞). By (12) and the decreasing property of series,
we have

'(σ, x) <
(|x| + ax)−δσ
(1− b)1−σ

∫ ∞
0

g(x,−y)
y1−σ dy

+ (|x| + ax)
−δσ

(1+ b)1−σ
∫ ∞

0

g(x, y)

y1−σ dy.

Setting

u = ρ
[
y(1− b)
(|x| + ax)δ

]γ (
resp. u = ρ

[
y(1+ b)
(|x| + ax)δ

]γ)

in the first (resp. second) integral above, by simplifications, we obtain

'(σ, x) <
4(2σ/γ − 2)Γ (σ

γ
)ζ( σ

γ
)

γ (4ρ)σ/γ (1− b2)
= kb(σ ).

By (12) and the decreasing property of series, we also obtain that

'(σ, x) >
(|x| + ax)−δσ
(1− b)1−σ

∫ ∞
1

g(x,−y)
y1−σ dy

+ (|x| + ax)
−δσ

(1+ b)1−σ
∫ ∞

1

g(x, y)

y1−σ dy.

Setting again

u = ρ
[
y(1− b)
(|x| + ax)δ

]γ (
resp. u = ρ

[
y(1+ b)
(|x| + ax)δ

]γ)

in the first (resp. second) integral above, by simplifications, we have

'(σ, x) >
1

γρσ/γ (1− b)
∫ ∞
ρ
[

1−b
(|x|+ax)δ

]γ u
σ
γ
−1
(1− tanh(u))du

+ 1

γρσ/γ (1+ b)
∫ ∞
ρ
[

1+b
(|x|+ax)δ

]γ u
σ
γ
−1
(1− tanh(u))du

≥ 2

γρσ/γ (1− b2)

∫ ∞
ρ
[

1+b
(|x|+ax)δ

]γ u
σ
γ
−1
(1− tanh(u))du

= kb(σ )(1− θ(σ, x)) > 0.
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We obtain that

lim
u→0

(1− tanh(u)) = 1, lim
u→∞(1− tanh(u)) = 0

and thus 0 < 1− tanh(u) ≤ 1 (u ∈ (0,∞)). Hence, we have

0 < θ(σ, x) = 2σ/γ

2(2σ/γ − 2)Γ (σ
γ
)ζ( σ

γ
)

×
∫ ρ

[
1+b

(|x|+ax)δ
]γ

0
u
σ
γ
−1
(1− tanh(u))du

≤ 2σ/γ

2(2σ/γ − 2)Γ (σ
γ
)ζ( σ

γ
)

∫ ρ
[

1+b
(|x|+ax)δ

]γ

0
u
σ
γ
−1
du

= γ (2ρ)σ/γ

2σ(2σ/γ − 2)Γ (σ
γ
)ζ( σ

γ
)

[
1+ b

(|x| + ax)δ
]σ
,

namely, (10) and (11) follow.
This completes the proof of the lemma.

Lemma 2 If ε > 0, and

Hε(b) :=
∞∑
|n|=1

1

(|n| + bn)1+ε ,

then it holds

Hε(b) = 1

ε

(
2

1− b2 + o1(1)

)
(1+ o2(1)) (ε→ 0+). (13)

Proof We have

Hε(b) =
−∞∑
n=−1

1

[n(b − 1)]1+ε +
∞∑
n=1

1

[n(b + 1)]1+ε

=
[

1

(1− b)1+ε +
1

(1+ b)1+ε
] ∞∑
n=1

1

n1+ε . (14)
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By (14) and the decreasing property of series, we derive that

Hε(b) =
[

1

(1+ b)1+ε +
1

(1− b)1+ε
](

1+
∞∑
n=2

1

n1+ε

)

<

[
1

(1+ b)1+ε +
1

(1− b)1+ε
](

1+
∫ ∞

1

dy

y1+ε

)

= 1

ε
(

2

1− b2 + o1(1))(1+ ε),

Hε(b) >

[
1

(1+ b)1+ε +
1

(1− b)1+ε
] ∫ ∞

1

dy

y1+ε

= 1

ε

(
2

1− b2 + o1(1)

)
.

Hence, we obtain (13).
This completes the proof of the lemma.

Lemma 3 For ε > 0, setting

Eδ :=
{
x ∈ R\{0}; 1

(|x| + ax)δ ≥ 1

}
,

we have

Hδ :=
∫
Eδ

1

(|x| + ax)1+δε dx =
1

ε

2

1− a2 . (15)

Proof Setting

E+δ : =
{
x > 0; 1

[x(1+ a)]δ ≥ 1

}
,

E−δ : =
{
x < 0; 1

[(−x)(1− a)]δ ≥ 1

}
,

it follows that Eδ = E+δ ∪ E−δ and

Hδ = 1

(1+ a)1+δε
∫
E+δ

dx

x1+δε +
1

(1− a)1+δε
∫
E−δ

dx

(−x)1+δε .

Setting u = [x(1 + a)]δ (resp. u = [(−x)(1 − a)]δ) in the first (resp. second)
integral above, we obtain
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Hδ =
(

1

1+ a +
1

1− a
)∫ ∞

1

du

u1+ε =
1

ε

2

1− a2 .

Therefore, (15) follows.
This completes the proof of the lemma.

3 Main Results

Theorem 1 Suppose that p > 1, and

Ka,b(σ ) := k
1
q
a (σ )k

1
p

b (σ ) =
4(2σ/γ − 2)Γ (σ

γ
)ζ( σ

γ
)

γ (4ρ)σ/γ (1− a2)1/q(1− b2)1/p
. (16)

If f (x), bn ≥ 0, such that

0 <
∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f p(x)dx <∞, and

0 <
∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n <∞,

then we have the following equivalent inequalities:

I :=
∞∑
|n|=1

∫ ∞
−∞

(
1− tanh

(
ρ(|n| + bn)γ
(|x| + ax)δγ

))
f (x)bndx < Ka,b(σ )

×
[∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

⎡
⎣ ∞∑
|n|=1

(|n|+bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

,(17)

J1 :=
⎧⎨
⎩
∞∑
|n|=1

(|n| + bn)pσ−1
[∫ ∞
−∞

(
1− tanh

(
ρ(|n| + bn)γ
(|x| + ax)δγ

))
f (x)dx

]p⎫⎬
⎭

1
p

< Ka,b(σ )

[∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

, (18)



On a Half-Discrete Hilbert-Type Inequality in the Whole Plane 415

J2 :=
⎧⎨
⎩
∫ ∞
−∞
(|x| + ax)−qδσ−1

⎡
⎣ ∞∑
|n|=1

(
1− tanh

(
ρ(|n| + bn)γ
(|x| + ax)δγ

))
bn

⎤
⎦
q

dx

⎫⎬
⎭

1
q

< Ka,b(σ )

⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

. (19)

In particular, for a = b = 0, we deduce the following equivalent inequalities:

∞∑
|n|=1

∫ ∞
−∞

(
1− tanh

(
ρ

( |n|
|x|δ

)γ))
f (x)bndx

<
4(2σ/γ − 2)

γ (4ρ)σ/γ
Γ

(
σ

γ

)
ζ

(
σ

γ

)

×
(∫ ∞
−∞
|x|p(1+δσ )−1f p(x)dx

) 1
p

⎛
⎝ ∞∑
|n|=1

|n|q(1−σ)−1b
q
n

⎞
⎠

1
q

, (20)

⎧⎨
⎩
∞∑
|n|=1

|n|pσ−1
[∫ ∞
−∞

(
1− tanh

(
ρ

( |n|
|x|δ

)γ))
f (x)dx

]p⎫⎬
⎭

1
p

<
4(2σ/γ − 2)

γ (4ρ)σ/γ
Γ

(
σ

γ

)
ζ

(
σ

γ

)[∫ ∞
−∞
|x|p(1+δσ )−1f p(x)dx

] 1
p

, (21)

⎧⎨
⎩
∫ ∞
−∞
|x|−qδσ−1

⎡
⎣ ∞∑
|n|=1

(
1− tanh

(
ρ

( |n|
|x|δ

)γ))
bn

⎤
⎦
q

dx

⎫⎬
⎭

1
q

<
4(2σ/γ − 2)

γ (4ρ)σ/γ
Γ

(
σ

γ

)
ζ

(
σ

γ

)⎡
⎣ ∞∑
|n|=1

|n|q(1−σ)−1b
q
n

⎤
⎦

1
q

. (22)

Proof By Hölder’s inequality with weight (cf. [43]) and (7), we obtain
[∫ ∞
−∞

g(x, n)f (x)dx

]p

=
[∫ ∞
−∞

g(x, n)
(|x| + ax)(1+δσ )/qf (x)
(|n| + bn)(1−σ)/p

(|n| + bn)(1−σ)/p
(|x| + ax)(1+δσ )/q dx

]p
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≤
∫ ∞
−∞

g(x, n)
(|x| + ax)(1+δσ )(p−1)

(|n| + bn)1−σ f p(x)dx

×
[∫ ∞
−∞

g(x, n)
(|n| + bn)(1−σ)(q−1)

(|x| + ax)1+δσ dx

]p−1

= ωp−1(σ, n)

(|n| + bn)pσ−1

∫ ∞
−∞

g(x, n)
(|x| + ax)(1+δσ )(p−1)

(|n| + bn)1−σ f p(x)dx.

Then by (9) and the Lebesgue term-by-term integration theorem (cf. [42]), in view
of (8), we deduce that

J1 ≤ k
1
q
a (σ )

⎡
⎣ ∞∑
|n|=1

∫ ∞
−∞

g(x, n)
(|x| + ax)(1+δσ )(p−1)

(|n| + bn)1−σ f p(x)dx

⎤
⎦

1
p

= k
1
q
a (σ )

⎡
⎣∫ ∞
−∞

∞∑
|n|=1

g(x, n)
(|x| + ax)(1+δσ )(p−1)

(|n| + bn)1−σ f p(x)dx

⎤
⎦

1
p

= k
1
q
a (σ )

[∫ ∞
−∞

'(σ, x)(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

. (23)

Hence, by (10), since

Ka,b(σ ) = k
1
q
a (σ )k

1
p

b (σ ),

we deduce (18).
By Hölder’s inequality (cf. [43]), we have

I =
∞∑
|n|=1

[
(|n| + bn)−1

p
+σ

∫ ∞
−∞

g(x, n)f (x)dx

]
[(|n| + bn) 1

p
−σ
bn]

≤ J1

⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

. (24)

Then by (18), we deduce (17). On the other hand, assuming that (17) is valid, we set

bn := (|n| + bn)pσ−1
[∫ ∞
−∞

g(x, n)f (x)dx

]p−1

(|n| ∈ N).
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Then, we obtain that

J1 =
⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
p

.

In view of (23), it follows that J1 < ∞. If J1 = 0, then (18) is trivially valid; if
J1 > 0, then by (17), we have

∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

= Jp1 = I < Ka,b(σ )
[∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

×
⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

,

J1 =
⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1− 1
q

< Ka,b(σ )

[∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

.

That is, (18) follows, which is equivalent to (17).
By Hölder’s inequality with weight, we also obtain that

⎡
⎣ ∞∑
|n|=1

g(x, n)bn

⎤
⎦
q

=
⎡
⎣ ∞∑
|n|=1

g(x, n)
(|x| + ax)(1+δσ )/q
(|n| + bn)(1−σ)/p

(|n| + bn)(1−σ)/p
(|x| + ax)(1+δσ )/q bn

⎤
⎦
q

≤
⎡
⎣ ∞∑
|n|=1

g(x, n)
(|x| + ax)(1+δσ )(p−1)

(|n| + bn)1−σ

⎤
⎦
q−1

×
∞∑
|n|=1

g(x, n)
(|n| + bn)(1−σ)(q−1)

(|x| + ax)1+δσ b
q
n

= ('(σ, x))q−1

(|x| + ax)−qδσ−1

∞∑
|n|=1

g(x, n)
(|n| + bn)(1−σ)(q−1)

(|x| + ax)1+δσ b
q
n.
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By (10) and the Lebesgue term-by-term theorem, we obtain that

J2 < k
1
p
a (σ )

⎡
⎣∫ ∞
−∞

∞∑
|n|=1

g(x, n)
(|n| + bn)(1−σ)(q−1)

(|x| + ax)1+δσ b
q
ndx

⎤
⎦

1
q

= k
1
p
a (σ )

⎡
⎣ ∞∑
|n|=1

ω(σ, n)(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

. (25)

Hence, by (9), we deduce (19).
We have proved that (17) is true. Setting

f (x) := (|x| + ax)−qδσ−1

⎡
⎣ ∞∑
|n|=1

g(x, n)bn

⎤
⎦
q−1

(x ∈ R\{0}),

it follows that

J2 =
[∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
q

,

and in view of (25), we derive that J2 <∞. If J2 = 0, then (19) is trivially true; if
J2 > 0, then by (17), we have

∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f p(x)dx

= J q2 = I < Ka,b(σ )
[∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

×
⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

,

J2 =
[∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f p(x)dx

]1− 1
p

< Ka,b(σ )

⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

,

namely, (19) follows.
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On the other hand, assuming that (19) is true, by Hölder’s inequality and similarly
to as we proved (24), we have

I ≤
[∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

J2. (26)

Then by (19), we obtain (17), which is equivalent to (19).
Therefore, the inequalities (17), (18) and (19) are equivalent.
This completes the proof of the theorem.

Theorem 2 With regard to the assumptions of Theorem 1, the constant factor
Ka,b(σ ) in (17), (18) and (19) is the best possible.

Proof For 0 < ε < qσ, we set σ̃ = σ − ε
q
(∈ (0, 1)),

f̃ (x) :=
{ 1

(|x|+ax)δ(σ+ εp )+1 , x ∈ Eδ,
0, x ∈ R\Eδ,

and

b̃n := (|n| + bn)(σ−
ε
q
)−1

(|n| ∈ N).

By (13) and (15), we have

Ĩ1 :=
[∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f̃ p(x)dx

] 1
p

×
⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b̃
q
n

⎤
⎦

1
q

=
[∫ ∞
−∞

dx

(|x| + ax)δε+1

] 1
p

⎡
⎣ ∞∑
|n|=1

1

(|n| + bn)ε+1

⎤
⎦

1
q

≤ 1

ε

(
2

1− a2

) 1
p
[
(

2

1− b2
+ o1(1))(1+ o2(1))

] 1
q

.

By (10), we also have that

Ĩ : =
∞∑
|n|=1

∫ ∞
−∞

g(x, n)f̃ (x)̃bndx

=
∫
Eδ

∞∑
|n|=1

g(x, n)
(|x| + ax)−δ(̃σ+ε)−1

(|n| + bn)1−σ̃ dx
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=
∫
Eδ

' (̃σ , x)

(|x| + ax)δε+1 dx ≥ kb(̃σ )
∫
Eδ

1− θ (̃σ , x)
(|x| + ax)δε+1 dx

= kb(̃σ )
[∫
Eδ

dx

(|x| + ax)δε+1 −
∫
Eδ

dx

O((|x| + ax)δ(σ+ εp )+1
)

]

= 1

ε
kb(σ − ε

q
)(

2

1− a2 − εO(1)).

If the constant factor Ka,b(σ ) in (17) is not the best possible, then there exists
a positive number k, with Ka,b(σ ) > k, such that (17) is satisfied when replacing
Ka,b(σ ) by k. Then, in particular, we have εĨ < εkĨ1, namely,

kb

(
σ − ε

q

)(
2

1− a2 − εO(1)
)

< k ·
(

2

1− a2

) 1
p
[(

2

1− b2 + o1(1)

)
(1+ o2(1))

] 1
q

.

It follows that

kb(σ )
2

1− a2 ≤ k
(

2

1− a2

) 1
p
(

2

1− b2

) 1
q

(ε→ 0+),

namely,

Ka,b(σ ) =
4(2σ/γ − 2)Γ (σ

γ
)ζ( σ

γ
)

γ (4ρ)σ/γ (1− a2)1/q(1− b2)1/p
≤ k.

This is a contradiction. Hence, the constant factor Ka,b(σ ) in (17) is the best
possible.

The constant factor Ka,b(σ ) in (18) (resp. (19)) is still the best possible.
Otherwise, we would reach the contradiction by (24) (resp. (26)) that the constant
factor Ka,b(σ ) in (17) is not the best possible.

This completes the proof of the theorem.

4 Operator Expressions

Suppose that p > 1.We set the following functions:

Φ(x) := (|x| + ax)p(1+δσ )−1 and Ψ (n) := (|n| + bn)q(1−σ)−1,
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wherefrom

Φ1−q(x) = (|x| + ax)−qδσ−1,

and

Ψ 1−p(n) = (|n| + bn)pσ−1 (x ∈ R\{0}, |n| ∈ N).

Define the following real weight normed linear spaces:

Lp,Φ(R) : =
{
f = f (x); ||f ||p,Φ :=

(∫ ∞
−∞

Φ(x)|f (x)|pdx
) 1
p

<∞
}
,

Lq,Φ1−q (R) : =
{
h = h(x); ||h||q,Φ1−q :=

(∫ ∞
−∞

Φ1−q(x)|h(x)|qdx
) 1
q

<∞
}
,

lq,Ψ : =

⎧⎪⎨
⎪⎩b = {bn}

∞|n|=1; ||b||q,Ψ :=
⎛
⎝ ∞∑
|n|=1

Ψ (n)|bn|q
⎞
⎠

1
q

<∞

⎫⎪⎬
⎪⎭

lp,Ψ 1−p : =

⎧⎪⎨
⎪⎩c = {cn}

∞|n|=1; ||c||p,Ψ 1−p :=
⎛
⎝ ∞∑
|n|=1

Ψ 1−p(n)|cn|p
⎞
⎠

1
p

<∞

⎫⎪⎬
⎪⎭ .

(a) In view of Theorem 1, for f ∈ Lp,Φ(R), setting

H(1)(n) :=
∫ ∞
−∞

g(x, n)|f (x)|dx (|n| ∈ N),

by (18), we have

||H(1)||p,Ψ 1−p =
⎡
⎣ ∞∑
|n|=1

Ψ 1−p(n)(H(1)(n))p
⎤
⎦

1
p

< Kα,β(σ )||f ||p,Φ <∞,

(27)
namely, H(1) ∈ lp,Ψ 1−p .

Definition 1 Define a Hilbert-type operator

T (1) : Lp,Φ(R)→ lp,Ψ 1−p

in the whole plane as follows: For any f ∈ Lp,Φ(R), there exists a unique
representation T (1)f = H(1) ∈ lp,Ψ 1−p , satisfying
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(T (1)f )(n) = H(1)(n),

for any |n| ∈ N.

In view of (27), it follows that

||T (1)f ||p,Ψ 1−p = ||H(1)||p,Ψ 1−p ≤ Ka,b||f ||p,Φ,

and then the operator T (1) is bounded, satisfying

||T (1)|| = sup
f ( �=θ)∈Lp,Φ(R)

||T (1)f ||p,Ψ 1−p

||f ||p,Φ ≤ Ka,b(σ ).

In virtue of the fact that the constant factor Ka,b(σ ) in (27) is the best possible, we
have

||T (1)|| = Ka,b(σ ) =
4(2σ/γ − 2)Γ (σ

γ
)ζ( σ

γ
)

γ (4ρ)σ/γ (1− a2)1/q(1− b2)1/p
. (28)

If we define the formal inner product of T (1)f and b (∈ lq,Ψ ) as follows:

(T (1)f, b) :=
∞∑
|n|=1

(

∫ ∞
−∞

g(x, n)f (x)dx)bn,

then we can rewrite the equivalent forms (17) and (18) in the following manner:

(T (1)f, b) < ||T (1)||·||f ||p,Ψ ||b||q,Φ, ||T (1)f ||p,Ψ 1−p < ||T (1)||·||f ||p,Φ. (29)

(b) In view of Theorem 1, for b ∈ lq,Ψ , setting

H(2)(x) :=
∞∑
|n|=1

g(x, n)bn (x ∈ R\{0}),

we obtain, by (19), that

||H(2)||q,Φ1−q =
[∫ ∞
−∞

Φ1−q(x)(H(2)(x))qdx
] 1
q

< Ka,b(σ )||b||q,Ψ <∞,
(30)

namely, H(2) ∈ Lq,Ψ 1−q (R).

Definition 2 Define a Hilbert-type operator
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T (2) : lq,Ψ → Lq,Ψ 1−q (R)

in the whole plane as follows: For any b ∈ lq,Ψ , there exists a unique representation

T (2)b = H(2) ∈ Lq,Ψ 1−q (R),

satisfying

(T (2)b)(x) = H(2)(x),

for any x ∈ R.

In view of (30), we have

||T (2)b||q,Φ1−q = ||H(2)||q,Φ1−q ≤ Ka,b(σ )||b||q,Ψ ,

and then the operator T (2) is bounded, satisfying

||T (2)|| = sup
b( �=θ)∈lq,Ψ

||T (2)b||q,Φ1−q

||b||q,Ψ ≤ Ka,b(σ ).

As the constant factor Ka,b(σ ) in (30) is the best possible, we have

||T (2)|| = Ka,b(σ ) = ||T (1)||. (31)

If we define the formal inner product of T (2)b and f (∈ Lp,Φ(R)) as follows:

(T (2)b, f ) :=
∫ ∞
−∞

∞∑
|n|=1

g(x, n)bnf (x)dx,

then we can rewrite the equivalent forms (17) and (19) in the following manner:

(T (2)b, f ) < ||T (2)|| · ||f ||p,Ψ ||b||q,Φ, ||T (2)b||q,Φ1−q < ||T (2)|| · ||b||q,Ψ . (32)

Remark 1

(i) For δ = 1, (20) reduces to (5). If f (−x) = f (x) (x > 0), b−n = bn (n ∈ N),
then (5) reduces to the following half-discrete Hilbert-type inequality (cf. [6]):

∞∑
n=1

∫ ∞
0

(
1− tanh

(
ρ
(n
x

)γ ))
f (x)bndx

<
2(2σ/γ − 2)

γ (4ρ)σ/γ
Γ

(
σ

γ

)
ζ

(
σ

γ

)
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×
[∫ ∞

0
xp(1+σ)−1f p(x)dx

] 1
p

[ ∞∑
n=1

nq(1−σ)−1b
q
n

] 1
q

. (33)

(ii) For δ = 1, (17) reduces to the following particular inequality with homoge-
neous kernel of degree 0:

∞∑
|n|=1

∫ ∞
−∞

(
1− tanh

(
ρ

( |n| + bn
|x| + ax

)γ))
f (x)bndx

< Ka,b(σ )

[∫ ∞
−∞
(|x| + ax)p(1+σ)−1f p(x)dx

] 1
p

×
⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

. (34)

(iii) For δ = −1, (17) reduces to the following particular inequality with
non-homogeneous kernel:

∞∑
|n|=1

∫ ∞
−∞
(1− tanh

(
ρ[(|x| + ax)(|n| + bn)]γ ))f (x)bndx

< Ka,b(σ )

[∫ ∞
−∞
(|x| + ax)p(1−σ)−1f p(x)dx

] 1
p

×
⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

. (35)

The constant factors in the above inequalities are the best possible.

5 Two Kinds of Equivalent Reverse Inequalities

In the following, for the cases in 0 < p < 1 and p < 0, we still use ||b||q,Φ and
||f ||p,Ψ as the formal symbol.

Theorem 3 Suppose that 0 < p < 1. If f (x), bn ≥ 0, satisfying

0 < ||f ||p,Ψ <∞, 0 < ||b||q,Φ <∞,

then we have the following equivalent inequalities:
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I =
∞∑
|n|=1

∫ ∞
−∞

(
1− tanh

(
ρ(|n| + bn)γ
(|x| + ax)δγ

))
f (x)bndx

> Ka,b(σ )

[∫ ∞
−∞
(1−θ(σ, x))(|x|+ax)p(1+δσ )−1f p(x)dx

] 1
p ||b||q,Φ, (36)

J1 =
⎧⎨
⎩
∞∑
|n|=1

(|n| + bn)pσ−1
[∫ ∞
−∞

(
1− tanh

(
ρ(|n| + bn)γ
(|x| + ax)δγ

))
f (x)dx

]p⎫⎬
⎭

1
p

> Ka,b(σ )

[∫ ∞
−∞
(1− θ(σ, x))(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

, (37)

J̃2 :=
⎧⎨
⎩
∫ ∞
−∞

(1− θ(σ, x))1−q
(|x| + ax)qδσ+1

⎡
⎣ ∞∑
|n|=1

(
1− tanh

(
ρ(|n| + bn)γ
(|x| + ax)δγ

))
bn

⎤
⎦
q

dx

⎫⎬
⎭

1
q

> Ka,b(σ )||b||q,Φ, (38)

where the constant factor Ka,b(σ ) is the best possible.

Proof Similarly, by the reverse Hölder inequality (cf. [43]) and (7), we obtain that

[∫ ∞
−∞

g(x, n)f (x)dx

]p

≥ ωp−1(σ, n)

(|n| + bn)pσ−1

∫ ∞
−∞

g(x, n)
(|x| + ax)(1+δσ )(p−1)

(|n| + bn)1−σ f p(x)dx.

In view of (9), the Lebesgue term-by-term integration theorem (cf. [42]) and (8), we
deduce that

J1 ≥ k
1
q
a (σ )

[∫ ∞
−∞

'(σ, x)(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

. (39)

Hence, by (10), we obtain (37).
By the reverse Hölder inequality (cf. [43]), we also have that

I ≥ J1

⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

. (40)
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In view of (37), we obtain (36).
On the other hand, assuming that (36) is valid, we set

bn := (|n| + bn)pσ−1
[∫ ∞
−∞

g(x, n)f (x)dx

]p−1

(|n| ∈ N).

Then, we obtain that

J1 =
⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
p

.

In view of (39), it follows that J1 > 0. If J1 = ∞, then (37) is trivially valid; if
J1 <∞, then by (36), we have

||b||qq,Φ = Jp1 = I

> Ka,b(σ )

[∫ ∞
−∞
(1− θ(σ, x))(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p ||b||q,Φ,

||b||q−1
q,Φ = J1 > Ka,b(σ )

[∫ ∞
−∞
(1− θ(σ, x))(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

,

namely, (37) holds, which is equivalent to (36).
Similarly to as we obtained (39), we have

J̃2 > k
1
p
a (σ )

⎡
⎣ ∞∑
|n|=1

ω(σ, n)(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

. (41)

Hence, by (9), we deduce (38). We have proved that (36) is valid. Setting

f (x) := (1− θ(σ, x))
1−q

(|x| + ax)qδσ+1

⎡
⎣ ∞∑
|n|=1

g(x, n)bn

⎤
⎦
q−1

(x ∈ R\{0}),

it then follows that

J̃2 =
[∫ ∞
−∞
(1− θ(σ, x))(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
q

,

and in view of (41), we obtain that J̃2 > 0. If J̃2 = ∞, then (38) is trivially valid; if
J̃2 <∞, then by (36), we have
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∫ ∞
−∞
(1− θ(σ, x))(|x| + ax)p(1+δσ )−1f p(x)dx = J̃ q2 = I

> Ka,b(σ )

[∫ ∞
−∞
(1− θ(σ, x))(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p ||b||q,Φ,

J̃2 =
[∫ ∞
−∞
(1− θ(σ, x))(|x| + ax)p(1+δσ )−1f p(x)dx

]1− 1
p

> Ka,b(σ )||b||q,Φ,

namely, (38) follows. On the other hand, assuming that (38) is valid, by the reverse
Hölder inequality (cf. [43]), we obtain

I ≥
[∫ ∞
−∞
(1− θ(σ, x))(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

J̃2. (42)

Then by (38), we get (16), which is equivalent to (38).
Therefore, inequalities (36), (37) and (38) are equivalent.
For ε > 0, we set σ̃ = σ + ε

p
(> γ ),

f̃ (x) :=
{ 1

(|x|+ax)δ(σ+ εp )+1 , x ∈ Eδ,
0, x ∈ R\Eδ,

and

b̃n := (|n| + bn)(σ−
ε
q
)−1

(|n| ∈ N).

Then by (13) and (15), we obtain that

Ĩ1 : =
[∫ ∞
−∞
(1− θ(σ, x))(|x| + ax)p(1+δσ )−1f̃ p(x)dx

] 1
p

×
⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b̃
q
n

⎤
⎦

1
q

=
[∫ ∞
−∞

(1− θ(σ, x))dx
(|x| + ax)δε+1

] 1
p

⎡
⎣ ∞∑
|n|=1

1

(|n| + bn)ε+1

⎤
⎦

1
q

=
[

2

ε

1

1− a2 −
∫ ∞
−∞

dx

O((|x| + ax)δ(σ+ε)+1)

] 1
p



428 M. Th. Rassias et al.

×
⎡
⎣ ∞∑
|n|=1

1

(|n| + bn)ε+1

⎤
⎦

1
q

= 1

ε

(
2

1− a2
− εO(1)

) 1
p
[(

2

1− b2
+ o1(1)

)
(1+ o2(1))

] 1
q

.

By (10), we also have that

Ĩ :=
∞∑
|n|=1

∫ ∞
−∞

g(x, n)f̃ (x)̃bndx

=
∞∑
|n|=1

∫
Eδ

g(x, n)
(|n| + bn)(σ− εq )−1

(|x| + ax)δ(σ+ εp )+1
dx

≤
∞∑
|n|=1

∫ ∞
−∞

g(x, n)
(|n| + bn)(̃σ−ε)−1

(|x| + ax)δσ̃+1
dx

=
∞∑
|n|=1

ω(̃σ , n)

(|n| + bn)ε+1
= ka(̃σ )

∞∑
|n|=1

1

(|n| + bn)ε+1

= 1

ε
ka

(
σ + ε

p

)(
2

1− b2 + o1(1)

)
(1+ o2(1)).

If the constant factor Ka,b(σ ) in (37) is not the best possible, then there exists
a positive number k, with Ka,b(σ ) < k, such that (37) is valid when replacing
Ka,b(σ ) by k. Then, in particular, we have εĨ > εkĨ1, namely,

ka

(
σ + ε

p

)(
2

1− b2
+ o1(1)

)
(1+ o2(1))

> k ·
(

2

1− a2
− εO(1)

) 1
p
[(

2

1− b2
+ o1(1)

)
(1+ o2(1))

] 1
q

.

It follows that

ka(σ )
2

1− b2
≥ k ·

(
2

1− a2

)2/p (
2

1− b2

)2/q

(ε→ 0+),

namely,

Ka,b(σ ) =
4(2σ/γ − 2)Γ (σ

γ
)ζ( σ

γ
)

γ (4ρ)σ/γ (1− a2)1/q(1− b2)1/p
≥ k.



On a Half-Discrete Hilbert-Type Inequality in the Whole Plane 429

This is a contradiction. Hence, the constant factor Ka,b(σ ) in (36) is the best
possible.

The constant factorKa,b(σ ) in (37) ((38)) is still the best possible. Otherwise, we
would reach a contradiction by (40) ((42)) that the constant factor Ka,b(σ ) in (36)
is not the best possible.

Theorem 4 Suppose that p < 0. If f (x), bn ≥ 0, satisfying 0<||f ||p,Ψ , ||b||q,Φ <
∞, then we have the following equivalent inequalities:

I =
∞∑
|n|=1

∫ ∞
−∞

(
1− tanh

(
ρ(|n| + bn)γ
(|x| + ax)δγ

))
f (x)bndx

> Ka,b(σ )||f ||p,Ψ ||b||q,Φ, (43)

J1 =
⎧⎨
⎩
∞∑
|n|=1

(|n| + bn)pσ−1
[∫ ∞
−∞

(
1− tanh

(
ρ(|n| + bn)γ
(|x| + ax)δγ

))
f (x)dx

]p⎫⎬
⎭

1
p

> Ka,b(σ )||f ||p,Ψ , (44)

J2 =
⎧⎨
⎩
∫ ∞
−∞

1

(|x| + ax)qδσ+1

⎡
⎣ ∞∑
|n|=1

(
1− tanh

(
ρ(|n| + bn)γ
(|x| + ax)δγ

))
bn

⎤
⎦
q

dx

⎫⎬
⎭

1
q

> Ka,b(σ )||b||q,Φ, (45)

where the constant factor Ka,b(σ ) is the best possible.

Proof For p < 0, by the reverse Hölder inequality (cf. [43]) and (7), we find

[∫ ∞
−∞

g(x, n)f (x)dx

]p

≤ ωp−1(σ, n)

(|n| + bn)pσ−1

∫ ∞
−∞

g(x, n)
(|x| + ax)(1+δσ )(p−1)

(|n| + bn)1−σ f p(x)dx.

Then by (9), the Lebesgue term-by-term integration theorem (cf. [42]) and (8), we
deduce that

J1 ≥ k
1
q
a (σ )

[∫ ∞
−∞

'(σ, x)(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

. (46)

Hence, by (10), we obtain (44).
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By the reverse Hölder inequality (cf. [43]), we have

I ≥ J1

⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

. (47)

Then by (44), we deduce (43).
On the other hand, assuming that (43) is valid, we set

bn := (|n| + bn)pσ−1
(∫ ∞
−∞

g(x, n)f (x)dx

)p−1

(|n| ∈ N)

and find J1 = ||b||
q
p

q,Φ. In view of (46), it follows that J1 > 0. If J1 = ∞, then (44)
is trivially valid; if J1 <∞, then by (43), we have

||b||qq,Φ = Jp1 = I > Ka,b(σ )||f ||p,Ψ ||b||q,Φ,
J1 = ||b||q−1

q,Φ > Ka,b(σ )||f ||p,Ψ ,

namely, (44) holds, which is equivalent to (43).
Similarly, we obtain that

J2 > k
1
p

b (σ )

⎡
⎣ ∞∑
|n|=1

ω(σ, n)(|n| + bn)q(1−σ)−1b
q
n

⎤
⎦

1
q

. (48)

Hence, by (9), we deduce (38). We have proved that (43) is valid. Setting

f (x) := 1

(|x| + ax)qδσ+1

⎛
⎝ ∞∑
|n|=1

g(x, n)bn

⎞
⎠
q−1

(x ∈ R\{0}),

it follows that J2 = ||f ||
p
q

p,Ψ and in view of (48), we get J2 > 0. If J2 = ∞,
then (45) is trivially valid; if J2 <∞, then by (43), we have

||f ||pp,Ψ = J q2 = I > Ka,b(σ )||f ||p,Ψ ||b||q,Φ,
J2 = ||f ||p−1

p,Ψ > Ka,b(σ )||b||q,Φ,

namely, (45) follows.
On the other hand, assuming that (45) is valid, by the reverse Hölder inequality

(cf. [43]), we obtain
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I ≥
[∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f p(x)dx

] 1
p

J2. (49)

Then by (45), we get (23), which is equivalent to (45).
Therefore, inequalities (43), (44) and (45) are equivalent.
For 0 < ε < |p|(σ − γ ), we set σ̃ = σ + ε

p
(> γ ),

f̃ (x) :=
{ 1

(|x|+ax)δ(σ+ εp )+1 , x ∈ Eδ,
0, x ∈ R\Eδ,

and

b̃n := (|n| + bn)(σ−
ε
q
)−1
(|n| ∈ N).

Then by (13) and (15), we obtain that

Ĩ1 :=
[∫ ∞
−∞
(|x| + ax)p(1+δσ )−1f̃ p(x)dx

] 1
p

⎡
⎣ ∞∑
|n|=1

(|n| + bn)q(1−σ)−1b̃
q
n

⎤
⎦

1
q

=
[∫ ∞
−∞

dx

(|x| + ax)δε+1

] 1
p

⎡
⎣ ∞∑
|n|=1

1

(|n| + bn)ε+1

⎤
⎦

1
q

= 1

ε

(
2

1− a2

) 1
p
[
(

2

1− b2 + o1(1))(1+ o2(1))

] 1
q

.

By (10), we still have

Ĩ : =
∞∑
|n|=1

∫ ∞
−∞

g(x, n)f̃ (x)̃bndx

=
∞∑
|n|=1

∫
Eδ

g(x, n)
(|n| + bn)(σ− εq )−1

(|x| + ax)δ(σ+ εp )+1
dx

≤
∞∑
|n|=1

∫ ∞
−∞

g(x, n)
(|n| + bn)(̃σ−ε)−1

(|x| + ax)δσ̃+1 dx

=
∞∑
|n|=1

ω(̃σ , n)

(|n| + bn)ε+1 = ka(̃σ )
∞∑
|n|=1

1

(|n| + bn)ε+1

= 1

ε
ka(σ + ε

p
)(

2

1− b2
+ o1(1))(1+ o2(1)).
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If the constant factor Ka,b(σ ) in (43) is not the best possible, then there exists
a positive number k, with Ka,b(σ ) < k, such that (43) is valid when replacing
Ka,b(σ ) by k. Then, in particular, we have εĨ > εkĨ1, namely,

ka

(
σ + ε

p

)(
2

1− b2 + o1(1)

)
(1+ o2(1))

> k ·
(

2

1− a2

) 1
p
[(

2

1− b2 + o1(1)

)
(1+ o2(1))

] 1
q

.

It follows that

ka(σ )
2

1− b2
≥ k

(
2

1− a2

) 1
p
(

2

1− b2

) 1
q

(ε→ 0+),

namely,

Ka,b(σ ) =
4(2σ/γ − 2)Γ (σ

γ
)ζ( σ

γ
)

γ (4ρ)σ/γ (1− a2)1/q(1− b2)1/p
≥ k.

This is a contradiction. Hence, the constant factor Ka,b(σ ) in (43) is the best
possible.

The constant factorKa,b(σ ) in (44) ((45)) is still the best possible. Otherwise, we
would reach a contradiction by (47) ((49)) that the constant factor Ka,b(σ ) in (43)
is not the best possible.
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2. G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities (Cambridge University Press, Cambridge,
1934)

3. B.C. Yang, A half-discrete Hilbert’s inequality. J. Guangdong Univ. Educ. 31(3), 1–7 (2011)
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Analysis of Apostol-Type Numbers and
Polynomials with Their Approximations
and Asymptotic Behavior

Yilmaz Simsek

Abstract In this chapter, using the methods and techniques of approximation of
some classical polynomials and numbers including the Apostol–Bernoulli num-
bers and polynomials, we survey and investigate various properties of the Boole
type combinatorial numbers and polynomials. By applying the p-adic q-integrals
including the bosonic and fermionic p-adic integrals on p-adic integers, we study
on generating functions for the generalized Boole type combinatorial numbers and
polynomials attached to the Dirichlet character. These numbers and polynomials
are related to the generalized Apostol–Bernoulli numbers and polynomials, the
generalized Apostol–Euler numbers and polynomials, generalized Apostol–Daehee
numbers and polynomials, and also generalized Apostol–Changhee numbers and
polynomials. With the help of these generating functions, PDEs and their functional
equation, many formulas, identities and relations involving the generalized Apostol–
Daehee and Apostol–Changhee numbers and polynomials, the Stirling numbers, the
Bernoulli numbers of the second kind, the generalized Bernoulli numbers and the
generalized Euler numbers, and the Frobenius–Euler polynomials are given. Finally,
by using asymptotic estimates for the Apostol–Bernoulli polynomials, asymptotic
estimates for Boole type combinatorial numbers and polynomials are given.

2010 Mathematics Subject Classification: 11B68; 05A15; 05A19; 12D10;
26C05; 30C15.

1 Introduction, Definitions and Notations

Special numbers and polynomials have played an important role in theory of the
approximation and analytic inequalities. These numbers and polynomials have been
used in almost all areas of mathematics, in physics, and in engineering problems.

Y. Simsek (�)
Faculty of Science, Department of Mathematics, University of Akdeniz, Antalya, Turkey
e-mail: ysimsek@akdeniz.edu.tr

© Springer Nature Switzerland AG 2021
T. M. Rassias (ed.), Approximation Theory and Analytic Inequalities,
https://doi.org/10.1007/978-3-030-60622-0_23

435

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60622-0_23&domain=pdf
mailto:ysimsek@akdeniz.edu.tr
https://doi.org/10.1007/978-3-030-60622-0_23


436 Y. Simsek

In this chapter, we use the following standard notations and definitions:

N0 = {0, 1, 2, 3, . . .}.

Z denotes the set of integers, Q denotes the set of rational numbers, R denotes the
set of real numbers, C denotes the set of complex numbers, and Zp denotes the set
of p-adic integers.

We assume that ln z denotes the principal branch of the multi-valued function ln z
with the imaginary part 3(ln z) constrained by the interval (−π, π ]. For example,
for z ∈ C, we have

ln z = ln |z| + i arg z

with −π < i arg z ≤ π .
For z ∈ C, setting

exp(z) = ez.

For x ∈ R, [x] denotes the integral part of x.
In addition to the above standard notations, we also give the following notations:

0n =
{

1, (n = 0)
0, (n ∈ N),

and the Pochhammer’s symbol for the rising factorial is given by the following
notation:

(λ)v = * (λ+ v)
* (λ)

= λ(λ+ 1) · · · (λ+ v − 1),

and

(λ)0 = 1

for λ �= 1, where v ∈ N, λ ∈ C, and * (λ) denotes the gamma function, which is an
important special function in mathematics.

(
z

v

)
= z(z− 1) · · · (z− v + 1)

v! = (z)v
v! (v ∈ N, z ∈ C)

and
(
z

0

)
= 1.
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Observe that

(−λ)v = (−1)v (λ)v

(cf. [8, 83, 86]).

Bernoulli Type Polynomials and Numbers and Euler Type
Polynomials and Numbers

Here, the generating functions of Bernoulli type numbers and polynomials and Euler
type numbers and polynomials are given. With the help of approximation theory,
asymptotic estimates for these polynomials are also given.

The Apostol–Bernoulli polynomials, Bn(x; λ), are defined by means of the
following generating function:

FA(t, x; λ) = t

λet − 1
etx =

∞∑
n=0

Bn(x; λ) t
n

n! , (1.1)

where λ ∈ C, and the following set denotes the poles of the function FA(t, x; λ).
If

P = {2πin− ln λ : n ∈ Z} ,

when λ �= 1, and

P = {2πin : n ∈ Z}

when λ = 1; under this condition, 0 is a removable singularity. Setting λ→ 1, the
set P has been reflected in various discontinuities. That is, when λ = 1 and λ �= 1,
the radius of convergence of the series in (1.1) is 2π and |ln λ|.

Substituting x = 0 into (1.1), we have

Bn(λ) = Bn(0; λ).

Here, Bn(λ) denotes the so-called Apostol–Bernoulli numbers (cf. [16, 31, 53, 60,
84, 87]; see also the references cited in each of these earlier works).

By using (1.1), few values the Apostol–Bernoulli numbers and polynomials are
given as follows:

B0 (λ) = 0,

B1 (λ) = 1

λ− 1
,
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B2 (λ) = −2λ

(λ− 1)2
,

B3 (λ) = 3λ (λ+ 1)

(λ− 1)3
, . . .

and

B0 (x; λ) = 0,

B1 (x; λ) = 1

λ− 1
,

B2 (x; λ) = 1

λ− 1
x − 2λ

(λ− 1)2
,

B3 (x; λ) = 3

λ− 1
x2 − 6λ

(λ− 1)2
x + 3λ (λ+ 1)

(λ− 1)3
, . . .

and so on (cf. [1–43, 46–48, 50–86]; see also the references cited in each of these
earlier works).

By using the following Lipschitz summation formula, the following Fourier
series of the polynomials Bn(x; λ), for any (λ ∈ C, (λ �= 0)), was given by Luo
[52]:

Bn(x; λ) = −δn (x; λ)− n!
λx

∞∑
v∈Z\{0}

exp (2πivx)

(2πiv − log λ)n
, (1.2)

where

δn (x; λ) =
{

0, λ = 1
(−1)nn!
λx(log λ)n , λ �= 1

(cf. see also for detail et al. [56]).
In the work of Navas et al. [56], using the appropriate approximating sums over

the sets F 4 P , substituting x = 0 into the Fourier series of the polynomials
Bn(x; λ) in equation (1.2), Navas et al. gave an asymptotic expansion for the
Apostol–Bernoulli numbers Bn(λ), by the following theorem:

Theorem 1 ([56]) Let λ ∈ C with λ �= 0. Let F be a finite subset of the set of P
satisfying

max {|w| : w ∈ F } < min {|w| : w ∈ P \F } = β.

For all integers n (≥2), then we have
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(Bn(λ))/(n!)) = −
∑
w∈F

1

wn
+O

(
1

βn

)
,

where the constant implicit in the order term depends only on λ and F .

It is easy to see the following relation:

Bn(x) = lim
λ→1

Bn(x; λ),

where Bn(x) denotes the Bernoulli polynomials (of the first kind) (cf. [3–43, 46–
48, 50–78, 80–90]; see also the references cited in each of these earlier works).

Some properties of the Bernoulli polynomials are given as follows:

d

dx
{Bn (x)} = nBn−1 (x) ,

B2n

(
1

2

)
=

(
21−2n − 1

)
B2n, and

B2n−1

(
1

2

)
= 0 (n ≥ 1) ,

and

Bn = Bn(0)

denotes the Bernoulli numbers (of the first kind). Observe that

Bn

(
x + 1

2

)
=

n∑
j=0

(
n

2j

)(
21−2j − 1

)
B2j x

n−2j .

The well-known Euler formula including the Riemann zeta function ζ (z) and the
Bernoulli numbers is given as follows:

B2n = (−1)n−1 2 (2n)! (2π)−2n ζ (2n) ,

where n ∈ N (cf. [3–43, 46–48, 50–78, 80–90]).
The following well-known inequality was given by Kouba [42]:

1 < ζ (2n) < 2, (1.3)

where n ∈ N.

Remark 1 We observe that with the help of the above inequality, the lower and
upper bounds of Bernoulli numbers B2n can be easily found. Consequently, it is
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known that the finite arithmetic sums, which contain the Dedekind sums and the
Hardy sums, are closely related to the Bernoulli numbers and polynomials. Perhaps
with the help of (1.3), the lower and upper bounds of these sums may be easily
found.

Let z ∈ C. The cosine and sine functions are defined, respectively, by

T2k (z) =
k∑
j=0

(−1)j
z2j

(2j)! ,

and

T2k+1 (z) =
k∑
j=0

(−1)j
z2j+1

(2j + 1)!

(cf. [10]).
It is well known that the series of the function Tn (2πz) is uniformly convergent

on a compact subset to cos (2πz) if n is even, and to sin (2πz) if n is odd (cf.
[10, 42, 56]). Therefore, we have the following well-known approximation result
for Bernoulli polynomials Bn(z) and the function Tn (2πz):

Theorem 2 For all z ∈ C, n ≥ 2, we have (with k = [
n
2

]
)

∣∣∣∣(−1)k
(2π)n

2n! Bn
(
z+ 1

2

)
− Tn (2πz)

∣∣∣∣ < 2−ne(4π |z|)

(cf. [10]).

Corollary 1 The following sequences converge uniformly on compact subsets ofC:

(−1)k−1 (2π)
2k

2 (2k)!B2k (z)→ cos (2πz)

and

(−1)k−1 (2π)2k+1

2 (2k + 1)!B2k+1 (z)→ sin (2πz)

(cf. [10]).

For λ = 1, n > 1, and 0 < x < 1, equation (1.2) reduces to the following
well-known Fourier series for the Bernoulli polynomials:

Bn(x) = − n!
(2πi)n

∞∑
v∈Z\{0}

exp (2πivx)

vn
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(cf. [2, 8, 52, 86]).
The Apostol-Euler numbers of the first kind, En(x; λ), are defined by means of

the following generating function:

FP1(t, x; λ) = 2

λet + 1
etx =

∞∑
n=0

En(x; λ) t
n

n! (1.4)

(λ ∈ C; |t | < π when λ = 1 and |t | < |ln (−λ)| when λ �= 1).
By using the following Lipschitz summation formula, Luo [52] gave the follow-

ing Fourier series of the polynomials En(x; λ), for any (λ ∈ C, (λ �= 0)):

En(x; λ) = 2n!
λx

∞∑
v∈Z

exp ((2v − 1)πix)

((2v − 1)πi − log λ)n+1 . (1.5)

Substituting x = 0 into (1.4), we have the first kind Apostol–Euler numbers:

En(λ) = En(0; λ). (1.6)

When λ→ 1 into (1.4) and (1.6), we have the first kind Euler polynomials and the
first kind Euler numbers, respectively:

En (x) = lim
λ→1

En(x; λ) (1.7)

and

En = lim
λ→1

En(λ) (1.8)

(cf. [3–43, 46–48, 50–78, 80–88]; see also the references cited in each of these earlier
works).

For λ = 1, n > 1, and 0 < x < 1, equation (1.5) reduces to the following
well-known Fourier series for the Euler polynomials:

En(x) = 2n!
(πi)n+1

∞∑
v∈Z

exp ((2v − 1)πivx)

(2v − 1)n+1

(cf. [2, 8, 52, 86]).
For x = 0, by using (1.4), few values of the Apostol–Euler numbers of the first

kind are given as follows:

E0 (λ) = 2

λ+ 1
,

E1 (λ) = − 2λ

(λ+ 1)2
,
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E2 (λ) = 2λ (λ− 1)

(λ+ 1)3
,

E3 (λ) = −2λ
(
λ2 − 4λ+ 1

)
(λ+ 1)4

, . . .

(cf. [9–43, 46–48, 50–78, 80–86]; see also the references cited in each of these earlier
works).

The second kind Apostol–Euler polynomials, E∗n (x, λ), are defined by means of
the following generating function:

FP2(t, x; λ) = 2

λet + λ−1e−t
etx =

∞∑
n=0

E∗n (x; λ)
tn

n! (1.9)

(cf. [75, 77, 86]).
Combining (1.4) with (1.9), we have the following well-known relation:

E∗n (x; λ) = λ2nEn
(
x + 1

2
, λ2

)
. (1.10)

By combining (1.5) with (1.10), we arrive at Fourier series of the polynomials
E∗n (x; λ) by the following theorem:

Theorem 3 Let λ ∈ C(λ �= 0). Then we have

E∗n (x; λ) =
2n+1n!
λ2x−1

∞∑
v∈Z

exp
((

2v−1
2

)
πi(x + 1)

)
(
(2v − 1)πi − log λ2

)n+1
. (1.11)

Substituting λ = 1 and x = 0 into the above relation, a relation between the first
and second kind Euler numbers is given as follows:

E∗n = 2nEn

(
1

2

)

(cf. [36, 69, 75, 77, 86]; see also the references cited in each of these earlier works).
Substituting λ = 1 into (1.11), we have

E∗n (x) =
2n+1n!
(πi)n+1

∞∑
v∈Z

exp
((

2v−1
2

)
πi(x + 1)

)
(2v − 1)n+1 .

Combining (1.1) with (1.4), we have the following well-known relation:

Bn(x; λ) = −n
2
En−1 (x;−λ) (1.12)
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(cf. [75, 77, 86]; see also the references cited in each of these earlier works).
The λ-Bernoulli polynomials (Apostol-type Bernoulli polynomials), Bn(x; λ),

are defined by means of the following generating function (see [39]):

FB(t, x; λ) = log λ+ t
λet − 1

etx =
∞∑
n=0

Bn(x; λ) t
n

n! (1.13)

(|t | < 2π when λ = 1 and |t | < |log λ| when λ �= 1) with

Bn(λ) = Bn(0; λ)

denotes the λ-Bernoulli numbers (Apostol-type Bernoulli numbers) (cf. [18, 39, 68,
74, 87]).

By using (1.13), a few values of the λ-Bernoulli numbers are given by

B0(λ) = log λ

λ− 1

and

B1(λ) = λ− 1− λ log λ

(λ− 1)2
.

If n > 1, then we have

Bn(λ) = λ
n∑
j=0

(
n

j

)
Bj (λ).

Therefore,

B2(λ) = λ log λ− λ2

(λ− 1)3
.

A relation between the λ-Bernoulli numbers and the Frobenius–Euler numbers
is given as follows (see [39, Theorem 1, p. 439]):

B0(λ) = log λ

λ− 1
H0

(
1

λ

)

and

Bn(λ) = log λ

λ− 1
Hn

(
1

λ

)
+ n

λ− 1
Hn−1

(
1

λ

)
,
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whereHn
(

1
λ

)
denote the Frobenius–Euler numbers, which are defined by means of

the following generating function:

Ff (t, u) = 1− u
et − u =

∞∑
n=0

Hn(u)
tn

n! , (1.14)

where u ∈ C with u �= 1 (cf. [27], [39, Theorem 1, p. 439], [67, 87]; see also the
references cited in each of these earlier works).

We also note that etxFf (t, u) gives us well-known generating function for the
Frobenius–Euler polynomials Hn (x; u).

In [72], we gave the following functional equation:

FB(t, 0; λ) = log λ

λ− 1
Ff

(
t,

1

λ

)
+ FA(t, 0; λ).

By using the above functional equation, we have

Hn

(
1

λ

)
= (λ− 1)

Bn(λ)− Bn(λ)
log λ

,

where log λ �= 0.
The Humbert polynomials +(λ)n,m (x) defined by Humbert in [15] with the

following generating function:

(
1−mxt + tm)−λ =

∞∑
n=0

+(λ)n,m (x) t
n

(cf. [15], [57, 83, p. 86, Eq-(26)]), and the recurrence relation for these polynomials
is given as follows:

(n+ 1)+(λ)n+1,m (x)−mx (n+ λ)+(λ)n,m (x)−(n+mλ−m+ 1)+(λ)n−m+1,m (x) = 0

(cf. [9, 55]; see also the references cited in each of these earlier works).
The generalized Humbert polynomials Pn(m, x, y, p,C) are defined by the

following generating function:

(
C −mxt + ytm)p =

∞∑
n=0

Pn(m, x, y, p,C)t
n,

and it is clear that

Pn(m, x, 1,−λ, 1) = +(λ)n,m (x)

(cf. [9, 13, 55, 57]).
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Apostol–Bernoulli Polynomials and Numbers and Apostol–Euler
Polynomials and Numbers Attached to Dirichlet Character

Here, the generating functions of generalized Bernoulli type numbers and poly-
nomials attached to Dirichlet character and generalized Euler type numbers and
polynomials attached to Dirichlet character are given.

Let d ∈ N and (Z/dZ)∗ denotes the unit group of reduced residue class modulo
d. Throughout this paper, χ is a Dirichlet character with modulo d, which is a group
homomorphism, i.e.,

χ : (Z/dZ)∗ → C\ {0}

(cf. [2]).
Let χ be a non-trivial Dirichlet character with conductor d. Let λ be a

complex number. The generalized Apostol–Bernoulli numbers attached to Dirichlet
character, Bn,χ (λ), are defined by means of the following generating function:

d−1∑
j=0

λj etj tχ(j)

λdetd − 1
=
∞∑
n=0

Bn,χ (λ)
tn

n! (1.15)

(cf. [1, 28, 32, 34, 65, 87]; see also the references cited in each of these earlier
works).

By combining (1.15) with (1.1), we have

Bn,χ (λ) = dn−1
d−1∑
j=0

λjχ(j)Bn
(
j

d
; λp

)
,

and for the trivial character χ ≡ 1, we have

Bn(λ) = Bn,1(λ)

(cf. [1, 28, 32, 34, 65, 87]).
Let χ be a non-trivial Dirichlet character with conductor d. Let λ be a complex

number. The generalized Apostol–Euler numbers attached to Dirichlet character,
En,χ (λ) are defined by means of the following generating function:

2
d−1∑
j=0

(−λ)j etjχ(j)
λdetd + 1

=
∞∑
n=0

En,χ (λ)
tn

n! (1.16)

(cf. [32, 34, 87]; see also the references cited in each of these earlier works).
By combining (1.16) with (1.4), we have
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En,χ (λ) = dn
d−1∑
j=0

(−λ)j χ(j)En
(
j

d
; λp

)
.

For the trivial character χ ≡ 1, we have

En(λ) = En,1(λ)

(cf. [32, 34, 87]).

Combinatorial Type Numbers and Polynomials

Here, the generating functions of combinatorial type numbers and polynomials,
including the Stirling numbers, the Bernoulli numbers and polynomials of the
second kind, and the combinatorial numbers and polynomials, are given.

The Stirling numbers of the first kind, S1(n, k) are defined by means of the
following generating function:

FS1(t, k) = (log(1+ t))k
k! =

∞∑
n=0

S1(n, k)
tn

n! . (1.17)

These numbers have the following properties:

S1(0, 0) = 1.

If k > 0, then

S1(0, k) = 0.

If n > 0, then

S1(n, 0) = 0.

If k > n, then

S1(n, k) = 0.

By using (1.17), one easily has the following recurrence equation for the number
S1(n, k):

S1(n+ 1, k) = −nS1(n, k)+ S1(n, k − 1)
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(cf. [3, 6, 7, 64, 70, 71]; see also the references cited in each of these earlier works).
The Bernoulli polynomials of the second kind, bn(x), are defined by means of

the following generating function:

Fb2(t, x) = t

log(1+ t) (1+ t)
x =

∞∑
n=0

bn(x)
tn

n! (1.18)

(cf. [64, pp. 113–117]; see also the references cited in each of these earlier works).
The Bernoulli numbers of the second kind, bn(0) are defined by means of the

following generating function:

Fb2(t) = t

log(1+ t) =
∞∑
n=0

bn(0)
tn

n! . (1.19)

These numbers are computed by the following formula:

n−1∑
k=0

(−1)k
(
n

k

)
bk(0) = n!δn,1,

where δn,1 denotes the Kronecker delta (cf. [64, p. 116]). The Bernoulli polynomials
of the second kind are defined by

bn(x) =
∫ x+1

x

(u)ndu.

Substituting x = 0 into the above equation, one has

bn(0) =
∫ 1

0
(u)ndu.

The numbers bn(0) are also the so-called the Cauchy numbers (cf. [64, p. 116],
[23, 41, 62, 64, 72]; see also the references cited in each of these earlier works). In
[38], Kim et al. gave a computation method for the Bernoulli polynomials of the
second kind that is defined as follows:

bn(x) =
n∑
l=0

S1(n, l)

l + 1

(
(x + 1)l+1 − xl+1

)
,

and also Roman [64, p.115] gave

bn(x) = bn(0)+
n∑
l=1

nS1(n− l, l − 1)

l
xl .
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By using the above formula for the Bernoulli polynomials and numbers of the
second kind, few of these numbers are computed as follows, respectively:

b0(x) = 1,

b1(x) = 1

2
(2x + 1),

b2(x) = 1

6
(6x2 − 1),

b3(x) = (1
4
)(4x3 − 6x2 + 1),

b4(x) = 1

30
(30x4 − 120x3 + 120x2 − 19), . . .

and

b0(0) = 1, b1(0) = 1

2
, b2(0) = −1

6
, b3(0) = 1

4
, b4(0) = −19

30
, · · ·

Here we note that when the ordinary generating function is taken instead of the
exponential generating function, each of these numbers must be multiplied by 1/n!,
where n denotes the index of each bernoulli numbers of the second kind, that is one
takes the following numbers: bn(0)

n! .
The λ-array polynomials Snv (x; λ) by the following generating function (see

[70]):

FA(t, x, v; λ) =
(
λet − 1

)v
v! etx =

∞∑
n=0

Snv (x; λ)
tn

n! , (1.20)

where v ∈ N0 and λ ∈ C (cf. [3, 6, 70, 71]; see also the references cited in each of
these earlier works).

The λ-Stirling numbers, S2(n, v; λ), are defined by means of the following
generating function:

FS(t, v; λ) =
(
λet − 1

)v
v! =

∞∑
n=0

S2(n, v; λ) t
n

n! , (1.21)

where v ∈ N0 and λ ∈ C (cf. [53, 70, 84]; see also the references cited in each of
these earlier works). By using (1.21), one easily compute the following values for
S2(n, v; λ):
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S2(0, 0; λ) = 1,

S2(1, 0; λ) = 0,

S2(1, 1; λ) = λ,
S2(2, 0; λ) = 0,

S2(2, 1; λ) = λ, . . .

and

S2(0, v; λ) = (λ− 1)v

v! .

Substituting λ = 1 into (1.21), then one easily arrives at the Stirling numbers of
the second kind:

S2(n, v) = S2(n, v; 1)

(cf. [7–43, 46–48, 50–78, 80–88]; see also the references cited in each of these earlier
works).

The Daehee polynomials are defined by means of the following generating
functions:

FD(z, t) = log (1+ t)
t

(1+ t)z =
∞∑
n=0

Dn(z)
tn

n! ,

so that, obviously,

Dn = Dn(0)

denotes the Daehee numbers (cf. [25, 62, 72]).
The Peters polynomials sk(x; λ,μ), which are Sheffer polynomials, are defined

by means of the following generating functions:

1(
1+ (1+ t)λ)μ (1+ t)

x =
∞∑
n=0

sk(x; λ,μ) t
n

n!

(cf. [21, 64]). If μ = 1, then the polynomials sk(x; λ,μ) are reduced to the Boole
polynomials. If λ = 1 and μ = 1, then these polynomials are also reduced to the
Changhee polynomials, which are defined by means of the following generating
functions:

2

t + 2
(1+ t)x =

∞∑
n=0

Chn(x)
tn

n! .
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By using the above equation, we have

Chn = Chn(0),

whereChn denote the Changhee numbers (cf. [24, 35], and also see [18, 24–26, 30]).
In [76], we defined Boole type polynomials and numbers. That is, the numbers

Yn (λ) and the polynomials Yn (x; λ) are defined by the following generating
functions, respectively:

F (t, x, λ) = 2 (1+ λt)x
λ (1+ λt)− 1

=
∞∑
n=0

Yn (x; λ) t
n

n! (1.22)

and

F (t, λ) = 2

λ (1+ λt)− 1
=
∞∑
n=0

Yn (λ)
tn

n! . (1.23)

Note that

Yn(λ) = Yn(0; λ).

Recently, some generalizations of these numbers Yn (λ) and polynomials Yn (x; λ)
have been studied (cf. [22, 43–45, 73, 76, 81, 82, 89]).

From (1.22) and (1.23), we have a few values of the polynomials Yn (x; λ) and
the numbers Yn (λ) as follows:

Y0(x; λ) = 2

λ− 1
,

Y1(x; λ) = 2λ

λ− 1
x − 2λ2

(λ− 1)2
,

Y2(x; λ) = 2λ2

λ− 1
x2 − 6λ3 − 2λ2

(λ− 1)2
x + 4λ4

(λ− 1)3
,

Y3(x; λ) = 2λ3

λ− 1
x3 − 12λ4 − 6λ3

(λ− 1)2
x2 + 22λ5 − 14λ4 + 4λ3

(λ− 1)3
x − 12λ6

(λ− 1)4
, . . .

and

Y0(λ) = 2

λ− 1
,

Y1(λ) = − 2λ2

(λ− 1)2
,
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Y2(λ) = 4λ4

(λ− 1)3
,

Y3(λ) = − 12λ6

(λ− 1)4
,

Y4(λ) = 48λ8

(λ− 1)5
, . . .

(cf. [76, 89]).
By using the above generating function, we get the following recurrence relation

for the numbers Yn(λ):

Theorem 4 Let

Y0(λ) = 2

λ− 1
.

If n > 1, we have

Yn(λ) = nλ2

λ− 1
Yn−1(λ) (1.24)

(cf. [73, 76]).

In [48], Kucukoglu and Simsek defined the following combinatorial numbers and
polynomials, respectively:

Fd(t; λ, q) = log(1+ λt)
(λq)d(1+ λt)d − 1

=
∞∑
n=0

In,d(λ, q)
tn

n! ,

and

Gd(t, x; λ, q) = (1+ λt)xFd(t; λ, q) =
∞∑
n=0

In,d(x; λ, q) t
n

n! . (1.25)

In [47], Kucukoglu defined higher order of the polynomials In,d(x; λ, q) and the
numbers In,d(λ, q). She gave various properties of these numbers and polynomials
(cf. for detail, see [43, 46–49]).

Simsek and So [81] defined the following special polynomials y7,n(x; λ, q, d):

Kd(t, x; λ, q) = (1+ q)(1+ λt)x
(λq)d(1+ λt)d + 1

=
∞∑
n=0

y7,n(x; λ, q, d) t
n

n! . (1.26)
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Substituting x = 0 into (1.26), we have the special combinatorial numbers:

y7,n(λ, q, d) = y7,n(0; λ, q, d),

and also substituting d = 1 into (1.26), we also have the special combinatorial
polynomials:

y7,n(x; λ, q) = y7,n(x; λ, q, 1).

(cf. [80])
By combining (1.25) with (1.26), we get the following functional equation:

Gd(t, x; λ, q)Kd(t, y; λ, q) = (1+ q)G2d(t, x + y; λ, q).

By using the above functional equation, we derive

∞∑
n=0

In,d(x; λ, q) t
n

n!
∞∑
n=0

y7,n(y; λ, q, d) t
n

n! = [2]
∞∑
n=0

In,2d(x + y; λ, q) t
n

n! .

Therefore,

∞∑
n=0

n∑
m=0

(
n

m

)
Im,d(x; λ, q)y7,n−m(y; λ, q, d) t

n

n! = [2]
∞∑
n=0

In,2d(x + y; λ, q) t
n

n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we arrive at
the following theorem:

Theorem 5

In,2d(x + y; λ, q) = 1

[2]

n∑
m=0

(
n

m

)
Im,d(x; λ, q)y7,n−m(y; λ, q, d).

In [82], they gave generalization of the numbers y7,n(λ, q, d) that are defined by
the following generating function:

Fv(t; λ, q, d) =
(

1+ q
(λq)d(1+ λt)d + 1

)v
=
∞∑
n=0

y
(v)
7,n(λ, q, d)

tn

n! . (1.27)

They also defined generalization of the polynomials y7,n(x; λ, q, d) as follows:

Gv(t, x; λ, q, d) = (1+ λt)xFv(t; λ, q, d) =
∞∑
n=0

y
(v)
7,n(x; λ, q, d)

tn

n! . (1.28)
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By (1.27) and (1.28), we have

y
(v)
7,n(λ, q, d) = y(v)7,n(0; λ, q, d),

and

y7,n(x; λ, q, d) = y(1)7,n(x; λ, q, d).

Few values of the numbers y(2)7,n(λ, q, d) are given as follows:

y
(2)
7,0(λ, q, d) =

(
1+ q

(λq)d + 1

)2

,

y
(2)
7,1(λ, q, d) = −

2dλ(λq)d(1+ q)2
((λq)d + 1)3

,

and

y
(2)
7,2(λ, q, d) =

8(dλ)2(λq)2d(1+ q)2
((λq)d + 1)4

−λ
2(λq)d((d)2 + (2d)2(λq)d)(1+ q)2

((λq)d + 1)4

(cf. [81, 82]).
We have recently defined various kind Peters and Boole type combinatorial

numbers and polynomials. Thus, we inserted some notations for these numbers
and polynomials. For instance, in order to distinguish them from each other, these
polynomials are labeled by the following symbols:

yj,n(x; λ, q),

j = 1, 2, . . . , 7, and also Yn(x; λ). Therefore, the number 7 is only used for index
representation for these polynomials (cf. [82]).

2 p-Adic q-Integrals Equations

Here, we survey some fundamental properties of p-adic q-integrals equations.
We give some examples for these integrals. By using p-adic q-integrals on Zp,
generating functions for the generalized Apostol-type numbers attached to Dirichlet
character are given in [76]. Using these generating functions with their functional
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equations, relations between these numbers, the λ-Bernoulli numbers, and the
Stirling numbers are given.

We now give standard notations for p-adic q-integrals on Zp. Let Zp be a set of
p-adic integers. Let K be a field with a complete valuation and C1(Zp → K) be a
set of continuous derivative functions. That is, C1(Zp → K) is contained in

{
f : X→ K : f (x) is differentiable and

d

dx
f (x) is continuous

}
.

We assume that p is a fixed prime in the next section.
The distribution on Zp is defined by

μq(x + pNZp) = qx[
pN

] ,

where q ∈ Cp with |1− q|p < 1 and

[x] = [x : q] =
{

1−qx
1−q , q �= 1

x, q = 1.

Let f ∈ C1(Zp → K). Therefore, the p-adic q-integrals of the function f are
defined by

∫
Zp

f (x)dμq(x) = lim
N→∞

1

[pN ]
pN−1∑
x=0

f (x)qx (2.1)

(cf. [29]).
Let f ∈ C1(Zp → K) and

Ed {f (x)} = f (x + d).
A p-adic q-integral equation of (2.1) is defined on Zp as follows:

qn
∫
Zp

En {f (x)} dμq (x)−
∫
Zp

f (x) dμq (x)=q − 1

log q

⎛
⎝n−1∑
j=0

qjf
′
(j)+ log q

n−1∑
j=0

qjf (j)

⎞
⎠ ,
(2.2)

where n is a positive integer (cf. [29, 34]).

Example 1 Substituting f (x) = etx into (2.2), we obtain
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∫
Zp

etxdμq (x) = 1

qnet − 1

q − 1

log q

⎛
⎝t

n−1∑
j=0

qj etj + log q
n−1∑
j=0

qj etj

⎞
⎠ .

From the above equation, we get

∫
Zp

etxdμq (x) = 1

qnent − 1

q − 1

log q

(
t
qnet − 1

qet − 1
+ q

net − 1

qet − 1
log q

)
.

Thus

∫
Zp

etxdμq (x) =
(
q − 1

log q

)
t + log q

qet − 1
.

Combining the above equation with (1.13), we have

∞∑
n=0

⎛
⎜⎝
∫
Zp

xndμq (x)

⎞
⎟⎠ tn
n! =

∞∑
n=0

(
q − 1

log q
Bn(x; λ)

)
tn

n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we get

∫
Zp

xndμq (x) = q − 1

log q
Bn(x; λ).

In [34, Theorem 3], Kim gave the following formula for p-adic integral:

qn
∫
Zp

Enf (x) dμ−q (x)− (−1)n
∫
Zp

f (x) dμ−q (x) = [2]
n−1∑
j=0

(−1)n−l−1qjf (j).

(2.3)
If d is an odd positive integer, then (2.3) reduces to

qd
∫
Zp

Edf (x) dμ−q (x)+
∫
Zp

f (x) dμ−q (x) = [2]
d−1∑
j=0

(−1)lqj f (j), (2.4)

and if d is an even positive integer, then (2.3) reduces to
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qd
∫
Zp

Edf (x) dμ−q (x)−
∫
Zp

f (x) dμ−q (x) = [2]
d−1∑
j=0

(−1)lqj f (j). (2.5)

The Volkenborn (p-Adic Bosonic) Integral

When q → 1, (2.1) reduces to the Volkenborn (p-adic Bosonic) integral, which is
defined as follows:

Let f ∈ C1(Zp → K). Then we have the following Volkenborn (p-adic bosonic)
integral on Zp:

∫
Zp

f (x) dμ1 (x) = lim
N→∞

1

pN

pN−1∑
x=0

f (x) , (2.6)

where

μ1 (x) = μ1

(
x + pNZp

)

denotes the Haar distribution, which is defined by

μ1

(
x + pNZp

)
= 1

pN

(cf. [66]; see also the references cited in each of these earlier works).
In the work of Kim [29], the Volkenborn integral is also the so-called bosonic

p-adic integral or the Volkenborn integral on Zp. The Volkenborn integral on Zp

is used to construct generating functions including Bernoulli type numbers and
polynomials and the other special numbers and polynomials.

Some basic properties of this integral are given as follows.
The Volkenborn integral in terms of the Mahler coefficients is given by the

following formula:

∫
Zp

f (x) dμ1 (x) =
∞∑
n=0

(−1)n

n+ 1
an,

where

f (x) =
∞∑
n=0

an

(
x

j

)
∈ C1(Zp → K),
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and
(
x

j

)
= x(x − 1)(x − 2) · · · (x − j + 1)

j !
denotes the Mahler coefficients (cf. [66, Proposition 55.3, p. 168]).

Let f : Zp → K be an analytic function and x ∈ Zp. Let

f (x) =
∞∑
n=0

anx
n.

The Volkenborn integral of this analytic function is given by

∫
Zp

( ∞∑
n=0

anx
n

)
dμ1 (x) =

∞∑
n=0

an

∫
Zp

xndμ1 (x)

(cf. [66, Proposition 55.4, p. 168]).
Some nice and interesting results of p-adic integral or Volkenborn integral are

given as follows.
The following property is very important in order to construct generating

functions for special numbers and polynomials:

∫
Zp

f (x +m)dμ1 (x) =
∫
Zp

f (x)dμ1 (x)+
m−1∑
j=0

f
′
(j) , (2.7)

where

f
′
(j) = d

dx
f (x)

∣∣
x=j

(cf. [29, 31, 66, 91]; see also the references cited in each of these earlier works).
The p-adic integral representations of the Bernoulli numbers and polynomials

are given as follows:

∫
Zp

xndμ1 (x) = Bn (2.8)

and
∫
Zp

(z+ x)n dμ1 (x) = Bn(z) (2.9)
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(cf. [29, 31, 66]; see also the references cited in each of these earlier works).
Formulas in (2.8) and (2.9) are known as Witt’s type formulas for the Bernoulli
numbers and Bernoulli polynomials, respectively.

Theorem 6

∫
Zp

(
x

j

)
dμ1 (x) = (−1)j

j + 1
(2.10)

(cf. [66]).

The Fermionic p-Adic Integral

The fermionic p-adic integral on Zp is used to construct generating functions
for Euler type numbers and polynomials and also other special numbers and
polynomials.

The fermionic p-adic integral on Zp is given by

∫
Zp

f (x) dμ−1 (x) = lim
N→∞

pN−1∑
x=0

(−1)x f (x) , (2.11)

where

μ−1(z+ pNZp) = (−1)x

(cf. [31]).
Let f ∈ C1(Zp → K). When q → −1 in (2.3), Kim [32] gave the following

integral equation:

∫
Zp

Edf (x) dμ−1 (x)− (−1)d
∫
Zp

f (x) dμ−1 (x) = 2
d−1∑
j=0

(−1)d−1−j f (j),

(2.12)

where d is a positive integer. When d = 1, equation (2.12) is reduced to the
following well-known integral equation:

∫
Zp

f (x + 1) dμ−1 (x)+
∫
Zp

f (x) dμ−1 (x) = 2f (0)

(cf. [32]).
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By using (2.11), the Witt’s formulas for the Euler numbers and polynomials are
given as follows, respectively,

∫
Zp

xndμ−1 (x) = En (2.13)

and
∫
Zp

(z+ x)n dμ−1 (x) = En(z) (2.14)

(cf. [16, 31]; see also the references cited in each of these earlier works).

Theorem 7

∫
Zp

(
x

j

)
dμ−1 (x) = (−1)j

2j
(2.15)

(cf. [24]).

3 Generalized Apostol-Type Numbers Attached to Dirichlet
Character χ

Let χ be a non-trivial Dirichlet character with conductor d. Let λ be a p-adic integer.
We set

f (x, t; λ) = λx(1+ λt)xχ(x) (3.1)

(cf. [73, 76]). Substituting (3.1) into (2.2), we have

∫
Zp

λx(1+ λt)xχ(x)dμq (x) = q − 1(
(λq)d (1+ λt)d − 1

)
log q

d−1∑
j=0

(λq)j (1+ λt)j χ(j) log
(
λ+ λ2t

)

+ q − 1

(λq)d (1+ λt)d − 1

d−1∑
j=0

(λq)j (1+ λt)j χ(j). (3.2)

From the above integral equation, we constructed the following generating func-
tion for the generalized Apostol–Daehee numbers attached to Dirichlet character χ
with conductor d as follows:
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FD(t; q, λ, χ) = (q − 1) log
(
λ+ λ2t

)+ (q − 1) log q

log q

d−1∑
j=0

(λq)j (1+ λt)jχ(j)
(λq(1+ λt))d − 1

,

where

FD(t; q, λ, χ) =
∞∑
n=0

Dn,χ (λ, q)
tn

n! (3.3)

(cf. [73, 76]).
where Hm−1(j/d; 1/λd) denotes the Frobenius-Euler polinomials (cf. [73, 76]).
The generalized Apostol–Daehee numbers attached to Dirichlet character χ

with conductor d are related to the Bernoulli numbers of the second kind and the
polynomials In,d(x; λ, q). This relation is given below.

By combining (1.25) with (1.19), we get the following functional equation:

λtFD(t; q, λ, χ)=q − 1

log q
(log (λq) Fb2(λt)+λt)

d−1∑
j=0

(−1)jχ(j) (λq)j Gd(t, j ; λ, q).

By using the above functional equation, we obtain

∞∑
n=0

λnDn−1,χ (λ, q)
tn

n!

=
∞∑
n=0

(q − 1) log (λq)

log q

d−1∑
j=0

(−1)jχ(j) (λq)j
n∑
m=0

(
n

m

)
λmbm(0)In−m,d(j ; λ, q) t

n

n!

+λq − 1

log q

∞∑
n=0

n

d−1∑
j=0

(−1)jχ(j) (λq)j In−1,d (j ; λ, q) t
n

n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we arrive at
the following theorem:

Theorem 8 Let n ∈ N. Then we have

Dn−1,χ (λ, q)

= (q − 1) log (λq)

n log q

d−1∑
j=0

(−1)jχ(j) (λq)j
n∑
m=0

(
n

m

)
λm−1bm(0)In−m,d(j ; λ, q)

+q − 1

log q

d−1∑
j=0

(−1)jχ(j) (λq)j In−1,d (j ; λ, q).
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By (3.3), we get

FD(t; q, λ, χ) =
(
(q − 1) log λ

log q
+ q − 1

)
Fb2(λt)

dλt

d−1∑
j=0

(λq)j χ(j)FA

(
d log (1+ λt) , j

d
; (λq)d

)

+ (q − 1)

d log q

d−1∑
j=0

(λq)j χ(j)FA

(
d log (1+ λt) , j

d
; (λq)d

)
.

Combining the above functional equation with (1.1) and (1.19), we get the following
result:

Theorem 9 Let m ∈ N. Then we have

Dm−1,χ (λ, q) =
(
(q−1) log λ

log qm
+q−1

m

) d−1∑
j=0

qjχ(j)

m∑
l=0

(
m

l

)
λm+j−l−1bm−l (0)

×
l∑
n=0

dn−1Bn
(
j

d
; (λq)d

)
S1(l, n) (3.4)

+q − 1

log q

d−1∑
j=0

(λq)j χ(j)

m−1∑
n=0

dn−1Bn
(
j

d
; (λq)d

)
S1(m− 1, n)

(cf. [73, 76]).

If q → 1 in (3.4), we get the following corollary:

Corollary 2 Let m ∈ N. Then we have

Dm−1,χ (λ) = log λ

m

d−1∑
j=0

χ(j)

m∑
l=0

(
m

l

)
λm+j−l−1bm−l (0) (3.5)

×
l∑
n=0

dn−1Bn
(
j

d
; λd

)
S1(l, n)+

d−1∑
j=0

λjχ(j)

×
m−1∑
n=0

dn−1Bn
(
j

d
; λd

)
S1(m− 1, n).

Substituting λ = 1 into (3.5), for m ∈ N0, we get

Dm,χ =
d−1∑
j=0

χ(j)

m∑
n=0

dn−1Bn

(
j

d

)
S1(m, n) (3.6)

(cf. [73, 76]).
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By combining (3.6) with the following well-known identity

Bn,χ = dn−1
d−1∑
j=0

χ(j)Bn

(
j

d

)
,

we arrive at the following result.

Corollary 3 Let m ∈ N. Then we have

Dm,χ =
m∑
n=0

Bn,χS1(m, n) (3.7)

(cf. [73, 76]).

Substituting λt = et − 1 into (3.3), we get:

Theorem 10 Let m ∈ N. Then we have

m−1∑
n=0

Dn,χ (λ, q)S2(m− 1, n)

λn
= dm−1 (q−1) log (λq)

log q

d−1∑
j=0

(λq)j χ(j)Bm−1

(
j

d
; (λq)d

)

+ (q − 1) dm−1

m log q

d−1∑
j=0

(λq)j χ(j)Bm
(
j

d
; (λq)d

)
(3.8)

(cf. [73, 76]).

When λ = 1 and q → 1, (3.8) reduces to the following corollary:

Corollary 4 Let m ∈ N. Then we have

Bm,χ =
m∑
n=0

Dn,χS2(m, n)

and

m∑
n=0

Dn,χ (λ, 1)S2(m, n)

λn
= mdm−1

d−1∑
j=0

λjχ(j)Hm−1

(
j

d
; 1

λd

)
,

where Hm−1(j/d; 1/λd) denotes the Frobenius-Euler polinomials (cf. [73, 76]).

The generalized Apostol–Daehee polynomials attached to the Dirichlet character
χ , with conductor d, are defined by means of the following generating function:

FD(z, t; q, λ, χ) = FD(t; q, λ, χ)(1+ λt)z =
∞∑
n=0

Dn,χ (z; λ, q) t
n

n! (3.9)

(cf. [73, 76]).
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Substituting z =
v∑
j=1
xj (3.9), we have

FD

⎛
⎝ v∑
j=1

xj , t; q, λ, χ
⎞
⎠ = FD(t; q, λ, χ)(1+ λt)

v∑
j=1

xj

.

By using (3.3) and (3.9), and also we assume that |λt | < 1, then we have

Dn,χ

⎛
⎝ v∑
j=1

xj ; q, λ
⎞
⎠ =

n∑
j=0

(
n

j

)
Dn−j,χ (λ, q)λj (x1 + x2 + · · · + xv)j .

Since

(x + y)n =
n∑
j=0

(
n

j

)
(x)j (y)n−j ,

we obtain the following theorem:

Theorem 11 Let n ∈ N0. Then we have

Dn,χ

⎛
⎝ v∑
j=1

xj ; q, λ
⎞
⎠ =

n∑
j=0

(
n

j

)
λjDn−j,χ (λ, q)

×
∑

j1+···+jv=v
M(j1, . . . , jv)

v∏
j (j1,...,jv)=1

(x)j (j1,...,jv) ,

where

∑
j1+···+jv=j

M(j1, . . . , jv)

v∏
j (j1,...,jv)=1

(x)j (j1,...,jv)

=
j∑

j1=0

j−j1∑
j2=0

· · ·
j−j1−j2−···−jv−1∑

jv=0

(
j

j1

)(
j − j1
j2

)
· · ·

(
j − j1 − j2 − · · · − jv−1

jv

)

× (x1)j1 (x2)j2 · · · (xv)j−j1−j2−···−jv−1
.

Remark 2 Substituting v = 2 into Theorem 11, we have

Dn,χ (x1 + x2; λ, q) =
n∑
j=0

j∑
j1=0

(
n

j

)(
j

j1

)
Dn−j,χ (λ, q)λj (x1)j (x2)j−j1 .
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Substituting v = 1 into Theorem 11, we have

Dn,χ (x1; λ, q) =
n∑
j=0

(
n

j

)
Dn−j,χ (λ, q)λj (x1)j

(cf. [73, 76]).

Remark 3 If q → 1 and λ → 1 and χ ≡ 1, then Dn,χ (z; λ, q) reduces to the
polynomials Dn(z) (cf. [25, 26, 30, 68, 72]).

4 Generalized Apostol–Changhee Numbers Attached
to the Dirichlet Character with Odd Conductor

Substituting (3.1) into (2.4), we get

∫
Zp

λx(1+λt)xχ(x)dμ−q (x) = [2]

(λq)d (1+ λt)d + 1

d−1∑
j=0

(−1)jχ(j) (λq)j (1+λt)j .

(4.1)
Therefore, the above equation gives us generating functions for the generalized

Apostol–Changhee numbers and polynomials by means of the following generating
functions, respectively:

FE(t; λ, q, χ) =
d−1∑
j=0

(−1)j
[2]χ(j) (λq)j (1+ λt)j
(λq)d (1+ λt)d + 1

=
∞∑
n=0

Chn,χ (λ, q)
tn

n! ,
(4.2)

where d is an odd positive integer (cf. [73, 76]).
By using (4.2), the following functional equation is given by

FC(t, x; λ, q, χ) = 1+ q
2

d−1∑
j=0

(−1)jχ(j) (λq)j FP1

(
d log (1+ λt) , j

d
; (λq)d

)

(cf. [73, 76]).
Combining the above equation with (1.4) and (4.2), and using S1(m, n) = 0,

m < n, we have

Chm,χ (λ, q) =
d−1∑
j=0

(−q)jχ(j)
m∑
n=0

λj+mdnEn
(
j

d
; (λq)d

)
S1(m, n), (4.3)
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and

Chm,χ (λ, q) =
m∑
n=0

En,χ (qλ)S1(m, n) (4.4)

(cf. [73, 76]).
Substituting λt = eu − 1 into (4.2) yields

1+ q
(λq)d edu + 1

d−1∑
j=0

(−1)jχ(j) (λq)j eju =
∞∑
n=0

Chn,χ (λ, q)

λn
(eu − 1)n

n! . (4.5)

Thus, by (1.4), we get the following formulas:

1+ q
2

d−1∑
j=0

(−1)jχ(j) (λq)j dmEm
(
j

d
, (λq)d

)
=

m∑
n=0

Chn,χ (λ, q)S2(m, n)

λn

and

1+ q
2

m∑
n=0

d−1∑
j=0

m−n∑
l=0

(−1)j
(
m

n

)
χ(j) (λq)j dnEn

(
(λq)d

)
S2(m− n, l) (j)l

=
m∑
n=0

Chn,χ (λ, q)S2(m, n)

λn
.

Combining (1.16) with (4.5), we have the following formula:

Theorem 12 Let m ∈ N0. Then we have

Em,χ (λ) = 2

1+ q
m∑
n=0

Chn,χ (λ, q)S2(m, n)

λn

(cf. [73, 76]).

By using (4.5), we get

[2]

(λq)d edu + 1

d−1∑
j=0

(−1)jχ(j)
j∑
v=0

(
j

v

) (
λqeu − 1

)v =
∞∑
n=0

Chn,χ (λ, q)

λn
(eu − 1)n

n! .
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Combining the above equation with (1.21), we have

d−1∑
j=0

(−1)jχ(j)
j∑
v=0

(
j

v

) ∞∑
m=0

m∑
n=0

(
m

n

)
dnEn

(
j

d
, (λq)d

)
v!S2(m− n, v; λq)u

m

m!

= 2

[2]

∞∑
m=0

m∑
n=0

Chn,χ (λ, q)S2(m, n)

λn

um

m! .

Comparing the coefficients of u
m

m! on both sides of the above equation, we get the
following theorem:

Theorem 13

d−1∑
j=0

(−1)jχ(j)
j∑
v=0

(
j

v

) m∑
n=0

(
m

n

)
dnEn

(
j

d
, (λq)d

)
v!S2(m− n, v; λq)

= 2

[2]

m∑
n=0

Chn,χ (λ, q)S2(m, n)

λn
.

The polynomials Chn,χ (z; λ, q) are defined by means of the following generating
function:

FE(t, z; λ, q, χ) = FE(t; λ, q, χ)(1+ λt)z (4.6)

=
∞∑
n=0

Chn,χ (z; λ, q)
tn

n!

(cf. [73, 76]).

Substituting z =
v∑
j=1
xj (4.6), we have

FC

⎛
⎝t,

v∑
j=1

xj ; λ, q, χ
⎞
⎠ = FC (t; λ, q, χ) (1+ λt)

v∑
j=1

xj

.

Combining the above equation with (4.2), we have

∞∑
n=0

Chn,χ

⎛
⎝ v∑
j=1

xj ; λ, q
⎞
⎠ tn
n! = (1+ λt)

v∑
j=1

xj ∞∑
n=0

Chn,χ (λ, q)
tn

n! .

We assume that |λt | < 1. Then we have
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∞∑
n=0

Chn,χ

⎛
⎝ v∑
j=1

xj ; λ, q
⎞
⎠ tn
n!=

∞∑
n=0

n∑
j=0

(
n

j

)
Chn−j,χ (λ, q)λj (x1+x2+· · ·+xv)j t

n

n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we get

Chn,χ

⎛
⎝ v∑
j=1

xj ; q, λ
⎞
⎠ =

n∑
j=0

(
n

j

)
Chn−j,χ (λ, q)λj (x1 + x2 + · · · + xv)j .

Since

(x + y)n =
n∑
j=0

(
n

j

)
(x)j (y)n−j ,

we obtain the following theorem:

Theorem 14 Let n ∈ N0. Then we have

Chn,χ

⎛
⎝ v∑
j=1

xj ; q, λ
⎞
⎠ =

n∑
j=0

(
n

j

)
Chn−j,χ (λ, q)λj

×
∑

j1+···+jv=v
M(j1, . . . , jv)

v∏
j (j1,...,jv)=1

(x)j (j1,...,jv) ,

where

∑
j1+···+jv=v

M(j1, . . . , jv)

v∏
j (j1,...,jv)=1

(x)j (j1,...,jv)

is given by Theorem 11.

Remark 4 Substituting v = 2 into Theorem 14, we have

Chn,χ (x1 + x2; λ, q) =
n∑
j=0

j∑
j1=0

(
n

j

)(
j

j1

)
(x1)j (x2)j−j1λjChn−j,χ (λ, q).

Substituting v = 1 into Theorem 14, we have

Chn,χ (x1; λ, q) =
n∑
j=0

(
n

j

)
Chn−j,χ (λ, q)λj (x1)j

(cf. [73, 76]).
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Remark 5 If q → 1 and λ → 1 and χ ≡ 1, then Chn,χ (z; λ, q) reduces to the
Changhee polynomials Chn(z) (cf. [24, 35, 68]).

Combining (4.6) with (1.26), we have the following functional equation:

FE(t, z; λ, q, χ) =
d−1∑
j=0

(−1)jχ(j) (λq)j Kd(t, z+ j ; λ, q).

By using the above functional equation, we obtain

∞∑
n=0

Chn,χ (z; λ, q)
tn

n! =
d−1∑
j=0

(−1)jχ(j) (λq)j
∞∑
n=0

y7,n(z+ j ; λ, q, d) t
n

n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we arrive at
the following theorem:

Chn,χ (z; λ, q) =
d−1∑
j=0

(−1)jχ(j) (λq)j y7,n(z+ j ; λ, q, d).

Here we note that some properties of the polynomials y7,n(z + j ; λ, q, d) and the
numbers y7,n(λ, q, d) and also computation formulas are given in detail by Simsek
and So [81, 82].

5 Generalized Apostol-Type Numbers Attached to the
Dirichlet Character with Even Conductor

Substituting (3.1) into (2.5), we also constructed the following generating function
for a new family of the generalized Apostol-type numbers attached to the Dirichlet
character with even conductor:

H(t; λ, q) = [2]
d−1∑
j=0

(−1)j+1χ(j) (λq)
j (1+ λt)j

(λq)d (1+ λt)d − 1
=
∞∑
n=0

Yn,χ (λ, q)
tn

n! , (5.1)

where d is an even positive integer and λ �= 1 (cf. [73, 76]).
If q → 1 in (5.1), then we have

2

λd(1+ λt)d − 1

d−1∑
j=0

(−1)j+1χ(j)λj (1+ λt)j =
∞∑
n=0

Yn,χ (λ, 1)
tn

n! .
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A new family of the generalized Apostol-type polynomials attached to the
Dirichlet character with even conductor, Yn,χ (z; λ, q) are defined by means of the
following generating function:

H(t, z; λ, q) = (1+ λt)zH(t; λ, q) =
∞∑
n=0

Yn,χ (z; λ, q) t
n

n! . (5.2)

Remark 6 When χ ≡ 1 and q → 1, equations (5.2) and (5.1) reduce to (1.22)
and (1.23), respectively. Therefore, the polynomials Yn,χ (z; λ, q) and the numbers
Yn,χ (λ, q) are generalized of the Boole type polynomials and numbers.

By using equation (5.2), we get

∞∑
n=0

Yn,χ (z; λ, q) t
n

n! =
∞∑
n=0

(z)nλ
n t
n

n!
∞∑
n=0

Yn,χ (λ, q)
tn

n! .

By using the Cauchy rule of product series in the above equation, we obtain

∞∑
n=0

Yn,χ (z; λ, q) t
n

n! =
∞∑
n=0

⎛
⎝ n∑
j=0

(
n

j

)
λn−j (z)n−j Yj,χ (λ, q)

⎞
⎠ tn
n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we arrive at
the following theorem:

Theorem 15 Let n ∈ N0. Then we have

Yn,χ (z; λ, q) =
n∑
j=0

(
n

j

)
λn−j (z)n−jYj,χ (λ, q).

By using (5.2), we get

H(t, x + y; λ, q) = (1+ λt)xH(t, y; λ, q).

By using the above equation, we derive

∞∑
n=0

Yn,χ (x + y; λ, q) t
n

n! =
∞∑
n=0

(x)nλ
n t
n

n!
∞∑
n=0

Yn,χ (y; λ, q) t
n

n! .

Therefore,

∞∑
n=0

Yn,χ (x + y; λ, q) t
n

n! =
∞∑
n=0

n∑
j=0

(
n

j

)
(x)jλ

jYn−j,χ (y; λ, q) t
n

n! .
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Comparing the coefficients of t
n

n! on both sides of the above equation, we arrive at
the following theorem:

Theorem 16 Let n ∈ N0. Then we have

Yn,χ (x + y; λ, q) =
n∑
j=0

(
n

j

)
(x)jλ

jYn−j,χ (y; λ, q).

Combining (5.1) with (1.1), we obtain the following functional equation:

(
d ln(λq + λ2qt)

)
H(t; λ, q) = [2]

d−1∑
j=0

(−1)j+1χ(j)FA

(
d ln(λq + λ2qt),

j

d
; 1

)
.

By using the above equation, we get

(
d ln(λq + λ2qt)

) ∞∑
n=0

Yn,χ (λ, q)
tn

n!

= [2]
d−1∑
j=0

(−1)j+1χ(j)

∞∑
n=0

Bn

(
j

d

)
dn ln(λq + λ2qt)n

n! .

Thus, we have

d ln(λq)
∞∑
n=0

Yn,χ (λ, q)
tn

n! + (d ln(1+ λt))
∞∑
n=0

Yn,χ (λ, q)
tn

n!

= [2]
d−1∑
j=0

(−1)j+1χ(j)

∞∑
n=0

Bn

(
j

d

)
dn

n!
n∑
v=0

v!
(
n

v

)
(ln(λq))n−v FS1(λt, v).

Combining the above functional equation with (1.17), we obtain

d ln(λq)
∞∑
m=0

mYm−1,χ (λ, q)
tm+1

m! + d
∞∑
m=1

m∑
c=1

(−1)c−1 λ
cYm−1−c,χ (λ, q)
c(m− c)! tm

= [2]
d−1∑
j=0

(−1)j+1χ(j)

∞∑
n=0

Bn

(
j

d

)
dn

n!
n∑
v=0

v!
(
n

v

)
(ln(λq))n−v

×
∞∑
m=0

λmS1(m, v)
tm+1

m! .
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Since S1(m, v) = 0 if m < v, the above equation reduces to the following relation:

∞∑
m=0

⎛
⎝mYm−1,χ (λ, q)+ m!

ln(λq)

m∑
c=1

(−1)c
λcYm−1−c,χ (λ, q)

c(m− c)!

⎞
⎠ tm

m!

=
∞∑
m=0

d−1∑
j=0

m−1∑
n=0

n∑
v=0

(−1)j
(
n

v

)
Bn

(
j

d

)
[2]mdn−1χ(j)v!λm

n! (ln(λq))n−v−1 S1(m−1, v)
tm

m! .

Comparing the coefficients of t
m

m! on both sides of the above equation, we arrive at
the following theorem:

Theorem 17 Let m ∈ N. Then we have

Ym−1,χ (λ, q)+ (m− 1)!
ln(λq)

m∑
c=1

(−1)c−1 λ
cYm−1−c,χ (λ, q)
c(m− c)!

=
d−1∑
j=0

m−1∑
n=0

n∑
v=0

(−1)j
(
n

v

)
[2] dn−1χ(j)v!λm

n! (ln(λq))n−v−1 S1(m− 1, v)Bn

(
j

d

)
.

Integrals of the Polynomials Yn,χ(z;λ, q)

Riemann integral of the polynomials Yn,χ (z; λ, q):
1∫

0

Yn,χ (z; λ, q) dz =
n∑
j=0

(
n

j

)
λn−j Yj,χ (λ, q)bn−j (0),

(cf. [76]).
The p-adic integrals of the polynomials Yn,χ (z; λ, q):

∫
Zp

Yn,χ (z; λ, q) dμ1 (z) =
n∑
j=0

(−1)n−j
(
n

j

)
(n− j)!λn−j
n+ 1− j Yj,χ (λ, q)

and

∫
Zp

Yn,χ (z; λ, q) dμ−1 (z) =
n∑
j=0

(−1)n−j
(
n

j

)
(n− j)!λn−j

2n−j
Yj,χ (λ, q)

(cf. [76]).
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6 Partial Derivatives of the Functions F (t, x, λ)

Differentiating both side of (1.22) with respect to t , we have the following PDE
(cf. [89]):

∂F (t, x, λ)

∂t
= F (t, x, λ)

(
λx

1+ λt −
λ2

2
F (t, λ)

)
. (6.1)

Combining (1.22) and (1.23) with (6.1), we have

∞∑
n=0

Yn+1 (x; λ) t
n

n! = λx
∞∑
n=0

(−λt)n
∞∑
n=0

Yn (x; λ) t
n

n!

−λ
2

2

∞∑
n=0

Yn (λ)
tn

n!
∞∑
n=0

Yn (x; λ) t
n

n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we obtain the
following theorem:

Theorem 18 ([89]) Let n ∈ N0. Then we have

Yn+1 (x; λ) = 1

2

n∑
k=0

(
n

k

)
Yk (x; λ)

(
2 (−1)n−k λn−k+1x (n− k)! − λ2Yn−k (λ)

)

=
n∑
k=0

(
n

k

)
Yk (x; λ)

⎛
⎝(−1)n−k λn−k+1x (n− k)! − 2n−k

(
λ2

λ− 1

)n−k+1

Chn−k

⎞
⎠ .

Differentiating both side of (1.22) v times with respect to t , we have

∂(v)F (t, x, λ)

∂tv
=

⎡
⎣ v∑
j=0

(−1)j (v)j (x)v−j λv+j (1+ λt)j−v

×
(
λ2t + λ− 1

)−j⎤⎦F (t, x, λ) . (6.2)

By using (1.22) and (6.2) and the following well-known binomial series

1

(1+ λt)v−j =
∞∑
k=0

(−1)k
(
v − j + k − 1

k

)
λktk, (6.3)

(
λ2t + λ− 1

)−j = 1

(λ− 1)j

∞∑
k=0

(−1)k
(
j + k − 1

k

)
λ2k

(λ− 1)k
tk, (6.4)



Analysis of Apostol-Type Numbers and Polynomials with Their. . . 473

and

1

(1+ λt)v−j
1(

λ2t + λ− 1
)j = 1

(λ− 1)j

∞∑
k=0

Ck (j, v, λ)
tk

k! , (6.5)

where

Ck (j, v, λ) =
k∑
m=0

(−1)k
(
k

m

)
(v − j + k − 1)m (j + k − 1)k−m

λ2k−m

(λ− 1)k−m
,

we have

∂(v)F (t, x, λ)

∂tv
=
∞∑
n=0

Yn+v (x; λ) t
n

n! . (6.6)

Setting (6.6), (6.3), (6.4), and (6.5) in (6.2), we have

∞∑
n=0

Yn+v (x; λ) t
n

n! =
∞∑
n=0

⎡
⎣ v∑
j=0

(−1)j (v)j (x)v−j λv
(

λ

λ− 1

)j

×
n∑
k=0

(
n

k

)
Ck (j, v, λ) Yn−k (x; λ)

⎤
⎦ tn
n! .

Comparing the coefficients of t
n

n! on both sides of the above equation, we obtain the
following theorem:

Theorem 19 ([89]) Let n, v ∈ N0. Then

Yn+v (x; λ) =
v∑
j=0

(v)j (x)v−j λv
(
− λ

λ− 1

)j n∑
k=0

(
n

k

)
Ck (j, v, λ) Yn−k (x; λ) ,

(6.7)
where

Ck (j, v, λ) =
k∑
m=0

(−1)k
(
k

m

)
(v − j + k − 1)m (j + k − 1)k−m

λ2k−m

(λ− 1)k−m
.

Differentiating both side of (1.22) with respect to x, we have the following PDE
(cf. [89]):

∂F (t, x, λ)

∂x
= F (t, x, λ) log (λt + 1) . (6.8)

By using the above equation, we have the following theorem:
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Theorem 20 ([89]) Let n ∈ N. Then we have

Yn−1 (x; λ) = 1

λn

n∑
k=0

(
n

k

)
∂

∂x
{Yk (x; λ)}λn−kbn−k (0) .

7 Identities for the Polynomials Yn(x;λ)

By using (1.22), we derive

∞∑
n=0

Yn(x; λ) t
n

n! =
2ex log(1+λt)

λelog(1+λt) − 1
.

Combining the above equation with (1.1) and (1.19), we obtain

∞∑
n=0

Yn(x; λ) t
n

n! =
2

log (1+ λt)
∞∑
n=0

Bn(x; λ)(log (1+ λt))n
n! .

Therefore,

∞∑
k=0

kYk−1(x; λ) t
k

k! =
2

λ

∞∑
k=0

k∑
j=0

(
k

j

)
bk−j (0) λk−j

j∑
n=0

Bn(x; λ)S1(j, n)λ
j t
k

k! .

Comparing the coefficients of t
k

k! on both sides of the above equation, we obtain the
following theorem:

Theorem 21 Let k ∈ N0. Then we have

Yk(x; λ) = 2

k + 1

k+1∑
j=0

j∑
n=0

(
k + 1

j

)
λkbk+1−j (0)Bn(x; λ)S1(j, n). (7.1)

Lemma 1 ([89])

Yn (x;−1) = (−1)n+1 Chn (x) . (7.2)

Proof Substituting λ = −1 into (1.22), we have

∞∑
n=0

(−1)n Yn (x;−1)
tn

n! =
2 (1− t)x
t − 2

= −
∞∑
n=0

Chn (x)
tn

n! .
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Comparing the coefficients of t
n

n! on both sides of the above equation, we arrive at
the desired result. 
�
Lemma 2 ([89]) Let n ∈ N0. Then we have

Yn (−1) = (−1)n+1 Chn. (7.3)

Corollary 5 ([89]) Let n ∈ N0. Then we have

d

dx
{Chn+1 (x)} = x

n−1∑
l=0

l∑
k=0

(−1)n+l+1
(
l

k

)
n!DkChl−k (x)

l!

−1

2

n−1∑
l=0

l∑
k=0

(
n− 1
l

)(
l

k

)
nDn−1−lChkChl−k (x)

+
n∑
k=0

(−1)k n!Chn−k (x)
(n− k)! .

Theorem 22 ([89]) Let n ∈ N. Then we have

λ
∂

∂x
{Yn+1 (x; λ)}+ 1

n+ 1

∂

∂x
{Yn+2 (x; λ)}

= x
n∑
k=0

(−1)k λk+2n!Yn−k (x; λ)
(k + 1) (n− k)!

−1

2

n−1∑
l=0

l∑
k=0

(−1)n−1−l λn+3−l

n− l
(
l

k

)
n!Yk (λ) Yl−k (x; λ)

l!

−1

2

n∑
l=0

(−1)n−l λn+3−l

n− l + 1

l∑
k=0

(
l

k

)
n!Yk (λ) Yl−k (x; λ)

l!

+ λ

n+ 1
Yn+1 (x; λ) .

Theorem 23 ([89]) Let m ∈ N0. Then we have

Ym(−λ) = (−1)m+1 λm
m∑
n=0

En (λ) S1 (m, n) (7.4)

and

Ym(λ) = 2λm
m∑
n=0

S1 (m, n)Bn+1 (λ)

n+ 1
.
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Remark 7 ([89]) Let λ = 1. Equation (7.4) reduces to the following relation:

Ym(−1) = (−1)m+1
m∑
n=0

En (1) S1 (m, n) .

Combining (7.3) and (1.8) with the above equation, we have the following well-
known identity:

Chm =
m∑
n=0

EnS1 (m, n) ,

which was proven by Kim et al. [24, Theorem 2.7].

Theorem 24 ([89]) Let m ∈ N0. Then we have

Ym(x;−λ) = (−1)m+1 λm
m∑
n=0

En (x; λ) S1 (m, n) . (7.5)

Remark 8 ([89]) When λ = 1. Equation (7.5) reduces to the following identity:

Ym(x;−1) = (−1)m+1
m∑
n=0

En (x; 1) S1 (m, n) .

Combining (7.2) and (1.7) with the above equation, we have the following well-
known identity:

Chm(x) =
m∑
n=0

En (x) S1 (m, n) ,

which was proven by Kim et al. [24, Theorem 2.5].

Relations Between the Numbers Yn(λ), the Polynomials
Yn(x;λ), and Hypergeometric Function

Generalized hypergeometric function pFp is defined by

pFq

[
α1, . . . , αp

β1, . . . , βq
; z

]
=
∞∑
m=0

p∏
j=1

(
αj

)m
q∏
j=1

(
βj

)m
zm

m! (7.6)

(cf. [40, 83, 84]).
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We give some comments for series converges in (7.6):
for all z if p < q + 1, and also for |z| < 1 if p = q + 1 (cf. [40, 83, 84]).
For the series in (7.6), we assume that all parameters have general values, real or

complex, except for the βj , j = 1, 2, . . . , q none of which is equal to zero or to a
negative integer.

Substituting p = q = 0 into (7.6), we have

0F0 (z) = ez.

Substituting p = 2 and q = 1 into (7.6), we have

2F1 (α1;α2;β1; z) =
∞∑
k=0

(α1)
k (α2)

k

(β1)
k

zk

k! .

Substituting p = 1 and q = 0 into (7.6), we have

1F0

[
b

−; x
]
= 1

(1− x)b

(cf. [40, 83, 84]).
Relations between hypergeometric function and integral of the numbers Yn(λ)

and the polynomials Yn(x; λ) are given as follows:

Theorem 25 ([89])

∫ u

0
Yn(λ)dλ = −2n!u2n+1

2n+ 1
2F1 (−n− 1,−2n− 1;−2n− 2;−u) ,

where 2F1 denotes the Gauss hypergeometric functions.

Theorem 26 ([89])

∫ u

0
Yn(x; λ)dλ = −2n!u2n+1

n∑
k=0

(
x
k

)
u−k

(2n− k + 1)

× 2F1 (k − n− 1, k − 2n− 1; k − 2n− 2;−u) .

Relations Between Infinite Series and the Numbers Yn (λ), the
Humbert Polynomial, the Changhee Numbers, the Daehee
Numbers, and the Lucas Numbers

Relations between infinite series and the numbers Yn (λ), the Humbert polynomial,
the Changhee numbers, the Daehee numbers, and the Lucas numbers are given as
follows.
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The numbers Yn (λ) have the following infinite series:

∞∑
n=0

1

Yn (λ)
= λ− 1

2

∞∑
n=0

(−1)n

n!
(
λ− 1

λ2

)n
.

By using the above equation, we have the following interesting series:

Theorem 27 ([89])

∞∑
n=0

1

Yn (λ)
= λ− 1

2
e

1−λ
λ2 .

Theorem 28 ([89]) Let
∣∣∣ λ2

λ−1

∣∣∣ < 1. Then

∞∑
n=0

Yn (λ)

Dn
= 2λ2

(
1− λ+ λ2

)2 −
2

1− λ+ λ2 . (7.7)

Theorem 29 ([89])

∞∑
n=0

Dn

Yn (λ)
= −λ

2

2
log

(
1+ 1− λ

λ2

)
.

By using the following series

∞∑
n=0

Dn

Yn (−1)
= − log (3)

2

(cf. [89]) and

∞∑
n=1

Ln

n2n
= 2 log (2) ,

where Ln denotes the Lucas numbers (cf. [54, p. 7]), we have

∞∑
n=1

(
Dn

Yn (−1)
+ Ln

n2n

)
= log

(
4e√

3

)
,

where log e = 1.
Combining the above series with the following series
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∞∑
n=0

Chn

Dn
= 4

(cf. [89]), we have the following interesting series:

∞∑
n=1

(
Dn

Yn (−1)
+ Chn
Dn
+ Ln

n2n

)
= 4+ log

(
4e√

3

)

(log2− log3)/2+ 1

Theorem 30 ([89]) Let
∣∣∣ λ2

λ−1

∣∣∣ < 1
2 . Then

∞∑
n=0

Yn (λ)

Chn
= 2

λ− 1− 2λ2
. (7.8)

Theorem 31 ([89]) Let
∣∣∣λ−1

2λ2

∣∣∣ < 1. Then

∞∑
n=0

Chn

Yn (λ)
= λ2 (λ− 1)

2λ2 − λ+ 1
. (7.9)

Remark 9 ([89])

∞∑
n=0

Yn (λ)

Dn
= 2λ2

∞∑
n=0

+
(2)
n,2

(
1

2

)
λn − 2

∞∑
n=0

+
(1)
n,2

(
1

2

)
λn.

By using (7.8) and (7.9), we have

Remark 10 ([89])

∞∑
n=0

Yn (λ)

Chn
= −2

∞∑
n=0

Pn(2,
1

2
, 2,−1, 1)λn.

Remark 11 ([89])

∞∑
n=0

Chn

Yn (λ)
= λ2 (λ− 1)

∞∑
n=0

Pn(2,
1

2
, 2,−1, 1)λn.
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8 The Lerch Transcendent Function and Apostol Type
Numbers and Polynomials: Approximation to the
Polynomials Yn(x;λ)

In this section, we give not only Fourier series, but also asymptotic estimates for
Boole type combinatorial numbers and polynomials with the help of equation (1.2),
Theorem 1, and (1.5).

The Lerch transcendent function is defined by

-(λ, s, a) =
∞∑
k=0

λk

(k + a)s ,

where a /∈ Z
− ∪ {0}, and either |λ| < 1, s ∈ C or λ = 1, Re s > 1 guarantees

convergence (we use λ as a variable in order to maintain a unified notation) (cf.
[2, 9, 63, 83, 86, 87]). By using analytic continuation, we have

Bn(a; λ) = −n- (λ, 1− n, a) (8.1)

(cf. [2, 9, 56, 63, 83, 86, 87]).
By combining (8.1) with (7.1), we arrive at the following theorem:

Theorem 32 Let n ∈ N0. Then we have

Yk(x; λ) = −2

k + 1

k+1∑
j=0

j∑
n=0

(
k + 1

j

)
λkbk+1−j (0) S1(j, n)n- (λ, 1− n, x) .

(8.2)

By combining (1.2) with (7.1), we arrive at the following theorem:

Theorem 33 Let λ ∈ C, (λ �= 0). Then we have

Yk(x; λ) = − 2

k + 1

k+1∑
j=0

j∑
n=0

(
k + 1

j

)
λkbk+1−j (0) S1(j, n)δn (x; λ)

− 2

k + 1

k+1∑
j=0

j∑
n=0

(
k + 1

j

)
λk−xbk+1−j (0) S1(j, n)n!

×
∞∑

v∈Z\{0}

exp (2πivx)

(2πiv − log λ)n
,

where
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δn (x; λ) =
{

0, λ = 1
(−1)nn!
λx(log λ)n , λ �= 1.

Since

1∫
0

λxBn(x; λ) exp (−2πimx) dx = − n!
(2πim− log λ)n

, (8.3)

where λ ∈ C, (λ �= 0, 1) , m ∈ Z, and n ∈ N (cf. [56]), we deduce that

1∫
0

λxYk(x; λ)e−2πilxdx = − 2

k + 1

k+1∑
j=0

j∑
n=0

(
k + 1

j

)
n!λkbk+1−j (0) S1(j, n)

(2πil − log λ)n

is a Fourier coefficient (or Laplace transform) of the following function:

λxYk(x; λ).

Combining (7.1) with the well-known identity given by (1.12), we arrive at the
following theorem:

Theorem 34

Yk(x; λ) = −1

k + 1

k+1∑
j=0

j∑
n=0

(
k + 1

j

)
nλkbk+1−j (0) S1(j, n)En−1(x;−λ). (8.4)

In [76], we gave the following novel identity:

Bm (λ) = m
2

m−1∑
n=0

λ−nYn(λ)S2(m− 1, n). (8.5)

Combining (8.5) with (1.12), we arrive at the following theorem:

Theorem 35

Em(−λ) =
m∑
n=0

(−1)nλ−nYn(−λ)S2(m, n). (8.6)

Combining the above well-known formula

En(x;−λ) =
n∑
m=0

(
n

m

)
Em(−λ)xn−m
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(cf. [86]), with (8.6), we get the following corollary:

Corollary 6

En(x;−λ) =
n∑
m=0

m∑
k=0

(−1)k
(
n

m

)
λ−kYk(−λ)S2(m, k)x

n−m.

By combining (1.5) with (8.4), we get the following theorem:

Theorem 36 Let λ ∈ C(λ �= 0). Then we have

Yk(x;−λ) = 2

k + 1

k+1∑
j=0

j∑
n=0

(−1)k+1
(
k + 1

j

)
nn!λk−xbk+1−j (0) S1(j, n)

×
∞∑
v∈Z

exp ((2v − 1)πix)

((2v − 1)πi − log λ)n
.

By using (8.2), and under the conditions of Theorem 1, we arrive at the following
theorem, which gives us an asymptotic expansion for the numbers Yk(λ):

Theorem 37

Yk(λ) = 2

k + 1

k+1∑
j=0

j∑
n=0

(
k + 1

j

)
λkbk+1−j (0) S1(j, n)

×
∞∑
v∈Z

exp ((2v − 1) πix)

((2v − 1) πi − log λ)n
.
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A General Lower Bound for the
Asymptotic Convergence Factor

N. Tsirivas

Abstract We provide a rather general and very simple to compute lower bound
for the asymptotic convergence factor of compact subsets of C with connected
complement and finitely many connected components.

MSC (2010): 41A17, 41A29, 65F10

1 Introduction

The subject of this work has many connections with the theory of approximation [4],
the problem of solving large-scale matrix problems by Krylov subspace iterations
and digital filtering. We denote N, R and C the sets of natural, real and complex
numbers, respectively.

Our point of view is a classical problem of approximation.
Let us see how this problem arises.
Suppose that L is a non-connected compact subset of C with connected

complement, of the form. L :=
m⋃
i=0
Ki , for some m ∈ N, m ≥ 1, where Ki ,

i = 0, 1, . . ., m, be of the form connected components of L. We also assume that
each component Ki does not reduce to a point. Let pi , i = 0, 1, . . ., m, be m + 1
different complex polynomials; that is, pi �= pj for every i, j ∈ {0, 1, . . ., m},
i �= j .

Consider the function F : L→C, which is defined by the formula:

F(z) = pj (z) if z ∈ Kj, for every j ∈ {0, 1, . . ., m}.
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Let A ⊆ C, F : A→C be a complex function. As usual we denote ‖F‖A =
sup{x ∈ R | ∃ a ∈ A : x = |F(a)|} = sup

x∈A
|F(x) ∈ [0,+∞].

We fix some positive number δ. The general problem is to find explicitly an
arbitrary polynomial p such that ‖F−p‖L < δ and also to find the relation between
p and δ, if possible. It turns out that the notion of asymptotic convergence factor
for a compact set is extremely useful in studying the above problem. Based on the
previous notation, we proceed with the relevant definition.

For every n = 1, 2, . . ., let Vn be the set of complex polynomials on L with
degree at most n; that is, Vn = {p : L→C, p is polynomial, degp ≤ n}

dist (Vn, F ) := min{‖F − p‖L, p ∈ Vn} for n = 1, 2, . . . .

Of course, for every n ∈ N, there exists some p ∈ Vn such that dist (Vn, F ) =
‖F − p‖L, and the polynomial p is unique [12] for every n ≥ 1. Even, if the
formulation of the problem of finding the above best polynomial p that minimizes
the quantity ‖F−p‖L is simple, and this is usually unknown and difficult to compute
(see [7], page 11).

However, if the compact set L has a simple structure or good regularity
properties, the previous approximation problem can be solved. Despite this, the
computation of the best polynomial is difficult even in simple cases, for instance,
the union of two disjoint closed discs, and in most of the cases, this is done with
complicated numerical methods [7].

A classical theorem in this area (see [7, 12]) is the following:

Theorem 1 The number ρL := lim sup
n→+∞

(dist (Vn, F ))
1
n is a positive constant such

that ρL ∈ (0, 1), it is independent from the function F and it is dependent only on
the compact set L.

The number ρL is called the asymptotic convergence factor of L and is a
characteristic for the compact set L. Of course, the knowledge of the above number
ρL for L is a crucial point for the solution of the initial approximation problem.

However, the number ρL is very difficult to be computed in general, [6, 7, 11].
So, it is desirable for a simple compact set L to obtain “good” estimates from above
and below of the number ρL.

In this paper, we give an easily computed lower bound for the number ρL, which
is best possible in a certain sense. Our main result is the following:

Theorem 2 Under the above assumptions and notation, we have

ρL ≥ max
j=0,...,m

sup
z∈K0

j

dist (z,Kcj )

dist (z, L\Kj) .

In order to prove this theorem, we introduce another characteristic number θL
for a compact set L, which is defined in a bit complicated way in the next section.
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However, this number gives us the necessary potential theoretic tools in order to
establish that ρL = θL; that is, θL is nothing but the asymptotic convergence factor.
The potential theoretic view assigns to the number ρL new important properties. We
also provide a variety of simple examples of certain compact sets where the number
θL can be computed by a very simple algebraic formula and not with numerical
methods.

Results concerning the computation of ρL for certain compact set L can be found
in [1, 6, 7, 11].

Remark We note that Proposition 4 of this paper is used in a substantial way in
order to prove the main result of Theorem 1 of [12]. The theme of [12] is related to
universal Taylor series. On the other hand, according to Remark 3.3 of [12], half of
the main result of this paper, namely Theorem 3, can be deduced by a completely
different method based entirely on the results of universality for Taylor series [12].
This means that there exists a close relation between the results of this paper and
that of [12].

2 The Number θL and Its Lower Bound

We begin with the necessary terminology. For the topological concepts of this paper,
we refer to the classical book of Burckel [3].

More specifically, for the definitions of a curve, or a loop, or an arc, or a simple
curve, or a smooth curve, see Definition 1.11 [3].

For the definition of a simply connected subset A of C, see Definition 1.36 [3].
With a Jordan curve, we mean a homeomorphism in C of a circle. It is trivial to
see that a Jordan curve is also a loop. If γ : [α, β]→C is a curve, where α, β ∈ R,
α < β, we denote γ ∗ = γ ([α, β]). If γ is a loop andw ∈ C\γ ∗, we denote Indγ (w)

the index of γ with respect to w; that is, the number Indγ (w) := 1

2πi
·
∫
γ

1

z− wdz
(see Definition 4.2, page 84 of [3]).

For a compact subset K of C and a Jordan curve γ , we write

Indγ (K) := {Indγ (w), w ∈ K},

when γ ∗ ∩K = ∅.
The definition of interior, Int(γ ), and Exterior ,Ex(γ ), of a Jordan curve γ is

given in Definition 4.45 (i), page 10–4 of [3]. For results about potential theory, we
refer to the classical books [2] and [9].

Below we prove a series of useful topological lemmas and the main result of this
paper, which is a simple estimation of the lower bound of the number ρL, for many
cases of compact sets. The first lemma is a variation of Exercise 10.10, page 347
of [3].
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Lemma 1 Let V ⊆ C, V �= C, be a simply connected domain,K ⊆ V ,K compact,
set.

Then, there exists a smooth Jordan curve γ ⊂ V such that Indγ (K) = {1}.
Proof Let D be the open unit disc. By the Riemann mapping theorem, there exists
a conformal mapping f : D→V , that is, 1− 1 and onto. We set L := f−1(K). Of
course, the set L is a compact subset of D. Let r0 ∈ (0, 1) such that L ⊂ D(0, r0),
where

D(0, r0) := {z ∈ C | | z |< r0}.
We set

* := C(0, r0) := {z ∈ C | | z |= r0}.
We consider the circle γ0 : [0, 1]→C, γ0(t) = r0e

2πit , t ∈ [0, 1], and we set
γ := f ◦γ0. We set γ ∗ := γ ([0, 1]), and we write simply γ ∗ = γ without confusion,
for simplicity.

It is easy to show that the curve γ is a smooth Jordan curve such thatK ∩γ = ∅.
So the number Indγ (w) has sense for every w ∈ K .

We fix some w0 ∈ K . We compute the number Indγ (w0).
We have

Indγ (w0) : = 1

2πi

∫
γ

1

z− w0
dz

= 1

2πi

∫ 1

0

1

γ (t)− w0
· γ ′(t)dt

= 1

2πi

∫ 1

0

f ′(γ0(t)) · γ ′0(t)
f (γ0(t))− w0

dt. (1)

We consider the function g : D \ {z0}→C defined by the formula:

g(z) := f ′(z)
f (z)− w0

, where z0 := f−1(w0), z ∈ D \ {z0}.

Obviously, the function g is well defined and holomorphic in D \ {z0} and has
a singularity in z0. Obviously z0 is pole of g. It holds z0 /∈ γ0, so the integral∫
γ0

g(z)dz is well defined.

Now, we have

∫
γ0

g(z)dz =
∫ 1

0
g(γ0(t)) · γ ′0(t)dt

=
∫ 1

0

f ′(γ0(t)) · γ ′0(t)
f (γ0(t))− w0

. (2)
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By (1) and (2), we take

Indγ (w0) = 1

2πi

∫
γ0

f ′(z)
f (z)− w0

dz. (3)

Because L ⊂ D(0, r0), by definition we have that z0 ∈ Int(γ0).
We compute easily that lim

z→z0
(z− z0)g(z) = 1. This gives that z0 is a simple pole

for g and Res(g, z0) = 1. So by the calculus of residues we take

∫
γ0

g(z)dz = 2πi Res(g, z0) · Indγ0(z0) = 2πi. (4)

By (3) and (4), we take Indγ (w0) = 1 and the result follows. �
Using Lemma 1, we prove now the following lemma, for compact subsets of C,

with finite many connected components only.

Lemma 2 Let K =
m⋃
i=1
Ki be a compact set with connected complement, where

Ki , i = 1, 2, . . ., m, be the connected components of K , m > 1.
Then, there exist smooth Jordan curves δi , i = 1, 2, . . ., m, pairwise disjoint such

that Indδi (Ki) = {1} and Ki ⊂ Int(δi), for i = 1, 2, . . ., m and every one of them
has all the others in its exterior.

Proof First of all, we can choose bounded open subsets of C, Gi , i = 1, 2, . . ., m,
pairwise disjoint such that Ki ⊂ Gi , for i = 1, 2, . . ., m.

By Proposition (iv), page 99 of [3] we have that Kci is connected for i =
1, 2, . . ., m. Now, by Costakis and Grosse-Erdmann lemma [5, 8], we take that there
exist open simply connected sets Vi , i = 1, 2, . . ., m, such that Ki ⊂ Vi ⊂ Gi ,
for i = 1, 2, . . ., m. By Corollary 4.66, page 114 of [3], we have that if we write
Vi = V ji , j ∈ J for every i = 1, 2, . . ., m, where V ji , j ∈ J , be the connected

components of Vi , and J is a set of indices, then (V ji )
c, j ∈ J , are connected

sets. It is easy to see that there exists unique ji ∈ J such that Ki ⊂ V jii for every
i = 1, 2, . . ., m. So, we have that for every i = 1, 2, . . ., m there exists a bounded
and simply connected domain V jii such that Ki ⊂ V jii ⊂ Gi .

To avoid complicated symbolism, we write simply Vi instead of V jii . So, we have
that for every i = 1, 2, . . ., m there exists a bounded and simply connected domain
Vi , such that

Ki ⊂ Vi ⊂ Gi, i = 1, 2, . . ., m.

Now, we apply Lemma 1 and we take that for every i = 1, 2, . . ., m there exists a
smooth Jordan curve δi ⊂ Vi such that Indδi (Ki) = {1}, where it is supposed, of
course, that δi ∩ Ki = ∅ for i = 1, 2, . . ., m. Because Gi ∩ Gj = ∅ for i, j ∈
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{1, 2, . . ., m}, i �= j , we have that the curves δi , i = 1, 2, . . ., m, are pairwise
disjoint.

Now, let w ∈ Ki , for some i ∈ {1, 2, . . ., m}. Because Ki ∩ δi = ∅, we have that
wi ∈ Int(δi) or wi ∈ Ex(δi). If wi ∈ Ex(δi), then Indδi (w) = 0, by Theorem 10.10
of [10]. So we have Ki ⊂ Int(δi) for every i = 1, 2, . . ., m.

Now, let i, j ∈ {1, 2, . . ., m}, i �= j . We show now that δj ⊂ Ex(δi). We have
δi ⊂ Vi , so V ci ⊂ δci . But δci = Ex(δi) ∪ Int(δi). Because V ci is connected, we have
that V ci ⊂ Int(δi) or V ci ⊂ Ex(δi). But V ci is unbounded, because Vi is bounded
and Int(δi) is bounded, so

V ci ⊂ Ex(δi). (5)

Now we have

Vi ⊂ Gi ⇒ Gci ⊂ V ci . (6)

We have also

Gi ∩Gj = ∅ ⇒ Gj ⊂ Gci . (7)

Also we have

δj ⊂ Vj ⊂ Gj . (8)

By (5), (6), (7) and (8), we have δj ⊂ Ex(δj ). This gives, of course, that every one
from the smooth Jordan curves δi , i = 1, 2, . . ., m, has all the others in its exterior,
and the proof of Lemma 2 is complete. �

Now, we fix a compact subset L of C, with connected complement such that

L :=
m0⋃
i=0

Ki, m0 ∈ N, m0 ≥ 1, where Ki, i = 0, 1, . . ., m0,

be the connected components of L.
We consider the set DL that is a subset of the set of all finite unions of pairwise

disjoint Jordan curves, where every one of them has all the remaining curves in its
exterior; that is, DL := {� ∈P(C) | and there exist m0 + 1 smooth Jordan curves

δi , for i = 0, 1, . . ., m0 such that � =
m0⋃
i=0
δi , Ki ⊂ Int(δi) and Indδi (Ki) = {1} for

every i = 0, 1, . . ., m0 and
m0⋃
i=0
i �=j

δi ⊂ Ex(δj ) for every j = 0, 1, . . ., m0.

By Lemma 2, we have DL �= ∅, and by the proof of Lemma 2, we can show
easily that the set DL is uncountable.

The set DL is of course well defined and non-empty without any other restriction.
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From now on, we suppose that
◦
K0 �= ∅.

Let� := (C \L)∪ {∞}. Then � is a proper subdomain of C∞ := C∪ {∞}, and

by the fact that
◦
K0 �= ∅, we take easily that ∂� is non-polar. This gives that there

exists the unique Green’s function g� for �, with pole at infinity (Definition 4.4.1
and Theorem 4.4.2, [9]). Let � ∈ DL. We write

θL,� := max
z∈� e

−g�(z,∞) := max{x ∈ R | ∃ z ∈ � : x = e−g�(z,∞)}.

It is obvious that the number θL,� is a well-defined positive number in (0, 1),
because � is a compact set and the green’s function g� is continuous in � and
� ⊂ � \ {∞}.

We define

θL := inf{x ∈ R | ∃ � ∈ DL : x = θL,�} = inf
�∈DL

{θL,�}.

By the above the number θL is a well-defined number in [0, 1) and corresponds
uniquely to the compact set L by its definition.

We fix z0 ∈
◦
K0.

We write L1 := L \K0, r0 := dist (z0,K
c
0) and h0 := dist (z0, L1).

We have the following lemma.

Lemma 3 By the above definitions, we have easily that

(1) r0 > 0.
(2) r0 < h0.
(3) h0 < +∞.

Let some � =
m0⋃
i=0
δi ∈ DL.

We fix some w0 ∈ Kc0 such that h0 = |z0−w0|. Obviously there exists the unique
i0 ∈ {1, 2, . . ., m0} such that w0 ∈ Ki0 . We denote

I := [z0, w0] := {z ∈ C | ∃ t ∈ [0, 1] : z = (1− t)z0 + tw0}.

Then we have δi0 ∩ I �= ∅.
Proof We suppose that δ0 ∩ I = ∅ to take a contradiction. Then

I ⊂ δc0. (9)

Because δ0 is a Jordan curve, we have

δc0 = Int(δ0) ∪ Ex(δ0). (10)
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Because the segment I is connected, we take by (9) and (10) that

I ⊂ Int(δ0) or (11)

I ⊂ Ex(δ0). (12)

We suppose that relation (12) holds. Then

z0 ∈ I ⊂ Ex(δ0)⇒ z0 ∈ Ex(δ0). (13)

We have

z0 ∈
◦
K0 ⊂ K0 ⊂ Int(δ0), (14)

by Lemma 2.
By (13) and (14), we have Int(δ0) ∩ Ex(δ0) �= ∅, that is, false. So (11) holds.

Thus

w0 ∈ Int(δ0).

Because w0 ∈ Ki0 ⇒ w0 ∈ Ki0 ⊂ Int(δi0) by Lemma 2,

w0 ∈ Int(δi0).

By the above, we have

Int(δ0) ∩ Int(δi0) �= ∅. (15)

We have δi0 ⊂ Ex(δ0). So

δi0 ∩ Int(δ0) = ∅ ⇒ Int(δ0) ⊂ δci0 .

But

δci0 = Int(δi0) ∪ Ex(δi0).

Thus

Int(δ0) ⊂ Int(δi0) or Int(δ0) ⊂ Ex(δi0). (16)

Because of (15), relation (16) gives

Int(δ0) ⊂ Int(δi0). (17)
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Similarly exactly with (17), we take

Int(δi0) ⊂ Int(δ0). (18)

By (17) and (18), we take

Int(δ0) = Int(δi0). (19)

By (19) and Theorem 4.41 of [3], we take

δi0 = ∂Int(δi0) = ∂Int(δ0) = δ0,

which is false because δ0 ∩ δi0 = ∅. So, we have a contradiction that gives us that
δ0 ∩ I �= ∅. �

In addition to the above, we suppose now that every connected component Ki ,
i = 1, 2, . . ., m0, of L contains more than one point. We prove now the main result
of this paper.

Theorem 3 With the above notations, we have

θL ≥ r0

h0
.

Proof We take some w0 ∈ L1 such that h0 = |z0 − w0|. Let i0 ∈ {1, 2, . . ., m0}
be the unique natural number such that w0 ∈ Ki0 . We set D(z0, h0) := {z ∈ C |
|z− z0| < h0} and V := D(z0, h0)�K0 = D(z0, h0) ∩Kc0 .

The set V is open, and it is easy to see that ∅ �= V ⊂ �.
We consider the function g̃ : �→R that is defined by the formula:

g̃(z) := 0 if z ∈ ∂�
g�(z,∞) if z ∈ �.

}

The set V is a compact subset of �, and the function g̃ is continuous, so it takes its
maximum value on V in a point (say) w1 ∈ V . That is, we have

g̃(w1) = max
z∈V

g̃(z).

Using Identity Principle (Theorem 1.1.7, page 6, [9]), maximum principle (The-
orem 1.1.8, page 6, [9]) and geometrical properties of �, we get that w1 ∈
C(z0, h0) ∩�, where

C(z0, h0) := {z ∈ C | |z− z0| = h0}, and

g�(w1,∞) = max
z∈V

g̃(z) > 0.
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Set

C1 := {z ∈ C | |z− z0| ≤ r0} and �1 := Cc1 ∪ {∞}.

By Corollary 4.4.5, page 108, [9], we have

g�(z,∞) ≤ g�1(z,∞), for every z ∈ �.

So we have

g�(w1,∞) ≤ g�1(w1,∞) = log

(
h0

z0

)
. (20)

We define

I := [z0, w0] := {z ∈ C | ∃ t ∈ [0, 1] : z = (1− t)z0 + tw0}.

In this point exactly, we apply Lemma 3.

We take a � ∈ DL, where � =
m0⋃
i=0
δi , Ki ⊂ Int(δi) and Indδi (Ki) = {1} for

every i = 0, 1, . . ., m0 and

m0⋃
i=0
i �=j

δi ⊂ Ex(δj ) for every j = 0, 1, . . ., m0.

We apply Lemma 3, and we get ∅ �= δ0 ∩ I ⊂ V .
Let some z1 ∈ �0 ∩ I . Then we have

g�(z1,∞) ≤ g�(w1,∞). (21)

By (20) and (21), we get

g�(z1,∞) ≤ log

(
h0

r0

)
⇒ z0

h0
≤ e−g�(z1,∞) ≤ θL,�.

This implies that
r0

h0
≤ θL, and the proof of this theorem is complete. �

Theorem 3 gives us a simple lower bound for the number θL.
We will prove that in some cases this lower bound is optimal in some sense.
More specifically, letD be the open unit disc, and we denote byK0 := D = {z ∈

C | | z |≤ 1} the closed unit disc, for the sequel.
We fix some positive number, h0 > 1. We set

Ch0 := {L ⊆ C | L
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is compact with connected complement, L =
m⋃
i=0
Ki , m ≥ 1, K0 := D, where

Ki , i = 0, 1, . . ., m, be the connected components of L and Ki , i = 1, . . ., m,
contains more than one point and dist ({0}, L \K0) = h0, h0 ∈ L}.

Of course, by Theorem 3, we have

θL ≥ 1

h0
for every L ∈ Ch0 .

We prove the following proposition.

Proposition 1 It holds inf{θL, L ∈ Ch0} =
1

h0
.

Proof We set I := inf{θL, L ∈ Ch0}. By Theorem 3, we have I ≥ 1

h0
. It holds

1− 1

h0
> 0.

We prove that for every δ ∈
(

0, 1 − 1

h

)
there exists some L′ ∈ Ch0 such that

θL′ < δ + 1

h0
that implies the desired result. We fix some

δ0 ∈
(

0, 1− 1

h0

)
.

Then we fix some

�0 ∈
(

h0

δ0h0 + 1
, h0

)
.

We get

1

�0
< δ0 + 1

h0
and �0 > 1.

Then we fix some

r0 ∈ (0, h0 − �0).

Finally, we fix some positive number ε0 such that

ε0 <
1

4
and (22)

ε0 <
r0

2
. (23)



498 N. Tsirivas

That is, we have defined the positive numbers h0, δ0, �0, r0 and ε0 that satisfy the
above inequalities.

We set

K1 := D(h0 + ε0, ε0) := {z ∈ C | |z− (h0 + ε0)| ≤ ε0}
and L′ := K0 ∪ K1. Of course, we have L′ ∈ Ch0 . We prove that for the compact

set L′ we have θL′ < δ0 + 1

h0
.

First, we consider the circles δ1 := γ1([0, 1]), where γ1 : [0, 1]→C, such that
γ1(t) = �0 · e2πit for every t ∈ [0, 1], δ2 := γ2([0, 1]), where γ2 : [0, 1]→C, such
that γ2(t) := (h0 + ε0)+ r0e2πit , for every t ∈ [0, 1]. We set � := δ1 ∪ δ2. We get
� ∈ DL′ .

Now, we fix some natural number N0 ∈ N, such that

(h0 − r0)N0 > 2, (24)

(
h0 − r0
�0

)N0

>
2(h0 − �0)

z0
, (25)

�
N0
0 > 2, (26)

and

(
8h0

h0 − �0

) 1
N0 · 1

�

N0
N0+1

0

< δ0 + 1

h0
. (27)

We fix also some natural number n0 > 2.

Let jk , k = 0, 1, . . ., n0, be the no-roots of unity; that is, jk := e
2kπi
n0 , k =

0, 1, . . ., n0 − 1. We set wk := (h0 + ε0)+ ε0jk , k = 0, 1, . . ., n0 − 1. We consider
the polynomial:

p(z) := (zn0N0 − 1) ·
n0−1∏
k=0

(z− wk).

Using (22) and the fact that h0 > 1, we get

‖p‖L′ ≤ 2 · (h0 + 2ε0 + 1)n0 . (28)

Using inequalities (23), (24), (25) and (26), we take

min
z∈� |p(z)| ≥ (�

n0N0
0 − 1) · (h0 − �0)

n0 . (29)
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By inequalities (28) and (29), we get

‖p‖L′
min
z∈� |p(z)|

≤ 2 · (h0 + 2ε0 + 1)n0

(�
n0N0
0 − 1) · (h0 − �0)n0

. (30)

By inequalities (23), (26), (27) and (30), we have

( ‖p‖L′
min
z∈� |p(z)|

) 1
n0N0+n0

< δ0 + 1

n0
. (31)

We denote �L′ := (C�L′) ∪ {∞}.
Applying Bernstein’s lemma (5.5.7), (a), page 156 of [9], for the polynomial p

of degree n0N0 + n0, we take

θL′,� ≤
( ‖p‖L′

min
z∈� |p(z)|

) 1
n0N0+n0

. (32)

By (31) and (32), we have θL′ < δ0 + 1

h
, and the proof of this Proposition 1 is

complete. �
We set

L0 := K0 ∪ {h0} ∈ Ch0 .

We prove now the following proposition.

Proposition 2 We have

θL0 =
1

h0
.

Proof We consider a compact set L1 ∈ Ch0 . Obviously, we have L0 ⊂ L1. We
set �0 := (C�L0) ∪ {∞} and �1 := (C�L1) ∪ {∞}. Of course, �1 ⊂ �0. By
Corollary 4.4.5, page 108, [9], we have

g�1(z,∞) ≤ g�0(z,∞), z ∈ �1 (33)

where by g�1 and g�0 we denote the Green’s functions on �1 and �0, respectively.
Relation (33) gives

θL0,� ≤ θL1,� for every � ∈ DL1 . (34)

Of course, we have DL1 ⊂ DL0 . This gives
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{θL0,� | � ∈ DL1} ⊆ {θL0,� | � ∈ DL0},
thus

inf{θL0,� | � ∈ DL0} ≤ inf{θL0,� | � ∈ DL1}.
The last inequality gives us

θL0 ≤ inf{θL0,� | � ∈ DL1}. (35)

By (34), we get

inf{θL0,� | � ∈ DL1} ≤ inf{θL1 ,� | � ∈ DL1} = θL1 . (36)

By (35) and (36), we obtain

θL0 ≤ θL1 . (37)

By (37) and Proposition 1, we have

θL0 ≤
1

h0
. (38)

By the proof of Proposition 1, it is easy to see that we can construct a strictly

decreasing sequence of compact sets Ln ∈ Ch0 , for n >
1

1− 1

n0

, that is, Ln+1 ⊂

Ln, for n >
1

1− 1

n0

such that θLn <
1

n
+ 1

h0
for every n ∈ N, n >

1

1− 1

h0

. Of

course, ∩Ln = L0. We set a := 1

1− 1

h0

.

We set �n := (C�Ln) ∪ {∞}, n > a. We have �0 = ⋃
n>a

�n. We fix some

�0 ∈ DL0 . It is easy to see that there exists some m0 > a such that �0 ∈ DLn for
every n ≥ m0. Of course, we have �0 = ⋃

n≥m0

�n.

By Theorem 4.4.6, page 108, [9], we have

lim
n→+∞ g�n(z,∞) = g�0(z,∞) for z ∈ �0,

so

lim
n→+∞ g�n(z,∞) = g�0(z,∞), for every z ∈ �0,

where we denote by g�n , n > a the Green’s function on �n.
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Of course, �n ⊂ �n+1, n ≥ n0, so

g�n(z,∞) ≤ g�n+1(z,∞), n ≥ m0, (39)

by the Corollary 4.4.5, page 108, [9] .
By this inequality (39), we have that the sequence of functions (−g�n), n ≥ m0,

is a decreasing sequence of continuous functions on the compact set�0, so by Dini’s
theorem we take g�n→g�0 uniformly on �0.

We fix some positive number ε0. Then there exists m1 ≥ m0 such that

|g�n(z,∞)− g�0(z,∞) |< ε0 for every z ∈ �0, n ≥ m1.

This gives that e−ε0
1

h0
< θL0,� for the arbitrary positive number ε0. So

1

h0
≤ θL0,�,

for the arbitrary contour �0, thus

1

h0
≤ θL0 . (40)

By (38) and (40), we get θL0 =
1

h0
, and the proof of this proposition is complete. �

3 Final Step of the Proof of Theorem 2

So, by the above Theorem 3, we have proved that the number θL is positive and we
have found an easy-computed (in all simple cases) lower bound of θL.

For the sequel, we refer to [9] for the respective terminology.
More specifically, for the definition of Harnack distance, see Definition 1.3.4.

We note that the Harnack distance is a continuous function. For the definition of
logarithmic capacity, see Definition 5.1.1. For the definition of a Fekete n-tuple and
the n-th diameter δn(K) of a compact set K ⊆ C, see Definition 5.5.1.

For the definition of a Fekete polynomial of degree n ≥ 2 of a compact set K ,
see Definition 5.5.3

We remind here (Bernstein’s lemma) Theorem 5.5.7 of [9].
Let L be a non-polar compact subset of C, and let � be the component of (C ∪

{∞})�L containing∞. If qn is a Fekete polynomial of degree n ≥ 2 of L, then

( |qn(z)|
‖qn‖L

)1/n

≥ eg�(z,∞)
(
c(L)

δn(L)

)T�(z,∞)
for every z ∈ ��{∞}. (∗)
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We consider now the fixed set L of our work, where L =
m0⋃
i=0
Ki , m0 > 1,

◦
K0 �= ∅

and Ki , i = 1, . . ., m0, contains more than one point, Ki , i = 0, 1, . . ., m0, are the
connected components of L and Lc is connected.

We choose some Fekete polynomial qm, for every m = 2, 3, . . ., for L, and we
fix them for the sequel.

We set

inf
z∈� |qm(z)| := inf{x ∈ R | ∃ z ∈ � : x=|qm(z)|} for every m=2, 3, . . ., � ∈ DL.

By the above terminology, we get the following lemma using inequality (∗).
Lemma 4 For every positive constant cL ∈ (θL, 1) that depends on L, there exists
some� ∈ DL that depends on L, cL and some natural numberm� that depends on
� such that

‖qn‖L
inf
z∈� |qn(z)|

< cnL, for every n ≥ m�.

Proof Take arbitrary cL ∈ (θL, 1). By the definition of the number θL, we can take
some �L,cL ∈ DL, such that θL < θL,� < cL, where �L,cL depends on L, cL. We
write � = �L,cL for simplicity.

We fix some m0 ≥ 2. By (∗), we get

( ‖qm0‖L
|qm0(z)|

)1/m0

≤ 1

eg�(z,∞)

(
δm0(L)

c(L)

)T�(z,∞)
for every z ∈ �.

So we have

( ‖qm0‖L
|qm0(z)|

)1/m0

≤ θL,� ·
(
δm0(L)

c(L)

)‖T�‖�
for every z ∈ �. (41)

By (41), we have

( ‖qm0‖L
inf
z∈� |qm0(z)|

)1/m0

≤ θL,� ·
(
δm0(L)

c(L)

)‖T�‖�
for every m0 ≥ 2. (42)

By Fekete–Szegö theorem (Theorem 5.5.2), we have that

δm(L)→c(L) as m→+∞. (43)

The number θL,� depends on �.
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Thus, because

θL,� < cL, (44)

there exists some natural number m� that depends on �, such that

‖qm‖L
inf
z∈� |qm(z)|

< cmL for every m ∈ N, m ≥ m�,

by (42), (43) and (44).
This completes the proof. �
We will need also a proposition, which is a variation of the well-known

Bernstein–Walsh theorem.

Proposition 3 Let some compact set L =
m0⋃
i=0
Ki , m0 ∈ N, as above, where Ki ,

i = 0, 1, . . ., m0, be the connected components of L. Let some complex polynomials
pj , j = 0, 1, . . ., m0. We consider the function F : L→C that is defined by the
following formula:

F(z) = pj (z) if z ∈ Kj for every j = 0, 1, . . ., m0.

Then, for every positive number cL ∈ (θL, 1), there exists � ∈ DL that depends on
L, cL, some natural number m = m� that depends on �, some positive constant
A = A�,F that depends on �,F and some sequence of polynomials (rj ) that
depends on �,F such that the following inequality holds:

‖F − rm‖L < A · cmL for every m ∈ N, m ≥ m�, deg(rm) ≤ m− 1.

Proof We consider the compact set L =
m0⋃
i=0
Ki , the polynomials pj , j =

0, 1, . . ., m0, and the complex function F as in the suppositions of this proposition.
We fix some positive number cL ∈ (θL, 1). Then we fix some � = �L,cL ∈ DL

that depends on L, cL such that θL,� ∈ (θL, cL).
Afterwards we apply Lemma 4 and we get that there exists some natural number

m� > 2 that depends on � such that

‖qn‖L
inf
z∈� |qn(z)|

< cnL, for every n ∈ N n ≥ m� > 2. (45)

Let � =
m0⋃
i=0
δi , where δi , i = 0, 1, . . ., m0, be the connected components of �.

There exist Vi , i = 0, 1, . . ., m0, bounded simply connected domains pairwise
disjoint such that δi ⊂ Vi for every i = 0, 1, . . ., m0 by the proof of Lemma 2.
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We set V :=
m0⋃
i=0
Vi .

We consider the function - : V→C by the following formula:

-(z) = pj (z) for every z ∈ Vj for every j = 0, 1, . . ., m0.

Of course, we have - �L= F , and - is holomorphic, for the restriction - � L of -
on L.

We consider some arbitrary fixed sequence (qm), m ≥ 2, of Fekete polynomials
forL of degreem,m ≥ 2. We define now the functions rm : L→C with the formula:

rm(w) :=
m0∑
j=0

1

2πi

∫
δj

-(z)

qm(z)
· qm(w)− qm(z)

w − z dz (46)

for everym ∈ N,m ≥ 2, w ∈ L. For everym ≥ 2, the functions rm are polynomials
of degree at most m− 1, as we can see easily.

It is obvious that
m0∑
j=0

Indδj (a) = 0 for every a ∈ C�V .

We fix some n0 ≥ 2.
We apply now the global Cauchy’s integral formula for the function - and the

smooth Jordan curves δj , j = 0, 1, . . ., m0, and we take

m0∑
j=0

Indδj (w) ·-(w) =
m0∑
j=0

1

2πi

∫
δj

-(z)

z− wdz for every w ∈ V��. (47)

By (46) and (47), we get

-(w)− rn0(w) =
m0∑
j=0

1

2πi

∫
δj

-(z)qn0(w)

(z− w)qn0(z)
dz for every w ∈ L. (48)

It is time to use the supposition that every one from the curves δj , j =
0, 1, . . ., m0 is smooth. This gives that the curves δj , j = 0, 1, . . ., m0, have
length (see Definition 2.8, page 44 of [3]). We set �j = length(δj ) for every

j = 0, 1, . . ., m0, λ0 :=
m0∑
j=0
�j ,

dist (�,L) := min{x ∈ R | ∃ z1 ∈ �, z2 ∈ L : x = |z1 − z2|}.

Then we define the number:
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A := λ0 · ‖-‖L
2π · dist (�,L) . (49)

Of course, the above number A depends on F,�. By (48) and (49), we take easily
that

‖F − rn0‖L ≤ A ·
‖qn0‖L

inf
z∈� |qn0(z)|

. (50)

Of course, the positive number A is independent from the natural number n0.
So by (50), we get

‖F − rn‖L ≤ A · ‖qn‖L
inf
z∈� |qn(z)|

for every n ∈ N, n ≥ 2. (51)

By (45) and (51), we get that

‖F − rn‖L < A · cnL for every n ∈ N, n ≥ m�, (52)

where the natural number m� depends on �, the set � depends on L, cL, the
positive number cL depends on L, the constant A depends on F,� and the
polynomials rn, n ≥ 2, depend on F,�, and the sequence qn, n ∈ N, n ≥ 2.

The above inequality (52) completes the proof of this proposition. �
The above Proposition 3 gives some important role to the number θL. It shows

that the number θL plays a crucial role in the problem of approximation by
polynomials.

We have the following very important information about the number ρL below.

Proposition 4 By the previous notations, we have that ρL = θL.
Proof We take some � ∈ DL.

Let � =
m0⋃
i=0
δi , where δi , i = 0, 1, . . ., m0, be the connected components of �.

Let Gi , i = 0, 1, . . ., m0, be bounded simply connected domains, pairwise
disjoint such that δi ⊂ Gi for i = 0, 1, . . ., m0 (using the proof of Lemma 2).

We consider m0 + 1 polynomials pi , i = 0, 1, . . ., m0, where pi �= pj for every
i, j ∈ {0, 1, . . ., m0}, i �= j . We define the holomorphic function F : G→C, where

G :=
m0⋃
i=0
Gi with the following formula:

F(z) = pi(z) for every z ∈ Gi, i = 0, 1, . . ., m0.
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We apply Proposition 3, and for the above function F , there exists a sequence of
polynomials rn, n ≥ 2, some positive number A and some natural number n0 such
that

‖F − rn‖L < A · cnL for every n ≥ n0

for some positive constant cL ∈ (θL,�, 1) (see the proof of Lemma 4 also).
This gives that

lim sup
n→+∞

‖F − rn‖1/n
L ≤ cL. (53)

Let Sn, n = 2, 3, . . ., be the unique polynomial of degree at most n (that there exists
see [13]) that minimizes the quantity ‖F − Sn‖L. We write tF,n := ‖F − Sn‖L for
simplicity. It is known [7, 13] that

lim sup
n→+∞

t
1/n
F,n = ρL. (54)

By the definition of the number tF,n, we have, of course,

tF,n ≤ ‖F − rn‖L for n ≥ 2. (55)

By (53), (54) and (55), we get ρL ≤ cL. But the number cL is some arbitrary positive
number such that θL,� < cL < 1. This gives that ρL ≤ θL,�. Because this holds for
every � ∈ DL, we get

ρL ≤ θL. (56)

Now ρL = exp(−gc), where gc is the critical potential (see [7]), and γ := {z ∈ C :
g�(z) = gc} is the critical level curve, where � := (C ∪ {∞})�L and g� is the
Green’s function for L. It is simple to see, by the continuity of g�, that there exists
a sequence of curves �n, n = 1, 2, . . ., where �n ∈ DL for n = 1, 2, . . . such that

θL,�n→ρL as n→+∞. (57)

By (56) and (57), we obtain that ρL = θL, and the proof of this proposition is
complete. �

Propositions 1 and 4 can afford us quantitative examples of compact sets such
that the following remark holds:

Remark 3 For every ρ ∈ (0, 1) and δ ∈ (0, 1− ρ), we can construct a compact set
L that is a union of two disjoint closed discs, one of them be the closed unit disc
such that

|ρL − ρ| < δ.
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Orlicz Version of Mixed Mean Dual
Affifine Quermassintegrals

C.-J. Zhao and W.-S. Cheung

Abstract In this paper, our main aim is to generalize the mixed mean dual
affine quermassintegrals to the Orlicz space. Under the framework of Orlicz dual
Brunn–Minkowski theory, we introduce a new geometric operator by calculating
the first Orlicz variation of the mixed mean dual affine quermassintegrals and
call it the Orlicz mixed mean dual affine quermassintegrals. The fundamental
notions and conclusions of the mixed mean dual affine quermassintegrals, and
the Minkowski and Brunn–Minkowski inequalities for the mixed mean dual affine
quermassintegrals are extended to an Orlicz setting, and the related concepts and
inequalities of Orlicz dual quermassintegrals are also included in our conclusions.
The new Orlicz isoperimetric inequalities in special case yield the Orlicz dual
Minkowski inequality and Orlicz dual Brunn–Minkowski inequality, which also
imply the Lp-dual Minkowski inequality and Brunn–Minkowski inequality for the
mixed mean dual affine quermassintegrals.

1 Introduction

The radial addition K+̃L of star sets (compact sets that are star-shaped at o and
contain o) K and L can be defined by

K+̃L = {x+̃y : x ∈ K, y ∈ L},
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where x+̃y = x + y if x, y, and o are collinear, x+̃y = o, otherwise, or by

ρ(K+̃L, ·) = ρ(K, ·)+ ρ(L, ·),

where ρ(K, ·) denotes the radial function of star set K, which is defined by
ρ(K, u) = max{c ≥ 0 : cu ∈ K}, for u ∈ Sn−1, where Sn−1 is the surface
of the unit sphere. Hints as to the origins of the radial addition can be found in
[8, p. 235]. If ρ(K, ·) is positive and continuous, K will be called a star body.
Let S n denote the set of star bodies about the origin in R

n. When combined with
volume, radial addition gives rise to another substantial appendage to the classical
theory, called the dual Brunn–Minkowski theory. Radial addition is the basis for the
dual Brunn–Minkowski theory (see, e.g., [2, 3, 7, 14–17, 21–23, 27, 28, 32, 34, 37]
for recent important contributions). The original is originated from Lutwak [24].
He introduced the concept of dual mixed volume laid the foundation of the
dual Brunn–Minkowski theory. In particular, the dual Brunn–Minkowski theory
can count among its successes the solution of the Busemann–Petty problem in
[7, 14, 23, 33, 38]. More generally, for any p < 0 (or p > 0), the p-radial addition
K+̃pL is defined by

ρ(K+̃pL, x)p = ρ(K, x)p + ρ(L, x)p,

for x ∈ R
n and K,L ∈ S n (see [12]). In 1996, Lp-harmonic radial combination

for star bodies was defined by Lutwak [22]: If K and L are star bodies, for p ≥ 1,
the Lp-harmonic radial addition is defined by

ρ(K+̂pL, u)−p = ρ(K, u)−p + ρ(L, u)−p, u ∈ S n−1. (1.1)

For convex bodies, the Lp-harmonic addition was first investigated by Firey [6].
If K is a nonempty closed (not necessarily bounded) convex set in R

n, then

h(K, x) = max{x · y : y ∈ K},

for x ∈ R
n, defined the support function h(K, x) of K . A nonempty closed convex

set is uniquely determined by its support function. Lp-addition and inequalities
are the fundamental and core content in the Lp-Brunn–Minkowski theory. In
recent years, a new extension of Lp-Brunn–Minkowski theory is to Orlicz–Brunn–
Minkowski theory, initiated by Lutwak, Yang, and Zhang [25, 26]. Gardner, Hug,
and Weil [11] constructed a general framework for the Orlicz–Brunn–Minkowski
theory and made clear for the first time the relation to Orlicz spaces and norms. The
Orlicz centroid inequality for star bodies was introduced in [44]. The Orlicz addition
of convex bodies was introduced, and it extended the Lp-Brunn–Minkowski
inequality to the Orlicz–Brunn–Minkowski inequality (see [35]). Other articles that
have advanced the theory can be found in the literature [4, 18, 20, 21, 30, 42, 43].

Just as Lp-Brunn–Minkowski theory is extended to Orlicz–Brunn–Minkowski
theory, it has recently turned to a study extending from Lp-dual Brunn–Minkowski
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theory to Orlicz dual Brunn–Minkowski theory. The dual Orlicz–Brunn–Minkowski
theory has also attracted people’s attention [12, 13, 36, 41]. In particular, in 2014,
Zhu, Zhou, and Xu [40] introduced the Orlicz harmonic radial sum K+̂φL of two
star bodies K and L, defined by for u ∈ Sn−1

ρ(K+̂φL, u) = sup

{
λ > 0 : φ

(
ρ(K, u)

λ

)
+ φ

(
ρ(L, u)

λ

)
≤ φ(1)

}
, (1.2)

where φ : (0,∞) → (0,∞) is a convex and strictly decreasing function such that
φ(0) = ∞, limt→∞ φ(t) = 0, and limt→0 φ(t) = ∞. Let C denote the class of
the convex and strictly decreasing functions φ. When p ≥ 1 and φ(t) = t−p, the
Orlicz harmonic addition +̂φ becomes the Lp-harmonic radial addition +̂p. The
Orlicz dual mixed volume with respect to Orlicz harmonic radial addition, denoted
by Ṽφ(K,L), is defined by

Ṽφ(K,L) =: φ
′+(1)
n

lim
ε→0+

Ṽ (K+̂φε · L)− V (K)
ε

= 1

n

∫
Sn−1

φ

(
ρ(L, u)

ρ(K, u)

)
ρ(K, u)ndS(u),

(1.3)

whereK+̂φε ·L is the Orlicz linear combination ofK andL (see Sect. 2), and φ′+(1)
denotes the value of the right derivative of convex function φ at point 1.

The dual affine quermassintegral was proposed by Lutwak (orally, in the 1980s),
forK ∈ S n, by letting Φ̃0(K) := V (K), Φ̃n(K) := ωn, and 0 < j < n, defined by

Φ̃n−j (K) := ωn
[∫
Gn,j

(
volj (K ∩ ξ)

ωj

)n
dμj (ξ)

]1/n

, (1.4)

where Gn,j denotes the Grassman manifold of j -dimensional subspaces in R
n, μj

denotes the gauge Haar measure on Gn,j , volj (K ∩ ξ) denotes the j -dimensional
volume of intersection of K on j -dimensional subspace ξ ⊂ R

n, and ωj denotes
the volume of j -dimensional unit ball. Gardner [9] showed the Brunn–Minkowski
inequality for the dual affine quermassintegrals. If K,L ∈ Sn−1 and 0 ≤ i ≤ n− 1,
then

Φ̃j (K+̃L)1/(n−j) ≤ Φ̃j (K)1/(n−j) + Φ̃j (L)1/(n−j), (1.5)

with equality if and only if K is a dilatate of L, modulo a set of measure zero. In
analogy to (1.4), one may also define mixed mean dual affine quermassintegrals by

Φn−j,i (K) := ωn
⎡
⎣∫

An,j

(
w
(j)
i (K ∩ ξ)
ωj

)n−i+1

dνj (ξ)

⎤
⎦

1/(n−i+1)

, (1.6)
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for 0 ≤ i < j ≤ n and K ∈ S n and by letting Φ0,i (K) := W̃i(K). Here, An,j
denotes the space of the j -dimensional affine subspace in R

n, w(j)i (K ∩ ξ) denotes
the dual quermassintegrals of intersection ofK on j -dimensional subspace ξ ⊂ R

n,
and νj denotes the gauge Haar measure on An,j (see Sect. 5).

In this paper, our main aim is to generalize the mixed mean dual affine
quermassintegrals to the Orlicz space. Under the framework of Orlicz dual Brunn–
Minkowski theory, we introduce a new affine geometric quantity such as Orlicz
mixed mean dual affine quermassintegrals. The fundamental notions and conclu-
sions of the mixed mean dual affine quermassintegrals and the Minkowski and
Brunn–Minkowski inequalities for the mixed mean dual affine quermassintegrals are
extended to an Orlicz setting. The new Orlicz–Minkowski and Brunn–Minkowski
inequalities for the Orlicz mean dual affine quermassintegrals in special case yield
theLp-dual Minkowski inequality and Brunn–Minkowski inequalities for the mixed
mean dual affine quermassintegrals, which also imply the Orlicz dual Minkowski
inequality and Brunn–Minkowski inequalities for dual quermassintegrals.

Comply with the basic spirit of Aleksandrov [1], Fenchel and Jensen’s [5]
introduction of mixed quermassintegrals, and introduction of Lutwak’s Lp-mixed
quermassintegrals (see [22, 29]), we are based on the study of the first-order Orlicz
variation of the mixed mean dual affine quermassintegrals. In Sect. 3, we prove that
the first Orlicz variation of the mixed mean dual affine quermassintegrals can be
expressed as: For φ ∈ C , ε > 0, 0 ≤ i, j ≤ n, and K,L ∈ S n,

d

dε

∣∣∣∣
ε=0+

Φn−j,i (K+̂φε·L) = j − i
φ′+(1)

Φn−j,i (K)i−nΦφ,n−j,i (K,L)n−i+1. (1.7)

In this first variational equation (1.7), we find a new geometric quantity. Based on
this, we extract the required geometric quantity, denote by Φφ,n−j,i (K,L), and call
as Orlicz mean dual affine quermassintegrals, defined by

Φφ,n−j,i (K,L)

:=
(

φ′+(1)
(j − i) ·Φn−j,i (K)i−n

· d
dε

∣∣∣∣
ε=0+

Φn−j,i (K+̂φε · L)
)1/(n−i+1)

,

(1.8)

where φ ∈ C , 0 ≤ i < j ≤ n, and K,L ∈ S n. We also prove the new affine
geometric quantity Φφ,n−j,i (K,L) has an integral representation:

Φφ,n−j,i (K,L)

= ωn
⎡
⎣∫

An,j

W̃
(j)
φ,i (K ∩ ξ, L ∩ ξ)
w
(j)
i (K ∩ ξ)

(
w
(j)
i (K ∩ ξ)
ωj

)n−i+1

dνj (ξ)

⎤
⎦

1/(n−i+1)

,

(1.9)
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where W̃ (j)
φ,i (K ∩ ξ, L∩ ξ) denotes the Orlicz dual quermassintegral (see Sect. 2) of

j -dimensional star bodies K ∩ ξ and L ∩ ξ in j -dimensional subspace ξ.
Because the Orlicz mixed mean dual affine quermassintegrals is an extension

of the mean dual affine quermassintegrals, a very natural question is raised: is
there a Minkowski type isoperimetric inequality for the Orlicz mean dual affine
quermassintegrals? In Sect. 4, we give a positive answer to this question and
establish the Orlicz dual Minkowski inequality for the affine geometric quantity.
We prove the Orlicz Minkowski inequality for Orlicz mixed mean dual affine
quermassintegrals.

Theorem 1 If φ ∈ C , 0 ≤ i < j ≤ n, and K,L ∈ S n, then

(
Φφ,n−j,i (K,L)
Φn−j,i (K)

)n−i+1

≥ φ
⎛
⎝
(
Φn−j,i (L)
Φn−j,i (K)

)1/(j−i)⎞
⎠ . (1.10)

If φ is strictly convex, equality holds if and only if K and L are dilates.

Putting j = n in (1.10), (1.10) becomes the following Orlicz dual Minkowski
inequality for dual mixed quermassintegrals established in [41]. If K,L ∈ S n,
0 ≤ i < n, and φ ∈ C , then

W̃φ,i(K,L) ≥ W̃i(K)φ
((
W̃i(L)

W̃i(K)

)1/(n−i))
.

If φ is strictly convex, equality holds if and only if K and L are dilates.
In Sect. 5, on the basis of the dual Minkowski inequality for the Orlicz mean dual

affine quermassintegrals, we establish a dual Brunn–Minkowski inequality for the
Orlicz mixed mean dual affine quermassintegrals.

Theorem 2 If K,L ∈ S n, 0 ≤ i < j ≤ n, and φ ∈ C , then for nay ε > 0

φ(1) ≥ φ
⎛
⎝
(

Φn−j,i (K)
Φn−j,i (K+̂φε · L)

)1/(j−i)⎞
⎠

+ ε · φ
⎛
⎝
(

Φn−j,i (L)
Φn−j,i (K+̂φε · L)

)1/(j−i)⎞
⎠ .

(1.11)

If φ is strictly convex, equality holds if and only if K and L are dilates.

Putting j = n and ε = 1 in (1.11), (1.11) becomes the following Orlicz dual
Brunn–Minkowski inequality established in [41]. If K,L ∈ S n, 0 ≤ i < n, and
φ ∈ C , then
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φ(1) ≥ φ
((

W̃i(K)

W̃i(K+̂φL)
)1/(n−i))

+ φ
((

W̃i(L)

W̃i(K+̂φL)
)1/(n−i))

.

If φ is strictly convex, equality holds with if and only if K and L are dilates.
Moreover, putting ε = 1, φ(t) = t−p, 1 ≤ p < ∞ in (1.11), (1.11) becomes the
Lp-dual Brunn–Minkowski inequality for the mean dual affine quermassintegrals.
If K,L ∈ S n, ε > 0, 0 ≤ i < j ≤ n, 1 ≤ p, and φ ∈ C , then

Φn−j,i (K+̂pε ·L)−p/(j−i) ≥ Φn−j,i (K)−p/(j−i)+Φn−j,i (L)−p/(j−i), (1.12)

with equality if and only if K and L are dilates. When j = n and i = 0, (1.12)
becomes Lutwak’s dual Brunn–Minkowski inequality (2.12) for the volumes.

2 Preliminaries

The setting for this paper is n-dimensional Euclidean space R
n. A body in R

n is a
compact set equal to the closure of its interior. For a compact set K ⊂ R

n, we write
V (K) for the (n-dimensional) Lebesgue measure of K and call this the volume of
K . Let K n denote the class of nonempty compact convex subsets containing the
origin in their interiors in R

n. Associated with a compact subset K of Rn, which is
star-shaped with respect to the origin and contains the origin, its radial function is
ρ(K, ·) : Sn−1 → [0,∞), defined by ρ(K, u) = max{λ ≥ 0 : λu ∈ K}. Note
that the class (star sets) is closed under unions, intersection, and intersection with
subspace. The radial function is homogeneous of degree −1, that is, ρ(K, ru) =
r−1ρ(K, u), for all x ∈ R

n and r > 0. Let δ̃ denote the radial Hausdorff metric, as
follows, if K,L ∈ S n, then (see e.g. [31])

δ̃(K,L) = |ρ(K, u)− ρ(L, u)|∞.

From the definition of the radial function, it follows immediately that for g ∈ GL(n)
the radial function of the image gK = {gy : y ∈ K} of K is given by

ρ(gK, x) = ρ(K, g−1x), (2.1)

for all x ∈ R
n.

Dual Mixed Volumes and Lp-Dual Mixed Volumes

If K1, . . . , Kn ∈ S n, the dual mixed volume Ṽ (K1, . . . , Kn) is defined by (see
[24])
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Ṽ (K1, . . . , Kn) = 1

n

∫
Sn−1

ρ(K1, u) · · · ρ(Kn, u)dS(u).

If K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = L, the dual mixed volume
Ṽ (K1, . . . , Kn) is written as Ṽi(K,L). If L = B, the dual mixed Ṽi(K,L) is
written as W̃i(K), and we call it dual quermassintegral. Obviously, forK ∈ S n, we
have

W̃i(K) = 1

n

∫
Sn−1

ρ(K, u)n−idS(u), (2.2)

and (see [24])

Ṽ1(K,L) = lim
ε→0+

V (K+̃ε · L)− V (K)
ε

= 1

n

∫
Sn−1

ρ(K, u)n−1ρ(L, u)dS(u).

(2.3)

The fundamental inequality for dual mixed volumes stated that: IfK,L ∈ S n, then

Ṽ1(K,L)
n ≤ V (K)n−1V (L), (2.4)

with equality if and only if K and L are dilates. The Brunn–Minkowski inequality
for the radial addition is the following: If K,L ∈ S n, then

V (K+̃L)1/n ≤ V (K)1/n + V (L)1/n, (2.5)

with equality if and only if K and L are dilates.
The following result follows immediately from the definition of Lp-radial

addition, with p < 0 (or p > 0).

p

n
lim
ε→0+

V (K+̃pε · L)− V (L)
ε

= 1

n

∫
Sn−1

ρ(K.u)n−i−pρ(L.u)pdS(u).

Let K,L ∈ S n and p < 0, define Lp-dual mixed volume of star K and L,
Ṽp(K,L), by

Ṽp(K,L) = 1

n

∫
Sn−1

ρ(K.u)n−pρ(L.u)pdS(u). (2.6)

This integral representation (2.6), together with the Hölder inequality, yields the
p-dual Minkowski inequality (see [39]): If K,L ∈ S n and p < 0, then

Ṽp(K,L)
n ≥ V (K)n−pV (L)p, (2.7)

with equality if and only ifK and L are dilates. The definition of Lp-radial addition,
together with (2.7), yields Gardner’s Brunn–Minkowski inequality for p-radial
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addition (see [10]). If K,L ∈ S n and p < 0, then

V (K+̃pL)p/n ≥ V (K)p/n + V (L)p/n, (2.8)

with equality if and only if K and L are dilates.

Lp-Harmonic Mixed Volumes

The following result follows immediately from (1.1) with p ≥ 1:

− p
n

lim
ε→0+

V (K+̂pε · L)− V (L)
ε

= 1

n

∫
Sn−1

ρ(K.u)n+pρ(L.u)−pdS(u).
(2.9)

Let K,L ∈ S n and p ≥ 1. The Lp-harmonic mixed volume of star K and L,
denoted by Ṽ−p(K,L), is defined by (see [29])

Ṽ−p(K,L) = 1

n

∫
Sn−1

ρ(K.u)n+pρ(L.u)−pdS(u). (2.10)

This integral representation (2.10), together with the Hölder inequality, yields
Lutwak’s Lp-dual Minkowski inequality, as follows: If K,L ∈ S n and p ≥ 1,
then

Ṽ−p(K,L)n ≥ V (K)n+pV (L)−p, (2.11)

with equality if and only if K and L are dilates. This integral representation (2.10),
together with the definition of p-harmonic addition, yields Lutwak’s Lp-Brunn–
Minkowski inequality for harmonic p-addition (see [29]). IfK,L ∈ S n and p ≥ 1,
then

V (K+̂pL)−p/n ≥ V (K)−p/n + V (L)−p/n, (2.12)

with equality if and only if K and L are dilates.

Orlicz Harmonic Linear Combination

Definition 1 Let m ≥ 2, φ ∈ C , Kj ∈ S n, and j = 1, . . . , m, define the Orlicz
harmonic addition of K1, . . . , Km, denoted by K1+̂φ · · · +̂φKm, defined by
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ρ(K1+̂φ · · · +̂φKm, u) = sup

⎧⎨
⎩λ > 0 :

m∑
j=1

φ

(
ρ(Kj , x)

λ

)
≤ φ(1)

⎫⎬
⎭ , (2.13)

for all x ∈ R
n.

Equivalently, the Orlicz harmonic addition K1+̂φ · · · +̂φKm can be defined
implicitly by

φ

(
ρ(K1, x)

ρ(K1+̂φ · · · +̂φKm, x)
)
+ · · · + φ

(
ρ(Km, x)

ρ(K1+̂φ · · · +̂φKm, x)
)
= φ(1),

(2.14)
for all x ∈ R

n.
The Orlicz harmonic linear combination on the case m = 2 is defined.

Definition 2 Orlicz harmonic linear combination +̂φ(K,L, α, β) for K,L ∈ S n,
φ ∈ C , and α, β ≥ 0 (not both zero), defined by

α ·φ
(

ρ(K, x)

ρ(+̂φ(K,L, α, β), x)
)
+β ·φ

(
ρ(L, x)

ρ(+̂φ(K,L, α, β), x)
)
= φ(1), (2.15)

for all x ∈ R
n.

When φ(t) = t−p and p ≥ 1, then Orlicz harmonic linear combination
+̂φ(K,L, α, β) changes to the Lp-harmonic linear combination α ·K+̂pβ ·L (see
[23]). Moreover, we shall write K+̂φε ·L instead of +̂φ(K,L, 1, ε), for ε ≥ 0, and
assume throughout that this is defined by (2.15), where α = 1, β = ε, and φ ∈ C ,
and write +̂φ(K,L, 1, 1) as K+̂φL.

Orlicz Dual Quermassintegral

Lemma 1 If K,L ∈ S n, 0 ≤ i < n, and φ ∈ C , then

d

dε

∣∣∣∣
ε=0+

ρ(K+̂φε · L, u)n−i = n− i
φ′+(1)

· φ
(
ρ(L, u)

ρ(K, u)

)
ρ(K, u)n−i , (2.16)

uniformly for u ∈ Sn−1.

Proof Form (2.15) and notice that φ and φ−1 are continuous functions, we obtain
for 0 ≤ i < n
d

dε

∣∣∣∣
ε=0+

ρ(K+̂φε · L, u)n−i

= lim
ε→0+

(n− i)ρ(K, u)n−i−1
(
ρ(K, u)φ

(
ρ(L, u)

ρ(K+̂φε · L, u)
))
· d
dε

∣∣∣∣
y=1+

φ−1(y)



518 C.-J. Zhao and W.-S. Cheung

= n− i
φ′+(1)

· φ
(
ρ(L, u)

ρ(K, u)

)
ρ(K, u)n−i ,

where

y = φ−1
(

1− εφ
(

ρ(L, u)

ρ(K+̂φε · L, u)
))
,

and note that y → 1+ as i → 0+.
This lemma plays a central role in our deriving new concept of the Orlicz dual

quermassintegrals.

Lemma 2 If φ ∈ C , 0 ≤ i < n, and K,L ∈ S n, then

(φ′+)(1)
n− i ·

d

dε

∣∣∣∣
ε=0+

W̃i(K+̂φε · L) = 1

n

∫
Sn−1

φ

(
ρ(L, u)

ρ(K, u)

)
ρ(K, u)n−idS(u).

(2.17)

Proof This follows immediately from (2.2) and Lemma 1.
Denoting by W̃φ,i(K,L), for any φ ∈ C and 0 ≤ i < n, the integral on the

right-hand side of (2.17), we see that either side of the equation (2.17) is equal to
W̃φ,i(K,L), and hence this new Orlicz dual mixed volume W̃φ,i(K,L) has been
born.

Definition 3 For φ ∈ C and 0 ≤ i < n, Orlicz dual quermassintegral of star bodies
K and L, W̃φ,i(K,L), is defined by

W̃φ,i(K,L) := 1

n

∫
Sn−1

φ

(
ρ(L, u)

ρ(K, u)

)
ρ(K, u)n−idS(u). (2.18)

3 Orlicz Dual Mean Mixed Affine Quermassintegrals

In order to define Orlicz dual mixed mean affine Quermassintegrals, we need the
following lemmas.

Lemma 3 If K,L ∈ S n, 0 ≤ i < n, and φ ∈ C , then for ε > 0

W̃i(K+̂φε · L) = W̃φ,i(K+̂φε · L,K)+ ε · W̃φ,i(K+̂φε · L,L). (3.1)

Proof This follows immediately from (1.3) and (2.15).

Lemma 4 ([40]) If K,L ∈ S n and φ ∈ C , then for ε > 0

K+̂φε · L→ K, (3.2)
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in the radial Hausdorff metric as ε→ 0+.

Lemma 5 ([43]) If K,L ∈ S n, ε > 0, and φ ∈ C , then

(K+̂φε · L) ∩ ξ = K ∩ ξ+̂φε · L ∩ ξ. (3.3)

In order to define the Orlicz mean dual affine querlmassintegrals, we need also
calculate the first Orlicz variation of the mean dual affine querlmassintegrals.

Lemma 6 If φ ∈ C , 0 ≤ i ≤ n, 0 < j ≤ n, and K,L ∈ S n, then for any ε > 0

d

dε

∣∣∣∣
ε=0+

Φn−j,i (K+̂φε·L) = j − i
φ′+(1)

Φn−j,i (K)i−nΦφ,n−j,i (K,L)n−i+1. (3.4)

Proof On the one hand, from (1.3), we have

d

dε

∣∣∣∣
ε=0+

∫
An,j

w
(j)
i ((K+̂φε · L) ∩ ξ)n−i+1dνj (ξ)

= (n− i + 1)(j − i)
φ′+(1)

∫
An,j

w
(j)
i (K ∩ ξ)n−iW̃ (j)

φ,i (K ∩ ξ, L ∩ ξ)dνj (ξ),
(3.5)

and on the other hand, from (1.6), (1.9), and (3.5), we obtain

d

dε

∣∣∣∣
ε=0+

Φn−j,i (K+̂φε·L) = ωn

(n− i + 1)ωj

(∫
An,j

w
(j)
i (K ∩ ξ)n−i+1dνj (ξ)

)(i−n)/(n−i+1)

× d

dε

∣∣∣∣
ε=0+

∫
An,j

w
(j)
i ((K+̂φε · L) ∩ ξ)n−i+1dνj (ξ)

= j − i
φ′+(1)

ωn

ωj

(∫
An,j

w
(j)
i (K ∩ ξ)n−i+1dνj (ξ)

)(i−n)/(n−i+1)

×
∫
An,j

W̃
(j)
φ,i (K ∩ ξ, L ∩ ξ)
w
(j)
i (K ∩ ξ)

w
(j)
i (K ∩ ξ)n−i+1dνj (ξ)

= j − i
φ′+(1)

Φn−j,i (K)i−nΦφ,n−j,i (K,L)n−i+1.

Definition 4 If φ ∈ C , 0 ≤ i < j ≤ n, and K,L ∈ S n, then Orlicz dual mixed
mean affine querlmassintegral ofK andL, denoted byΦφ,n−j,i (K,L), is defined by
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Φφ,n−j,i (K,L)

:= ωn
⎡
⎣∫

An,j

W̃
(j)
φ,i (K ∩ ξ, L ∩ ξ)
w
(j)
i (K ∩ ξ)

(
w
(j)
i (K ∩ ξ)
ωj

)n−i+1

dνj (ξ)

⎤
⎦

1/(n−i+1)

.

(3.6)
Specifically, we agreed

Φφ,0,i (K,L) =
(
W̃φ,i(K,L)

W̃i(K)

)1/(n−i+1)

W̃i(K).

In order to prove our main results, we still need the following lemmas.

Lemma 7 If K,L ∈ S n, 0 ≤ i < n, 0 < j ≤ n, and φ ∈ C , then

Φφ,n−j,i (K,K) = φ(1)1/(n−i+1)Φn−j,i (K). (3.7)

Proof The definition of the Orlicz dual mixed mean affine quermassintegrals,
together with (1.3) and (1.6), gives (3.7).

If φ(t) = t−p and p ≥ 1, then Φφ,n−j,i (K,L) denotes Φ−p,n−j,i (K,L) and
calls the ith Lp-mean dual mixed affine quermassintegral of K and L, and

Φ−p,n−j,i (K,L)

= ωn
⎡
⎣∫

An,j

W̃
(j)
−p,i(K ∩ ξ, L ∩ ξ)
w
(j)
i (K ∩ ξ)

(
w
(j)
i (K ∩ ξ)
ωj

)n−i+1

dνj (ξ)

⎤
⎦

1/(n−i+1)

,

where W̃ (j)
−p,i(K∩ξ, L∩ξ) denotes the ith Lp-dual mixed volume of j -dimensional

star bodies K ∩ ξ and L ∩ ξ in j -dimensional subspace ξ.

Lemma 8 ([40]) If K,L ∈ S n, φ ∈ C and any g ∈ SL(n), then for ε > 0

g(K+̂φε · L) = (gK)+̂φε · (gL). (3.8)

In the following, we will prove that Orlicz dual mixed mean affine querlmass-
integral Φφ,n−j,i (K,L) is invariant under simultaneous unimodular centro-affine
transformation.

Lemma 9 If K,L ∈ S n, 0 ≤ i < j ≤ n, φ ∈ C , and any g ∈ SL(n), then

Φφ,n−j,i (gK, gL) = Φφ,n−j,i (K,L). (3.9)

Proof This follows immediately from Lemmas 6 and 8.
We also need the following lemma to prove our main results.
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Lemma 10 (Jensen’s inequality) Let μ be a probability measure on a space X
and g : X → I ⊂ R is a μ-integrable function, where I is a possibly infinite
interval. If φ : I → R is a convex function, then

∫
X

φ(g(x))dμ(x) ≥ φ
(∫

X

g(x)dμ(x)

)
. (3.10)

If φ is strictly convex, equality holds if and only if g(x) is constant for μ-almost all
x ∈ X (see [19, p.165]).

4 Minkowski Inequality for Orlicz Dual Mean Mixed Affine
Quermassintegrals

Theorem 3 If K,L ∈ S n, φ ∈ C , and 0 ≤ i < j ≤ n, then
(
Φφ,n−j,i (K,L)
Φn−j,i (K)

)n−i+1

≥ φ
⎛
⎝
(
Φn−j,i (L)
Φn−j,i (K)

)1/(j−i)⎞
⎠ . (4.1)

If φ is strictly convex, equality holds if and only if K and L are dilates.

Proof When j = n, (4.1) becomes the well-known Orlicz dual Minkowski
inequality for dual quermassintegrals; hence, we assume 0 ≤ i < j < n. Since

∫
An,j

dν(ξ) = 1,

so the above equation defines a Borel probability measure ν on An,j , namely:

dν(ξ) = w
(j)
i (K ∩ ξ)n−i+1

∫
An,j

w
(j)
i (K ∩ ξ)n−i+1dνj (ξ)

dνj (ξ). (4.2)

From (1.6), (3.7), and (4.2), and using Orlicz dual Minkowski inequality, Jensen
inequality, and Hölder inequality, we obtain

(
Φφ,n−j,i (K,L)
Φn−j,i (K)

)n−i+1

=
∫
An,j

W̃
(j)
φ,i (K ∩ ξ, L ∩ ξ)
w
(j)
i (K ∩ ξ)

dν

≥
∫
An,j

φ

⎛
⎝
(
w
(j)
i (L ∩ ξ)

w
(j)
i (K ∩ ξ)

)1/(j−i)⎞
⎠ dν
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≥ φ
⎛
⎝∫

An,j

(
w
(j)
i (L ∩ ξ)

w
(j)
i (K ∩ ξ)

)1/(j−i)
dν

⎞
⎠

≥ φ
⎛
⎝
(
Φn−j,i (L)
Φn−j,i (K)

)1/(j−i)⎞
⎠ .

Next, we discuss the equal condition of (4.1). If φ is strictly convex, suppose thatK
and L are dilates, i.e., there exists λ > 0 such that L = λK . Hence,

(
Φφ,n−j,i (K,L)
Φn−j,i (K)

)n−i+1

=
(
φ(λ)1/(n−i+1)Φn−j,i (K)

Φn−j,i (K)

)n−i+1

= φ(λ)

= φ
⎛
⎝
(
Φn−j,i (L)
Φn−j,i (K)

)1/(j−i)⎞
⎠ .

This implies the equality in (4.1) holds.
On the other hand, suppose the equality holds in (4.1), then these three inequal-

ities in the above proof must satisfy the equal sign. Since the first inequality in the
above proof is the Orlicz dual Minkowski inequality. Form the equality condition
of Orlicz dual Minkowski inequality, if the equality holds, then K ∩ ξ and L ∩ ξ
must be dilates. The second inequality in the above proof is Jensen inequality. From
the equality condition of Jensen inequality, if φ is strictly convex and the equality

holds, then
w
(j)
i (L∩ξ)

w
(j)
i (K∩ξ)

must be a constant, and this yields that K ∩ ξ and L ∩ ξ
must be dilates. In this proof, the third inequality is obtained by applying the Hölder
inequality. From the equality condition of Hölder inequality, this yields that equality
holds w(j)i (K ∩ ξ) and w(j)i (L∩ ξ) must be proportional, namely, K ∩ ξ and L∩ ξ
be dilates. Combinations of these equal conditions, it follows that equality in (4.1)
holds, if φ is strictly convex, and equality holds if and only if K and L are dilates.

Corollary 1 If K,L ∈ S n, p ≥ 1, 0 ≤ i < j ≤ n, then
(
Φ−p,n−j,i (K,L)
Φn−j,i (K)

)n−i+1

≥
(
Φn−j,i (L)
Φn−j,i (K)

)−p/(j−i)
, (4.3)

with equality if and only if K and L are dilates.

Proof This follows immediately from (4.1) and with φ(t) = t−p and 1 < p <∞.
Corollary 2 If K,L ∈ S n, 0 ≤ i < n, and φ ∈ C , then
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W̃φ,i(K,L) ≥ W̃i(K)φ
((
W̃i(L)

W̃i(K)

)1/(n−i))
. (4.4)

If φ is strictly convex, equality holds if and only if K and L are dilates.

Proof This follows immediately from (4.1) and with j = n.
The following uniqueness is a direct consequence of the Minkowski inequality

for the Orlicz mean dual affine quermassintegrals.

Theorem 4 If φ ∈ C and is strictly convex, 0 ≤ i < n, 0 < j ≤ n, and M ⊂ S n

such that K,L ∈M . If

Φφ,n−j,i (M,K) = Φφ,n−j,i (M,L), f or all M ∈M (4.5)

or

Φφ,n−j,i (K,M)
Φn−j,i (K)

= Φφ,n−j,i (L,M)
Φn−j,i (L)

, f or all M ∈M , (4.6)

then K = L.
Proof Suppose (4.5) holds. Taking K for M , then from Lemma 7 and (4.1), we
obtain

φ(1)Φn−j,i (K)n−i+1 ≥ Φn−j,i (K)n−i+1φ

⎛
⎝
(
Φn−j,i (L)
Φn−j,i (K)

)1/j
⎞
⎠ ,

with equality if and only if K and L are dilates. Hence,

Φn−j,i (K) ≤ Φn−j,i (L),

with equality if and only if K and L are dilates. On the other hand, if taking L for
M , we similarly get Φn−j,i (K) ≥ Φn−j,i (L), with equality if and only if K and L
are dilates. Hence,Φn−j,i (K) = Φn−j,i (L), andK and L are dilates, and it follows
that K and L must be equal.

Suppose (4.6) holds. Taking L forM , then from Lemma 7 and (4.1), we obtain

φ(1) = Φφ,n−j,i (K,L)
n−i+1

Φn−j,i (K)n−i+1
≥ φ

⎛
⎝
(
Φn−j,i (L)
Φn−j,i (K)

)1/j
⎞
⎠ ,

with equality if and only if K and L are dilates. Hence,

Φn−j,i (K) ≤ Φn−j,i (L),
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with equality if and only if K and L are dilates. On the other hand, if taking L for
M , we similarly get Φn−j,i (K) ≥ Φn−j,i (L), with equality if and only if K and L
are dilates. Hence,Φn−j,i (K) = Φn−j,i (L), andK and L are dilates, and it follows
that K and L must be equal.

Corollary 3 If φ ∈ C and is strictly convex, 0 ≤ i < n, 0 < j ≤ n, and M ⊂ S n

such that K,L ∈M . If

W̃φ,i(M,K) = W̃φ,i(M,L), for allM ∈M

or

W̃φ,i(K,M)

W̃i(K)
= W̃φ,i(L,M)

W̃i(L)
, for allM ∈M ,

then K = L.
Proof This follows immediately from Theorem 4 and with j = n.

5 Brunn–Minkowski Inequality for the Orlicz Dual Affine
Quermassintegrals

Definition 5 (ith mean dual affine querlmassintegrals) The ith mean dual affine
quermassintegral of star body K , Φn−j,i (K), is defined by

Φn−j,i (K) := ωn
⎡
⎣∫

An,j

(
w
(j)
i (K ∩ ξ)
ωj

)n−i+1

dνj (ξ)

⎤
⎦

1/(n−i+1)

, (5.1)

for 0 ≤ i < j ≤ n and K ∈ S n and by letting Φ0,i (K) := W̃i(K). When i = 0,

w
(j)
i (K∩ξ) denotes the well-known j -dimensional volume volj (K∩ξ). Obviously,

when i = 0, Φn−j,i (K) = Φn−j,0(K) = Φn−j (K), when i = 0 and j = n,
Φn−j,i (K) = Φ0,0(K) = V (K), and when j = 0 and i = 0, Φn,0(K) = ωn.

Lemma 11 If K,L ∈ S n, 0 ≤ i < j ≤ n, and φ ∈ C , then for any ε > 0

φ(1) =
(
Φφ,n−j,i (K+̂φε · L,K)
Φn−j,i (K+̂φε · L)

)n−i+1

+ ε ·
(
Φφ,n−j,i (K+̂φε · L,L)
Φn−j,i (K+̂φε · L)

)n−i+1

.

(5.2)

Proof This follows immediately from Lemmas 3 and 5.
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Lemma 12 ([43]) Let K,L ∈ S n, ε > 0, and φ ∈ C .

(1) If K and L are dilates, then K and K+̂φλ · L are dilates.
(2) If K and K+̂φε · L are dilates, then K and L are dilates.

Theorem 5 If K,L ∈ S n, 0 ≤ i < j ≤ n, and φ ∈ C , then for ε > 0

φ(1) ≥ φ
⎛
⎝
(

Φn−j,i (K)
Φn−j,i (K+̂φε · L)

)1/(j−i)⎞
⎠

+ ε · φ
⎛
⎝
(

Φn−j,i (L)
Φn−j,i (K+̂φε · L)

)1/(j−i)⎞
⎠ .

(5.3)

If φ is strictly convex, equality holds if and only if K and L are dilates.

Proof This follows immediately from (4.1) and Lemma 11.

Corollary 4 If K,L ∈ S n, p ≥ 1, 0 ≤ i < j ≤ n, then for ε > 0

Φn−j,i (K+̂pε ·L)−p/(j−i) ≥ Φn−j,i (K)−p/(j−i)+ε ·Φn−j,i (L)−p/(j−i), (5.4)

with equality if and only if K and L are dilates.

Proof This follows immediately from (5.3) and with φ(t) = t−p, 1 < p <∞.
Putting j = n and ε = 1 in (5.4), (5.4) becomes Lutwak’s Lp-dual Brunn–

Minkowski inequality (2.12).

Corollary 5 If K,L ∈ S n, 0 ≤ i < n, and φ ∈ C , then

1 ≥ φ
((

W̃i(K)

W̃i(K+̂φL)
)1/(n−i))

+ φ
((

W̃i(L)

W̃i(K+̂φL)
)1/(n−i))

. (5.5)

If φ is strictly convex, equality holds if and only if K and L are dilates.

Proof This follows immediately from (5.3) and with ε = 1 and j = n.
Corollary 6 If K,L ∈ S n, φ ∈ C , and 0 ≤ i < j ≤ n, then

(
Φφ,n−j,i (K,L)
Φn−j,i (K)

)n−i+1

≥ φ
⎛
⎝
(
Φn−j,i (L)
Φn−j,i (K)

)1/(j−i)⎞
⎠ . (5.6)

If φ is strictly convex, equality holds if and only if K and L are dilates.

Proof Let

Kε = K+̂φε · L.
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From Lemmas 4 and 6 and using the Orlicz–Brunn–Minkowski inequality (5.3), we
obtain

j − i
φ′−(1)

Φn−j,i (K)i−nΦφ,n−j,i (K,L)n−i+1 = d

dε

∣∣∣∣
ε=0+

Φn−j,i (Kε)

= lim
ε→0+

1− t
φ(1)− φ

(
t1/(j−i)

) · lim
ε→0+

φ(1)− φ
⎛
⎝
(
Φn−j,i (K)
Φn−j (Kε)

)1/(j−i)⎞
⎠

ε
· lim
ε→0+

Φn−j,i (Kε)

≥ j − i
φ′−(1)

· lim
ε→0+

φ

⎛
⎝
(
Φn−j,i (L)
Φn−j (Kε)

)1/(j−i)⎞
⎠ · lim

ε→0+
Φn−j.i (Kε)

= j − i
φ′−(1)

· φ
⎛
⎝
(
Φn−j,i (L)
Φn−j,i (K)

)1/(j−i)⎞
⎠ ·Φn−j,i (K). (5.7)

From (5.7), (5.6) easily follows.
This proof is complete.
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A Reduced-Basis Polynomial-Chaos
Approach with a Multi-parametric
Truncation Scheme for Problems
with Uncertainties

Theodoros T. Zygiridis

Abstract Polynomial-chaos (PC) expansions constitute an invaluable tool for the
investigation of uncertainty quantification problems, yet minimizing the conse-
quences of the so-called curse of dimensionality requires methodologies that ensure
reliable performance with a set of basis functions with reduced cardinality. In this
work, we propose the construction of the PC basis set using a multi-parametric
truncation scheme that generalizes standard ones and enables the derivation of
anisotropic surrogates in a flexible fashion. The specification of the truncation rule’s
design parameters relies on a preliminary variance analysis, which entails only a
fraction of the overall computational cost and enables a sufficient screening of the
input variables. Despite its simplicity, the proposed approach is capable of deriving
as credible results as the original PC method with fewer basis functions, due to the
elimination of unnecessary terms, thus providing a more efficient framework for the
study of demanding stochastic problems.

1 Introduction

There exists a multitude of problems, pertinent to engineering as well as other
disciplines, where some or all of their aspects are of probabilistic nature. In
such cases, the impact of these uncertainties on the quantities of interest (QoIs)
needs to be assessed both reliably and efficiently, so that realistic conclusions
are drawn and credible predictions can be made. In the context of developing
stochastic models, generalized polynomial-chaos (PC) expansions [1] are widely
used for the representation of random quantities with finite variance, whose general
form depends on the distributions of the input variables, and conditionally display
attractive convergence properties. Once the PC expansion of a QoI is available, its
statistical moments and distribution can be easily computed. PC-based methods
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usually outperform standard Monte Carlo (MC) approaches [2], especially in
problems with low or moderate numbers of random variables, as MC solutions are
known for their slow convergence. The latter attribute translates into a necessity for
considerable amounts of input samples from the random space, which needs to be
avoided, especially in cases of computationally expensive deterministic solvers.

The computational cost involved in calculating the PC expansion of a QoI
is directly related to the number of basis functions involved. In case of high-
dimensional stochastic problems, typical choices regarding the selection of the basis
functions result in large sets, which unavoidably imply considerable computational
effort. This attribute is known as the “curse of dimensionality” and is practically
related to the degradation of the efficiency of PC expansions, when several
random variables need to be considered. Finding cost-effective solutions for high-
dimensional uncertainty problems remains a very active research fields, and some
of the remedies that have been proposed include integration on sparse grids [3, 4],
alternative truncation schemes for constructing the basis index sets [5], optimal
design of experiments [6], adaptive methods [7, 8], compressed sensing (CS) for
representations with sparse coefficient vectors [9], etc.

In various cases, selecting a priori a reduced set of basis functions has proven
to be a simple, and at the same time quite effective, approach for decreasing the
computational cost of calculating the PC expansion coefficients. A predetermined
basis set does not require complex algorithms for its implementation and does
not affect the typical line of work followed in standard PC implementations. For
instance, applying the so-called hyperbolic truncation scheme [8] to the set of multi-
indices of the basis functions eliminates terms that describe complex interactions
and are less likely to affect the QoI significantly. The main weakness of these
solutions is their lack of flexibility (i.e., only a single parameter q that defines a
q-norm needs to be selected), as well as the fact that some intuition is required, so
that terms that may actually be influential are not rejected beforehand.

In this chapter, we propose a simple approach for constructing reliable PC
approximations of stochastic QoIs that, compared to standard methodologies,
feature a lower number of basis functions. The proposed line of work is realized
in two steps. An approximate and cost-effective variance analysis is performed
initially, utilizing only univariate polynomials. In this way, partial variances for all
input factors are roughly estimated with a limited number of deterministic samples,
enabling at the same time the ordering of the input variables, according to their
impact on the output. The information gathered in the first stage of the procedure
is exploited next, for the construction of the set of basis functions. To allow for
additional flexibility, a modification of a standard truncation scheme is proposed,
which enables the determination of anisotropic expansions in a more general way
than before. The expansion coefficients are obtained using a typical sampling
strategy and a least-squares approach; hence, no further or complex modifications
are required, compared to ordinary PC techniques. Despite its simplicity, we
provide numerical results that verify the improved performance accomplished by
the proposed scheme, when compared to other methodologies, proving that a more
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consistent choice of basis functions is possible, without necessarily resorting to
complicated implementations.

2 Existing Polynomial-Chaos Methods

Algorithms relying on PC approximations have been developed for the investigation
of uncertainty problems in several areas (e.g., electrical, mechanical, and chemical
engineering) of diverse nature, ranging from diffusion problems and control systems
to flow simulations, mechanical vibrations, and transistors. The key concept of PC
was originally introduced in [10], where second-order Gaussian random processes
were represented via Hermite polynomials. This type of polynomial representation
was much later combined with the finite element method in an intrusive fashion,
resulting in an extension of the corresponding deterministic approach, in the context
of modeling uncertainty problems in solid mechanics [11]. The aforementioned
concepts can be generalized, so that other types of random variables can be
represented via polynomial series, as described in [1], based on hypergeometric
polynomials (the so-called Askey scheme). The considered polynomial families
have the attractive property that, in several cases, their weighting functions coincide
with frequently encountered probability distributions. In the general instance of
arbitrary input distributions, the multi-element generalized PC approach [12] is
a more suitable choice, which suggests the splitting of the random space and
the construction of a family of orthogonal polynomials within each element.
When the exact knowledge of the involved probability density functions (pdfs)
is not available, the data-driven or arbitrary PC can be applied [13], where the
necessary basis set is constructed according to the statistical moments of the input
variables.

PC-based methodologies generally fall into two categories: intrusive and non-
intrusive. Intrusive approaches [14–17] necessitate the modification of existing
deterministic solvers, which can be a complex task in various cases. On the other
hand, they perform the calculation of the expansion coefficients in the context of
a single run via Galerkin projection, without requiring the selection of a sampling
strategy. Furthermore, they are more likely to take advantage of the available modern
computing capabilities [18]. Non-intrusive methods [19–21] are commonly easier to
implement, as they rely solely on repetitive calls to deterministic solvers, similar to
MC techniques. However, unlike the latter, the required amount of random samples
is significantly smaller, especially when the number of stochastic inputs is small
or moderate. In such cases, the necessary sampling of the random space can be
performed in different ways (e.g., random sampling, Latin hypercube approaches,
optimal design of experiments [6], etc.) and may influence the accuracy of the QoI
estimations.

In practice, only the computation of truncated PC expansions is possible in
realistic problems; hence, the set of basis functions that will be used needs to be
specified. The number of retained elements depends on factors such as the dimen-
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sionality of the problem, the selected polynomial order (higher orders imply better
approximations but are more costly to compute), and the chosen truncation scheme.
A brief reference to the most common truncation rules is given in section “Definition
of the Basis Index Set.” Although the standard implementation of PC approaches
is based on predetermined basis sets, various efforts have been devoted to the
development of adaptive versions [7, 8, 22], where only the necessary bases are
retained via an error-checking procedure, while the less influential ones are rejected.
Usually, the implementation of adaptive solutions entails higher computational
complexity, compared to methods with a predetermined basis set.

More recently, the potential of CS has been exploited for building reliable
polynomial surrogates comprising only a few elements [8, 9, 23]. CS enables the
recovery of a signal from a limited number of samples, as long as it is sparse (i.e., it
involves only a few nonzero components). In many cases, the PC coefficients can be
approximated by a sparse formula, as it is not uncommon for their majority to have
negligible magnitudes, compared to the most dominant terms. The recovery of the
sparse vectors is accomplished via the solution of specific constrained minimization
problems, and the involved computational cost remains at reasonable levels, even
when dealing with large numbers of random inputs.

3 Proposed Methodology

The technique developed in this work features a preliminary and computationally
cheap stage, where information regarding the impact of each input variable on
the output is estimated. The second step follows, where a new multi-parametric
truncation rule is defined for the construction of the set of basis functions. We
describe the latter stage first, so that the motivation necessitating the introduction
of the first stage is clarified. Before that, a brief summary of the basic elements of
the PC theory is given.

Polynomial-Chaos Expansions

Let us assume that the QoI y depends on d independent random variables ξi ,
i = 1, . . . , d with ρ1, . . . , ρd pdfs, respectively. In case of second-order random
variables, the PC expansion of y has the form

y(ξ) =
∑
α∈Nd0

cαΨα(ξ), (1)
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where ξ = [ξ1, . . . , ξd ]T is the vector of input variables, cα are the expansion
coefficients, Ψα(ξ) are the polynomial basis functions, and α = (α1, . . . , αd) is
a multi-index denoting the polynomial order at each dimension. The basis functions
are constructed as products of univariate polynomials,

Ψα(ξ) =
d∏
i=1

ψαi (ξi), (2)

and have the orthogonality property. The proper selection of each univariate function
ψi depends on the type of the corresponding random variable ξi [1] (e.g., we
will consider variables with uniform distributions in the numerical tests, which are
properly represented by Legendre polynomials). Considering the independence of
the variables, the joint pdf is computed from

ρ(ξ) =
d∏
i=1

ρi(ξi). (3)

From a practical viewpoint, one has to truncate (1) and retain a finite number of
terms:

y(ξ) 5 ỹ(ξ) =
∑
α∈A

cαΨα(ξ), (4)

where A ⊂ N
d
0 is an index set, constructed according to the selected truncation

strategy.
Among the available methodologies for the computation of the expansion

coefficients, we will use the common least-squares approach. According to the
latter, Nt samples from the random space are required, with Nt being larger than
the number of unknowns. For each sample ξ i , i = 1, . . . , Nt , the value of the output
y is calculated (in our case, via a deterministic solver). By requiring y = ỹ at each
sample point, an overdetermined system of equations is formulated,

[A][c] = [b], (5)

where [A] is the Nt × (P + 1) measurement matrix with elements

Aij = Ψj (ξ i ), (6)

[b] is the vector with the model’s outputs ([b] = [y(ξ1), . . . , y(ξNt )]T), and
[c] = [c0, . . . , cP ]T is the vector of the expansion coefficients (P + 1 is their total
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number1). Then, the approximate solution that minimizes the mean square error of
the equations in (5) is given by

[c] 5 ([A]T[A])−1[A]T[b]. (7)

In this work, the number of samples is selected according to Nt = 2(P + 1), and a
Latin hypercube sampling approach [24] is implemented for their determination.

Definition of the Basis Index Set

As already mentioned, the basis functions are selected according to a specific
scheme. Before presenting the proposed strategy, we briefly review the most
common truncation rules encountered in the literature:

• In the case of the tensor product (TP) truncation scheme, the corresponding index
set is defined as

A TP = {α ∈ N
d
0 : αi ≤ pi, i = 1, . . . , d}, (8)

where, as seen, the polynomial degree for each dimension in the random space is
bounded separately. It is easily deduced that the total number of basis functions
is P + 1 = ∏d

i=1 (pi + 1) and increases exponentially with the number of
dimensions. An example case where d = 2 and p1 = p2 = 15 is depicted in
Fig. 1a.

• A very common choice is the total degree (TD) truncation rule, where polynomial
functions of order lower than or equal to p are retained. The index set in this case
is described by

A TD =
{
α ∈ N

d
0 : ‖α‖1 ≤ p

}
, (9)

and it comprises P + 1 = (p + d)!/(p!d!) elements (‖α‖1 = α1 + . . . + αd ).
Evidently, the growth rate of the number of basis functions, with respect to
the number of dimensions, is smaller than the case of TP index sets (see, e.g.,
Fig. 1b).

• The so-called hyperbolic index sets [8] can be constructed by introducing a spe-
cific truncating surface that eliminates a higher number of complex contributions,
compared to the TD approach, as shown in Fig. 2a. In this case, the basis indices
belong to the set

1The number P + 1 stems from the fact that another common representation of a PC expansion

has the form ỹ =
P∑
�=0

c�Ψ�(ξ).



Reduced Polynomial-Chaos Approach with Multi-parametric Truncation Scheme 535

0 5 10 15
0

5

10

15

α1

α
2

256 terms

(a)

0 5 10 15
0

5

10

15

α1

α
2

136 terms

(b)

Fig. 1 Retained (blue circles) and rejected (red crosses) basis functions by the standard truncation
schemes for different cases: (a) TP truncation scheme with p1 = p2 = 15 and (b) TD truncation
scheme with p1 = p2 = 15
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Fig. 2 Retained (blue circles) and rejected (red crosses) basis functions by the standard truncation
schemes for different cases: (a) hyperbolic truncation scheme with p1 = p2 = 15, q = 0.75
and (b) anisotropic hyperbolic truncation scheme with p1 = p2 = 15, q = 0.75, and w1 = 1,
w2 = 1.5

A HYP =
{
α ∈ N

d
0 : ‖α‖q ≤ p

}
, (10)

where ‖α‖q denotes the norm
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‖α‖q =
(
d∑
�=1

α
q
�

)1/q

(11)

with q < 1. Anisotropy regarding the maximum polynomial order for each
dimension can be considered, by applying additional rules of the form α� ≤ p�,
� = 1, . . . , d [25]. Another alternative, the weighted version of the hyperbolic
index set, is described in [26], where the modified norm

‖α‖q,w =
(
d∑
�=1

|w�α�|q
)1/q

(12)

is implemented, instead of ‖α‖q . The weight vector w = [w1, . . . , wd ]T is
chosen with the aid of certain indices, so that variables producing the strongest
sensitivity are favored. An example is shown in Fig. 2b, where w = [1 1.5]T.

• Hyperbolic Cross (HC) index sets [27] are defined according to

A HC = {α ∈ N
d
0 :

d∏
i=1

(αi + 1) ≤ p + 1} (13)

and are characterized by a slower increase of basis functions, compared to the
TD scheme, as this is exemplified in Fig. 3.

In the present work, we introduce a modified definition for the basis index set
that generalizes the construction of the hyperbolic truncation scheme. Given that
the latter involves functions with indices defined by ‖α‖q ≤ p, which can be
equivalently written as
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Fig. 3 Retained (blue circles) and rejected (red crosses) basis functions by the HC truncation
scheme for different cases: (a) p1 = p2 = 5, (b) p1 = p2 = 10, and (c) p1 = p2 = 15
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d∑
�=1

α
q
� ≤ pq, (14)

we propose the construction of the index set according to the following:

Ap,q =
{

α ∈ N
d
0 :

d∑
�=1

(
α�

p�

)q�
≤ 1

}
. (15)

As seen, the aforementioned truncation strategy allows the explicit definition of
the maximum polynomial order for each dimension separately, without introducing
additional constraints. Furthermore, unlike the standard form of hyperbolic trun-
cation, the parameters qi , which control the amount and type of retained basis
functions, can be selected differently for each random variable, thus allowing further
flexibility.

To comprehend the impact of the involved parameters in (15) on the number and
properties of the retained basis functions, we examine the simple case of d = 2 and
different combinations of the (p1, p2) and (q1, q2) parameters. Some representative
results are displayed in Fig. 4. In the first three illustrations (Fig. 4a–c), we keep
q1 = q2 = 0.75 and modify the polynomial order assigned to each variable.
Specifically, we set p1 = 15 and change p2 to 15, 10, or 5. As seen, the preserved
indices satisfy the per-dimension restrictions regarding the polynomial order, and a
non-trivial reduction of the included terms is observed. In addition, by selecting qi
values smaller than 1, certain functions that correspond to complex interactions are
eliminated, while simpler forms are preserved, in accordance with the “sparsity-of-
effects” principle [28]. In the next three illustrations (Fig. 4d–f), we assign the same
polynomial order to both dimensions (p1 = p2 = 15) and experiment with different
combinations of q values. It is reminded that in a typical hyperbolic index set, the
number of terms is reduced for higher q values. For instance, if p1 = p2 = 15, then
the cardinality of the corresponding A set is equal to 136, 96, 58, or 31, when the
q parameter (q1 = q2 = q) is set to 1, 0.75, 0.5, or 0.25, respectively. By tuning
separately the q1 and q2 parameters, this reduction of terms becomes anisotropic
(even when p1 = p2) and the remaining polynomials are biased, in the sense that
the number of functions where α1 > α2 is not longer equal to those with α1 < α2.
In the cases depicted in Fig. 4d–f, selecting q1 = 1 and q2 = 0.6 produces 46 terms
with α1 > α2 and 49 terms with α1 < α2. These numbers become 28 and 37,
respectively, if q2 is lowered to 0.3.

Approximate Variance-Based Analysis

It becomes evident that the truncation scheme described in (15) features several
parameters, whose consistent selection is of crucial importance for the reliability
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Fig. 4 Retained (blue circles) and rejected (red crosses) basis functions by the proposed truncation
scheme for different cases: (a) p1 = p2 = 15, q1 = q2 = 0.75, (b) p1 = 15, p2 = 10,
q1 = q2 = 0.75, (c) p1 = 15, p2 = 5, q1 = q2 = 0.75, (d) p1 = p2 = 15, q1 = q2 = 1, (e)
p1 = p2 = 15, q1 = 1, q2 = 0.6, and (f) p1 = p2 = 15, q1 = 1, q2 = 0.3

of the corresponding PC representations. Instead of selecting them in an intuitive
fashion, we propose performing an initial screening analysis, so that the importance
of each input random variable is roughly estimated. We exploit for this task the
concept of Sobol indices, which constitute sensitivity measures indicating the part
of the variance due to one or more factors [29]. It is reminded that the Sobol
decomposition of a function y = f (ξ) is described by

f (ξ) = f0 +
d∑
�=1

f�(ξ�)+
∑

1��1<�2�d
f�1�2(ξ�1, ξ�2)+ . . .+ f1,...,d (ξ), (16)

where f0 is the mean value of f , and all the involved terms are orthogonal to each
other. The variance of y, which is computed as

D =
∫
Ω

f 2(ξ)ρ(ξ)dξ − f 2
0 , (17)
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(Ω is the random space), is decomposed with the aid of (16), according to

D =
d∑
�=1

D� +
∑

1��1<�2�d
D�1�2 + . . .+D1,...,d . (18)

Each term in the right-hand side of (18) denotes the partial variance due to one or
more variables, identified by the corresponding subscripts, and is used for defining
the Sobol index

S�1,...,�k =
D�1,...,�k

D
. (19)

The index (19) quantifies the part of the variance D that emanates from the
combined interaction of the inputs corresponding to the indices �1, . . . , �k . If a PC
representation of y is available, with A being its basis index set and A �1,...,�k the
subset of A comprising terms that depend on the variables denoted by the indices
�1, . . . �k , then

S�1,...,�k 5

∑
α∈A �1,...,�k

c2
α‖Ψα(ξ)‖2

∑
α∈A

c2
α‖Ψα(ξ)‖2 . (20)

The information conveyed by the Sobol indices would be very useful for our
purposes, as they can facilitate a consistent formulation of the truncation rule
in (15). However, the computation of the Sobol indices requires the availability of a
complete PC expansion, as it becomes evident from the denominator in (20).

In this work, we follow an idea originally presented in [26] and adapt it to our
specific needs. In essence, we propose performing the rough estimation of the first-
order S� indices only, � = 1, . . . , d, and exploit the obtained information for the
determination of the various parameters appearing in (15). The partial variances
required for calculating the numerators of the S� indices depend on univariate
polynomials of the �th variables only. Consequently, the procedure for obtaining
the partial variances does not involve significant computational cost, as it is based
on an auxiliary PC expansion featuring only

∑d
i=1 pi + 1 terms, where pi denotes

the preselected polynomial order for the ith dimension. A loss of accuracy seems to
emerge due to the computation of the total variance appearing in the denominator
of the Sobol indices, as terms due to the interaction of multiple variables are
not available. However, since our purpose at this point is to initially sort the
input variables according to their impact (i.e., by comparing the corresponding
Sobol indices) and, given that all the S� indices feature the same denominator, the
variable sorting should rely on the partial variances appearing in the numerators.
Consequently, the proposed approach is expected to suffice for a preliminary
estimation of each variable’s weight on the output.
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4 Numerical Results

We initially test the performance of the new scheme in the approximation of the
Ishigami function, which is defined as

f (ξ) = sin ξ1 + asin2ξ2 + bξ4
3 sin ξ1. (21)

The variables ξi , i = 1, 2, 3 are uniformly distributed over [−π, π ] and the a
and b parameters are selected as a = 7 and b = 0.1. The mean value and the

variance of (21) are calculated easily and are equal to a
2 and 1

2 + a2

8 + b2π8

18 + bπ4

5 ,
respectively. The accomplished percentage errors in the mean value and the standard
deviation of the Ishigami function are examined, in relation to the required number
of function evaluations. It is noted that the Ishigami function is highly nonlinear,
posing severe difficulties to any polynomial approximation. In the context of
applying the proposed methodology, we first perform a crude sensitivity analysis,
by considering only sixth-order 1D basis functions. The total number of the latter is
19 and, consequently, the number of necessary function evaluations is equal to 38.
Despite the sparse auxiliary model, the computation of the Sobol indices is proven
to be sufficiently reliable, at least for the purpose of sorting the input parameters
according to their influence on the output. Specifically, we find that S1 = 0.317,
S2 = 0.539, and S3 = 0.145, with the exact values being equal to Sexact

1 = 0.314,
Sexact

2 = 0.442, and Sexact
3 = 0. The aforementioned approximate values of the

Sobol indices represent the average estimations of 1000 different trials, verifying
that consistent conclusions can be extracted, despite the variation characterizing
different realizations of the Latin hypercube sampling. From the preliminary data,
we deduce that ξ2 is the most influential parameter, whereas the output is less
sensitive to ξ3. Based on these findings, we select the individual polynomial orders
according to p1 = p2 − 1 and p3 = p2 − 3, with p2 ≤ 15. In addition, given
the obtained values of the Sobol indices, we choose an aggressive strategy for
the q values, by selecting q2 = 0.1 and q1 = q3 = 1. The performance of the
proposed methodology is compared with those of the TD truncation scheme and the
hyperbolic index set with q = 0.75. The latter two cases also consider polynomial
basis of up to 15th order. The errors produced by the three approaches can be
assessed in Fig. 5, where the faster convergence of the proposed approach over
the standard solutions is indicative of the efficiency of the corresponding surrogate.
Evidently, the initial information regarding the significance of each variable played
a significant role in the selection of the proper parameter values in the proposed
truncation rule, excluding a nontrivial number of terms that are not likely to affect
the output to a significant degree.

The second numerical test pertains to a time-dependent electromagnetic problem
and involves a configuration comprising eight lossless dielectric slabs, separated by
air (the geometry is shown in Fig. 6). The thickness of each slab is set to ds =
1.202 cm, and the distance between successive slabs is equal to da = 3.606 cm.
We are interested in studying the properties of the aforementioned layout, which
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Fig. 5 Percentage error in (a) the mean value and (b) the standard deviation of the Ishigami
function versus the required number of function evaluations

acts as a filtering structure, in the case of normal incidence of a pulsed plane wave.
Specifically, the relative dielectric constant of each slab is treated as an independent
random variable that is uniformly distributed within the range εr = 3.5 × (1 ±
0.1). Consequently, we now have to deal with an eight-dimensional problem. The
QoI herein is the transmission coefficient T of the structure, typically computed
as T (ω) = |Et (ω)/Ei (ω)|, where Et (ω) and Ei (ω) are the Fourier transforms of the
time-dependent intensities of the transmittedEt(t) and incidentEi(t) electric fields,
respectively. As illustrated in Fig. 7, the magnitude of T displays randomness, due
to the uncertainty in the electric parameters of the filter. For the calculation of the
transmission coefficient, the finite-difference time-domain method is implemented
[30] in one-dimensional formulation, which discretizes Maxwell’s equations using
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Fig. 6 Geometric configuration of the electromagnetic filter problem

Fig. 7 Uncertainty
characterizing the
transmission coefficient
curves of the electromagnetic
filter, as well as the value of
the 6-dB roll-off frequency
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uniform space-time grids, and directly computes the electric and the magnetic field
samples in an explicit and conditionally stable fashion.

In order to develop a PC surrogate for the QoI, we first perform the approximate
variance analysis with p = 3, and thus a total of 25 basis functions are considered
and only 2×25 = 50 simulations are conducted. Instead of using the Sobol indices,
we determine the influence of each input variable considering the corresponding
partial variance, averaged over the frequency range of interest. In this way, the
ordering of the inputs is mainly affected by the results observed at frequencies
where the total variance attains the highest values. Taking into account the result
of the initial variance analysis, we construct an anisotropic basis set, by selecting
the vector of the polynomial order per direction as [2 3 4 4 4 4 3 2]T and the
corresponding q values as [1 0.95 0.95 0.85 0.85 0.95 0.95 1]T. Evidently, the
maximum polynomial order has been set to 4, which is a common choice for
problems of this nature. However, a typical TD basis set would comprise (4 +
8)!/(4!8!) = 495 functions, whereas the cardinality of the proposed set is 101.
Consequently, the required number of simulations is reduced from 2 × 495 = 990
to 2× 101+ 50 = 252, indicating a reduction of the computational cost by almost
75%. Of course, these savings will be meaningful only provided that the model
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Fig. 8 (a) Mean value and (b) variance of |T | for the electromagnetic filter problem

based on the fewer basis functions is a credible one. The PC predictions of the mean
value and the variance of |T | are depicted in Fig. 8a and b, respectively, where direct
comparison with the reference solutions can be performed. The latter are constructed
considering the results from 20,000 MC simulations. Evidently, the assessment
verifies the validity of the predictions of the PC model, despite the reduction of
the basis functions, compared to the standard TD approach.

Furthermore, similar to [16], we are interested in predicting the variability of
the 6-dB roll-off frequency of the transmission coefficient (Fig. 7). Figure 9 depicts
the pdfs computed by the MC method, the isotropic TD PC surrogate with p = 4,
and the proposed anisotropic PC scheme. In the case of the PC expansions, 10,000
samples are extracted (this procedure is faster than performing MC simulations, as it
involves only polynomial evaluations), and the corresponding pdfs are computed via
kernel density estimation [31]. It can be verified from Fig. 9 that the pdf predicted
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Fig. 9 Pdf of the 6-dB
roll-off frequency, calculated
by various methods
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by the reduced basis set exhibits satisfactory agreement with the reference data of
the MC study. In addition, a high degree of similarity is observed with the result
computed by the more computationally demanding TD PC model. Although some
slight deviation can be observed at the central frequencies, the pdf extracted using
the proposed approach can be safely considered as a reliable approximation of the
exact one.

5 Conclusions

In this work, we have presented and evaluated an approach for the development
of reliable reduced-basis PC models, when studying problems with uncertain
inputs. An initial, computationally cheap, approximate variance calculation enables
the ordering of the input variables according to their impact on the QoI. This
information facilitates the consistent formulation of the truncation rule for the
basis index set, which features a multi-parametric form and enables the judicious
elimination of unnecessary terms. The performance of the proposed methodology
has been validated in two representative test cases, and the results have verified that
the suggested technique provides a simple, yet reliable, treatment for uncertainty
quantification problems.
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