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Preface

Approximation Theory and Analytic Inequalities focuses on various important areas
of Mathematics in which approximation methods play an essential role. Of course,
since inequalities are of integral importance for the investigation of approximation
and optimization problems, this volume also features cutting-edge research on a
wide spectrum of analytic inequalities with emphasis on differential and integral
inequalities in the spirit of functional analysis, operator theory, nonlinear anal-
ysis, and variational calculus, featuring a plethora of applications. In particular,
in this volume the reader will be exposed to the important areas of research
such as convexity theory, polynomial inequalities, extremal problems, prediction
theory, fixed point theory for operators, PDEs, fractional integral inequalities,
multidimensional numerical integration, Gauss—Jacobi and Hermite—Hadamard-
type inequalities, Hilbert-type inequalities, as well as Ulam’s stability of functional
equations. This publication provides significant and up-to-date information and
several research results, which could be found useful to a wide readership including
graduate students and researchers working in Mathematics, Physics, Economics,
Operational Research, and their interconnections. The contributed book chapters
have been written by eminent researchers in their corresponding fields. The
discussion of concepts, theories, problems, and methods featured in this publication
makes it an invaluable reference source. It is our pleasure to express our thanks to
all of the contributors in this book who participated in this collective effort. Last but
not least, we would like to acknowledge the superb assistance that the Springer staff
has provided for this publication.

Athens, Greece Themistocles M. Rassias
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Harmonic Hermite-Hadamard )
Inequalities Involving Mittag-Leffler ik
Function

Muhammad Uzair Awan, Marcela V. Mihai, Khalida Inayat Noor,
and Muhammad Aslam Noor

Abstract The main objective of this paper is to establish some new refinements
of Hermite—Hadamard like inequalities via harmonic convex functions on the
co-ordinates with a kernel involving generalized Mittag-Leffler function. Several
special cases are also discussed as applications of our main results. The techniques
of this paper may be starting point for further research in this dynamic field.

1 Introduction and Preliminaries

Inequality theory has played a fundamental and crucial part in the development
of almost all the fields of pure and applied sciences and is continuing to do so.
Inequalities present very active and fascinating field of research. Recently, a wide
class of inequalities are being derived via different concepts of convexity. As a
result of interaction between different branches of mathematical and engineering
sciences, convex functions have been extended and generalized in several directions
from different points of view. The ideas and techniques of convex functions are
being used in a variety of diverse areas of sciences and proved to be productive and
innovative. These facts have inspired and motivated the researchers to generalize and
extend the concept of convexity in various directions. The development of convexity
theory can be viewed as the simultaneous pursuit of two different lines of research. It
reveals the fundamental facts on the qualitative behavior of the solution to important
classes of problems; on the other hand, it also helps us to develop highly efficient and
powerful new numerical techniques to solve complicated and complex problems. In
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fact, convexity theory provides us a sound basis for computing the approximate and
analytical solutions of a large number of seemingly unrelated problems in a general
and unified framework. For example, the variational inequalities, which can be
regarded as a natural extension of variational principles, are related to the simple fact
that the minimum of a differentiable convex function on a convex set in any normed
space can be characterized by a variational inequality. However, it is remarkable
and amazing that variational inequalities allow many diversified applications in
ever branch of pure and applied sciences. See, for example, [18, 19, 22, 23]. On
other hand, a function is a convex function, if and only if, it satisfies the Hermite—
Hadamard type inequality. Convex functions have been generalized and extended in
several directions using interesting and novel ideas. Several new classes of convex
functions and convex sets have been introduced and investigated. Various new
inequalities related to these new classes of convex functions have been derived by
researchers. It is worth mentioning that the weighted arithmetic mean is used to
define the convex set. Related to the arithmetic mean, we have harmonic mean,
which has applications in electrical circuit theory and other branches of sciences. It
is known that the total resistance of a set of parallel resisters is obtained by adding up
the reciprocal of the individual resistance value and then considering the reciprocal
of their total. Anderson et al.[1] have considered and studied some other properties
of the harmonic convex functions. In particular, it has been shown that a function f
is a harmonic convex, if and only if, it satisfies the inequality of the type

ey

2ab ab [ f(x) f(a)+ f(b)
< dx < —————~
(a—i—b)_b—a/a x2 - 2 ’
which is called the Hermite-Hadamard inequality for harmonic convex function.
Noor and Noor [21] have shown that the optimality conditions of the differentiable
harmonic convex functions on the harmonic convex set can be expressed by a class
of variational inequalities, which is called the harmonic variational inequality. This
shows that harmonic convex functions have similar properties that convex functions
have. This allows us to use the analogue results of the convex functions to suggest
similar numerical methods for the harmonic convex functions. This is itself an
interesting problem. See also Noor et al. [22] for more details. This inequality gives
us a lower and an upper estimation for the integral average of harmonic convex
functions defined on compact intervals, involving the midpoint and endpoints of
the domain. It is not a consequence of harmonic convexity but characterizes it as
it provides us necessary and sufficient condition for a function to be harmonic
convex. It plays a significant role in numerical analysis and also has applications
in theory of means. For some more details, see [4, 6, 32] and the references therein.
Recently, many researchers have extended Hermite—Hadamard’s inequality on two
dimensions utilizing co-ordinated convex function, see [2, 3, 5, 24, 28].
Fractional calculus is the branch of mathematics in which we discuss the ideas
of arbitrary order differentiation and integration. Since the appearance of these
ideas, there were no acceptable geometrical and physical interpretation for many
years. Now we know that the geometric interpretation of fractional integration is
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“Shadows on the walls” and its physical interpretation is “Shadows of the past.”
Recently, it experienced a rapid development due to its great many applications
in different fields of pure and applied sciences since it is a good tool to describe
long memory processes. For details, see [7, 11, 16]. Recently, inequalities experts
have also used the ideas and techniques of fractional calculus in obtaining several
fractional refinements of classical inequalities. Sarikaya et al. [29] used fractional
integrals and obtained the fractional version of Hermite—Hadamard’s inequality. For
some recent studies and investigations, see [10, 12-15, 17, 27, 30].

The Mittag-Leffler function is a special function, which arises naturally in the solu-
tion of fractional order integral equations or fractional order differential equations. It
is also involved in the study of the fractional generalization of the kinetic eqnarray,
random walks, Levy flights, super diffusive transport, and in the study of complex
systems. For interesting details, see [9].

We now discuss some basic concepts and results that will be helpful in obtaining
main results of the paper.

In recent years, the concept of convexity has been extended and generalized in
different directions. Noor et al. [20] introduced the notion of co-ordinated harmonic
convex functions.

Definition 1 ([20]) Let us consider the bidimensional interval A = [a, b] X [c, d]
in R2\ {(0,0)} witha < b, ¢ < d. A function f : A — R will be called harmonic
convex on the rectangle A, if

ab cd
/ (ta TA—0b te+(1 _,)d> <(-nfla,c)+1tf(b,a), 2)

for all (a, b), (c,d) € A, t € [0, 1].
These co-ordinated harmonic convex functions may be defined as:

Definition 2 ([20]) Let us consider the bidimensional interval A = [a, b] X [c, d]
in R\ {0} witha < b, ¢ < d. A function f : A — R is said to be co-ordinated
harmonic convex function on the rectangle A, if

Xy uv
! <tx +A =0y su+( —s)v)
=A=-0A=9)fx,u)+A=9tf(y,u) +s(1—0)f(x,v) +15f(y,v),3)

for all (x, y), (u,v) € A, t,s € [0, 1].

We would like to mention that a function f : A € R?\ {0} — R is called harmonic
on the co-ordinates if the partial mappings fy : [a, b] — R, defined by fy(u) =
f(u,y),and fy : [c,d] — R, defined by f,(v) = f(x, v), are harmonic convex for
allx € [a,b]land y € [c, d].

Definition 3 Let f € L[a, b], where a > 0. The Riemann—Liouville integrals
J, f and Jp_ f, of order v > 0, are defined by
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I ) = ﬁ f = F e forx > a

and
v 1 b v—1
Jb_f(x) = m/ (t —.X) f(t)dt, for x < b,

respectively. Here, I"(v) = f > e~"tV=1dr is the Gamma function. We also make
the convention

Jor F) = T f () = f(x).

Definition 4 ([8, 16]) Let f € L(A), A = [a, b] x [c, d]. The Riemann-Liouville
integral

l)1 V2

a+ C+f(x y) = m/ / (x =1~ l(y s)27 lf(t s)dsdt,x >a,y>c

Vl V2

I 1w = g [ [ (= 0"V = )27 fdsdrx > a,y < d

Vl 2

T G y) = m//(z Oy =927 f, s)dsdt, x < by > ¢

and
Ul vz ~fxy) = m[ / t—x)"1 s — Y2 1f(t s)dsde,x < b,y <d,

respectively.

Here, I' is the Gamma function, J£;00+ flx,y) = JB;O Sy =
0,0 0,0 1,1 )

Jb*’C‘Ff(x’ )’) = bf’dff(-xa )’) and Ja+’c+f(xa y) = fax fcy f(ta S)det

More details about the Riemann—Liouville fractional integrals can be found in [8].

In [26], Salim and Faraj have defined the generalized fractional integral operators
containing Mittag-Leffler function:

Definition 5 Let u, v, k, [, y be positive real numbers and w € R. Then the gen-

eralized fractional integral operators containing Mittag-Leffler function & i’; .
w,a
and €, V’]; _ for a real-valued continuous function f are defined by
8,k ,8,k
(,ZHMJ (x) = / (x—n"EN (0 = ") f(0)d, (4)

respectively
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8,k 8,k
(25 iy £) 0 = / (t — )" TVELYT (w(r — x)") f0)dr, 5)
where the function El):i]; is generalized Mittag-Leffler function defined as

y8k

- D 1"
/4 v, l( ) = Z ’
= T (un+v) O
and (a), is the Pochhammer symbol: (a), =a(a+1)-...- (a+n—1), (a)g = 1.

Remark If k = [ = 1 in (4), then the integral operator (eiiﬁwﬁ f ) reduces to

y.,8,1

v Lot f ) containing generalized Mittag-Leffler function

an integral operator (

E::’S’] introduced by Srivastava and Tomovski in [31]. Along with k = = 1, in
addition if § = 1 then (4) reduces to an 1ntegra1 operator defined by Prabhaker in
[25] containing Mittag-Leffler function E}, 1u,v- For o = 01n (4), the integral operator
y,8,k
uwov,l,w,at
In [26], the properties of the generalized integral operator and the generalized

f ) reduces to the Riemann—Liouville fractional integral operator [26].

Mittag-Leffler function are studied. It is proved that EZ?)I; (t) is absolutely con-
vergent for all t € R, where k < [ + . Since |EV’8’k MO1<>00 ‘M ’"

I (un+v) (8)in
. 00 W kn 1
with Zn:() ‘ I' (un+v) (8)in

=3, Wehave|EyUl(t)|<S

Inspired by Definition 5, we will give the following definition:

Definition 6 Let i, v, k, [, y be positive real numbers and o € R, then

y.8.k

<8M1V:1,w.a+,c+ f) (x,y)

12,0202

X y
= / / ="y - S)”Z_IEZ‘,',‘SV‘,’,IZ (01 (x — 1)) E2°2R2 (05 (y — )92 £ (2, 5)dsdr,
a c
xX>a,y>c
v.8.k
(%l..v,l,w.a*,d’ f) (. ¥)
xord 1 1 o181,k Sk
= / / =" s =T ER T (010 = ) EV2CE (was — 3)!2) £, s)dsdr,
a Jy
X >a,y<d,
y.8,k
(suyv,,yw,biﬁ f) (x, )

b py
=/ f (¢ — 0"y — )2 EN U (01— 1)) ERZ R (0a(y — )2) f(2,5)dsdr,

Ha,va,ln
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x < b,y > d, respectively
8,k
(SZ,VJ,a),b’,d’ f) (x, y)
b I 1 gk Va.82.k
v — v 1,01,K1 2,02,K2 L
-/ / (£ =01 s — W2 LEIR (00— ) E2R (s — 1)) £, s)dsdt,

x < b,y < d, where p = (ug,p2),v = (vi, ), 0 = (w,w2),y =
V1, 92),8 = (61,682) , k = (ki, k2) , ., v, , v, 8,k > (0,0).

Similar to Definition 6, we introduce the following fractional integrals:

Definition 7 Let u, v, k, [, y be positive real numbers and o € R, then

(e o) f(x ”d): / S L o0 ) ( C;d)d;,
(‘g;):l{,ilfji,whb )f<x7 C+d> /xb(t—X)”' EN (@01 =M ( C—;d>dz,
(ermmes) 1 (“;b y) [Fo=oriezat (w2<y—s>"2)f(”;b s) ds.
(s ) £ (F570) = [0 B s =y (7

2

Definition 8 A function g : A C R?\ {(0,0)} — R is said to be harmonically
symmetric with respect to 2 2 5 and CZ +‘2 on the co-ordinates if

+3—1 -5
(x,y) = <x,
8 y 8 %Jr% }l
g 1
e

holds for all x € [a, b] and y € [c, d].

Lemmal Let p € R\ {0}, and g : [a,b] € R\ {0} — R be integrable and
p-symmetric with respect to ¢ 'H’ , then

@ Ifp >0,
}/,(S,k _ )/,(S,k
(2t ot 0= (20 ey =t @0

_ l 7.8,k p 7.8,k »
=3 [(su’v’[’w’(ﬂszyg o h) (b ) + <8u,u,l,w,(“”§b”)g o h) (a ) ,
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with h(x) = x'/P, x € [aP, bP],
() Ifp <0,

y.,8,k _ y.8.k

I (R R [
! v:8.k sk

=371\&. h ) (a? - gon| ()|,
(50 e 00 (20 e £2) )

with h(x) = x'/P, x € [bP, aP].

2 Results and Discussions

Now we are in a position to present our main results.

Lemma 2 [f the function g : A — R is nonnegative, integrable, and symmetric
with respect to 3_‘:_’;7 and =25 Zed g on the co-ordinates, then the following equalities hold

(et (52) = (0 seeen) (5o 2)

= (7 en) (a2) = (g ageeen) Go2)

= % [(ﬂiéfwaf; 200-8° h) (zI; 31) * (EZ“,‘M@ 200+8° h) (1% é)
(e seeon) (Ga) (0 s seron) (32) | ©
where h : [%,al] X [é, —] — R, h(t,s) = (t, i)

Proof Since g harmonically symmetric with respect to zi’;) and 2C g using Defini-
tion 8, we have

(g0 ). 5) (1 1) 1 1
go y S :g s =g 3 5
rs %-I—I%—t %—i—é—s

forallt e [1 1] s € [3 —,] where & : [% %] X é% — R, h(t,s) = (; Al)
Hence, in the following integral setting, x = 3—1 + +
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1
f‘%*f /
H1 M2
71,81,k 1 ¥2,62,k2 1 11
3 (- ) 2
Vv]i— 1 1 U2—1
/zz,f /at:f ( ) _> (y ) 5>
H1 I7%)
71,01,k1 1 ¥2,82,k2 1 11
XEMl,vlJl (wl (x o E) ) Euz,vz,lz <(u2 <y - E) )g (;» ; (=dy)(—dx)
1
H1 I7%)
71,01,k 1 2,82,k 1 11
8 e ) ) o

_ (K 11
- (8 a+b— c+d’g <Z’ E) : (7)
Similarly, we get

M,V’l,w,m s Jed
7.8,k 11 REX 11
oh)[—-,-)= oh -1, ®
(ww:f g+8 )( )T Chvrogp 87 )\ e
respectively,

y.8.k aY (L L) _ (rok AYEIE AT
(wm::*zr;*g" )( “untostt s 2N\ a)

Combining equalities (7), (8), and (9), we get equality (6) and the proof is complete.
O

Remark 1f we take w1 = wo = 0, then (6) gets
1 1 11
JV] VE g h) <_, _> - <JU1 VE gOh) <_’ _)
( ok b’ d M b’ c
11 11
— JVI,UZ 3 ]’l P — JU1 , V2 h - -
( §° )( d) ( AV
1 11 11
=— (s goh) (-,—)+<J”‘ 2 goh> (-,-)
4[( 5 b’ d e b e
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11 11
+(J2  _goh + (T h .
( 2 \ara 22780\

The next result is the Hermite—-Hadamard type inequality via harmonically convex
functions on the co-ordinates containing the generalized Mittag-Leffler function.

Theorem 1 Let f : A — R be harmonically convex on the co-ordinates on A =
[a, b] x [c, d] in R? \ {(0,0)} and f € L[A]. Then one has the inequalities:

y.8.k 11 .8k 11

= G [C) K3 CAmMR) (C)
a+b c+d .8,k 1 y.8.k 11
+<€ atb~ i"+l>( E)+ Eu,v,l,w,"+h7 id71 (Z’E)

wvlo, Sy Geq 2ab 2cd

.8,k (1 1) .8,k (1 1)
& oh|(=,2)+ (¢ _foh])l(=, >
( H,v,/,a),fazzing,%tderf ) a’c wo,lo, atbt —C+j ! a’d

2ab  * 2c

.8,k | 8,k
+<8y ath— c+d+f°h> b Z <y atb— c+d — f°h> (E 3)

wv Lo 5y 5 wv Lo S Geg

_f@o+fbo+ flad+ fbd

=

- 4
.8,k 11 y.8.k 1
<8;Lvlma+b+ ﬂ‘*’l) (E’?)+< Lulw"+b+ ctd ~ > a’ E
% VO 3ah 0 Ded ¢ b Zed (10)
i RN l>(l l).,. v.8.k ) 11
R A ALV WP b "
’ ’
Where /’L = (/’l’lv /1’2) v = (])17])2) w = (a)l’ 2) = (V]? y2)58 =

(51,82) , k = (k1. k2), p, v, @, 7,8,k > (0,0) with )
and h : [z’a] x [sz C] — R, h(t,s) = (% %)

Proof If wetaket =5 = % in (3), we get

w2
= a)w L)y = @—om

7 2xy  2uv Sf(x u) + fx, v)+f(y,u)+f(y,v) (11

x+y u+v 4
. . . _ ab _ ab _ cd —
Using the substitutions x = —%H%b,y = %H%a,u = Je s and v =

cd

= 1nequa11ty (11) gets

ab cd
f<2ab 20d><1 f(2a+2 ’b’§c+2 sd>+f< 2,b,r>
4

a+b C+d +f<tb+2r Cd >+f( 127 S Cd25>
2

Se+itd sh+=ta’ sd+55tc

12)

Thus, multiplying both sides of (12) by "1 ~!s"2 =1 V0L (@ gttty E72°242 (apsi2)

and then by integrating with respect to (¢, s) on [0, 1] X [O 1], we obtain
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1 1
f 2ab 2cd tvl—lsvz—lE}’lelskl (Cl) t,lL]) EVZ ,62,k2 (wzsuz) dsdt
a+b c+d) Jy Jo miv n2,v2.0
ol vi—Lgva—1 p¥1.81, ki wiy gr2:02.k2 w2
f()f ! Ell«l vl |(wt )EM2V2 2(a)2s )
__ab —d__
f(z th’ SC+ S g det
Lorlvi—1gm—1 g¥: 31, kl w1y Y202, kz w
+f0 fO ! Eﬂl vi,l (w 4 )Eltz V2,0 (a)zs )
__ab —d__
<1 f(z th’ jd-i-— det 13
- Z +fl fl tl)]*l vZflEVl .81, kl (w t/,tl)EVZ ,82, k2 (wzsﬂz) ( )
0Jo vl 2,202
ab
f(tb+2t 2 st det
Loelvi—tgm—1 g¥: 31, kl w1y Y202, kz w
+f0 fO ! Eﬂl vi,l (w 4 )Eltz V2,0 (a)zs )
_ab __ cd
i f<§b+22”5d+ )dsdt |
Using substitutions x = ﬁ (%a + %b) Y=o (%c + %Sd), we have
! ! 1 1 81,k 82,k
vi—1 vo— Y1:01,K1 "1 Y2,02,K2 7%
[ e B ) B () s

2ab \"' [ 2cd vt 2=l
= —_—— x _——
(b—a> <C+d) ﬁ*”/gtg( ) ( y)
w2
v1,81,k1 1 v2,62,k2 e
XEMLVIJI (wl (E —x) ) Euz va,lp (‘Uz (E - y) )dydx
2ab \"' [ 2cd \"™ 11
- SV,&k +h+ -+d+1 o) (14)
b—a d—c wov Lo S 55T a c
1
i—lgva—1 pyidik (o (M) EP? B2k (o ab ’ cd dsdr
/0/(; Mlvlll( ) szzlz(2 )f %a-l—%b %C-i-z%
() () o [ G ()
= Z_x ——y
b—a c+d c
Sk 1 ok 1 m 11
< (on (5 =) ) (s (3 0) ) (53 v
_ 2ab \"! 2cd \"™ v.8.k 1 1
B <b—a> (d—c) (Su,v,l.w’,%+~‘§2’+f0h ac) 15
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Analogously, we obtain

1 1 b d
vi—1 v—1 1,81,k m ¥2.62,k2 o a C
/(; ‘/(; ! § Eﬂlsvl-ll (wlt ) Euzsvquz (wzs )f 2—17 2-s5 . dsds

2ab " 2cd V2 y,8,k 11
= o _foh)l-,=-], 16
<b—a> (d—c) (ww—— 7o )( d) (16)

bt vi—1 vo—1 v1,81.k1 I v2,82,k2 o ab cd
t K Em,w.ll (w]z )EM_UZJ2 (wzs )f Tt g’ Tot id dsdt
0 JO 5 3 a 2C )

2ab \" [ 2cd \"* [ ysu 11
= <b—a> (d—c) (Eu.v,t,waztfiat;'*f°h> (E’E>’ a7

1 pl i
Ut ik (o predaka (o ab cd
T2 E wt") E wyst?) f , dsdrt
/O /é m1vh ( ) M2, ( ) %b + 2;[a d+ zgsc

2ab \"" [ 2cd \" { 51 11
= Vo _ o foh)l=~=). 18
<b—a) (d—c) (%,wazﬂ: e )(b d) (1%)

Introducing relationships (14)-(18) in (13), we get, after multiplying with

(’%)v1 (%)Vz and using Lemma 2

S

7.8,k >(1 1) (yﬁvk 11
e 1) (2. 2)+ (¢ -z a
. bt c4dt ’ atbt cid T d
f( 2ab 2cd ) ( M.v.l.w,‘zb ,% e Mf”vlfw*%:—b '(2-:;1 “
1
c

a+b c+d y.8.k 1 .8,k 11
+1le S N A I ol a1 2
R - AV wvlo S5 55 brd

y,8,k 11 v,8.k 11

P . . foh (f <)+ P L fon) (L1

< ( oL, S 5t are v Lo, S 5H ad

y.8.k 11 y.0.k 1 1) |’
+(8 ash- ﬂ+f°h> (zsz)+<€ ath- M—f°h> (E~3)

u,v,l,w.sz > 2ed wov,lo, 2ab > 2cd

with which the first inequality of (10) is proved.

For the proof of the second inequality in (10), we first note that f is a harmonic
convex function on the co-ordinates on A, and then, by using (3) it yields

¥ ab cd
La+5h" S+ 354d

2—t 2—3%s

2—t
2

IA

2—s5 t
f(a,C)+—-§f(b,C)+

Stad+ L Lrwa
2 2 Sf@d+ 7276,
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2—t 2—y% 2—5 t 2—t s t s
ET' > fla,d)+ 'Ef(l%d)‘f‘T'Ef(dyc)‘i‘z'zf(b,C),
¥ ab cd

%b-i—%a’%c—i-z%d

2—t 2—3%s 2—s5 t 2—t s t s
7 ab cd

e

2 2 e+ 2 L+ 2 o+ L o
== 5 , 5/, 5= 5/t 5 S @ o).

By adding these inequalities, we have

7 ab cd +f ab cd
La+ 35 Sc+ 355d La+ 35 3d + i

+f ab cd +r ab cd
Lo+ 2ta’ Sc+35d b+ ta’ Sd + Hic

= fla, o)+ fb, o)+ f(a,d) + f(b,d). 19)

Then, multiplying both sides of (19) by Jr"1=15¥2=1 EXIUAT (@ er1) E720252

(wos"?) and integrating with respect to (¢, s) on [0, 1] x [0, 1], we get

/l /l [\}171 vzflEVl;BI;kl ( tﬂ]) EVZKSZJ{Z ( }Lz) f ( ab cd )d dr
K w1 s , s
Hisvih w2,v2,0 t 2—t s 2—s
0 Jo 5d + Tb 5C + Td
+/l /1 tvl—l szlEVl,sl,kl ( t“l) Eyz,t?z’kz ( ;12) f< ab cd )d dt
s w] wys s K
w1l n2,v2,l t 2—t s 2—s
0 Jo 53d + Tb jd + Y

1 1
vi—1 vp—1 1,81,k I ¥2,62,k2 W\ f
+/0 /(; t s E#],Ulyll (wlt ) E#z,vz,lz (w2s ) f

+[1 /1 ri—lgn—1pridik (w11™) EY202.k (w25"2) f ab cd dsdt
s w1 - w2 s Pl — S
o Jo w1, n2,v2,0 %b-l— 2;ta %d—l— ZTAC

1 1
< [ [ et ) B sy | 0O IO asar,
o Jo o > +fa,d)+ fb,d)

So, after multiplying with (lﬁ)vl (%)U2 and using Lemma 2, we have
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.8,k (1 1) y.8.k (1 1
£ oh]) (=, = £ _foh])l=, >
( ulo atbt c+d+f ) a’c wlo ‘Zf+»‘2f§1 f a’>d

> 2ab ° 2cd

N—

7.8,k 1 1 v.0.k 11
+ 8 b d+foh> e ( b= ctd— foh)(}—),g)
vl SE 55 ¢ wvlo, Sg S
_faa+fbo+ flad+fbd
- 4
.8,k 1 (1 1) g0k 11
L)+ 1) (L4
y (uvlw‘zf* arj*) R AT
y,8,k 1 1 y,8,k 1 1
+ ) (5 )+ (e 1) (1)
(wlw‘éié’ L A A R TR AU
which finishes the proof. O
Remark For w; = wp = 0, Theorem 1 is transformed into a new theorem with

integrals of Riemann—Liouville type:

Theorem 2 Let f : A — R be harmonically convex on the co-ordinates on A =
[a, b] % [c, d] in R? \ {(0,0)} and f € L[A]. Then one has the inequalities:

Vi,V 1 1 Vi,V 1 1
(J,;HJ%M+1> (;» ;) + (J‘,IH,J% Ml) (5, 3)

f < zab 2Cd ) ab 2cd 2ab  ° 2cd
a+b’ c+d 11 : 11
+ (J:ihvf c+d+1> (5. 2)+ (0 w—l) (3 4)
2ab 2cd 2ab > 2cd
<J:1+',,vi at S oh> G, %) + (J:vai g fo h) <%, %)
S 2ab  * 2cd 2ab  * 2cd
Vi,V 1 1 Vi,V 1 1
+(Ja'+bz waoh) (31 + <Jul+b3 M_foh) (+.4)
2ab  ° 2cd 2ab 2cd
_f@o+fbo+ flad+ fbd
- 4
Vi,V 1 1 Vi,V 1 1
(J(IIH)‘%' C+d+1> (57 g) + (Jajrbi M—l) (E’ 3)
X 2ab 2cd 2ab  ° 2cd ,
V1,V 11 V1,V 1 1
+ (faibz c+d+1) (z’ z) + <Jal+hz c+d1> <zv z)
2ab 2cd 2ab  * 2cd

where h : [— %] X [%, —] — R, h(t,s) = (t, ;)
The following theorem establishes Hermite—Hadamard—Fejer type inequalities for

co-ordinated harmonic convex functions containing the generalized Mittag-Leffler
function.

Theorem 3 Let f : A — R be harmonically convex on the co-ordinates on A =
la, b]x[c, d] inR?\{(0, 0)}, f € L[A), and the function g : A — R is nonnegative,
integrable, and symmetric with respect to 225 Z“b 5 and == Zed “ta Onthe co-ordinates, then one
has the inequalities:
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S (1 1) -
(, —”)
v:8.k (L 1)
f(ﬂ ﬂ) 8**’“’1@’%35“;;*5"”1) ad
a+b c+d y.8.k 11
VTP °h> (3-2)
v,8.k (1 1)
*(r——”) va) |
7.8,k (l 1) ¥.8.k <l ,)
< (570t o) (58 (00 g Feon) (5
- y.8.k 1 y.8,k
AP zt:*fg"h)(E IRd GRS at;”f“h)(E 1)
fla, o)+ fb,e)+ fla,d)+ f(b,d)
= 4
V.8.k (; 1) y.8.k (1 l)
h h
% <£u.v,l,w-%+v%ﬁ+go ) ac +<Euv1w‘£ﬁ3+ 578 ° ) ad . (20)
y8k 1 1 yB,k ( 1
T ot at;’*gOh) b )+ (gt s g”) K
where u = (ui,p2),v = (v,m), o = (o], 0)),y = (r1.12).8 =
(817 82)7k = (kls kz) /JL?U C()/ %5 k > (O O) Wlth w/l = (h_wal)ltl ,C()/z = (d_wg)liz
1 1 _ (11
andh.[l; E]X[E*E]_)Rh(t s) = (t,s)

Proof Since f is a harmonically convex function on A, we have inequality (12).
Multiplying both sides of this inequality with

—levm—1 ¥, 31,k w1 ¥2,82,k2 7% ab cd
! E ( 1t )E (a)zs )g
I I . -
H1,v1,h H2,V2,02 %a—l—%b %c—l—%d

and integrating with respect to (¢, s) on [0, 1] x [0, 1], we obtain

/ 2ab  2cd

"\a+b’ c+d

1
) —1 1 1,81,k k ab cd
/(; /; 1= lgr— EVI] vl] l: (a) tﬂl) El):i v22 l§ (a)zs“z)g (ta+ hb’ ry 2Sd) dsdt
2 2
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IA

=

Using substitutions x = - (%a + %b) y=27 ( c+ 35 d), we have

dsdt
d

A
-

) b Y 2ed <
XEVI \81.ky - E" 182,k / e dvdx
w1l a) X 2,2l -y 8 y
( 2ab 2cd vt e
- c+d /a+h '[sz a (;—y
1,81,k 2 72.62.k2 / e
E#] v l| w X EMMJ2 -y (goh)(x,y)dydx

=
VK

b cd ab
X a s R dsdt
L f(§b+—2;’a sd+%0c 8 Lat35lh’ Sct = sd>

Lol oy —1 sV 1 Vl 51 kl L v2,62,ka 7
jfozl 2LED D (@it B2 (025H2)

d ab
X s - R dsdt
f( a+2 Lh’ Se+235d 8 Lat+3th %+2 :d>

+/‘ f tvl—l vy — lEVI 01,k (w t;,L])EVZ ,82,k2 (w Sp'z)

iVl H2,v2,l
cd ab
X , dsdr
f( a+2 b’ sd+%5° )g<ga+%b —c+7;‘d)
vi=lgu—1 Y 81.k1 I v2.82.k2 1o
+fft Emv‘ll(wlt )Euzvlz(ws )

cd ab
X dsdt
f( b+2’ = ‘d)g<za+2 h’ *c+2;d>

vi—lgum—1 griouk wiy 202k w
+f0 fo ! S EHI.VI-II (w11 )Eu 2.l (2s2)

ab

vi—1 vo—1 1,81,k "1 72,82,k 1723
! § Elll’Vlal] (Cl)ll’ )Ep.z v2,lp (602S )g

(332) /M /. (*—x)”'_l - )

2cd o7k goh
Fvdor gt 5t

(o)

vi—lgm-1pn. 31,k1 i v2,82,k2 7%
E,ul vy, ( 1t )Ep.o v2,lo (a)zs )

A

< 2ab

Y1,
E.Ul

-(5-

ab cd ab cd dsdr
s R s
La+ 5" S+ 23%d 8 La+ 35" S+ 2%d
D G LG G
o ——y
ctd) Jsp )y
2
¥2,82,k2 , (1 1
(o (G=) ) e (o (2 0) ) (g
2cd y.8,k 11
) ( ) (uvzw/zzf*zt:*ngh ac)

31,k

t 2—ty1’ s 2—s
20+ b je+ 7

15

21

(22)

(23)
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For the next three inequalities, we use previous substitutions and substitutions u =

l + 71, —X,v= % + 5 — y, respectively, the harmonically symmetric with respect

2ab 2cd.
tomand Saofg.

1
-1 1 RIWS k
/0 /0 1= lgr— El}:]l Vll 111 (w tHl) EZZ2 VZZ ]: (a)zs’”)
ab cd ab cd
Xf < t 2—1b7 sd 2—s >g ( I 27,[)7 3 2Sd> dsdr
§a+T 2 +TC ja"'T §C+T
2ab Vi vi—1 1 vn—1
() S G
—a atb | ct ¢
2ab Y 2cd
81,k 1 ! 5k 1 12
XEle-VllJll (wa (Z - x) > E;)?z v2z l; (w,Z (; - )’)
1 1 11
fl- T 71 )8\ dydx
Yoetag—y Xy
_ 2ab 2cd vi—1 1 v —1
B b—a 2 ctd a7 P

2cd

1 i i
o ;—x) )E( (,_y) )

1 1 1 1
f ST o1 )8 PO dydx

YetaTy cta-

2ab \"' [ 2cd i 2u/ 1 vi—1 1\ 2!
“\b-a d—c u+b i a Ty

1 82,k 11 11
/ EY200k
(w1 (;—x) ) u2Vzlz< ( ) )f(;;;)g(;,;)dvdx

2ab 2cd .5k 11

‘(b—a) (d—c) (8#,v,z,wcza“,atj'fg°h) (5*3)’ (24)

1 1
vi—1 =1 Y181,k Wi\ y2.82.k2 w
\/O\ /(; ! § E.ulv“'lsll (C()lt ) E n2,v2,lp ((,()ZS )

ab cd ab cd
xf t ’ 8

2—t Ky 2—s t 2=, s s
sb+55ta se+ 550 ) \sa+ b Sc+5°d

2ab \" ( 2cd \* ( ysi reon) (L} (25)
= ° -
b=a) \d=c) Cumrorgg gy 7)o )

dsdt
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1 1
v.—l sV 1 71,01.k1 n ¥2,82,k2 "
[ et i ) B (o)

b d b d
X f a ¢ g a ¢ dsdt

t 2—t s 2—s t 2—t1’ s 2—s
§b+T“ §d+TC §a+Tb §C+Td

2ab Vi 2cd 2 v.8.,k 11
= h e 26
<b—a> (d—c) (uzw - g T80 )(b d) (20

Introducing relationships (22)—-(26) in (13), we get, after multiplying with

(bza;g)vl (%)Vz and using Lemma 2

y.8.k 11 v,8.k 11
¥ ( 2ab  2cd ) <8M vl a+b+,r+d+g) <Es E) + (8# bl 82 ctd 8) (g, 3)
a+b c+d .8,k 11 7.8,k 11
+ <8 a+bh— (‘+d+g) (E’ E) + (‘9%”,1,&)’:?[17 ~Ld g) (E’ 3)

v Loy 5
.8,k 11 v,8.k 11
( u+b+ c+4l+fg0h) (a’;)+<8 atbt c+4l’fg0h a’d

Wb, G s G WL, S e

v.8.k 11 7.8,k NE
+ (811,,\1,1, % M-'—fg ° h> <E, E> + (8114,1),1@,@_ r+d—fg o h) (B' 3)

@b Zed 2ab  2cd

IA

with this the first inequality of (20) is proved.

For the proof of the second inequality in (20), we multiply inequality (19) with
—1ovy— 81,k .82,k .
s LR (ot BN (w2s“2)g<;ajngb’ gcf%d
ing with respect to (z, s) on [0, 1] x [0, 1]. By computing, we get

7.0,k 11
(e,u,v,l,w atbt L+d+f Oh) (Z’ Z)

2ab  * 2cd

and integrat-

v.0.k 11
<2ub ) ( 2cd ) T\ ot s f°h> (&3
b — d— 8,k

a A I b eqiton) (

a+i
wvlo, 2ab  ’ 2cd

8,k
+ <8V at+b— r+d_f oh (

vl o, Ty g

)

S
o=

U=

3

=

)
)
)|

<f(a,c)+f(b,c)+f(a,d)+f(b,d).<2ab) 2c )
- 4 d—

y.8.k 11 7.0,k 1
£ + +1 (—, —) +1¢ + 1)z
o < w4t otd ac vl 5T ot a

U=
—

2ab  ° 2cd

v,8,k 11 y.8.k 1
+<lewa+b c+d+1>(E’E>+<M”wa+b c+d’1 b’

2ab  ° 2cd 2ab > 2cd

)

U=
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So, after multiplying with (lﬁ)v1 (d

2dc

M. U. Awan et al.

o2 .
€)* and using Lemma 2, we have

y.8.k (1 1) .8,k (1 1)
oh (=, -)+|¢ _foh|ls, 7
CRmepnrat) ORI Crpmane L [CF
v,8,k 11 y.8.k 11
+<s +foh>(—,—>+< o fon) (L)
povdo 555 bre povdo S5 brd
<f(a,C)+f(b,6)+f(a,d)+f(b,d)
= 4
y.8.k 1 (1 1) .8,k (1 1)
+ oepdt ac)tle a1\ a0 g
« (uvlw,zzf SN wlw,zx’ SV
v.8.k 1 1 yék 11
+1e€ S B I 1) (L L
pov o, 45 5 b ‘ Cuvtogh s ) \Bd

which finishes the proof.

Remark For w; = wy; = 0, Theorem 3 becomes a new theorem with fractional

integrals of Riemann—Liouville type:

Theorem 4 Let f : A — R be harmonically convex on the co-ordinates on A =
[a, b]lx][c,d]in R2\{(O, 0)}, f € L[A), and the function g : A — R is nonnegative,

integrable, and symmetric with respect to

has the inequalities:

2ab

5 and 24 on the co-ordinates, then one

ctd

Junv oh) <l l>+( vV oh) (1 l)
f< 2b 2cd> ( A A AN A VAT
b ctd , ,
| (s o) (b0) (02 g o) ()
2ab  * 2cd 2ab  * 2cd
(2 e swon) (1) + (72 o) (24)
< ab 2cd ab > 2cd
- IR 1 V1,V 11
+ Ja;ﬁz%Jgoh) (5,;>+<J%3,%,fgoh> (1)

_f@o+fbo+ flad+ fbd

4

gon) (&4

RY
J]2

atbt ct+d+

( 2ab  ° 2cd
Vi,V2
(o

a+b—
where h - [%, le] X [

g

)

ctd T
e

2ab

11

d’ c

goh)( )+(J

]—>R,h(t,s)=(

Vi, V2

atbt
2ab

goh) (é,
goh) 1,3)

)

ctd —
» 2ed

Vi, V2

atb
2ab

c+d —
* 2cd

11

t’s
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3 Conclusion

We have derived several new integral inequalities of Hermite—Hadamard type
via the functions having harmonic convexity property on the co-ordinates. These
inequalities involve a kernel containing generalized Mittag-Leffler function. We
have also discussed some new special cases of the main results. It is expected that
the results obtained in the paper may inspire the researchers of this field.

Acknowledgments Authors would like to express their gratitude to Prof. Dr. Themistocles M.
Rassias for his kind invitation and support. This research is supported by HEC NRPU project No:
8081/Punjab/NRPU/R&D/HEC/2017.
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Two-Dimensional Trapezium Inequalities M)
via pg-Convex Functions oo

Muhammad Uzair Awan, Muhammad Aslam Noor, Khalida Inayat Noor,
and Themistocles M. Rassias

Abstract We establish some new two-dimensional trapezium-like inequalities
involving partial differentiable pg-convex functions on rectangle. The concept
of pg-convex functions also includes the harmonic convex functions and convex
functions as special cases. These results represent refinement and improvement of
the known results. Some cases are discussed, which can be obtained as applications
of the results. The ideas and techniques of this chapter may be a starting point for
further research.

1 Introduction

In recent years, the classical theory of convexity has experienced rapid development
due to its great many applications in different fields of pure and applied sciences.
Recently, the classical concept of convexity has been extended and generalized in
different directions. For more information, see [1-4, 7-9, 16-18, 26]. Power means
[9] can be viewed as a natural extension of the arithmetic means and have been used
to introduce the concept of p-convex functions. Zhang et al. [26] studied various
properties of the p-convex functions. Obviously, the p-convex functions include the
convex functions and harmonic convex functions as special cases. Several Hermite—
Hadamard-type inequalities have been obtained for the p-convex functions in recent
years. Noor et al. [17] extended the class of p-convex functions to two-dimensional
pq-convex function and derived some new and novel integral inequalities.
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It is a known fact that convexity has a close relationship with the theory of
inequalities. Many inequalities can be obtained directly using the definition of
convex functions. Hermite—Hadamard inequality is one of the most studied results,
which can be obtained using convex functions. This result provides us the necessary
and sufficient condition for a function to be convex. Itreads as: Let f : [ = [a, b] C
R — R be a convex function, then

b
f(a+b>§ 1a/f(x)dx§f(a);f(b),

2

and conversely. This result is called Hermite-Hadamard’s inequality. For some
recent studies, see [1, 3-7, 16, 17, 19-25].

In this chapter, we consider the class of pg-convex functions on a rectangle.
We establish some new trapezium-like inequalities using pg-convex functions on
rectangle. Several special cases of results are obtained as applications. Our results
can viewed as significant refinement and improvement of the previous known
results. It is an interesting problem to consider the applications of two-dimensional
inequalities in numerical analysis and approximation theory.

2 Preliminary Results

In this section, we recall some previously known concepts. For more details, see an
excellent book [9].

Definition 1 ([26]) A set K, is said to be a p-convex set, if

1
[tx? + (1 —0)yP1» € K,, Vx,yel,te[0,1],p+#0. (1)

It is worth mentioning that for p = 1, the set K, becomes the convex set K and for
p = —1, the p-convex set K, reduces to the harmonic convex set K, respectively.
This shows that the p-convex set is quite general and includes the convex set and
harmonic convex set as special cases.

Definition 2 ([26]) A function f : K, — R is said to be p-convex function, if

Fax? + (1= 0yP)r <1f () + (1 =0 f(), Ya.y € Kp. 1 € [0, 11.

Also note that for r = %, Definition 2, becomes

1
f(xp+y1’)p - f(x)-i-f()’)’ Vx,y € K, t €[0,1].

2 - 2
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The function f is called the Jensen p-convex function.
We now discuss some important special cases of p-convex functions,

I. If p = 1, then p-convex functions reduce to:

Definition 3 A function f : K — R is said to be a convex function on the convex
set K, if

fx+ A=)y <tf)+A-0)f(Q), Vx,y e K,t €[0,1].

It is known that the minimum z € K is a minimum of a differentiable convex
function f on a convex set K, if and only if, u € K satisfies the inequality

(f'(w),v—u)>0,VYvek,

which is called the variational inequality. The variational inequalities can be viewed
as the natural extension and generalization of the variational principles, the origin
of which can be traced back to Euler, Lagrange and Bernoulli’s brothers. Variational
inequalities have appeared to be a powerful tool to study a wide class of unrelated
problems in a unified framework. For the applications, formulation, numerical
results, dynamical systems and other aspects of the variational inequalities, see [9—
15] and the references therein.

II. If p = —1, then p-convex functions reduce to:
Definition 4 A function f : K;, — R is said to be a harmonic convex function, if

Xy
f(m> stf)+UA=0f»), Vx,y € Kp, 1 €[0,1].

It has been shown by Noor and Noor [13] that u € Kj is the minimum of
a differentiable harmonic convex function, if and only if, u € K}, satisfies the
inequality

(rw.

uv
>201VU€K1‘11
u—v

which is called harmonic variational inequality. It is an interesting problem to study
the applications and numerical aspects of harmonic variational inequalities. For
further details, see [13, 14].

We now consider two-dimensional integral inequalities for pg-convex functions,
which is the main focus of this paper. Let us consider a bidimensional interval A =
[a,b] x [¢,d] € R? witha < b and ¢ < d. A function f: A — Rissaid to be
convex function on A if the following inequality:

fax+ (A =0z, ty + A -nDw) <1f(x,y) + A =1)f(z, w),
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holds, for all (x, y), (z, w) € A and ¢t € [0, 1]. This is definition is mainly due to
Dragomir [4].

A function f : A — Ris said to be convex on A if the partial functions fy :
[a,b] = R, fy(w) = f(u,y)and fy : [c,d] — R, fx(v) = f(x, v) are convex for
all x € [a,b]and y € [c, d].

Definition 5 ([4]) Let A = [a, b] x [¢,d] C R? be a rectangle. A function f :
A — Ris said to be (coordinated) convex function on rectangle, if
fax+ A -0y, ru+ 1 —-ryw)
<wrfx,u)+t(d—r)fx,w)+rd =0 f(y,u)+ A -0)1 —r)f(y, w),

whenever x, y € [a, b], u, w € [c,d] and t,r € [0, 1].
Definition 6 ([17]) Let A = [a, b] x [c,d] C RZ be a rectangle. A function f :
A — Ris said to be pg-convex function on rectangle, if
f(Mp(x1,x2; 1), My(y1, y25 7))
< trf(x, yD)+t(1—r) f(xr, y2)+r(1 = 1) f(x2, y1)
+(1 =) —r) f(x2, y2), 2

whenever x1, xp € [a, b], y1, y2 € [c,d] and ¢, r € [0, 1].
We now discuss some special cases of Definition 6.
I. If p = g, then, we have
Definition 7 Let A = [a, b] x [c, d] C R? be a rectangle. A function f : A — R
is said to be p-convex function on rectangle, if
f(Mp(x1, x2; ), Mp(y1, y2; 1))
<trf(x,y) +t(L=r) fGer, y2) +r(1—1) f(x2, y1) + (1 =) (1 = r) f(x2, y2).

II. If p = 1 = g, then Definition 6 and Definition 7 reduce to Definition 5.

This shows that the concept of pg-convex functions on rectangle is quite flexible
and unifying one.
For some recent investigations on pg-convex functions, see [17].

For the reader’s convenience, we recall here the definitions of the Gamma
function

o0
I'(x) = / e lar
0

and the Beta function



Two-Dimensional Trapezium Inequalities 25

1
B(x,y) = / 1A =
0

It holds

_rOr)
By =TFery

The integral form of the hypergeometric function is

1 1
2Fi(x,y;¢2) = —/ P =N = 2N de
B(y,c_)’) 0

for |z] < 1,c >y > 0.

3 Results and Discussions

In this section, we discuss our main results. For this purpose, we need the following
auxiliary result.

Lemmal Let f : A € R?> — R? be a partial differentiable function on A =
2 "
[a,b] x [c,d] inR? witha < band ¢ < d. If% € Li(A), then

Ry(t,r;p,q; A)
(P —af)(d? — )

4pq
11
1—2¢ 1—2r
x 1-1 1—-1
50 [ta? 4+ (1 —t)bP] » [ra? + (1 —r)bP] »
0% f . .
x%(Mp(a, b; 1), My(c,d; r))dtdr,

where

Re(t,r; p,q; A)
_ fla, o)+ fb,o)+ f(a,d)+ f(b,d)

4
b b
__r p—1 d p—1 ddx
s | [ et [a 7 fea)

a
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d d

_m /y""f(a,y)der/y‘f*‘f(b, y)dy

c c

b d
f / xP7y47 f(x, y)dxdy.

(bl’ — al’)(d‘i —c?)

Proof Consider

1 1
//( 1—2¢ ) ( 1—2r )
) ) ita? + (1 — 0)b2) "7 ) \[rar + (1 = r)br)' =7

*f
dtor

(M (a,b;1), My(c,d; r))dtdr

This implies

1
_ / ( 1—2t )
S \rar + (1 —npr)' 7

1
L- ”f Mp(a,b;t), M,(c,d;r))d
! % 31‘3r( pla, bi1), My(c, ’r)) r
0

[ra? 4+ (1 — r)bP]

il

Integrating by parts, we have

1

- 2

= [( l 2}" l> a f (Mp(a,b; t)’Mq(C,d; r))dr
0 [rav + (1 — r)pr) ) 0107

9 yar p1b of
iR q—([ta +{A-0b ]p’c)+dq—cq§

1

([ta? + (1

/ —([ta? + (1 — t)bl’]%,[rc‘“r(l—r)dqﬁ)dr.

0

dr.

3)

—ObP)7.d)

“)



Two-Dimensional Trapezium Inequalities 27

From (3) and (4), we have

1
L=—1 /( L-x 1)%([ta”+(1 —t)b”]%,c)dt
[ta? + (1 —)pr] "7 ) 91

0
q p
[ —aa /@t

p
dq — 1| bp —aaf(b’c)
2p? ;

Similarly from (3) and (4), we have

1
=1 /( L= )—f([rap+(1—r)b"1v d)dr
[ta? + (1 —)br]' "7 ) 01

0
1 [ P raady+—L—fo.a)
_a(l b _aa

b

/xp_lf(x, d)dx] (6)

a

2p2

G —ar?

Also,

1 1
R //( L-2 ]>%<[mf’+<1—r>b"13n
dt=ct LS \par 4 (1 —nypr)' = ) 9

[red + (1 — r)d?]7)drdt
d

_ 2pq’ B
T (bP —aP)(d? — ¢9)? /yq f(a, y)dy

c

d
2pq* »
+(bp —aP)(d1 — c1)2 /yq f(b, y)dy

c

(b'”—cu”)2 dq Y f/xp I f(x, y)dxdy. (7)
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On summation of (3), (4), (5), (6) and (7) and multiplying by /=eP¢’=c)
completes the proof.

Now using Lemma 1, we derive our coming results.

Theorem 1 Let f : A € R? — R? be a partial differentiable function on A =
2
[a,b] % [c,d] inR2 witha < band ¢ < dand &L € Li(AQ). If o f

2
aror aror | 1S pq-convex

function on rectangle, then

|Rf(t,r; p,q; A)
P _ P [/ a—
< (bP —aP)(d? — c?)

4pq
[l ofor] S ol Lo

where

F 11— 2] 11 —2r]
Kl :// 1 1 trdrdt
5 4 \lta? + (1 =0br1'77 ) \[rar + (1 —r)br] 77

2 1 1. r 1 1 . 2. s
i 5.2171(1—;,3,4,1—;;—,,)—5-2171(1—;,2,3,1—%)
1 1 1.1 r
thaRA(1-L24i(1-5))
cP

oA (-8 a4 - G)—ta R (1-h 231-5) | ©
+%.2 F (1—%,2;4;%( —g—lp’» ’

f 11— 2| 11— 2r|
K, = // ; - | (1 = t)rdrds
s 0 \ltap + (1= 0)br)' "7 ) \[ra? + (1 = r)br]' "7

=plr J
+2R (-4 533 (1-5))
P
pah(1-4241(1-5))
oA (1-L3a1-g
xd | Lo R (1-5231-5) | ©)
cP
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—/j( 1= 2] )( =2 )t(l—r)drdt
5L \ptar + (1 = npr)'=7

[ra? + (1 — r)bP]

2oR(1-L 41— )
1 1 p
—§-2F1(1—;,2,3,1—“—

1 4.1
12'2F](1_572’49§<

p

ﬁv
\_/\/

&

7))

+

1. F(l L241-9

3211 dr

1

oA=L 31—

1—p 72 < s 1y Iy ar

Xd _|_l F(]_l 1-3-1(]_ ,,)) 5 (10)
22 1 ]77 E) 12 d

1 1 4.1
sah(1-5241(1-5))

and

1 1
1 — 21 11 —2r|
K4 = -
o o \MtaP+(1 —n)br] P/ \[

; ) (1—t)(1—r)drdt
raP+(1 —r)br]' v

p
Lor (1-1241-4)
2R (1-Lu31-4
—pl-r 2

ar
1 P
—p —5 2 b 1—;,1,3,1—2”
xd 1 1 1 ’ . (11)
+1o P (1—;,1;3;5(1—d—p>)
1 1 1 P
ﬁ'2Fl( —;,2,4,§<1 %))

2
Proof Using Lemma 1, property of modulus and the fact that | 5| is pg-convex
on rectangle, we have

[Rp(t, 75 p,q; A)
(bP —aP)(d? — c?)
4pq

29
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1 1
X//( 1—2 ) ( 1—2r >
5L \tar + = opn1' =5 ) \prar + 1 = rypr)'

x—f(M (a,b;t), My(c,d; r))dtdr

dator

P _ _
_ 7 —aP)(d! — )
< o

1 1

//( 11— 21| )( 11— 2r| >
X 1 1
20 \ltar + (1 =0br177 ) \[rar + (1 = r)br]' >
52
otor

(b”—a”)(dq—cq)/l'/l< 11— 2t )( 11— 2r| )
5 S \jtar + 1 = 0pr1' =7 ) \prar + (1 = rypr)' =7

k":

X (Mp(a,b; 1), My(c,d; r))|dedr

{tr rLaol+a-nr|FLe. c)‘ +1(1 =)L, d)}dtd
.
+(1 -0 —-r) 3,3, Lb,d)

B —an)@ — )

4pq

*f 0 f *f 9 f

K O+ K b,o)|+ K )|+ K bd
X[ “atar(a o)+ & pror ¢ o]+ &; pror @ )|+ ke aror O )H

This completes the proof. O

Theorem 2 Let f : A € R?> - R? be a partial diﬁerentiable function on A =
[a, b]x[c,d]inR% witha < band ¢ < dand &L atar e L(A). If

is pg-convex

3r8t
function on rectangle, where L i 3 =1, a B > 1, then
|[Ry(t,7; p,q; A)]
(bp —aP)(d? —Cq) -1
4pq
9% f B 9% f 32 f 32 f
K , ‘ b ‘ K d‘ K b, d‘
X[latar(ac)+28ta(c)+3 (a)+48t8( )

where K1, K7, K3 and K4 are given by (8), (9), (10) and (11), respectively, and
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1 1
c //( 11— 2t )( |1 —2r| )ddl
= r
S S Npar + (1= 0pe1' =7 ) \rar + (1 = ey
1 r | P
A== 231-L)-,r(1-=1.2.1-%
p br P br

Il
38

+,F (1 TETI PR
21 7’92 dp .

Proof Using Lemma 1, property of modulus, Holder’s inequality and the fact that

| grz{t |# is pg-convex function on rectangle, we have

IRy (t,r; p,q; D)l
_ | @ —ary@? — et
4pq

1 1
X// ( 1—2 ) ( 1—2r )
5 \prar + = 0pr)'=7 ) \prar + (1 = ey =7
82f

8 or
_ @ aP)(d" )

11
//( 1 — 21 )( 11— 27| )’
X 1 1
20 \[ra? + (1 = 0br)' "7 ) \[rar + (1 = r)br)' 7
2f
ator

(bl’ _an)(dq —c‘!)(/I/] ( [1— 2t ) ( 11 —2r| | )dtdr>1_
00 [ta”—i—(l—t)bl’]l_’ [rap+(1—r)bp]l_7

1
flfl( [1-21] ) ( [1-2r| ) B
1 T
00 \1ta?+(1-nbr1""7 ) \[rar+(1—r)pr)' "7
B

52 1 1
x| gL (lra? + (1 = HbPI7, [re? + (1 = r)d7]7)

(Alp(a b;t), My(c,d; r))dtdr

(Alp(a,b;t),ﬂdq(c,d;r)) drdr

==

drdr
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bP —ary(di —cty [ [ [ 1-2 1-2 =
_ —a)( —c)(//( -2 )( 1 —2r| l)dtdr)
0 0 \[rar + (1 —=0)br)' "7 ) \[rar + (1 = r)br)' "7

11
|1 —2t] [1—2r|
) )
00 [taP + (1 —1)bP] » [ra? + (1 —r)bP] 7
x{lr

==

2 2
oo 02f B
- ar(a,c)) +(1—t)r‘ﬁ(h,c))

B
LAt (b d)‘ }dtdr)

82
s —r>)m’i

(bl’ —aP)(d? — cq) 1
4pq

@a| +a-na-n|:

m

1
[t ol ot n.of Ll ) Lol ]

This completes the proof. O

Remark 1 Tt is worth to mention here that for p = ¢ in the above results, we have
the results for p-convex functions on rectangle, which to the best of our knowledge
are new in the literature. If p = 1 = ¢, then the above results reduce to the results
for convex functions on rectangle. Note that in particular if p = —1, then our results
collapse to the results for harmonically convex functions on rectangle, see [16].

4 Conclusion

A new integral identity for partial differentiable functions has been derived.
Utilizing this new auxiliary result, we have established several new trapezoidal-like
inequalities via pg-convex functions. It has been observed that under suitable values
of p and ¢ we obtain several new and known results. Interested readers may explore
the applications of these new inequalities in engineering, mathematical sciences,
numerical analysis and optimization.
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New k-Conformable Fractional Integral )
Inequalities oo

Muhammad Uzair Awan, Muhammad Aslam Noor, Sadia Talib,
Khalida Inayat Noor, and Themistocles M. Rassias

Abstract A new integral identity using the concepts of k-conformable fractional
calculus is obtained. Utilizing the preinvexity property of the functions associated
upper bounds is also obtained. Some special cases of the obtained results are also
discussed.

1 Introduction

Theory of convexity can be regarded as mathematical foundation for minimax
theory, Lagrange multiplier theory, and duality. Convex functions played a very
significant role in the theory of inequalities. A set .72~ C R is said to be convex,
if

A=tx+tyeZ, Vx,ye Z,tel0,]1].

Similarly, convex functions are defined as A function f : # — R is said to be
convex, if

A=f@) +1f(y) = f(A—=Dx +1y)

holds forall x, y € 2# and ¢ € [0, 1].
Due to its great many utilities in different fields of pure as well as in applied
sciences, it received full attention by the researchers. In recent decades, the classical
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concept of convexity has been generalized and extended according to the need of
the problems. A very significant extension of convexity that is differentiable invex
functions in optimization theory was given by Henson [6], but he has not used the
term invex. It was Craven [2] who used the terminology invex for this class of
functions. Mititelu [10] described invex sets as A set 2 € R is said to be invex
with respect to bifunction ¢ (., .), if

x+15(y,x)e X, Vx,yeZ,tel0,1].

Note that convexity can be recaptured from invexity by taking ¢(y, x) =y — x.
This shows that every convex set is an invex with respect to ¢(y, x) = y — x, but
the converse is not true in general.

Weir and Mond [19] introduced the class of preinvex functions (a generalization
of convex functions) as A function .% : 2~ — R is said to be preinvex with respect
to bifunction ¢ (., .), if

Fx+tty,x) <1 -0Fx)+tF(y), VYx,ye Z,te]l0,1].

If ¢(y, x) = y — x, the class of preinvex functions reduces to the class of convex
functions.

The relationship between theory of convexity and theory of inequalities has
attracted many researchers. Many inequalities known to us in the literature can
easily be obtained using the functions having convexity property. For example, a
very famous result in this regard is of Hermite and Hadamard commonly known as
Hermite—-Hadamard’s inequality. This result reads as

Theorem 1 Let .7 : [a, b] C R — R be a convex function, then

b

a a

(2 o L [ gy < ZWTETD)
2 b—a 2

a

This double inequality provides us necessary and sufficient condition for a
function to be convex. Noor [11] obtained a new general version of Hermite—
Hadamard’s inequality using the class of preinvex functions. It reads as

Theorem 2 Let % : [a,b] C R — R be a preinvex function. If £(.,.) satisfies
condition C, then

a+¢(b,a)
2a + ¢ (b, a) 1 F(a) + F(b)
Z Z - -7
F ( > ) < L) F(x)dx < 5 .

Noor et al. [12] further generalized this result using the class of h-preinvex
functions. For some recent developments on Hermite-Hadamard’s inequality and
its applications, see [4, 13].
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Fractional calculus also known as non-integer calculus has emerged as interdis-
ciplinary subject. It grows out of the long established definitions of the ordinary
calculus integral and derivative operators. It experienced a rapid development in
past 100 years; however, the birthday of the fractional calculus is regarded as 30
September 1695. In the start, it was reserved to few mathematicians, but latter on
many researchers started working on it. One of the most classical definitions in frac-
tional calculus was that of Riemann-Liouville definition presented in the nineteenth
century. Since then, fractional calculus helped many applied mathematicians in
solving different physical problems. The definition of Riemann—Liouville integrals
is given as

Definition 1 ([9]) Let.# € Li[a, b]. Then the Riemann-Liouville integrals 326,?
and 32_? of order o > 0 with a > 0 are defined by

X
1
3. 70 = s [0 F 0w o,
a

and

1
()

b
WFx) = /(z —x)* L F@dr, x <b,

X

where
o0
I (@) :/ e ' e,
0

is the well known Gamma function.

Sarikaya et al. [17] utilized the concepts of Riemann-Liouville fractional
integrals and obtained a fractional analogue of Hermite—Hadamard’s inequality.
Since the appearance of this article, a number of new and novel fractional analogues
of Hermite—-Hadamard’s inequality, see [5, 15, 18]. In recent years, the classical
concepts of fractional calculus have been extended and generalized in different
directions using novel and innovative ideas. For example, Sarikaya et al. [16]
introduced the notion of k-Riemann-Liouville fractional integrals and discussed
some of its interesting aspects and applications.

Definition 2 ([16]) Let .# € L[a, b]. Then the k- Riemann—Liouville integrals
k33+ﬁ and kﬁz,f of order @ > 0 with a > 0 are defined by

1
kIl ()

Ko F (x) = /(x — t)%_lﬁ(t)dt, x>a, k>0,

a
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and

1
kI (cr)

b
KL F (x) = /(r — 0t F(@ydt, x <bk>0.

X

00 k
Here, I (x) = f t"_le_t?dt, NR(x) > 0 is the one parameter deformation of

classical gamma fur(l)ction called as k-gamma function and was introduced by Diaz
et al. [3]. I is based on the repeated appearance of the expression of: ¢ (¢ + k) (¢ +
2k)(¢ 4+ 3k) ... (¢ + (n — 1)k). Diaz et al. [3] also introduced the notion of k-Beta
function as

1
1 X_q Y 1
Bk(x,y)zz thm (1 =)k dt
0

L) Ti(y)

— , NRx) > 0,NRNYy) > 0.
TG+ ) Y

For more information on k-analogues of special functions, see [3].

Roughly, we can say that the core idea behind fractional calculus depends upon
two approaches: one that of Riemann—Liouville approach, and the other one is
Grunwald-Letnikov approach. However, utilizing these approaches, the obtained
results seem to be very complicated and lose some basic properties of the classical
concepts. Taking this into account in [8], the authors introduced a simple, well-
behaved fractional derivative called as conformable fractional derivative. This
definition reads as: for a function f : (0,00) — R, the conformable fractional
derivative is defined as

f(t+et!=) — f(t)

€

Lo f (1) = lim

where0 <a < 1,7 > 0.
Abdeljawad [1] defined the left and right conformable fractional derivatives as

Definition 3 The left conformable fractional derivative starting from a of function
f :la,00) > Roforder 0 <« < 1is given as

_ l—a
19 f(r) = lim fatet—a )
e—0 €

and the right conformable fractional derivative terminating at b is given as

ft+eb—1)'"9
- )

12£(0) = lim
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Abdeljawad [1] also defined the left and right conformable fractional integrals of
any order @ > 0 as

Definition 4 ([1]) Let « € (n,n + 1] and B = o — n. Then the left and right
conformable fractional integrals starting at a of order « are defined by

t
1
0= [ (6 — 1) — )P Fu)du,

a

and
b
fo = % /  — 0" (b — u)?~ f(u)du.
t

Note thatifo =n + 1then 8 = 1 wheren =0, 1,2,....
Recently, Jarad et al. [7] introduced new left and right conformable fractional
integrals as

Definition 5 ([7]) Let 8 € C, R(B) > 0 and @ € R \ 0, and then the left and right
conformable fractional integrals are defined as

’

I [ (- -\ f@
B ga _
4 f(x)_l"(ﬁ)/< o ) i~

and

b
w1 b—x)*—b-0\N"" f@
prirw=ros [ (PO 0

Qi et al. [14] extended the definition of conformable fractional integrals intro-
duced by Jarad et al. [7] using the concept of k-calculus. They defined new general
conformable fractional integrals as

Definition 6 ([14]) Let 8 € C, X(8) > 0,k > O and o € R\ 0, and then the left
and right conformable fractional integrals are defined as

3

X B_,
1 x—a)* =t —a)*\* f@
B ga _
af S0 = ka(ﬂ)/( o ) (t—a)l—@

and
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[
61

f@
(b—1)l-2

b
w1 (b — )% — (b —1)*
ﬁfbf(")_krk(m/( o >

The aim of this article is to obtain some new k-analogues of trapezium like
inequalities involving the class of preinvex functions. In order to obtain the main
results of the paper, we derive a new conformable fractional integral identity that
will serve as an auxiliary result. This is the main motivation of this article.

2 Results and Discussions

In this section, we discuss our main results.

Lemmal Let T : [a,a + ¢(b,a)] — R be a differentiable function on (a,a +
Cb,a) witht(b,a) > 0and T’ € Lla,a+ (b, a)]. Also let a, B € RY. Then the
following equality for k-fractional conformable integrals holds for k > 0:

¢t a) 7@+ b) T ()
afr(b,a)

Fk(ﬁ+k) B o B o
T (A e T @ = A3 T+ £, )]

(P a) [ (1_(1_t)a)f L 7@+ et apar
_ e 1—a-0)" o a X,d
(b.a) ) “ ak

aff 1 8
§T+1(x,b) 1 1—(1—0)*\* )
) [a_f,f B (T) } T'(b+15(x, b))dr.

Proof Integrating by parts, we have

1

an b
[ [(u)k _ Lﬁ} Tt 126 i
o af

0

Ji

1

ay 1
/ (M) e+t and - — [ 7+ rceapr

o I3
0 >0

<1 —a- r)“)f T(a+12(x, a))
a {(x,a)

1

0
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B_

CTatrwa), 1 Tatixa))
Potna) 0

I /1 1—(1 =1
kg (x, a) ( o > (I -l of
0
(D

T (a) IB+k) .4
= k‘%’fa+§(x,a)]* g(a)’

ot a) B t T (x, a)

an B
_ (ﬂ)"} b + 120 b))
o
: 1-Q f
— — o k
/9’(b+t§(x,b))dt—/(%> T'(b+tL(x,b))dt
0 0

=78
ok
_ L TGy (1—(1—0“)5 T+ 16 b) |
T ab b a cx,b) |
B fl(l —-Q —z)“)f‘l T (b + tL(x, b))
+ dr
ke (x, b) o (1—=p)l-«
0
T (b I.(B+k
=" B ( ) ml;(,B ) ]/f b%y(b'l';(xsb)) (2)
aki(x,b) ¢, b)
ap
LX) and then

ﬂ+1
e a4 equality (2) by £ ¢(b.a)

Multiplying equality (1) by £ Tha)
subtracting the resulting equalities, we obtained the required result.

Now using Lemma 1, we derive our next results.
Theorem 3 Let 7 : [a,a + £ (b, a)] — R be a differentiable function on (a, a +

(b, a)) witht(b,a) > 0and F' € Lla,a + (b, a)). Also let | 7| be a preinvex
function on [a,a + ¢(b,a)] and a, B € R*. Then the following inequality for k-

fractional conformable integrals holds for k > 0:
[:7:2 2723
{H(x,a)T(a) +F (x,b) T (b)

‘ af¢(b.a)

Li(B+K) 18 .
~ ¢(b,a) [k%fa
%4 af+1 b

é-k (xva)—‘f_{ (-xv )|y/(x)|

1 %k k 2k
<[3a (o (pn ) - (e ) |5
o o akL(b,a)

ey 7 @) = LA T (b + §(x,b))] ’

2
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41 / 11 ’
_|_|:l_ EBk (,3+k, %>i| ¢ T (x, a)|,7(a)|+§ T (x, b)|9(b)|
> . ak{(b a)

Proof Using Lemma 1 and property of modulus, we get

cF (v, a) T @) + ¢ F (x, b) T )
B
aki(b,a)

_nw+m[
¢(b,a)

(A e T @ = LHET b+ b)) ‘

ok

_et e ([0 (1ma o 7 d
T cba) 7‘(7) |7 (@ + 15 (x, a))lde
0

—C%H(x’b)l L_(1=a-nyf T'(b+1¢(x, b)ldr. (3
2(b, a) OT/;‘( o ) |7 (b +t&(x, b))|dt.  (3)

Using the preinvexity of |.7”|, we have

1

— (=" 1
/ [(1 (1—=1) ) _ _ﬁ} | T (a +tL(x, a))|dt
0 “

1
1
= 1—(1—(1—t)°‘)€](t|c7/(x)|+(1—t)lg/(a)l)dt, “4)

k
)

and

o

o B
[Lﬂ B <w” T+ 12, Bl
I o

o _

1
1
= [[1-a-a-mf]azwi+a-nzene.  ©
&k
0

ar

=<

It can be easily calculated that
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1 1
/tdt—[t [1—(1—(1—r)°‘)%]dz=1—E <Bk (ﬁ+k, 5) — By <,3+k, %))
2 o o o
0 0
(6)

and

1 1
/(l—t)dt—/(l—t) [1 —a-a —t)a)%]dt _L Ky (,3 s %> %)
2 o o
0 0

Using (4), (5), (6), and (7) in (3), we get the required result.

Theorem 4 Let .7 : [a,a + {(b,a)] — R be a differentiable function on (a,a +
t(b,a)) witht(b,a) > 0and T’ € Lla,a + ¢ (b, a)]. Also let |.7'|1 be a preinvex
function on [a, a + ¢ (b, a)] where g > 1, p_l +q_1 =landa, B € RT. Then the
following inequality for k-fractional conformable integrals holds for k > 0:

¢t )T @) + ¢ F (. b) T ()
B
af (b, a)

_Ti(B+K)
¢(b,a)

1

1 k k »
<|—-——B(-. k

<[ e (oo )

[c“f“(x,a) [|3"<b)|q+|9’(x>|4}5 +c%“o@b)' [Iﬂ’(b)|q+lﬁ’(X)lq]q

[ e (@ = [ T+ b)) | ‘

(b, a) 2 ¢(b,a) 2

Proof Using Lemma 1 and Holder’s inequality, we have

{%(x, a)7 (a) + {% (x,b)7(b)

of e, a
I (B+k) o
W[ lats a7 @ = b+9(b+i(x,b))]‘
L4 Ty aenen 217 5 :
L& / 1 (ﬁ) dr /lﬂ’(aﬂg(x,a))wdt
o |J [\ a J

1
q

Lo (1 f1—a—nnt]” ]
pi 2 / B ( ) dr /Iﬂ/(b+t§(x,b))|th .(8)
¢y || of J

==
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Note that |[a” — bP| < aP? — bP fora,b > Owitha > band p > 1.
Then we can write

H—(—(1=—FP <1-11—1—-n%.

Therefore,

1 BP
[l (=)
0 |:Ol€ *

1

1 Fl— -\
5/ ﬁdt—/<—> dr
£ o
0o * 0

L ©)
T g K\ PR

Since |.7|7 is preinvex on [a, a + ¢ (b, a)], we have

1
flg/(a + 15 (x, a))|?dt < T@r —; z (X)|q’ (10)
0
and
Ig(b)|q+|9(X)|q‘ (1

1
/|9’(b+t§(x,b))|th§ >
0

Using (9), (10), and (11) in (8) completes the proof.

Theorem 5 Let 7 : [a,a + (b, a)] — R be a differentiable function on (a,a +
(b, a) witht(b,a) > 0and 7' € Lla,a + ¢ (b, a)]. Also let | 7'|9 be a preinvex
function on [a,a + (b, a)], where ¢ > 1 and a, B € R*. Then the following
inequality for k-fractional conformable integrals holds for k > 0:

‘;“,f’(x, &) T (@) + ¢ (x.0)T (b)
B
ok C(ba a)

_L(B+h [ﬂ
¢(bya) Lk

L] -1
sl o)

e (b, a)

%C{

[u+§(x,a)]_9(a) - f o T (b +¢(x, b))] ‘
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X {[3 —k (Bk <ﬁ +k, f) + By <ﬁ +k, %))} 1.7 (x)|?
2 o a

1
n [g — kB, (,3 s %)] |y’(a)|‘1}q
2 o

1-1

%11
+€;—(x’b) [a — kB (ﬂ +k, 5)] ’
O[?+1§(b, a) o

x ”9 —k <Bk <ﬂ +k, 5) + By <ﬂ +k, %))} 17" (x)|?
2 o o

+ [3 kB (ﬂ T, %)] |<7’<b>|q}q
2 o

Proof Using Lemma 1 and power mean integral inequality, we have

‘;“m,a)ma) +¢ @ )T
a%;(b Cl)
F k
k(B + k) [k a7 @ = (%‘Z‘i T b+ ¢(x, b))] ‘

¢(b, a)
21y ! _ AN é
EM(/L_<M>A d,)

¢(b, a) g o
0

o
1—(1—-0* £
- <T) ‘Iﬂ’(a +t§(x,a))lth)
8
k
dt)

1 1—(1—0)%\F
(=)

N
#)k ‘|§’(b+t§(x,b))|th) . (12)

1-1

-

1
=7

Since |.7|4 is preinvex on [a, a + ¢ (b, a)], we have

1
/ 1
0

B
ok

- (1 il U t)a) ' ’W’(a + 12 (x, a))|9de
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similarly
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= Lﬁ [1— (=1 =070 + (1 =0T @)]%)dt
@D
- Lﬂ [l -2 <Bk ('3 +k ﬁ) — By <,3 + k, %>>:| |7 (x)|7
ok 2 o« o o
+Lﬂ [l‘ka (f“rk, %ﬂ |7 @), (13)
ok 2 o« o

o B
1 <$)k ‘|9/(b 18 (x, b)|7dr

1
< Lﬂ/u — (1= (1= F 1T @ + (= 07 (b))
ok
0
= Lﬁ [l _k <Bk (ﬂ + k, 5) — By <ﬂ + k, %)ﬂ |7 ()1
of 2« o o
+iﬁ [1 kg, <ﬂ+k, %ﬂ FAQIE (14)
ok 2 o o

_ k
dt=i<°‘ kBk(ﬂ—i-k,a))' as)

B
ak o

B
L_(l—(l—t)o‘)k
ok o

Using (13), (14), and (15) in (12) completes the proof.

Remark 1 'We would like to point out that, if k = 1 in the above discussed results,
then we have new results for conformable fractional integrals. For ¢ (m,n) = m —
n, we have new results for k-conformable fractional integrals involving convexity
property of the functions. This shows that the results obtained in this paper are
quite unifying one. We would like to point out that the main results of this paper
can be extended and generalized using the class of s-preinvex functions. Ideas and
techniques of this paper may be starting point for further research.
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On the Hyers-Ulam—Rassias m)
Approximately Ternary Cubic Higher e
Derivations

H. Azadi Kenary and Themistocles M. Rassias

Abstract In this paper, we prove the generalized Hyers—Ulam—Rassias stability of
ternary cubic higher derivations by using a version of the fixed point theorem.

2000 Mathematics Subject Classification: 46K05; 39B82; 47B47.

1 Introduction

A ternary algebra is a real or complex linear space endowed with a linear mapping,
the so-called ternary product (x, y, z,) — [xyz] of A x A x A into A such that

[[xyz]tu] = [x[yzt]u] = [xy[ztu]] forall x, y, z,t,u € A.

If (A, .) is a usual binary algebra, then an induced ternary multiplication can be
defined by [xyz] = (x.y).z. Hence, the ternary algebra is a natural generalization of
the binary case. If a ternary algebra (A, [ ]) has a unit, i.e., an element ¢ € A such
that x = [xee] = [eex] for all x € A, then A with the binary product x.y = [xey]
is a usual algebra.

A normed ternary algebra is a ternary algebra with a norm .|| such that

[lxyzlll < lxllyliliz] for x, y, z € A.

A Banach ternary algebra is a normed ternary algebra such that the normed linear
space with norm ||.|| is complete.

Ternary algebras have been studied during the nineteenth century. Their struc-
tures appeared more or less naturally in various domains of mathematical physics
and data processing. The discovery of Nambu mechanics and the progress of
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quantum mechanics [20], as well as the work of S. Okubo [21] on the Yang—
Baxter equation, provided significant development on ternary algebras (see also
[3, 9, 19, 24, 25]). The simplest example of this (non-commutative and non-
associative) ternary algebra is given by the following composition rule:

N
[abc]ljk: Z anilbljmcmkns i7j9k= 1127"'9N'

l,m,n=1

We say that a functional equation () is stable if any function g satisfying the
equation (§) is approximately near to a true solution of (§). We say that a functional
equation is superstable if every approximate solution constitutes an exact solution
of it.

The stability of functional equations was first introduced by Ulam [26] in 1940.
In 1941, Hyers [17] gave a partial solution to Ulam’s problem for the case of
approximate additive mappings in the context of Banach spaces. In 1950, T. Aoki
[5] studied this problem for additive mappings (see also [4, 8, 15] and [16, 23]).
In 1978, Th. M. Rassias [23] generalized the theorem of Hyers by considering the
stability problem with unbounded Cauchy differences

IfGx+y) = f) = fFODI = ellxl” + Iy17), (€ >0,pel0,1).

This phenomenon of stability that was introduced by Th. M. Rassias [23] is now
known as the Hyers—Ulam—Rassias stability or generalized Hyers—Ulam stability.
A further generalization was obtained by Gavruta [15], by replacing the Cauchy
difference by a control mapping ¢ and also introducing the concept of generalized
Hyers—Ulam—Rassias stability in the spirit of Th. M. Rassias’ approach (see also
[1,2,6-8, 10-14, 16-18, 22, 23, 27]).

Chu and Kang [10] introduced the following functional equation:

JO+2) + fx =2y + f2x) =2f(x) +4fx+y) + fx—y), (LD

and they established the general solution and the generalized Hyers—Ulam—Rassias
stability for the functional equation (1.1). The function f(x) = x3 satisfies the
functional equation (1.1), which is thus called a cubic functional equation. Every
solution of the cubic functional equation is said to be a cubic function. Jun and Kim
proved that a function f between real vector spaces X and Y is a solution of (1.1) if
and only if there exists a unique function C : X 3 5 Y such that f(x)=C(x,x,x)
forall x € X, and C is symmetric for each one fixed variable and is additive for two
fixed variables. For more detailed definitions of such terminologies, we can refer to
[11] and [14].

Throughout this paper, A denotes a ternary algebra and B stands for a Banach
ternary algebra.



On the Hyers—Ulam—Rassias Approximately Ternary Cubic Higher Derivations 51

Definition 1 A mapping H : A — B is called a ternary cubic homomorphism
between ternary algebras A, B if

(1) H is a cubic function,
(2) H(lxyzD) =[H(x)H(y)H(2)], forall x, y,z € A.

Definition 2 A mapping D : A — A is called a ternary cubic derivation on ternary
algebra A if

(1) D be a cubic function,
(2) D([xyz]) = [D(x)y*2®] + [* D] + [x*y*D(2)], forall x, y, z € A.

Definition 3 Let N be the set of natural numbers. For m € NU{0} = Ny, a sequence
H = {ho, hy, ..., hy} (tesp., H = {ho, h1, ..., hy, ...}) of cubic mappings from
A into B is called a ternary cubic higher derivation of rank m (resp., infinite rank)
from A into B if

halxyzl =) [hi()hj()hi(2)]

i+j+k=n

holds for each n € {0,1,...,m} (resp., n € Np) and for all x,y,z € A.
The ternary cubic higher derivation H on A is called strong if ho(x) = x> for
all x € A. Of course, a ternary cubic higher derivation of rank O from A into
B (resp., a strong ternary cubic higher derivation of rank 1 on A) is a ternary
cubic homomorphism (resp., a ternary cubic derivation). So a ternary cubic higher
derivation is a generalization of both a ternary cubic homomorphism and a ternary
cubic derivation.

R. Badora [6] and T. Miura et al. [27] proved the Hyers—Ulam stability and the
Isac- and Rassias-type stabilities of derivations. Kyoo-Hong Park and Yong-Soo
Jung [22] investigated the stability and superstability of higher ternary derivations
via the Cauchy functional equation. Recently, Eshaghi Gordji and Bavand Savadk-
ouhi investigated approximate cubic homomorphisms on Banach algebras. For more
detailed definitions of such terminologies, we can refer to [7] and [14].

We apply the following fixed point theorem.

Theorem 1 Let (X, d) be a complete generalized metric space and J : X — X be
a strictly contractive mapping, that is

d(Jx,Jy) < Ld(x,y) forx,y € X and some L < 1..

Then, for each fixed element x € X, either d(J"x, J"T1x) = 400 foralln > 0 or
d(J"x, J"Mx) < 400 for all n > ny for some natural nyg. Moreover, if the second
alternative holds then:

(i) the sequence (J"x) is convergent to a fixed point y* of J;
(i1) y™ is the unique fixed point of J in the set
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Y :={yeX,dlJ"x,y) < +oo}

and

d(y,y") < d(y,Jy) (x,y€eY).

1-L

2 Main Results

In this section, using the fixed point alternative approach, we investigate the
generalized Hyers—Ulam—Rassias stability of the functional equation (1.1).

Theorem 2 Let ¢ : A5 — [0, 00) be a control function such that

e(2"x,2"y,2"t,2"u,2"z)
23m

limy,—s o0 =O0forallx,y,t,u,z € Aand

Yv(x) =¢(x,0,0,0,0).

Let F ={fo, f1,.-., fn, ...} be a sequence of mappings such that

Sa(x +29) + fulx = 2y) + fux) = 2[5 (x) =4 fu(x +y) — fulx — )

sl = Y O L@ @] < o6y nu2), @1

i+j+k=n

forall x,y,t,u,z € A and each n € Ny. Then there exists a unique ternary cubic
higher derivation

H ={ho, h1,..., hy, ...}

of any rank from A into B such that for each n € Ny it holds that
1
I fn(x) = hn ()| < ;df(X), forallx € A.

Proof Settingy =t =u =z =01n(2.1), we obtain
[ fn(2x) = 8fu ()] < ¥ (x). 2.2)
Consider the set X = {g : g : A — B} and the generalized metric d on X :
d(h, g) =inf{M € (0,00) : lg(x) —h ()| =< My (x), Vx € A},

as well as the operator J : X — X with
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1
Jh)(x) = gh(Zx) forallh € Xand x € A.

It follows from (2.2) that

h(2x) g2x)
8§ 8

1 1
= gd(hyg) =d(Jh,Jg) = gd(h, g)

I(Th)(x) = Jg)ll = H

for all h, g € X. Thus, J is a strictly contractive mapping with Lipschitz constant
%. On the other hand, by (2.2), we have

0| =

1
I fa)(x) = fa Il = Y™ = d(J fu, fu) =

Therefore, it follows from Theorem 1 (i) that there exists a mapping i, : A — B
such that &, is a fixed point of J, that is h,(2x) = 8h,(x) for all x € A. By
Theorem 1 (i) limy,— o0 d(J™(fn), fn) = 0, we conclude that

I fn(2"x)
im

m—oo  Q3m

= h,(x) (2.3)
for all x € A. The mapping 4, is the unique fixed point of J in the set
Up=1{g €8§:d(fn. g < 00}
Thus, A, is the unique fixed point of J such that
| fu(x) —hp(x)]| < My (x) for some M > 0 and forall x € A.
Again, by Theorem 1 (ii), we have

1 3 1
d(fnv-]fn)f .= =
l—g 7

d(fn, hn) =
(fr )<1

1
B
SO

1
[ fa(x) = hp ()|l = Z¥ (@)
for all x € A and each n € Np. Replacing in (2.1) the terms x, y by 2"x,2"y,
respectively, as well as setting r = u = z = 0, and multiplying both sides of (2.1)

by 2-3m we obtain

17 (x +2y) + ha(x = 2y) + ha(2x) = 2hp (x) — 4hp(x +y) — ha(x — Y) || =
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i | 2@ @ +29) | Q& —2y)) | S Q") 4£2" (x4 )
mi)moo 23m + 23m + 23m - 23m
LARQME—y) 2L, L e@"x,27),0,0.0)

23m 23m - mgnoo 23m -

for all x, y € A. Thus, h,, is cubic for each n € Ny. It follows from (2.1) that the
function

Qut,u.2) = fultuzl = D [fi0)fi @) fi(2)] (2.4)

i+j+k=n
foreachn € Ny and all t, u, z € A, is bounded. Hence, we see that

o Q,2m, 2"y, 2" 7)
lim =

m—00 29m

0 (2.5)

foreachn € Ny and all ¢, u, z € A. Using (2.3), (2.4), and (2.5), we get

holiuz] = lim 27 @[tz _ L HIQTHQ"0(2"2)]
nlitz] = m—00 29m T m—oo 29m

_ it jrken Lfi @270 [ (27u) f; (27 2)] + Qu (271, 2" u, 2™2)
- mLmoo 29m
= lim > Lfi(z'"z)if,- (2’"u)ifk(2’"z)

m—>00 4 23m 23m 23m

i+j+k=n
. 2,(2M,2Mu,2™7)
+ Jim = = Y [hi®hjh)]
i+j+k=n
forallt,u,z € A and all n € Ny. This completes the proof of the Theorem. O

As a consequence of Theorem 2, we show the Hyers—Ulam—Rassias stability of
ternary cubic higher derivations.

Corollary 1 Let 0 < p < 3,a,8 > Oand let F = {fy, fi,...» fn,...} be a
sequence of mappings from A into B such that

| fu(x +2y) + fulx = 2y) + fu(2x) =2 fu(x) =4 fu(x + ) — fulx —¥)

+hltuzl— Y LAO @ f @I < atBAXIP+HIy 17+ 117+l P+ 1217)

i+j+k=n

forall x,y,t,u,z € A and each n € Ny. Then there exists a unique ternary cubic
higher derivation
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H=1{ho,h1,..., hy,...}
of any rank from A into B such that

a+ Blxl”?

I fu(x) = hn ()Nl < 7

Proof Set

o,y tou,z) = o+ BAUXN” + IyIP + 1P + lull? + 11z]17),

in the Theorem 2. O
Similarly to Theorem 2, we can prove the following theorem:

Theorem 3 Suppose that ¢ : A> — [0, 00) is a control function such that

forall x,y,t,u,z € A. Assume that F = {fo, f1,..., fa, ...} is a sequence of
mappings such that

fnCx +2y) + falx =2y) + fu(2x) = 2fu(x) =4 fulx +y) = fulx — )

+ faltuz] — Z LA @ fi @) fiDl < e(x, y. 1, u,2) (2.6)

itj+k=n

forall x,y,t,u,z € A and each n € Ny. Suppose that there exists 0 < L < 1 such
that the mapping y (x) = ¢ (’7‘, 0,0,0, 0) has the property

8 (3) <Ly

for all x € A. Then there exists a unique ternary cubic higher derivation H =
{ho, h1, ..., hy, ...} of any rank from A into B such that for each n € Ny,

v (x)

| fu(x) = hp ()l < 1—L

holds forall x € A.

Proof Setting y =t = u = z = 0 in (2.6), we obtain
I fn2x) = 8 fu(®)]l < ¢(x,0,0,0,0).

Replacing x by 7 in the above inequality, we get
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85 (5) = fa0)] = (5.0.0.0.0) =y @.7)

for all x € A and each n € Ny. Consider X = {g : g : A — B} and the generalized
metricd on X :

d(h, g) =inf{M € (0,00) : |g(x) —h(x)|| = My(x), Vx € A},

as well as the operator J : X — X with (Jh)(x) = 8h (%) forall h € X. For
arbitrary elements g, h € X,, we have

d(f.9) <e=1fm—hwl =ey@ = |7 (5) - (5)] =er (3)
= 1/ () = Jh)l| < 86y (3) < Ley(x) =
d(If. Ih) < Ld(f, 9).

Thus, J is a strictly contractive function with the Lipschitz constant L. It follows
from (2.7) that

d(J fu, fu) = 1.

Moreover, by Theorem 1, there exists a mapping 4, : A — B such that &,
is a fixed point of J that is 8k, (%‘) = h,(x) for all x € A. By Theorem 1,
limy;,— 00 d(J™ (fn), fn) = 0, we conclude that

lim 2% f,(27"x) = h,(x) forall x € A.
m—00
The mapping 4, is the unique fixed point of J in the set
Up=1{g €8§:d(fn. g < 00}
Hence, 5, is the unique fixed point of J such that
I fn(x) —hy(x)]| < My (x) forsome M > 0 and forall x € A.

Again, by Theorem 1 (ii), we have

1

d(fnv hn) S 1 _

1
Ld(fn’ Jfu) < -

that is

v (x)

1) = ha (Ol < 1=
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for all x € A. The rest is similar to the proof of Theorem 2. O
The following corollary is similar to Corollary 1 for the case when p > 3.

Corollary2 Let p > 3,8 > 0, and F = {fo, f1,-.., fu,...} be a sequence of
mappings from A into B such that

| frn(x +2y) + fru(x —2y) + fu(2x) = 2fn(x) —4fu(x +y) — fux —y)

+hltuzl— Y LAO @ i@ < atBAXIP+Iy 1P+ 117+l P+ 1217

i+j+k=n

forall x,y,t,u,z € A and each n € Ny. Then there exists a unique ternary cubic
higher derivation

H=1{ho,hi,....hy,...}
of any rank from A into B such that

BlixI”

| fu(x) = hp ()|l < 20 —8

forallx € A.
Proof Set

@@, y, tou,z) = BN + Iy I7 + 1el” + lull® +N2l7)

and let L = 2377 in Theorem 3. Then y(x) = B2 7| x||”, and there exists a
sequence H = {hg, h1, ..., hy,, ...} with the required properties. O

Remark An interesting question is to ask whether there exists an approximately
ternary cubic higher derivation that is not a ternary cubic higher derivation.
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Hyers—Ulam Stability for Differential )
Equations and Partial Differential oo
Equations via Gronwall Lemma

Sorina Anamaria Ciplea, Daniela Marian, Nicolaie Lungu,
and Themistocles M. Rassias

Abstract In this paper, we will study Hyers—Ulam stability for Bernoulli differ-
ential equations, Riccati differential equations, and quasi-linear partial differential
equations of first order, using Gronwall Lemma, following a method given by Rus.

MSC: 26D10; 34A40; 39B82; 35B20

1 Introduction

In [1-3], Rus has obtained some results regarding Ulam stability of differential and
integral equations, using Gronwall inequalities method and weak Picard operators
technique. In [4], Rus and Lungu have studied the stability of a partial differential
equation of order two of hyperbolic type using the same method. In [5], Craciun
and Lungu have studied, using this method, a partial differential equation of order
two having a general form. In this paper, we use the same method in order to
study the stability of Bernoulli and Riccati equations and also of quasi-linear partial
differential equations of first order. We mention that some results regarding Ulam
stability of Bernoulli and Riccati differential equations were established by Jung
and Rassias [6, 7], using the integrating factor method. The first result proved
on the Hyers—Ulam stability of partial differential equations is due to A. Prastaro
and Th.M. Rassias [8]. Also Lungu and Popa [9] and Marian and Lungu [10]
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have obtained stability results from some partial differential linear and quasi-linear
equations. The Gronwall inequality is used in Quarawani [11] in order to study
Hyers—Ulam—Rassias stability for Bernoulli differential equations, and it is also used
in [12, 13]. For a broader study of Hyers—Ulam stability for functional equations,
the reader is also referred to the following books and papers: [6, 7, 14-26].

In the following, we will use Definitions 2.1, 2.2, 2.3 from [1], p.126 and
Remark 2.1, 2.2. from [1], p.127.

2 Main Results

Stability of Bernoulli Differential Equation

Let (B, |-|) be a (real or complex) Banach space, a,b € R,a < b, p,qg €
C ([a, b],B), and n € R\{0, 1}.
We consider the Bernoulli differential equation

7@ =p@®z@x) +q )" x),x€la,b], (2.1)
and the inequation
[y @) —p @)y (x) —qx)y" (x)] <& x€la,b]. (2.2)

From Remark 2.1 from [1], p.127 follows that y € C' ([a, b], B) is a solution of
the inequation (2.2) if and only if there exists a function g € C' ([a, b], B) (which
depends on y) such that

(i) lg®)| <&, Vx €la,b];
() y @) =px)y @) +q ) y" (x)+gx),Vx €[a,b].

From Remark 2.2 from [1], p.127 follows that if y € C! ([a, b], B) is a solution
of the inequation (2.2), then y is a solution of the following integral inequation

'y(x)—y(a)—/ [Py @) +q@)y" ®)]dt| < (x —a)e,Vx € [a,b].

Theorem 4 If

(i) a <o00,b < o0;

(i) p.g € C(la,b],B);
(iii) there exists L > 0 such that

lg (1) y" (x) —q () 2" (x)| < L1y (x) —z )],

forallx € [a,bland y,z € C' ([a,b],B),

then the equation (2.1) is Hyers—Ulam stable.
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Proof Lety € C! ([a, b],B) be a solution of the inequation (2.2) and z the unique
solution of the Cauchy problem

{Z’(X)=p(X)Z(X)+q(X)Z” (), x €la,b],

2.3
z(a) =y (a) @3)

We have that
7 (x) =y(a)~|—/ [p()z@)+q @) " (1)]dt, x €[a,b].
Let

M = max x)|.
xe[a’bllp( )|

‘We consider the difference

ly () =z ()] < +

y (x) =y (a) —f [Py @) +q@)y" (1)]dt

=<

f [Py +q®)y' ) —p®)z(t)—q )" (1)]dt

sa(x—a>+/ax [Py - pOzOI+]|(a Oy ) —q ) 2" ©)[]dr <
se(x—a)+/ax Up 11y () — 2O + L1y (6) — 2 ()1 dr =
=a(x—a)+/ax Up Ol + L1y (1) — z ()] dr.

From Gronwall lemma (see [27], p. 6), we have that

V00 =2 (0] < & (x — ) ela IPORLHE < o _ gy ol ML _

=e(b—a)eMtDl=a) — . ¢

where ¢ = (b — a) eM+L)(b—a)

Example 1 We consider the Bernoulli differential equation

X

/

Z :xz—{-m\/_, (24)
where x € [a,b] and z > 1.We have p(x) = x and g (x) = —*5. Let D =

I+x2°

{(x,z) | x €la,b]l,z> 1}and f (x,2) = 1Jf7\/2 We have



62 S. A. Ciplea et al.

af
0z

1
V(x z7) € D,

_ X 1
Tlra2

1 X
1+ x2

and hence, the function f satisfies a Lipschitz condition in the variable z, on D,
with Lipschitz constant 1/4. Hence,

1
If(x,y)—f(x,z)l§L|y—1|=Z|y—z|,

that is

e

N

1
Zly—ZI,xe[a,b],yzl,zzl.

1+x2 1+ 1+x2

We apply Theorem 4 so the equation (2.4) is Hyers—Ulam stable. Let y €
C! ([a, b], B) be a solution of the inequation

Vil <e, (2.5)

7 —xz—

X
1+ x2

and z the unique solution of the Cauchy problem

g L
= e e
z(a) =y (a)
‘We have
Z(x) =y(a)—/a [tz+ T 2ﬁ]dt,x € [a,b].
Let
M = max |p(x)| =1b].
x€la,b]
We have

() — 2 (1)) < & (b — ay PO,

Stability of Riccati Differential Equation

Let (B, |-|) be a (real or complex) Banach space, a,b € R,a < b and p,q,r €
C (la,b],B).
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We consider the Riccati differential equation
7 =p@Z @ +g@z@) +r @), x€lab], 2.7)

and the inequation
Y (@) = p @)y () —q @)y ) —r(x)| <exela,bl. (2.8)

From Remark 2.1 from [1], p.127 follows that y € Cl([a, b, B) is a solution of
the inequation (2.8) if and only if there exists a function g € C' ([a, b], B) (which
depends on y) such that

(1) lg )| <e,Vx €la,b];
(i) y () =p @)y () +q &)y ) +r(x)+gx),Vx € [a,b].

From Remark 2.2 from [1], p.127 follows that if y € c! ([a, b], B) is a solution
of the inequation (2.8), then y is a solution of the following integral inequation:

‘y () =y (@) = / [P0 O+ y 0 +r©]di

<(x—a)eVx €la,b].

Theorem 5 If

(i) a <o00,b < o0;
(i) p,gq,r € C(la,b],B);
(iii) there exists L > 0 such that

P Y ) —pM )| <Llyx) —zx)l,

forallx € [a,bland y,z € C! (la,b],B),
then the equation (2.7) is Hyers—Ulam stable.

Proof Lety € C! ([a, b], B) be a solution of the inequation (2.8) and z the unique
solution of the Cauchy problem

{z’(x)=p(x)zzm+q<x>z<x>+r(x>,x €la.bl. 29

z(a) =y (a)

We have that
:0=y@+ [ [P0 0+ 0 +r0]drvx < a1

Let
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M = max x)]|.
max. lg (x)]
We consider the difference

ly () =z () < .

yo-y@- [ [p0ro+a0yo+ro]d

[ rororanyo-rozo-qnz0]a

§£(x—a)+/x[

se(x—a)+/ L1y () — 2Ol +lg Olly () — 2 O)1di =

=<

PO )= pOZ O] +1@®y©) g z@)l]di =

X
<elx—a) +/ [L+1g O]y @) —z@)ldr.
a
From Gronwall lemma (see [27], p. 6), we have that

Y () =2 ()] < & (x —a) el EHION < g (p gy ol LI

=e(b—a)eMDO=D — . ¢

where ¢ = (b — a) e M+L)(b—a)

Hyers-Ulam Stability of Quasi-linear Partial Differential
Equation

Hyers-Ulam Stability

Let (B, |-|) be a (real or complex) Banach space, a, b € (0, o], € a positive real
number, ¢ € C ([0,a) x [0,b),Ry) and p,q,r € C ([0,a) x [0, ) x B, R) and
p(x,y,u) #0.

We consider the following quasi-linear partial differential equation of first order:

du(x,y) g, y,u)du r(x,y,u)

ax P, y,u)dy  p(x,y,u)

(2.10)

and the following partial differential inequation:

0v(x,y) , gy r@yv| @2.11)
9x px,y,v)dy p,y,v)| " " ‘
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av (x, X,y,v) 0v r(x,y,v
*y)  gEy v rEy | (2.12)
3x P(x,y,v)ay p('x’y’v)

Remark 1 A function v € C ([0,a) x [0,b),B) is a solution of the inequa-
tion (2.11) if and only if there exists a function g € C ([0,a) x [0, D), B) such
that

@ lg(x, »I<eV(x,y)€[0,a) x[0,b);

(i) 2 — —Zg:-;:z)) vy (x,y) + ;(();yy?) + 8 (x, y), where vy = 2.

Remark 2 If v € C ([0,a) x [0, D), B) is a solution of the inequation (2.11), then
v is a solution of the following integral inequation:

U(%}’)_U(O»)’)_/

0

T g, y,v(s,y) r(s,y,v(s,y))
_AS Y UES V) sy s VS Y e
[ p(s,y,v(s,y))vy(s y)+p(x,y,v(s,y))} s'<8x

Vx €[0,a),y €[0,Db).

Indeed, by Remark 1, we have that

ey _4G.y.vk ) ryov e )
ax  ply,v(x,y) vy (x,y) + by 0 (. 7)) +gx,y),

Vx € [0,a),y € [0, b) . This implies that

v(x,y)=v(0,y)+/

a

* [_q (s, y,v(s, ) r(s,y,v(s,y)

)+ +g(s,y)|ds.
P(Ssy,v(s,y))vy(s Y p(x,y,v(s, ) g(s y)] §

From this, it follows that

T g, y,v(s, ) r(s,y,v(s,y))
N —v Oy = [ [ SLEREE IV gy 2 DY)
vy —v.y) /0 [ IR TR e y”p(x,y,v(s,y))} s’

X
< f lg (s, y)lds < ex.
0

Theorem 6 We suppose that

(i) a < 00,b < o0;
@) p,q,r € C([0,a] x[0,b] xB,B), p #0;
(iii) there exists 11, I > 0 such that

q (x,y,v1) q (x,y,v2)
‘— ———y (x, y)| < Iy |v; — 02,

vy (X, y) —
px,y,v) p(x,y,v2)
r(x,y,vr) T (x,y,v2)
p(x,y,v1)  p(x,y, v2)

<h|vi — v,




66 S. A. Ciplea et al.

Y, v € B,V (x,y) €[0,a] x [0, b].
Then:
(a) foryr € C ([0, a], B), the equation (2.10) has a unique solution with

u(0,y)=v%(),Vy €[0,b];

(b) the equation (2.10) is Hyers—Ulam stable.
Proof

(a) This is a known result (see [28] ).
(b) Let v be a solution of the inequation (2.11). Denote by u the unique solution of
the equation (2.10), which satisfies the condition

u(0,y) =v(0,y),Vy €[0,0].

From Remark 2 and condition (iii), we have that

|U(X, y) —u(x, )’)| =

T gs,y,v(s,y) r(s,y,v(s,y)
,v)—v (0, y)— —_ " (s, — " |d
vy v 0.5) /0 [ TR e y)+p<x,y,v<s,y))] s‘+
|

=<

I ACICIN)N 52 9) + ris,y,v,)  qabyuby) 6. 9)
pGs,y,v(s,y) P,y v(s,y)  pl,yulsy)

(s, y,u(s,y)
p(x,y,u(s,y))

=ex +f0 Urlv(s,y) —u(s, Ml +hfvis,y) —uls, yllds.

Or,
[v(x, y) —u(x,y) S8X+/O [+ L]lv(s,y) —u(s, y)lds.

From Gronwall lemma (see [27], p. 6), we have

a(li+h)

[v(x,y) —u(x,y)| <ae -e=c-ég,

where ¢ = ae?1th),
So, the equation (2.10) is Hyers—Ulam stable.
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Hyers—-Ulam—Rassias Stability of Equation (2.10)

Let us consider the equation (2.10) and the inequation (2.12) inthe case a = 00, b =
Q.

Theorem 7 We suppose that

i) p,q,r € C([0,a) x[0,b) xB,B), p #0;
(ii) there exists 11,1, € C1 ([0, a) x [0, b) , Ry) such that

vy (x,y)
px,y,v) p(x,y,v2)

rx.y.v)  r(x.y,vm)
p(x,y,v1)  px,y,v2)

()C, ,v]) (xa 7v2)
‘L SRR x| <1 y) [vr — vl

<bh(x,y) v —vl;

Yui, v € B,V (x,y) € [0,a) x[0,b);

(i) elo Ui )+h(s,)lds ;o convergent and there exists a real number M such that
eJo G+ < povy e [0, b);

(iv) there exists Ly, > 0 such that

/O Qp(sa)’)dsf}wz'ﬁo(x»)’)vv(xa)»e[osa)X[Ovb)

and @ increasing.
Then the equation (2.10) (a = 0o, b = o0) is Hyers—Ulam—Rassias stable.

Proof Let v be a solution of the inequation (2.12). Denote by u the unique solution
of the problem

du(x,y) __ _ qx,y,u) r(x,y,u)
0x - _p(x,y,u)uy ()C, y) + p(x,y,u)
u0,y)=v(,y).
We have
X
q(s,y,u(s,y)) r(s,y,u(s,y))
u(x,y)=v(0,y) +/ [——uy )+ —
0 p(s,y,u(s,y)) px,y,u(s,y))

and

T ogs,y,v(s,y) r(s,y,v(s,y))
, ) —v(0,y) — - , ————|ds| <
vy =0 0.9) /0 [ p(s,y,v(s,y))vy(s y)+p(x,y,v(s,y))} s'<

X
SS/ ‘P(S»Y)dS§8A¢'(P(an)~
0

Then we have
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Iv(xay)_u(xay” S
v(x,y)_v(o,y)_/ [_wv (s,y)+ww]ds‘+
0

= p(s,y,v(s,y) " P,y v(s,y)
/x _q(s,y,v(s,y))v_(s "+ r(s,y,v(s,y) q(s,y,u(s,y))u_(s %)
o | pGoy vy p.y,v(s,y)  pls.yuls,y)

r(s,y,u(s,y)) 'd
e E—— S
p(x,y,u(s,y))

X

<éerp-p(x,y) +/0 LG, (s, y)—uls, +Liy) v,y —uls, yllds <

X

<ekg o (x,y) +/ [l G, )+ DL (s, »]v(s,y) —u(s,y)lds.
0
From Gronwall lemma (see [27], p. 6), we have that
0 (X, y) = (x, )] < Ehg - @ (x, y) el NEDTRODMS < ¢ e g (2, y),

where ¢y = A, - M.
So, the equation (2.10) is generalized Hyers—Ulam—Rassias stable.
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On b-Metric Spaces and Brower and m)
Schauder Fixed Point Principles ik

Stefan Czerwik

Abstract In the paper, we present the basic ideas in b-metric spaces (and b-normed
spaces). The main result is the Schauder fixed point principle. For the proof, we use
the method presented by Dugundji and Granas in their book [4].

Mathematics Subject Classification (2010): 54D35, 54E50, 54E99, 46520,
47H10

1 Introduction

We present some basic ideas needed in the paper. We start with the b-metric spaces
and b-normed spaces. By R, R4, N, and Ny, we denote the sets of all real, real
nonnegative, natural, and natural with zero, respectively, numbers.

Definition 1 Let X be a nonempty set. A function d : X x X — R, satisfying the
following conditions:

@ d(x,y) =0<=x=y,
(i) d(x,y) =d(y, x),
(i) d(x,y) <sld(x,2) +d(z, y)],

for all x, y,z € X and some fixed s > 1, is called a b-metric (ball metric) on X.
The pair (X, d) is a b-metric space.

It is clear that for s = 1, we get a metric on X.

More information on such spaces the reader may find in [1-3].

Definition 2 Let X be a nonempty linear space. A function || - ||: X — R4 such
that:

) |x =0 <« x=0,
™ N ax =120 1 x 1,

S. Czerwik (<)
Institute of Mathematics, Silesian University of Technology, Gliwice, Poland

© Springer Nature Switzerland AG 2021 71
T. M. Rassias (ed.), Approximation Theory and Analytic Inequalities,
https://doi.org/10.1007/978-3-030-60622-0_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60622-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-60622-0_6

72 S. Czerwik

o) fx+y I< st x -+ 10y I

forall x,y € X, X € R and some fixed s > 1, is called a b-norm on X and
(X, || - 1I) is a b-normed linear space.

Definition 3 (see [S]) A mapping d : X x X — Ry we call a strong b-metric if it
satisfies (i) and (ii) from the Definition 1 and

(vii) d(x,y) <d(x,z) +sd(z,y),

forall x, y,z € X and some s > 1.

Note that a strong b-metric satisfies also the condition (by the symmetry of d)
(viil) d(x,y) < sd(x,2) +d(z, y),

forall x, y,z € X and some s > 1.

One can verify that

Remark 1 A strong b-metric satisfies the condition
d('x()?'xl’l) gs[d(XO»xl)+"'+d(xn—laxn)]a (l)

forall xg,--- ,x, € Xandn € N.

Proof We have

d(x01 xn) < Sd(x09 -xl) + d(-xla dn) < Sd(-x07 .X]) + Sd(.XI, )CZ) + d(x27 -xl’l)
<o sld(xo, x1) + -+ d (X2, Xp—1] + d (X1, Xn)
< sld(xo, x1) + -+ - +d(xn—1, x)].
We say that d satisfies the s-relaxed triangle inequality if the condition (iii) is

fulfilled, and d satisfies the s-relaxed polygonal inequality if the condition (1) holds
true. So strong b-metric satisfies the s-relaxed polygonal inequality as well.

Remark 2 One can also consider a strong b-norm and a strong b-normed space,
respectively.

Remark 3 If || - || is a strong b-norm in a linear space X, then
dx,y) =lx—yl, x,yeX (2)

is a strong b-metric in X.
Indeed, for x, y, z € X, one gets

dx,y)=llx—yl=lx—-2+ -yl
Shx—zll+sllz—yll=dx, z)+sd(z,y).

Remark 4 If || - || is a strong b-norm in X, then
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e +x2 I<s x|+ x|l 3)
x4+ IS xn I +sAxz [+ xa 1D, “)
xr 4+ IS sU x|+ 1 xa—1 D+l xn I )
xr - +xp IS sU x4+ [ xa D, (6)
forall xi,---,x, € X, and fixed s > 1.

We verity, e.g., (4). One has

Fxt4---+xp <l x14- X1 | +5 1| x|

Slhxr 4 xa2 [+ [ xp—1 | 45 1l x|l

Slxp I sdhxe T4+ 1 xa ID-

The rest is obvious, so we leave it for the reader.

Remark 5 A strong b-metric is a continuous function. In fact, let d(x,, x) — 0 as
n — ooand d(y,, y) — 0asn — 00, x,, yn, X,y € (X, d, s), then one has

d(xXn, yn) < sd(xp, x) +d(x, yn)
< sd(xp, x) +d(x, y) + sd(y, yn)
and hence
d(xp, yn) —d(x,y) < sld(xp, x) +d(yn, y)1.
Similarly,

d(x1 )’) - d(xﬂv )’n) < S[d(.xn,x) +d(yn7 y)]v

and consequently

ld(xXn, yn) — d(x, y)| < s[d(xn, x) +d(yn, Y1, @)

which completes the proof.

Lemma 1l Let (X,s,| - |I),s = 1 be a strong b-normed space. Then, || - | is a
continuous function.

Proof We have for x,y € X
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Txl=lly+&=yI<lyll+slx—=yl,
and hence
Txll=lyl<slx—yl
Similarly,
Iyl=llx+G-—xlI<lxl+slx—yl
that is,

Txl=Iyl=z=sllx=yl.
By (8) and (9), one gets
[Hxn=y | <six=y1.
Therefore, if x, — x as n —, then
[ = | <5 0 =2 1> 0, as i — oo,
and consequently
Il X0 =1 x || asn — oo,

i.e., || - || is a continuous function.

S. Czerwik

®)

€))

(10)

Definition 4 A mapping d : X x X — R, satisfies the s-relaxed strong polygonal

inequality if
d(-x01 xn) < d(.X(), xl) + S[d(.XI, -x2) +---+ d(xn—ls xn)]

for some fixed s > 1 and for all xp, x1,...,x, € X andalln € N.

Lemma?2 Ifd: X x X = Ry satisfies (11), then

d(xg, x,) < s[d(xo, x1) + - - +dxp—2, X4—1)] +d(xp—1, xn),

forall xo,--- ,x, € Xandn € N.

Proof We have, by (11) and (viii),

Y

12)
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d(xo, xp) < sd(xo, x1) +d(x1, x,)
< sd(xg, x1) + sd(x1, x2) + d(x2, x)
e Ksld(xo, x1) + - Fd (2, Xp—1)] +d(xXp—1, Xn)

i.e., we obtain (12).

Remark 6 Clearly, the s-relaxed strong polygonal inequality (11) implies the s-
relaxed strong triangle inequality (vii).

Remark 7 The inequality (vii) is equivalent to (11), for all x = xg,x; =
Z,X2,+ ,Xn—1,X, =yandalln € N.

Indeed, it is obvious that (11) implies (vii).
Conversely, one has

d(x7 )’) d(x’xn—1)+5d(xn—laxn)
d

(x, xp—2) +5d(Xp_2, Xnp—1) + sd(xp_1, Xs)

NN

<d(x,x1) +sld(xy, x2) + -+ +d(xu—1, Y],

ie.,(11).

2 Compactness in b-Metric Spaces

Definition 5 Let (X, d, s) be a b-metric space. A set M C X is compact, if any
{x,} in M contains a subsequence {x,,} that converges (with respect to d) to some
x € X.If x € M, then M is called strongly compact.

Theorem 1 Let M C (X,d,s) be strongly compact and f : M — R be
continuous. Then,

(a) fis bounded on M,
(b) there exist xo, x1 € M such that

fxo) =inf{f(x) : x € M},
fx1) =sup{f(x):x € M}.

Proof The proof runs similarly to that one presented in [6]. We show that f is
bounded below. For the contrary, assume that

Jx,em f(xn) < —n. 13)
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By the compactness of M and continuity of f, there exists a subsequence {x,, } C
M such that

Xp, — X0 € M and f(x,,) — f(x0) € R.

According to (13), we get contradiction.
For (b), let

a=inf{f(x):x e M}.

For every ¢, = % there exists x,, € M such that

1
a< fxy) <a+ -
n

and consequently there exists {x;, }, x,, — xo € M with
1
a< flxy) <a+—
n

and f(x,,) — f(xp) as k — oo.
Hence,

f(xnk) — o and f(xnk) — f(x0),
which means that « = f(xg), xo € M, and the proof is complete.
The verification of other statements is quite similar.

Remark 8 If the assumptions of Theorem 1 are not satisfied, then the result may not
be true (see also [6]).

Definition 6 A set E C (X, d,s) is called an €-net, ¢ > 0, foraset M C (X, d, s),
if for every point x € M there exists a point u € E such that d(x, u) < €.

Theorem 2 Let (X, d, s) be a b-metric complete space. Let for every € > 0 there
exists finite e-net with paints belonging to M C X. Then, M is a compact set.

The proof can be done very similarly to that one given in [6] for a metric space,
so the details are left to the reader.

Theorem 3 Let (X, d, s) be a b-metric space. If M C X is compact, then for every
€ > 0 there exists finite €-net {c1, ..., cp} C M for the set M.

The proof can be done very similarly to the proof presented in [6] for a metric
space.

Remark 9 Till now, the existence of completion of b-metric spaces is still an
important and open problem.
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Theorem 4 If M C X is compact (in b-metric space X), then M is bounded.
Proof Let

T={x17°~-axn}

be 1-net for M. Leta € X.Onehasforx e M, x; € T,i =1, ...,n,

d(x,a) <sld(x,x;) +d(xi,a)]
<

s[1+maxd(x;,a)] < K < oo.
L

Theorem 5 Every compact b-metric space (X, d, s) is separable.

Proof Let {€,} be a sequence of positive, tending to zero, decreasing sequence, and
let

T)’l={xin}’ i=172"'-’in

be an ¢,,-net for X. Let £ = U?i 1 Tn. Then, T is a countable set. Moreover, for any
x € X, €, < € there exists xl.” € T, for some i € N such that

d(x, x,n) < €p,

i.e., E is dense in X. This is the desired conclusion and finishes the proof.

3 Finite-Dimensional b-Normed Spaces

Let (X, d, s) be an n-dimensional b-normed linear space and {e, ..., e,} be a base
of X. Then, we know that any x € X has a unique representation

xX=aie1+...+ane,, a;€R, i=1,...,n. (14)

Define
n
lIxllo = lel, (15)
i=1

where x is given by (14).

Theorem 6 Let (X, || - ||,s) be an n-dimensional b-normed linear space. Then,
there exists B > 0 such that for all x € X
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llxll < Bllxllo- (16)

Proof We have

n
xll = 11D aieill < slealller]l + -+ 5" |au|llenl]
i=1
< s"(loalller]] + ... + lanlleal)

n
< s" max [le;]| Y o]
1
i=1

n
<s"K Y leil = Blixllo.

i=1
where f = s"K, K =max]|lell, ie.,(16).
1

Remark 10 By (R", || -||o), we denote the n-dimensional space instead of (X, d, )
with the norm defined by (15).

Theorem 7 Let (X, || - ||, s) be an n-dimensional strong b-normed linear space.
Then, there exist o > 0 and B > 0 such that for all x € X

allxllo < [Ix|| < Bllxllo- (17)
Proof Let {ey,...,e,} beabase of X and for x € X,
X=oo1x1+...+taux,, o eRi=1...,n.

Let U := {x € X : ||x|lo = 1}. Then, U is bounded: for if x{,x, € U, x; =
alfel +...+a,’§en,k =1, 2, then

n
1 2
lxer = x2ll = 11D (e — el

i=1
n n n
<o U 2l < <" _ 1 2
<s lo; —ai]llei |l < s"max|le;]|() le;|+ lee; )
im1 ! i=1 i=1
< 2s"K,

n
1
where K :ml_aX||€i||a 1= Z|§i I

i=1
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By Lemma 1, f(x) :=||x]|, f : U - Ry, U C X, f is continuous.
n
ButU = {(a1,...,a,)} € R": Y |o;| = 1} as a bounded and closed subset of
i=1
n-dimensional space R” is the strongly compact set. Therefore, by Theorem 1, f has
infimum « in U different from zero (because if f on U is equal to f(xop), xo € U,
so xg # 0).
Therefore,

a = inf f(x) = inf [|x|| = f&) = |[x]l, ¥eU,x#0.
xeU xeU

Consequently,
||—|| >oa >0forallx € X,
[1x1lo
since
HWHO 1forall x € X.
Thus,

aflxllo < [lxll, x € X. (18)
From (16) and (18), one gets

aflxllo < [lx]] < Bllxllo.  x € X.

Remark 11 Moreover, if every b-norm || - || is equivalent to || - ||o, then every b-
norms || - ||; and || - || are equivalent too, so we have also (17) with b-norms || - ||
and || - []2.

More precisely, if

aflxllo < [lx[lr < Bllxllo, o« >0,8>0,x¢€X,
and

aillxllo < [Ixll2 < Billxllo, a1 > 0,81 >0,x € X,

then

Bi
—||X||1 xll2 < —[lx[l1, x€X. (19)
B o

This is the desired conclusion.
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Lemma 3 Let (X, || - ||, s) be an n-dimensional strong b-normed linear space, and
let U C X be a bounded set. Then, U is compact (in X ).

Proof Let

n
X = E aje;, o eRi=1,...,n,xeX,
i=1

and
x={ay,...,ay}, xeR",
Let f(x) =X, x € U, then f(U) = U and by the inequalities
af x| < llxll < BlIXIl, «>0,8>0,
where ||x|| is the norm of x in X and ||x|| is the norm of corresponding X in R”, we

get

1. U bounded in X iff U bounded in R",
2. asequence {x,} is convergent in (X, || - ||, s) iff the corresponding sequence {X,}
is convergent in R”.

Consequently, the compactness of U bounded in X follows from the compactness
of U bounded in R". This conclude the proof.

Theorem 8 If the induced space (R", || - ||o) for the strong b-metric n-dimensional
linear space (X, || - ||, s) is complete, then also (X, || - ||, s) is a complete space.

Proof Let {x;}, xy = af'e; +... +oe,, o eR,i=1,...,n,me N,bea
Cauchy sequence of elements from X. Then, also {X,,} = {a!", ..., )’} is a Cauchy
sequence in (R”, || - ||o): for if € > 0 and

[|xm — xk|| < € form, k > ng,

then from (17) one has
n
1 €
k
lxm — xello = Y lof" — af | < =|lxm — xxll < =
iz o o

Since (R", || - [|o) is complete, so for x,,, — x as m — oo, with respect to || - ||o,
by (17), one gets

xm — x]] < Bllxm — x[lo — 0as m — oo,



On b-Metric Spaces and Brower and Schauder Fixed Point Principles 81

and x = aje1 + ... + ane, € (X, || - ], ), which means that (X, || - ||,s) is a
complete space, and the proof of the theorem is finished.

4 Brower Fixed Point Principle in b-Normed Spaces

We know that

Theorem 9 (Brower) Let U be a nonempty bounded convex closed subset of R",
andlet T : U — U be a continuous map.
Then, T has a fixed pointu € U.

We prove the following.

Theorem 10 (Brower) Let (X, || - ||, s) be n-dimensional strong b-normed linear
space, and let A C X, be a bounded convex closed set. If, moreover, ¢ : A — Ais
continuous (in b-norm || - ||), then there exists y € A such that ¢(y) = y.

Proof Letx € A, thenx = aje; + ... +ape,, o« € R, i =1,...,nand
{e1,..., ey} is abase of X,;;

X=(xp,...,an) € ACR",
¢:A—> A, ¢Px)=x, xcA.

Then, ¢ is a homeomorphism of A onto ¢(A) = A. In fact, ¢ is one to one.
Moreover, ¢ and ¢_1 are continuous. Actually, we verify that for x, xg € A,

|lx — xo[| — 0 implies || (x) — ¢ (x0)llo — O.

In fact, one has by (17) Theorem 7

1
ll¢(x) = (xo)llo = [IX —Xollo < &le —xol| = 0.

S0 ¢ (x) — ¢(xp) as x — xp.
Similarly,

p '@ =x, ¢ A A,

and if X — Xo, then ¢~ (¥) — ¢~ (x0).
For we have

llp~ @) — ¢~ o)l = Ilx — x0l| < BIIX — Follo — O,

i.e., ¢! is continuous in A.
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Now, we verify that ¢ (A) = A is convex. Let X,y € ¢(A),
Xx=(1,--- ), y=0B1,---,8n), o ,BieR, i=1...,n
Since A is convex, for 0 < A < 1 one has
WF (1= 07 = (Rer+ (1= MB1, e + (1= By ) =
=[x+ 1= 1y|epa),
Hence,
AX+ (1 =2y ed(A), xrel0,1],
so ¢ (A) is convex.

It is easy to show that ¢ (A) is bounded: for if X,y € ¢(A), then by the
boundedness of A and Theorem 6,

_ _ 1 1
dx,y)=Ix=Yllo< =llx =yl <=M =K,

o o

where M 1is a constant such that
[lx —y|] < M forx,y € A.

Therefore, ¢ (A) is bounded.

Finally, we show that ¢ (A) is closed.
Letx =aje1+...+ape,, X =(x1,...,qy), XE€¢(A)),
xo=yie1+ ...+ vwen, x0=W1,---»Vn), o, vi€R, i=1,...,n.

We have to verify that
(IF-%oll>0) = Foeaw),
Really, by the closedness of A,
llx — xoll < BIIX —Xollo — 0 implies x — Xxo,

i.e., xo € A, and consequently Xo € ¢ (A).
To finish the proof, define

T:=¢pp~ !, T:A— A.
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By Theorem 9, there exists x € ‘A such that
pop ™" (x) = x,

ie. ol ()] = ¢~ (x).
If y = ¢~ !(x) € A, then ¢(y) = y, which ends the proof.

5 Schauder Fixed Point Principle in b-Normed Spaces

Definition 7 (see [4], p. 54) Let N := {ci, ..., c,} be a finite subset of a strong
b-normed linear space E, and for any fixed € > 0, let

(N, €) :=U{B(c,~,e):i: ln]
and
B¢, €) = [x € E:|x—all <e}, i=1,....n
Foreachi =1,...,n,let u; : (N, €) — R be the map
14 (x) = max [o, e —lx — c,-||].
The Schauder-Dugundi—Granas projection (see [4])
Pe : (N,€) = conv(N)

is given by

peto =[S ww] Y witoer 0)
i=1

i=1

Clearly, p. is well-defined, since each x € (N, €) also belongs to some B(c;, €),
and therefore

D wix) #0.

i=1
Also, pe[(N, €)] C conv(N) as a convex combination of cy, ..., ¢j.

Definition 8 (see [4]) Let X and Y be topological spaces. A continuous map F' :
X — X is called compact if F(X) is contained in a compact subset of Y.
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Note that
Lemmad4 Let E = (E,|| - |l,s) be a strong b-normed linear space, and
Cl,...,cp € U C E, U-convex. Then,

ix) ||lx — pex)|l <es, xe(N,e), N={c1,...,cn},
(X) pe: (N,e) = con(N) C U is a continuous compact map.

Proof We have, by the definition (20) and Remark 1, for x € (N, €),

= pell = [ S mi0] 1Y wiote — eil

i=1 i=1

<[Xww] s Y melr —al
i=1 i=1

<se(Q i)™ Q] mix) = se.
i=1 i=1

The continuity of p. is a consequence of the fact that p. is a finite sum of
continuous functions (see also Lemma 1); compactness follows from Lemma 3.

Remark 12 The values of p. are in a finite-dimensional b-normed linear space
contained in E.

Lemma 5 Assume that X is a topological space and E a strong b-normed linear
space. Let U be a convex subset of E, and let F : X — U be a compact map. For
every € > 0, there exists a finite set

N={c,....,cpn} CFx)cU
and a finite-dimensional map F, : X — U
such that:

Xi) ||Fe(x) — F(x)|| <se, x€X,
(xii) Fc(x) C conv(N) C U.

Proof Since F(X) is compact (in E), so by Theorem 3 there exists a finite e-net
{c1,...,cn} C F(X). Also, F(X) C (N,e);forif y € F(X),thend(y,c;) < €
for some i € {1,...,n}, and hence y € B(c;, €), i.e., y € (N, €). This shows that
F(X) C (N,e).

Now, let Fe(x) := pc[F(x)], x € X.Therefore,ify = F(x), x € X, then

[[Fe(x) = FOOIl = [|pe(y) — yIl < se

because for y = F(x) € (N, €),x € X, from Lemma 4,
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Iy = Pl < es,

and consequently
[|[Fe(x) — F(x)|| <e€s, xeX.

To verify (xii), let y € Fe(X),s0y = pe(z), z=F(x) e (N,e¢€)
for some x € X. Let

n n
Y=p@ =) kici, Yy =1 keR i=1..n
i=1 i=1

Hence, y € conv(N) C U. Therefore, since U is convex,
Fo(X) C conv(N) C U,

and we get (xii).

Definition 9 ([6]) Assume that U C E, and (E, d, s) is a b-metric space. If for
a given € > 0, there exists a point x € U such that d(x, F(x)) < € for a map
F : U — E, then we say that x is an e-fixed point for F.

Note the following:

Theorem 11 Let (X, b, s) be a strong b-metric space and A C X be a closed set.
Let F : A — X be a compact map. Then, F has a fixed point iff for each ¢ > 0 it
has an e-fixed point.

Proof Since a necessary condition is trivial, we verify the sufficient condition only.
Lete, = %, n € N, and let for each n € N there existsa, € A, n € N, ¢,-fixed
point for F, i.e.,

d(ay, F(ay)) < l, n €N, 20n
n

Because F(X) C U C X, where U is compact (in X), then there exists
subsequence {ay, }, such that F(a,,) — a as k — oo, a € X.But by (21),
fork > mgande > 0

d(ap,,a) < sld(ay,, F(ay,) +d(F(ay,, a)]

1
<s[— + €] < 2s5¢
ni
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soa,, — aask — oo,and a € A, since A is closed. Consequently, F(a,,) — a
and F(a,,) — F(a), because F is continuous; consequently, a = F(a), and we get
the expected fixed point, which finishes the proof.

The main result of this part is the following:

Theorem 12 (Schauder fixed point principle) Let (X, || - ||, s) be a strong
b-normed linear space, and U C X be a nonempty convex closed subset. Let,
moreover, F : U — U be a compact map. Then, there exists u € U such that
F(u) = u.

Proof In view of Theorem 11, we show that for each € > 0, F has an e-fixed point
in U. By Lemma 5, for every € > 0, there exists Fe : U — U with

(@) [[Fe(x) — F(0)|l <€, xeU,
(b) F.(U) C conv(N) C U.

But F, : conv(N) — conv(N).
Indeed, conv(N) C U and

Fc[conv(N)] C Fe(U) C conv(N).

Also, by Theorem 10 and Lemma 5, there exists x, € U such that F¢(x¢) = xe.
Finally, by Theorem 11, there exists # € U with F(u) = u, which concludes the
proof.

Remark 13 1In [4], Theorem 3.2, it is stated that C is not necessarily closed, but in
Theorem 3.1 (which is used in the proof), the set A is closed. Something is not quite
clear.
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between the surface of these systemic indices and a parametrized surface that
interpolates or passes very close to the points of systemic measurements and given
preselected vector values may be viewed as a measure for assessing the appearance
of peculiar systemic incidents over the region under consideration; so, depending on
these preselected points, we provide a general algorithmic framework for predicting
spatio-temporal regions into which crucial systemic events are expected.
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1 Introduction

In many modern scientific studies, quantifying assumptions, data and variables
can contribute to the accurate description of the phenomena through appropriate
mathematical models [1-4, 6-10, 13-15, 17]. The first purpose of the paper is
to provide a general method to predict time intervals of appearance of peculiar
systemic incidents during a given period. To do so, we consider systemic indices
and their measurements over a fixed under consideration domain in the space-
time. The magnitude of the (Euclidean or not) distance between the surface of
systemic indices and a parametrized surface that interpolates or passes very close
to systemic measurements and preselected vector values can be considered as a
measure for assessing occurrence of peculiar systemic incidents over the region
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under consideration; so, depending on these preselected points, we provide a
general algorithmic framework predicting spatio-temporal subregions into which
appearance of peculiar systemic incidents is expected.

Of course, two basic and reasonable questions arise immediately and may also
constitute central subjects of discussion. The first one relates to the subjectivity of
systemic choices and personal priorities, since it is very doubtful whether a set
of systemic indices could be considered as exhaustive, in the sense that it could
guarantee the ultimate reliability of the corresponding prediction. We treat this
question in a forthcoming paper [5]. Here, in order to simplify the formulation
of the model, we will assume constantly that there is a complete objectivity in all
systemic options and personal priorities, i.e., all systemic analysts have agreed for
the finalized selection of all systemic indices. The second question concerns the
reliability of systemic measurements and how much it could affect the validity of
prediction. Again, for simplification reasons, we will assume continuously that all
systemic measurements are carried out with sufficient reliability to such an extent
as to preclude any discrepancy in the estimates of the predictions.

The chapter is structured as follows. Section 2 introduces basic aspects and
methodology for a qualitative systemic analysis and provides basic systemic
definitions, such as the systemic index, the regularity interval, the two precarity
intervals, the two danger intervals and the predictable system.

Subsequently, the next section focuses on the algebraic approach that gives
possibility of introducing new concepts, such as the concept of systemic indices
over a system, the concept of systemic fibre at a point of the space-time and the
concept of systemic affinity between two systems.

Section 4 deals with geometric formalities permitting us to examine the structure
of universalities of systemic indices, that is of parametrized surfaces passing only
from given places of systemic indices over the spatio-temporal region under consid-
eration. In the same section, we overview the meaning of systemic measurements
(at discrete moments and locations) and then discuss the deviations and the smooth
parametrized surface of such a systemic measurement from a given universality of
systemic indices.

Based on this background, in Section 5, we consider the magnitude of the
(Euclidean or not) distance between the smooth parametrized surface of such a
systemic measurement from a given universality of systemic indices and another
surface that interpolates or passes close to the measurement points and some
future balance points. The measurement points are taken at predefined locations
that system administrators chose having put the requirement that, at optioned next
spatio-temporal moments, there will be no deviation from the regularity universality.
This approach allows predicting time moments and locations at which peculiar
systemic incidents are expected to happen: if at some spatio-temporal point, the
distance between the two surfaces exceeds a given critical tolerance value, then
it means that at this point peculiar systemic incidents are expected. As it is clear,
this prediction may be well described in two remarkable cases of main interest:
the limit case where the location remains constant and the general case where the
measurements are conducted at discrete time moments and over different locations.
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So, in Section 5, we first provide a general algorithmic framework for determining
time intervals and locations into which peculiar systemic incidents are expected and,
next, we limit ourselves to considering consequent computational algorithms only
for the case where the measurements are carried out at discrete points in time and
the position remains always fixed. These ideas are specified through alternative and
independent directions using interpolation methods and least square techniques.

Finally, in Section 6, we apply these approximations and give indicative numeri-
cal examples to determine time intervals into which peculiar systemic incidents are
expected.

2 Systemic Indices

Having regard to what has been mentioned in the previous section, suppose S is a
given system (or complex [7]) of which we want to predict behaviour. To this end,
we accept that the system is identified by its own (£ + 1) system characteristics
(see, for instance, http://www.tezu.ernet.in/dba/new/faculty/heera/SAD.pdf, https://
www.kenyaplex.com/questions/22895-outline- the-characteristics-of-a-system.aspx,
https://managingresearchlibrary.org/glossary/system-characteristics and  http://
www.ddegjust.ac.in/studymaterial/pgdca/ms-04.pdf), which we can fully know
one by one and depend on the time and their location.
We need to quantify the behaviour of each characteristic j.

Definition 1 A systemic index of S is a numerical function géj ) = géf )(t, X, ¥,2),
which represents the states of the characteristic j at any date ¢t € R and location
(x, y, z) € R depending on its intrinsic physical features.

To simplify, any systemic index of S is supposed to be a piecewise continuous
function at (¢, x, y, 7). Furthermore, we will assume that, for any system character-
istic j,(j=1,2,...,£+ 1) and at any date t € R and location (x, Yy, z) € R3 into
S, we are given

1. a regularity interval [Fgf ), F;j )] C R into which there is no change in the
behaviour of the characteristic j within the system, affecting both the other
systemic indices and the power and influence of others systemic characteristics
acting in the complex.

2. the under-weighted precarity interval | ﬁé’ ), Féj )] C R and the over-weighted
interval [réj ), pgj )] C R into which there is only a slight change in the behaviour
of the characteristic j within the system, affecting both the other systemic indices
and the power and influence of others systemic characteristics acting in the
complex.

d~§/) ~(j)

3. the under-weighted danger interval [ » D ] C R and the over-weighted

danger interval [ p(sj ), d éj )] C R into which into which there is a major change
in the behaviour of the characteristic j within the system, affecting both the other


http://www.tezu.ernet.in/dba/new/faculty/heera/SAD.pdf
https://
www.kenyaplex.com/questions/22895-outline-the-characteristics-of-a-system.aspx
https://managingresearchlibrary.org/glossary/system-characteristics
http://www.
http://www.
ddegjust.ac.in/studymaterial/pgdca/ms-04.pdf
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systemic indices and the power and influence of others systemic characteristics
acting in the complex.

In the exterior of [Jgj ), déj )], there is a catastrophic change in the behaviour of
the characteristic j within the system, affecting both the other systemic indices and
the power and influence of others systemic characteristics acting in the complex.

The vectors (F;j Do Féjk) ) € R¥ and (réj Do réjk) ) € R¥ are, respectively,
the lowest and highest thresholds of regularity over the system characteris-
tics ji, j2,..., jr at date t € R and location (x,y,z) € R3. Especially, for
1y Jos -5 iy =(1,2,..., 2+ 1), we prefer to use the notation

Y L P P R )

The correspondence that associates each element of the space-time R* with
the corresponding regularity interval of the characteristic j is the regularity state
mapping of the system characteristic j over the space-time. Any point in its image
is a regularity state or regularity point, and any set in its graph is a regularity
zone for j. If, for instance, we have fixed the location (x, y, z) and we let the time
t to vary from a moment 7y to another moment 73, then a regularity zone for a
characteristic j may have a form like that of the graph in Figure 1.

Definition 2 Given any (7, x, y, z), the closed interval

F @ x,y,2),rd (1, x, 9, 2)]
is the regularity tolerance of the system characteristic j at date ¢+ € R and location
(x,y,2) € R3 into S.

Remark 1 1Tt is not excluded the limit situation Féj ) = réj ) — jo ) . In such a case,

the systemic index jo ) is the unique regularity value of the system characteristic j
atdate ¢ € R and location (x, y, ) € R3 into S.

Similarly, the vectors (ﬁgjl), ...,ﬁgjk)) € RF and (pgjl), ...,pgj")) € RF are,
respectively, the lowest threshold of under-weighted precarity and the highest
threshold of over-weighted precarity over the system characteristics ji, ..., jk
at date t+ € R and location (x,y,z) € R3. Especially, for (ji, ja2, ..., jk) =
(1,2,...,£+ 1), we prefer to use the notation

Ts(j) ) 7 Tsm )

= ()

7o' (To) i

: (1)
7(T,)

T [ | | ~

T, T, T, Ty

)

Fig. 1 Regularity zone for a characteristic j, if we have fixed the location (x, y, z) and we let the
time ¢ to vary from a moment 7y to another moment 73
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. (1) - ~(e+1 e 41
p= (5555 s ) and p = (p) pg o pg ).

Notice that it is not excluded the case of coincidence

~(j) _ =(J) ) ()

p’ =7 nor pd’ =rg’.

The mappings that assign each element of the space-time to the corresponding

precarity intervals of the characteristic j are the precarity state mappings of the

system characteristic j over the space-time. A point in the image of a precarity state

mapping is a precarity state or precarity point, while a set in its graph is said to

be a precarity zone for j. The tolerance of the under-weighted precarity and the

tolerance of the over-weighted precarity at time ¢t and location (x, y, z) into § are
defined to be the differences

5O .

critical *

~(j) _ ~() ) 1, )
Ps —Tg | and 8critical = |pS —Ts

= | |, respectively.

Finally, the vectors (c?ém, ...,cié”‘)) € R* and (déjl),...,déj")) € R* are,
respectively, the lowest threshold of under-weighted danger and the highest
threshold of over-weighted danger over the systemic characteristics ji, ..., jk
at date t+ € R and location (x,y,z) € R3. Especially, for (ji, j2,..., jk) =
(1,2,...,€+ 1), we prefer to use the notation

it 71 52 F(+1) 1 42 (e+1)
d:(ds ,dS,...,dS )andp:(ds,ds,...,ds )
Notice again that it is not excluded the case of coincidence
c?éj) - ﬁgj) nor d;’) _ p(sj)_

The mappings that assign each element of the space-time to the corresponding
danger intervals of the characteristic j are the danger state mappings of the system
characteristic j over the space-time. A point in the image of a danger state mapping
is a danger state or danger point, and a set in its graph is said to be a danger zone
for j. The extents of under-weighted danger and over-weighted danger at time ¢
and location (x, y, z) into S are defined to be the differences

ev) = |c?§j) - f;j)l and e = |d§j) - réj)|, respectively.

critical * critical *

Any point that does not belong to a closed interval of the form

[Jéj)(t,x, y,2) — déj)(t,x, Vs z)]

for some (¢, x, y, z) is a disaster point.
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Fig. 2 A schematic representation of the above concepts for a fixed location (x, y, z) € R

Figure 2 provides a schematic representation of the above concepts for a fixed
location (x, y, z) € R3.

Definition 3 A system S endowed with the above defined tolerances of regularity,
precarity and danger is a predictable system.

Remark 2 The case of coincidence Féj ) = ré’ ) = Réj ) does not allow the
consideration of the two orientations, the first of which is introduced in the direction
drawn from a lowest to a highest threshold, while the second one is introduced in the
direction drawn from a highest to a lowest threshold. Instead, in this coincidence,
there is only one direction. This is the direction in which, simply, one of the
three successive situations may be happen: the precarious situation, the danger
situation and the disaster situation.

Remark 3 The concepts of regularity zone, precarity zone and danger zone could be
considered as analogues of the concepts that can be understood by saying low-risk
zone, medium-risk zone and high-risk zone, respectively.

For obvious reasons of simplifying the technical handling of our reasoning, we
make the following assumption

Assumption 1 The system analysts, who study the given system, have agreed for a
finalized, unique and discrete selection of all systemic indices governing the system
behaviour.

On the other hand, we are concerned about current numerical values g;s)
(t,x,y,z) of the relevant selected system characteristics at a given discrete set
of time moments and locations. However, systemic measurements performed by
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a single person or computational block or body on the same item and under the
same conditions may contain errors due to various causes, such as rounding of
measurements, erroneous information, limited databases, etc. In order to avoid any
confounding effect, we will assume continuously the ideal situation.

Assumption 2 All systemic measurements are carried out with sufficient reliability
to such an extent as to preclude any discrepancy in the estimates of the predictions.

3 Basic Algebraic Considerations
The Space of Systemic Indices Over a System

It is assumed that there are a finite number of £+ 1 distinguishable systemic indices

of the system S, say gél), ggz),. .. ,ggeﬂ)for any date t and any location (x, y, 7).

Definition 4

i. If every unit vector

e =(0,...0,1,0,...,0)

J

of the vector space R**! is identified with one unit of the vector space R*! of
the system S at date ¢ and location (x, y,z) (j = 1,2, ..., £+ 1), then the linear

1 41
space G x,y,z) (S) = {g =gs= klgfg) +...+ Mz+1g§+ VA2 Ao

€ R} = R with the usual Euclidean distance in R¢*! is the space of the
instantaneous local systemic indices in § at date # and location (x, y, z).
ii. The linear space

G(S) = {(t, (x,y,2),85) 1 t € R, (x,y,2) € R?, g5 € Grx,y,00(S)} =R,

endowed with the usual Euclidean topology in R¢*, is the space of the systemic
indices over the system S. The elements gg of G(S) are the systemic indices of
the system S.

It is clear that G(S) can be endowed with a continuous projection g : G(S) —
B c R*, such that for each point (t, x,y, z) € *B, the space G x.y ;) (S) coincides
with the systemic fibre ns_l(t, x,y,2) of G(S) at the point (¢, x,y, z). Since the
space of systemic indices G(S) is separable and connected, the cardinality of the
each systemic fibre J'rs_l(t,x, ,2) = G x,y,0)(S) does not exceed the infinite
cardinality of any basis of open sets in ‘B.
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The systemic index space G(S) is a trivial bundle of discrete fibres G x y,7)(S)
= R, and therefore G(S), endowed with the continuous projection ms, is (also)
a systemic covering space of ‘B.

On the other hand, it is important to see that the inverse image 7g LK) of any
compact set K in B is also compact in G(S). Thus, the systemic index space G(S)
is a quasi-compact space in the following sense: For any (¢, x, y, z) € *B and any
family (V;);c; of open subsets of G(S) such that U;c; Vi D ns_l(t, X, Y, 2), there
exists a finite part J of I and an open neighbourhood V of (¢, x, y, z) such that
UiesVi D g ! (V) . In particular, we have the following.

Proposition 1 The systemic index space G(S) is a proper space over ‘5.

Alffinities Between Systems

Let S and T be two systems. Let us consider the corresponding systemic index
spaces G (S) and G (T), with projections s and 77, respectively.

Definition 5 A continuous mapping x : G (S) — G (T) is said to be a systemic
affinity between the systems S and 7 if the following diagram commutes:

G©S) 2 G
s N\ 7T
B

Evidently, if x is a systemic affinity between the systems S and 7', then for any
(t,x,y,z) €°B, x induces a mapping

X(t.x,v,2) + G(l,x,y,z) S — G(t,x,y,z) (T)

of the momentary local systemic index space of the system S at date ¢ and location
(x, y, z) into the momentary local systemic index space of the system T at date ¢
and location (x, y, z).

It is easy to verify the following.

Proposition 2 Any systemic affinity x : G(S) — G(T) between the systems S
and T is onto the systemic index space G (T). If, moreover, there exists a point
(t,x,y,2) € B such that the induced mapping X x,yz) : Gx,y.0 (S —
G(t,x,y,7) (T) is one-to-one, then the systemic affinity between the systems S and
T is an isomorphism.

Given any two systemic affinities x and  between the systems S and T, the set
of all D € G (T) such that x (D) = (D) is open and closed in G(T'). In particular,
since the systemic index space G(7T') (R“‘s ) is connected, we infer the following
result.
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Proposition 3 Whenever y and r are two systemic affinities between the systems
Sand T,

i. if there exists a systemic index g € G (T) such that x (g) = ¥ (g), the systemic
affinities x and r coincide

ii. if there exists a (t,x,y,z) € B such that X x,y,z) = Y(t.x,y,2), the systemic
affinities x and r coincide.

The category which has elements the systemic index spaces and morphisms
the systemic affinities between two systems is called the category of systemic
systems. It will be denoted by B — Top. The sum of G(S) and G (T) into
the category B8 — Top of systemic systems is the disjoint union G (S) U G (T)
endowed with the projection inducing ws onto G (S) and 77 onto G (7). It holds
G®UG (T))(t,x,y,z) = G([,x,y,z) SHu G(t,x,y,z) (T).

The Fibre Product of Two Systemic Index Spaces

Let S and T be two systems, with corresponding systemic index spaces G (S) and
G (T) and projections g and 7, respectively. The fibre product G (S) x5 G (T') of
G (S) and G (T) over the systems S and T is the subspace of the topological space
G (S) x G (T) consisting in all pairs (Dg, Dr) satisfying s (Ds) = 7 (Dr). The
fibre product G (S) xss G (T) endowed with the mapping (Ds, D7) — ms (Ds) is
the product of the systemic index spaces G (S) and G (7) into the category of
systems. It is clear that

(G(S) X5 G(T)) t,x,y,2) = G(z,x,y,z)(S) X G(r,x,y,z)(T)y

whenever (7, x,y,z) € B. Letting now h : 6 = R x R} > B =R x R3 be
a continuous mapping, the topological space G*(S) := h(B) xx G(S) endowed
with the first projection G*(S) — h(B) is a space over the topological space h(5),
which is called the space over h(*B) obtained from G(S) by base change from 5 to
h($B). The fibre of G*(S) at a point b’ of h(8) is identified with the fibre of G(S)
at h(b).

4 Geometric Foundations

Let S be any predictable system/complex with corresponding systemic index space
G(S). A tool that would allow us a thorough study of the measurements carried out
in the weighted systemic space is to attach systemic vector field measurements on
all points of the space of systemic indices. For now, we will always assume that the
values obtained from the measurements are reliable and accurate and will compare
them with respect to the given and fixed values of the systemic indices.
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Universalities of Systemic Indices

Let U be a non-empty open subset of R* = R x R> representing a spatio-temporal
historical phase.

Definition 6

i. The mapping
D:U—=GS): (tx,y,2) = (t,x, ¥, 2 ggl), ...,ggeﬂ))

is called a universality of systemic indices for the system S over the spatio-
temporal historical phase U, or simply system universality.

ii. If the mapping ® is smooth and regular, i.e., its differential D x y ;) is non-
singular (:has rank 4) for each (¢, x,y,z) € R x R3, then D is a parametrized
surface of dimension 4 in the systemic index space G(S). In such a case, we
say that the image of the system universality Sp = ©(U) or simply D is the
parametrized surface of the systemic indices for the system S over U.

Smooth Parametrized Surfaces of Systemic Indices

We will first assume that the universality ® : U — G(S) = RS is smooth and
regular. The differential of ® is the smooth map d® : U x R* — G(S) x G(S)
defined as follows. A point v € U X R* is a vector v = ((t,x,y,z),u) at a point
(t,x,y,z) € U.Leta : I — U be any parametrized curve in U with « (fp) = v.
Then, d® (v) is the vector at ® (¢, x, y, z) (d® (v) € Rg‘&x’y’z) C G(S) x G(9))
defined by d® (v) := D o « (fy). Note that the value of d® (v) does not depend on

the choice of parametrized curve o, because

Doa(g) =

(9 oa(fp), (9(;) o a)/ ), ..., (@g+1> o a)/ (ro)) -

(@ t.2,9.2), V0" (@) o (t0) ... ... VDD (4 (1)) - (zo)) _
(’D (t,x,y,2), V”Dg) t, %, 9,2) -V, .en ... , V”DgH) t,x,y,2) - v) ,

SO

4o (v) = <D t, %, .2, V.00, ..., vv@(sl“)) .
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It follows immediately from the above formula that the restriction d®; x,y,7) of dD

to R?t,x,y,z) (: the vectors at (¢, x, y, 7)) is a linear map

. 4 £+5
d@(;,x,y’z) . R(t,x,y,z) - R’D(t,x,y,z)'

Its matrix relative to the standard bases for R‘(‘t X:2) and Rg’g ©9.2) is just the
Jacobian matrix of ® at (¢, x, y, z). The regularity condition on © guarantees the
following:

Proposition 4 For any (t,x,y,z) € U, the image dD x y.z) (R‘(‘m’y’z)) of

d® x,y,7) s a four-dimensional subspace of Rg‘g x.y.7) fangent to the parametrized

hypersurface © of dimension 4 in the systemic index space G(S) corresponding to
the point (t,x,y,z) € U.

Notice that the parametrized surface ® of dimension 4 in the systemic
index space G(S) does not need to be one-to-one, and that © (¢, x,y,z) =
D (t/, x/, y’, z/) for (t,x,y,2) # (t/, x/, y/, z/) does not necessarily imply that
the image of d® y,y,7) is equal to the image of d© (t’,x’,y’,z/>‘ In other words, the

following general inequality applies:

4 4
d@(t’x,y,z)(R(I’x’y’z)) 75 d@([/’x/’y/’z/) <R<[,)x,)y/)z/)) .
A systemic vector field along the parametrized surface S of the systemic
indices for the system § over U is a map f that assigns to each point p =
(t,x,y,z) € Uavectorf(p) € Rg‘é 3.2 A comprehensive study of the systemic

vector fields along parametrized surfaces requires some additional concepts.

Definition 7 Let

FrU—RT p=(t,5,5,0—F() =@ )i fi, - fers) €RGG L o)

be a systemic vector field along the parametrized surface Sp.

i. We say that § is smooth if each coordinate f; : U — R is smooth.
ii. We say that | is tangent to the parametrized surface So of the systemic
indices for the system S over U if | is of the form

f(P) = d:D(t,x,y,z) m(p))

for some vector field yy on U.
iii. We say that § is normal to the parametrized surface Sp of the systemic
indices for the system S over U if
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f(P) LdD(x.y.2) (R .y.oy) forall (z,x,y,2) € U.
Let us now give a generalization of the concept of the velocity field in the case of
a systemic vector field along the parametrized surface describing the universality of
the systemic indices for the system S over U. Let
@(1)7 @(2)’ @(3) and @(4)
denote the tangent vector fields along the parametrized surface So defined by

eD(t,x,9,2) =dD(x,y2) ((t, x,,2);0,...,0,1,0...,0),

where the 1 is in the (i + 1)th spot (i spots after the (¢, x, y, z) € U).

Proposition 5 The components of €9 are just the entries in the ith column of the
Jacobian matrix for ® at (t,x,y,z) € U:

G(l)(t,x,y,z)=<©(t X, ¥,2); g(t X, y, z))

ot ox 0y 0z 0D LK)
(o, &, 25 2 2 ) (x o)
ot ot ot oJt ot ot

QE(Z)(t,x,y,z):(@(t X, ¥,2); D(t X, v, z))

)

_(@ ot dx dy dz 90D 0011

ax’ ax ax’ ox  ox 0 ox

t??! 9
ox’ dax’ 9x’ dx )(xyz)

e (t,x,y,2) = (”D (t,x,,2); 89 (t X, ¥, z))

_( dt dx 0Jy 0z 3@1 00 +1

D - - ~ ~ N "‘7— t’ b 9 9
dy’ dy dy dy  dy ay >(xyZ)

6(4)(t,x,y,z)=<©(t X, ¥,2); g(t X, y, z))

at ox dJy 0z 3@1 0041
= —, =, =, — yeey,— | (t,x,y,2),
"9z 9z 9z’ 3z’ 81 0z

where

D(t,x,y,2)= (t,x, Y, % Z‘Dg) , x,y,2), ...,Q(SHU (t, x, y,z)).

Note that ¢@® (t,x,y,z) is simply the velocity at (t,x,y,z) € U of the
coordinate curve
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uj > D (uy, u, u3, ug)

(all u; held constant except u;) passing through © (¢, x, y, z). Here, uy =1, up =
x,u3 =y and ug = z. Since d® y,y ;) is non-singular, we infer the following
proposition.

Proposition 6
i. The tangent vector fields €V, ¢@ ¢® and ¢ are linearly independent at
each point (t,x,y,z) € U.

ii. For each point (t, x,y,z) € U, the tangent vector fields EV, €@, €3 and EW
form a basis for the tangent space defined by Image [dZD(f,x,y,z)].

Definition 8 For any smooth systemic vector field f : U — R along the
parametrized surface Sp of the systemic indices for the system S, the derivative

045
Vuf € RD(t,x,y,z)

of f with respect to u € R? (t,x,y,z) € U is defined by

(t,x,y,2)

vu: s A, Y, s
f (@(txyz) 7

(de)) - (© (t, X, ya Z) ) Vuflv ey Vuf@-i-s) )
70
where o is any parametrized curve in U with @ (79) = u.

Notice that, when

uele:=@xy121000e=(x7y20100),
e3=(t,x,,20,0,1,0),e4 = (1,x,y,2;0,0,0,1) },

we have

9
Ve, f = (’D (t,x,y,2); 8—I t, x,y, z))

<D(txyz) f(txyz) f;H(z‘xyz)>,

Ve, f = (Q(txyz) f(txyz))

(@(rxyz) f(txyz) f8”5(rxyz)),

9
e3f—(©(t X, ¥,2); f(t x,y, z))
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a a
= ©(t,x,y,z);i(t,x,y,z),...,E(t,x,y,z) ;
dy dy
df
Ve, f=(D(,x,5,2); 8—Z(t,x,y,z)
a d
= S)(t,x,y,z);i(t,x,y,z),--., Jess (t,x,y,2) ).
0z 0z
Discontinuous Universalities of Systemic Indices
o (1 (e+1)
It is quite reasonable to assume that all the components gg”, ..., gg of a

universality of systemic indices for a predictable system § remain constant over
long or short periods and for large or small areas. In other words, we can assume that
the spatio-temporal historical phase U is partitioned into different (closed) regions,
each associated with a different constant expression of the systemic indices:

There are

* afinite partition {(7, : U is a nonvoid open subset of U and i =1,2, ..., I}
of U, such that

U; m U; = 0 wheneveri # i, and

* a finite set of constant vectors c® = (cgi), . ,cl(izl) inRHL i =1,2,....1,
such that
(S Sy _ .® @)
(31 ,-.-,ng) = (Cl ’-‘-vcz+1)v

forany (t,x,y,z) € Uj.

The intersection 7,/ := U; ﬂUi/ between the closure (: the set plus its

boundary) of the sets U; and U is either an R3-dimensional manifold included in
the boundaries dU; and U} or the empty set. A set 7; + is termed to be a systemic
border or systemic discontinuous boundary.

Systemic Measurements
Systemic Measurement Deviations

Let U be any non-empty subset of R*=RxR? representing a spatio-temporal
historical phase. Suppose 9 is a systemic measurement of size K + 1 in U.
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This means that it has been selected a certain process F by which each actual value
ggj) = ggj)(t, X, V,z)is assigned to K + 1 numbers

f(gﬁS)) (tl,XIs Vi, Zl)), ,]:(gjs)) (IK+1,XK+1,yK+1,ZK+1))’

whenever (t,, Xy, yy, Zy) is in a given discrete set Ex41 = {(tv,xv, Vv, Zy) €
U,v=0,1,2,..., K} of cardinality K + 1. Letting

1 1
F (tvs Xv, Y, 2v) = (-7:(8(5 )) (s X, Yvs Zv)v--w]:(g_(g(+ )) (v, Xv,s v, Zu)>,

]:v(l) }-v(z+1)

the systemic measurement 201 = can be understood as a mapping, which is expressed
in the following form:

Mr: Ekr1 = G(S) : (ty, xp, Yo, 20) > (tv’ Xvs Yvs Zv, ‘F‘El), e ,]:SZ—H)).

Definition 9 Assume that the space G(S) is endowed with a (Euclidean or not)
metric dist, the choice of which may depend on the formulation or nature of the
problem under consideration.

i. The function

Wi 1 E€k41 = R (ty, X0, Yo, 20) = Wi (ty, X0, Yo, 20) 1=

dist (7s (v, Xu, Yv, 2v) » F (tv, Xv, Yu, 2v))

is the systemic measurement deviation from the lowest threshold of regu-
larity at the points of Ex 4.
ii. The function
W Ekq1 = Ri(ty, xp, yv, 20) = W* (ty, xv, Y, Zy) 1=
dist (rs (ty, Xv, Yvs 20) » F (tvs X, Yvs 20))

is the systemic measurement deviation from the highest threshold of
regularity at the points of g .

iii. In the case of coincidence féj) = réj) = jo) ~vj=12,...,£ 4+ 1), the
function
W€kt = R (te, Xk, i 2i) = W (ks Xk, Yio 2k) i=

dist (Rs (tk, Xk, Yi» 2k) » F (e, Xks Yk 2k))

is the systemic measurement deviation from the regularity value of S at the
points of Eg 1.
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Since U is a separable topological space, it is possible to choose a sequence
Gk CEk1 S k2 S

of finite sets of points of U, such that

« their union £ = |J%_, Ek+1 is dense in U and
e Ek41 contains only one element more than £k, say (fgx+1, XK+1, VK+1, ZK+1)-

Hence, for any (¢, x, y, z) € U, there exists a well-defined sequence

(tK+1, XK +1, YK+1, 2k+1) € Eg1(K =1,2,...)

such that
(t,x,y,2)=_Im (tg41, XK41, YK+15 ZK+1) -
K+1—o00

Defining
FD(t,x,y, 2) =liminfy 41500 F D (thgt, Xea 1 Yoa 1, 1) (=12, ..., £+ 1)

and

=) . - ;
Flt,x, 9, 2) :=limsupg 4100 F Y (kg 1s Xer 1, Yea 1, 2r1) G=1,2, ..., £+1),

it is clear that V) and f(j) can be viewed as two processes by means of which

the actual value g(.S) (t, x,y, z) corresponds to two real numbers F () (t,x,y,z)and

| J
7'(]) (t, x, v, z), respectively, whenever (¢, x, y, z) € U. We are reasonably directed
to the next definition.

Definition 10
i. The mappings

F: UGS :txy,0- (Lx,y,sFYexy, 2, . FD @,x,y,2)

and

F:U—=G(S):(t,x,y,2) — (t, X, 9,2; f(l) tx,9,2),..., f(“_l)

(t,x,,2))
are called, respectively, the lower and the upper sections of the systemic
measurement 91~ for the predictable system S over U.

ii. If the set U is open in R* and the two mappings F and F are smooth and regular
in U, i.e., their differentials d.F, , , ., and dF(,x,y.z) are non-singular (: they
have rank 4) for each (¢, x, y, z) € U, then
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E=7F=Fand F(t,x,y.2) = (J%(”(t, Xy.2) . FED @ x Ly, z)) is
called a smooth and regular extension of the systemic measurement 9)i = for
the predictable system S over U and

the image Sr := F(U) is a parametrized surface of the systemic measure-
ment 1 r for the predictable system S over U.

Analogously, by defining
W, (1, x,y,2) i=Liminfk 11 00Ws (tt 15 Xkt 15 Vit 15 2k41) 5
Wilt, X, y,2) = limsupk 4100 Wi (tkt 1, Xk41, Ykt-15 Tht1) 5
and
WH(t, x, ,2) i= liminfg 41500 W* (et 1, Xkt 1, Yk+15 2ht1)

., .
Wt x,y,2) == limsupg 100" (tki 15 Xkt 15 Yt 1 2kt 1) 5

it is obvious that W, (7, x, y, ), Wy (t,x, y,2), W*(t,x, y,z) and W (1, x, y, 2)
are four functions representing distances between, on the one hand, F(, x, y, z) and
f(t, X, y, z) and, on the other hand, the lowest and highest thresholds of regularity,
respectively, at every point (¢, x, y, z) € U. More precisely, we are led reasonably
to the next definition.

Definition 11

i.

ii.

fii.

The function
W, :U—=>R:(@,x,y,2) = W, (t x,y,z):=dist (fg(t,x, y,2), F(t,x,y, z))

is the upper deviation of the systemic measurement at the points of U from
the lowest threshold of regularity over the predictable system S.
The function

w* U —- R: (t,x, y, Z) [ad w*(t, X, Yy, Z)=dlSt (FS(t’ X, Y, Z)7£(f7 X, Y, Z))
is the lower deviation of the systemic measurement at the points of U from

the lowest threshold of regularity over the predictable system S.
The function

W' U->R: (t,x,y,2) — W*(t, X, y,z):=dist (rs(t,x, y,2), F(t,x,y, z))

is the upper deviation of the systemic measurement at the points of U from
the highest threshold of regularity over the predictable system S.
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iv. The function
W* : U — R : (t9x1 ya Z) g W*(tsx’ y’ Z)::dISt(rS(t’xv yv Z)7£(I7x7 y3 Z))

is the lower deviation of the systemic measurement at the points of U from
the highest threshold of regularity over the predictable system S.

If, in particular, 7s = rg =: Rg, then W* = W = W* and W, =W, = W..
In such a case, it is straightforward to see that the function W*(z, x, y, z) equals the
distance dist (F (_(t xX,y,2),9(,x,y, z)) between the upper section .F(t X, ¥,2)
of the systemic measurement 21 and the universality © (¢, x, y, z) of the systemic
indices for the predictable system S in U. Similarly, the function W,(¢, x, y, z)
equals the distance dist (]_-" (t,x,y,2),9(,x, y, z)) between the lower section
F(t,x,y,z) of the systemic measurement 9 x and the universality D (¢, x, y, z)
of the systemic indices for the predictable system S in U.

Thus, we are led reasonably to the next definition.

Definition 12

i. The function
WU — R (t,x, y,2) > Wt x, y, 2):=dist (D(t, x, y, 2), F(t, x, ¥, 2))
is the upper deviation of the systemic measurement at the points of U from

the lowest threshold of regularity over the predictable system S.
ii. The function

Wi iU —R:(t,x,9,2) = Walt, x, y, 2):=dist (D(t, x, y, 2), F(t, x, y, 7))
is the lower deviation of the systemic measurement at the points of U from
the lowest threshold of regularity over the predictable system S.
Smooth Parametrized Surfaces of Systemic Measurement
We can now make some useful general observations. 3
If U is a non-empty open subset of R* and if the map F : U — R* is smooth
and regular, its differential is the smooth map
dF :U x R* — RS x RIFS
defined as follows. A point v € U X R* is a vector v = ((t,x,y,z),u) at a point

(t, x,y, z~,) € U.Leta : I — U be any parametrized curve in U with « (fp) = v.
Then, d F (v) is the vector at

Ft,x,y,2) (dF(v) eRYS RS le+5>
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defined by
dF (v) = Foualt).

Note that the value of d.F (v) does not depend on the choice of parametrized curve
o, because

Foaln) = (f-o « (10) , (ﬁg" ° a>/ (o), ..., (ﬁé’*” ° a)/ (zo)) —

(;E (.29, 2. VED (@ (o) @ (to) ... ... VEHD (o (19)) - & (t0)> —
(ﬁ(z,x, .2 VEO (tx v v VEHD (1 xy.2) - v) :

SO

dF (v) = (ff (t.x,y.2), Vo FV L vvff;”“) .

It follows immediately from the above formula that the restriction d]:"(,, x,y,z) Of dF

to R?t,x,y,z) (: the vectors at (¢, x, y, z)) is a linear map d]j"(t,x,y,z) : R‘(‘t’x’y’z) —
I+5 Its matrix relative to the standard bases for R? and RiT! is

Ft,x,y,2)" (t,%,y,2) D(t,x,y,2)
just the Jacobian matrix of F at (7, x, y, 2).
The regularity condition on F guarantees the following:

Proposition 7

i. The image dJ:"(t,x,y,Z) (R‘(‘t Xy z)) ofd]}(,,x,y’z) is a four-dimensional subspace

145
f

Ftx3.2 foreach (t,x,y,z) € U.

ii. Furthermore, the image d]i'(,,x,y,z) (R‘(‘t Xy z)) ofd]t'(t,x,y,z) is the tangent space

to the four-dimensional parametrized surface Sz = F(U) in the systemic index
space G (S) corresponding to the point (t,x,y,z) € U.

Note that a parametrized surface F in the systemic index space G (S) does not
need to be one-to-one, and that f(t, X,y,2) = F <t/, xl, y/, z/) for (¢, x,y,z2) #
(t/’ 2Ly, Z/) does not necessarily imply that the image dﬁ(,’x,y,z) (R‘(‘t,x,y,z)) of

dﬁ(,,x,y,z) is equal to the image df(,/,xgygzr) (R?t, )> of df(,/,x/,ygzr), ie.,

X y7

Image [d]i'(,,x,y,z)] # Image I:d]j—(/ . Z,>:| .
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Definition 13 A systemic vector field along a parametrized surface S
of systemic measurement 9ir for the system S over U is a map § =
(.7:'; 51, ...,Sg+5> that assigns to each point p = (¢, x, ¥, z) € U a vector § (p) €
€+5
F(t,x,y,2)

The study of the systemic vector fields along a parametrized surface S 3 requires
consideration of some additional concepts.

Definition 14 Let § : U — R : p = (1,x,5,2 +— F(p) =

(.}E ();3S1, .-, 3g+5) € R?(_zsx ) be a systemic vector field along a parametrized
, X, Y52

surface S 7.

i. Wesaythat § = (.7:'; Siyeens 3g+5) is smooth if each coordinate §; : U — R
issmooth (j =1,2,...,14+5).

ii. We say that § = (f R ST 35+5) is tangent to the parametrized surface
S 7 of the systemic indices for the system S over U if § is of the form § (p) =
dF,x,y,7) (9 (p)) for some vector field y on U.

iii. We say that § = (.7:' S T Sg+5) is normal to the parametrized surface
S 7 of the systemic measurement 91 r for the system S over U if

$(p) LImage [d}i(,,xyy,z)] forall (¢r,x,y,z) € U.

Let us now give a generalization of the concept of the velocity field in the case of
a systemic vector field along a parametrized surface Sz of a systemic measurement

M 7 for the system S over U. Let G,G?, GO and G@ denote the tangent vector
fields along the parametrized surface S > defined by

GO (t,x,y,2) =dFg .y ((t,%,9,2);0,...,0,1,0...,0),

where the 1 is in the (i 4+ 1)th spot (i spots after the (¢, x, y, z) € U).

Proposition 8 The components of G @) are just the entries in the ith column of the
Jacobian matrix for F at (t,x,y,z) € U.

Note that G® (¢, x, y, z) is simply the velocity at (t,x,y,z) € U of the
coordinate curve u; —> F (w1, uz, u3, ug) (all u; held constant except u;) passing
through f(t,x, v,z). Here, uy = t, up = x, u3 = y and uq = z. Furthermore,
since d]:"(,, x,y,z) 18 non-singular, we infer the following proposition.

Proposition 9

i. The tangent vector fields ¢W G@ GO and GW are linearly independent at
each point (t,x,y,z) € U.
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ii. Foreach point (t,x,y,z) € U, the tangent vector fields GV, G®, GO and G&®

form a basis for the tangent Image [d}i(t’x’yyz)].

Definition 15 For any smooth systemic vector field § : U — R (U open in
R*=RxR3) along the parametrized surface Sz # of the systemic measurement 91 r

for the system S, the derivative V,§ € R‘;“(f
3 X, Y

(t,x,y,z) € U is defined by

VLIS'Z <}~—(t,x7y71)7

where

* 5§ =G,

Set5(q)) forg € U) and
* « is any parametrized curve in U with o (t9) = u.

Note that, when

ueler=(tx,y,2;1,00,0),
e3 = ((t,x,y,2);0,0,1,0),

we have

5 Distance Between the Universality of Systemic Indices and
a Parametrized Surface Passing Through the Points of a

Ft,x,y,2);

Ft,x,y,2);

Systemic Measurement

We will now use measurement results to predict dates and locations where there will
be future systemic incidents. To this end, it would suffice to construct the lower and

of § withrespecttou € R
Z

d -
5 (Soa) :(-F(t»)ﬁy,Z),Vugl,~--vvu$(+5),
dt -

Feys) is the vector part of § (:F(¢) =

er» = ((t,x,y,2);0,1,0,0),
es=((t,x,5,2);0,0,0, D},

(t X, ¥, z))
(t X, ¥, z))
(t X, ¥, z))

(txyz)

(F@:3@. .
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upper sections F and F of a systemic measurement 9tz in a predictable system §
and then identify the four systematic deviations to investigate whether some of them
are greater or less than corresponding tolerances given in advance.

For any systemic characteristic j and any date + € R, let us consider the

)

midpoint u¢’ of the regularity tolerance [r(J )t x, v, 2), r(] )(t, x, y, 2)]. The point

= (,u,(Sl), e, ,u(SHl)) is the focus of regularity in S at the time ¢ and location

(x, v, z). The hyperplane that perpendicularly intersects the regularity tolerance on
this focus p divides the space-time into two parts, the bottom focal half-space P,
and upper focal half-space P, in such a way that

e itZ=(2Z1,2s,...,7Z¢+5) € Py, then
diSt(FS(t9x1 yv Z) - Z) < diSt(rS(ts X, ya Z) - Z)v

and
e ifZ=(Z1,22,...,2Zp45) € P>, then

dist (Fs(t, x, y,2) — Z) > dist (rs(t, x, y,2) — Z) .
It is clear that only four situations may occur: either

F(t,x,y,z) €Prand F(t,x,y,z) € Py or

F(t,x,y,z) € Prand F(t,x,y,z) € Pj or
F(t,x,y,z) €Pyand F(t,x,y,z) € Pj or

F(t.x,y,z) € Prand F(t,x,y,z) € Pi.

In the first and third of these situations, we will say that the measurement in
(t,x,y,z) has a bifurcated ending and (¢, x,y,z) is a point with bifurcated
measurement trend. In the second of the previous situations, we will say that the
measurement in (¢, x, y, z) is downward and (¢, x, y, z) is a point of downtrend
measurement, while in the fourth situation, we will say that the measurement in
(t,x,y,z) isupward and (¢, x, y, z) is a point of uptrend measurement.

Definition 16 Let

3 (1 (+1
Scritical (1, X, ¥, 2) = (aéri)tical(t’ X, Ys2)sees éntcgl(t X, Y, Z))
~ {41
€critical (T, X, ¥, 2) = ( mmal(t X, ¥,2), - érl—ttc;](t X, ¥, Z)>
1 41
dcritical (£, X, ¥, 2) = (S(Eri)tical (t,x,y,2), .. (En-ttcz)ll ( x,y, Z)) and

L+1)
€critical (7, X, Y, 2) = ( crmcal(t X, ¥,2), - crltlcal(t X, Y, Z))
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be critical mappings that represent distances from the lowest and highest thresholds
outside of which the structure of regularity ceases to exist.

i. Suppose (7, x, y, z) € U is a point of downtrend measurement.

a. If
0 < max {W, (t, x,y,2), W*(t,x, ¥, 2)} < l|eriticar (, x, ¥, 21,

the point (z, x, y, z) is a precarity point, due to low performance or sub-
sufficiency.
b. If

”Scritical(":: xa y’ Z)“ S min {w*(f, x, yz Z)s w*(f, x, yv Z)} ’
< max {W,(t,x,y,2), W, x,y,2)} < ll€itica(t. x, y, 2,

the point (7, x, y, z) is a dangerous point, due to low performance or sub-
sufficiency.
c. If

||€critical(‘57xv Y, Z)H = min {w*(ts-x’ Y, Z)? w*(f»x» Ys Z)} ’

the point (7, x, y, z) is a collapse point, due to low performance or sub-
sufficiency.

ii. Suppose (7, x, y, z) € U is a point of uptrend measurement.

a. If
0 < max [W*(‘C,X, v, 2, W (T, x, y, z)} < 8eritical (T, X, ¥, 2l
the point (7, x, y, z) is a precarity point, due to high performance or
ultra-sufficiency.
b. If
|18critical (T, x, , 2)|| < min {W*(r, X, 3. 0. W (T, x, ., z)} ,
< max {W*(r,x,y,z),W*(t,x,y,z)] < |l€critical (T, x, ¥, 2|l
the point (t, x, y, z) is a dangerous point, due to high performance or
ultra-sufficiency.
c. If

ll€critical (7. X, ¥, 2)|| < min {W*(r,x, v. 2, Wz x. v, z)} ,

the point (7, x, y, z) is a collapse point, due to high performance or ultra-
sufficiency.
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In practice, it seems often difficult to identify the lower and the upper sections F
and F of a systemic measurement 9tz for the predictable system S over an open
set U C R*. Therefore, in this section, it is intuitively preferable to be searched for
parametrized surfaces H (¢, x, y, z) passing very close to the systemic measurement
points, in order to determine deviations between these surfaces and the universality
of systemic indices. To this end, we give the following two definitions.

Definition 17 If H : R* — G(S) : (t,x,y,2) = H(t,x,y,7z) is a parametrized
surface in the space G(S) of the systemic indices over the predictable system S, then
the functions

Ve:U—>R:(t,x,y,2) > Vilt,x,y,2) :=dist (Fs(t,x,y,2), H(t, x, y, 7)) and
V:U—->R:(t,x,y,2) = V(t,x,y,2) :=dist (rs(t,x,y,2), Ht, x, y,2))
are, respectively, the deviations of the parametrized surface H from the lowest
and highest thresholds of regularity at the points of U over the system S. In the

case of coincidence rg = Fs = Rg, the common function

V:U—->R:(tx,y,2) >V, x,y,2) :=dist (Rs(t,x,y,z), H{t, x, y,2))

is called the deviation of the parametrized surface H from the regularity value
of S at the points of U.

Definition 18 As in Definition 16, let us consider the critical mappings

Scritical (£, X, ¥, 2) = ( X, 3,2, 8D (1 x, Z))
€critical (£, X, ¥, 2) = ( Crmcal(t X, Y52y £f$§;1(r X, ¥, z))
Seriical (1, %, . 2) = (800 (1%, 3., - Sl 0. %, v, ) and
€critical (T, X, ¥, 2) = (ec(rli)ﬁcal(t,x,y,z), ifltclzl(t X, ¥, z))

Letalso H : R* — G(S): (t,x,y,z) — H(t,x,y, z) be a parametrized surface in
the space G(S)of the systemic indices over the predictable system S.

i. Suppose (7, x, y,z) € U is a point such that H(z, x, y, z) in the bottom focal
half-space P;.

a. If
0 < Vi(t, %, 9, 2) < ||baritical (T, X, ¥, 2)|,

we say that the point (7, x, y, z) is a potential point to display precarious
incident, because of low performance or sub-sufficiency.
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b. If

[8critica (T, X, ¥, DI < Vi(T, %, ¥, 2) < |l€critical(t, X, ¥, DIl

we say that the point (7, x, y, z) is a potential point to display dangerous
incident, because of low performance or sub-sufficiency.
c. If

|€critical (T, X, ¥, D] < V*(z, x, ¥, 2),
we say that the point (z, x, y, z) is a potential point to display disastrous

incident, because of low performance or sub-sufficiency.

ii. Suppose (r,x,y,z) € U is a point such that H(z, x, y, z) in the upper focal
half-space P,.

a. If
0< V*(tv X, Y, Z) < ||Scritical(7—'7 X, Y, Z)H’

we say that the point (7, x, y, z) is a potential point to display precarious
incident, because of high performance and ultra-sufficiency.
b. If

||8C1“itical(ra-xa Y, Z)” =< V*(Tv-xa Y, Z) < ||€critical(":7xa Yy, Z)lla

we say that the point (7, x, y, z) is a potential point to display dangerous
incident, because of high performance or ultra-sufficiency.
c. If

ll€critical (T, X, ¥, D)|| < V*(r, x, ¥, 2),

we say that the point (7, x, y, z) is a potential point to display disastrous
incident, because of high performance or ultra-sufficiency.

Having now defined the necessary theoretical background, we are able to look
for numerical or approximate constructions of parametrized surfaces Hys passing
through M + 1 systemic measurement results at the points of a given finite subset
of U, in order to determine deviations between these surfaces and the universality
of systemic indices at each point (¢, x, y, z) of U CC R*.

Suppose Ey+1 = { (tv, Xy, Yo, 20) € U 1 v =0,1,..., M} is a given finite set
of M + 1 different points.

Let also 0 < k < M. Assume that, for any v = 0,1,2,...,k, we know
the corresponding measurement points. Specifically, this means that for any j =
1,2,...,¢+ 1, we know the measured values

fj (ty, Xv, Yv, 2v)
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of the jth systemic index g(] ) according to a systemic measurement 2T r at the k41

discrete points f,, v =0, 1, ..., k.
Below, we will formulate a general approximate method to identify all those time

intervals into the region (fx, fx+1) X (Xk, Xk+1) X (V&> YVk+1) X (2k, Zk+1), during
which peculiar incidents in the system may occur.

General Algorithmic Framework to Determine Times and Locations
of Peculiar Systemic Incidents

1. For. each j =1,2,..., ¢+ 1, construct a well manageable numerical function
H}j) (t,x,y, z), which passes very close to the M + 1 measured values

fi@, x, ¥, 20) (v=0,1,...,k).
2. Construct the parametrized surface
Hy :R* > G(S): (t,x,y,2) > Hy (1,x,y,2) =
(t,x,y,z, ij,,l) X, 9,2) 000 ... ,H,ffH) (t,x,y,z)).

3. Choose four critical tolerance functions

% £+1
Seritical (7, X, ¥, 2) = (ainiwal(r, X2 8D (@ x y, z)) :

1 £+1
€critical (, X, ¥, 2) = (((:rl)tlcdl(t’ X, 9,2, .- c(rmcjl(t X, Y, Z))

£+1
Scritical (7, X, ¥, 2) = ( crmcal(t X, Y, 2)s s érmczil(t X Z)) and

a (+1)
€critical (, X, ¥, 2) = <€cri)[ical(t’ X, Y, 2)s crmcal(t XY Z))

which represent distances from the lowest and highest thresholds outside of
which the regularity is repealed banded.
4. If 7 = r, then

i. Find the set IP of all points (z, x, ¥, ¢) satisfying
Ik < T < lk41,
Xk < X < Xk+1,
Yk <Y < Y+,
2k <& < Zk+1-

ii. Solve in P the inequality

0< V(Ts X wa é‘) < ||8critical(fs X 1% g‘)”a
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any point (z, x, ¥, ¢) in P satisfying this inequality is a potential point to
display precarious incident.

iii. Solve in P the inequalities
||8critica1(7:v X 1!/1 é‘)” = V(Tv X 1//3 é‘) < ||6critical(7:, X w» é‘)”v
any point (z, x, ¥, ¢) in [P satisfying this inequality is a potential point to
display dangerous incident.
iv. Solve in P the inequalities
[l€critical (T, X ¥, OI = V(z, x, ¥, £);
any point (t, x, ¥, ¢) in P satisfying this inequality is a potential point to
display disastrous incident.
5. Else
i. Find the set P; of all points (7, %, 1/7, g:) cR?* satisfying
dist(fs<f, XV O = Hy (@ 39,0 <dist(rs(f, X0 — Hy(@ 3.0, E)),
<7 <Ilk+1,
X < i <xk+1,
Yk < VU <Ykt
ii. Solve in P| the inequality
0 < Vi@ 7, ¥, 8) < Il8eriica (T, X, ¥, I
any point (7, ¥, ¥, ) in Py satisfying this inequality is a potential point
to display precarious incident because of low performance or sub-
sufficiency.
iii. Solve in P the inequalities
||8critical(fv 27 ‘(/;7 E)“ E V*(:Ea )’67 1}5 E) < ||€C1‘itical(fa )Za &7 E)H’
any point (7, ¥, ¥, ¢) in PPy satisfying this inequality is a potential point
to display dangerous incident because of low performance or sub-
sufficiency.
iv. Solve in P; the inequalities

|l€critical (F» X ¥\ Ol < Vi(E, %, ¥, ©);
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any point (7, ¥, ¥, £) in Py satisfying this inequality is a potential point
to display disastrous incident because of low performance or sub-
sufficiency.

v. Find the set P, of all points (7, ¥, 1}, g: ) e R? satisfying

dist(fs(f, XU, 0) = Hy (2, 3.9, 2)) > dist<rs(f, X0 0) — Hy (8, 2.9, 2)),
h <T <lgt1,
Xp < X < Xpgl
Yk <V < Ykl

2 <& < 2t

vi. Solve in P, the inequality
0 < V& 2,9, 8) < Beritica (2, 2. . OII;

any point (7, ¥, ¥, ) in IP» satisfying this inequality is a potential point
to display precarious incident because of high performance or utra-
sufficiency.

vii. Solve in PP, the inequalities

[|8critical (T, X &v E)H <V*(1, X, 1/;a E) < |l€citical (T X, 1&» 2)”7

any point (T, X, 1/}, 7)in P, satisfying this inequality is a potential point
to display dangerous incident because of high performance or ultra-
sufficiency.

viii. Solve in P, the inequalities

||6critical(fa )25 ‘(/f? é‘)” S V*(‘E’ )A(a W, C)a

any point (%, ¥, ¥, £) in P, satisfying this inequality is a potential point
to display disastrous incident because of high performance or ultra-
sufficiency.

In order to simplify the computational complexity of our approach, we will
assume that the systemic study is carried out in a fixed location, say

X = x9 = const,y = yp = const and z = z9 = const.

The general case cited in the algorithmic framework above will be considered in a
forthcoming paper [6].
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Here, to find well manageable numerical functions

HP (1, %0, 70, 20) G = 1,2, ..., £+ 1)

passing very close to the M + 1 values f; (¢,, x0, ¥0,20) v =0,1,..., M +1), we
will use interpolation techniques and least square polynomial approximation.
Obviously, these methods are not the only ones that could be used to determine
such well manageable numerical functions. However, for the main purpose of this
chapter, it is sufficiently indicative to consider only these methods, since for a
multitude of cases, they can be applied and give satisfactory prediction results.

The Linear Splines Interpolation Method

Suppose
Ek+1 =1t elTo, T,]1:v=0,1,..., K}

is a given finite set of M + 1 different time moments in a fixed time interval [T, T, ],
such that (t,, xo, Y0, %) € U and 1, < ty, whenever v, = 0,1,..., K satisty
v <.

Let also k < K. Assume that, for any v = 0,1,...,k, we know the
corresponding measurement points. Specifically, this means that for any such v and
any j =0,1,...,€¢+ 1, we know the measured values

fj ) == fj (tv, X0, Yo, z0)
of the jth systemic index ggj ) accordingly to a systemic measurement 91 x at the
k + 1 discrete points t,,, v =10, 1, ..., k.

Furthermore, assume that for any v = k + 1,k + 2,..., M, the point
(tv, x0, Yo, to) is a regularity state.

Below, we will formulate a general approximate method to identify all those time
intervals in the region (#, fx+1), during which peculiar incidents in the system may
occur (Figure 3).

The advantage of application of a linear splines interpolation method [11]
consists in its low computational complexity, not only for computing the linear
splines but also for computing the roots and the intervals in which the approximate
tolerance deviations are negative or positive. In case of few interpolating points, this
method will give inaccurate results. But if there are enough interpolating points,
the method is efficient, so it is proposed in case that there are enough interpolating
points. Of course, in the general theoretical case, the effectiveness of the method
may be directly dependent on the number of the linear spline zeros that are within
the period of measurements. However, usually in practice, this is not a problem,
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Measurement points Regularity states
—_—
LN ] LN LN ]
O O O O O O O O O o
To t t by by tk tir1 itz tu Ty

The region into which it will be determined
time intervals of occurrence of peculiar
systemic incidents

Fig. 3 Time intervals

since all measurement values are situated a bit far from regularity points that, in
most cases, take positive values.

Now, our general algorithmic framework specializes as follows.

Algorithm 1:
Deterministic Prediction Using Linear Splines
Input: - the points (¢, f; (t,);
- the k measurement points;
- the M — k regularity points.
Output: - the zeroes of the functions
FLlnearSpIine(T) = ||8critical ()| — V(7),
F/LlnearSplme(T) = |l€citical (D] — V(T),
ngea.rSphne(f) = |8critical (D) || — Vi (2),
G/LinearSpline(f) = ||€critical (D) || — Vi (T),
GLineaISpline(T) = |[8critical (T)[| — V*(2),
LinearSpline(r) = |l€critical (T)|| — V*(7)

in a given interval (fx, fx+1);
- the intervals into which the following inequalities are satisfied:
FLlnearSpline(T) <0,
FLmearSplme(t) <0,
ngeaISphne(T) <0,
/LinearSpline(f) <0,
GLineaISpline(T) <0,
LinearSpline(T) <0.

1. Foreach j = 1,2,..., ¢+ 1, compute the Linear Spline

o1 (t) =f; (to) fo_t,l] + fj (t) 72, 1 € [10, 11]

H—ty’

&) (1= o (1) =f; (tl),l,,2+f, = e[tl,tz]

om (1) =fj (tn-1) =2 +f, (v) = 1 € [tp—1, tu]

—1—Im —tmy—-1’

in the given interval based on the M + 1 values (¢, f; (t,)).



Deterministic Prediction Theory 117

2. Construct the curve
Hu (1) = Sy (¢, x0, Yo, 20)
with
Gy :R* > G(S): 1> Gy (t, x0, Y0, 20) =

1 e+1
(l, X0, Y05 20 65‘,,) (t, X0, Y0, 20) 5 - - - » 65‘,, (¢, x0, Yo, Zo)) .

3. Choose four critical tolerance functions

aiicat()) = (B (®): - Sia ).
Ecritical (1) = ( ertical 1)+ € @ ))
Sasiat(1) = (3Lfiea (1: - Ssgn (1)) and
€critical (1) = (€£rli)tical (D €t )>

representing distances from the lowest and highest thresholds outside of which
the regularity is repealed banded.
4. If rg = rg, then

i. Compute the zeroes of the deviations

/
FLineaISpline (t) and FLinearSpline ()

in the given interval (tx, fx+1).

ii. Determine the intervals into which the tolerance deviation Fiinearspline (T)
is positive using the computed zeroes; any point T in (ty, ty41) satisfying
this inequality is a potential point to display precarious incident.

iii. Determine the intervals into which the tolerance deviations

FLinearSpline (t) and Fiinea_rSpline (7)

are negative and positive, respectively; any point t in (t, ty+1) satisfying
these inequalities is a potential point to display a dangerous incident.

iv. Determine the intervals into which FLlnearSphne(r) < 0; any point T in
(tx, tx+1) satisfying this inequality is a potential point to display a dangerous
incident.
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5. Else
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i. Determine rhe sets P and P of all points T, T € (t, tr4+1) satisfying

dist (Fs(7), Hy (7)) < dist (rg(T), Hy (7)) and
dist (Fs(t), Hy (1)) > dist (rs(t), Hy (1)) .

ii. Compute the zeroes of the tolerance deviations

GLinearSpline (), GLinearSpline (1),

GLinearSpline (v) and GLinearSpline (7).

iii. Determine

iv.

a.

the intervals 1 C P into which éLmearspline(f) > 0; any point T €
P satisfying this inequality is a potential point to display precarious
incident, because of low performance or sub-sufficiency;

. the intervals I C P into which GLinearspline(t) > 0; any point T €

P satisfying this inequality is a potential point to display precarious
incident, because of high performance or ultra-sufficiency.

Determine

a.

. in IP the intervals in which Gtinearspline(r) < 0 and G

in P the intervals in which élLinearSpline(f) < 0 and éLinearSpline(f) > 0;
any point T € (ty, tx+1) satisfying these inequalities is a potential point
to display dangerous incident, because of low performance or sub-
sufficiency;

LinearSpline(T) =
0; any point Tt € (tx, ty+1) satisfying this inequality is a potential point
to display dangerous incident, because of high performance or ultra-

sufficiency;

Determine

a.

. the intervals I C P into which G

the intervals / C P into which éimearsphnﬁ(f) < 0; any point T €

(tx, tx+1) satisfying this inequality is a potential point to display disas-
trous incident, because of low performance or sub-sufficiency;
/LinearSpline(T) < 0; any point T €
(tx, tx+1) satisfying this inequality is a potential point to display disas-
trous incident, because of high performance or ultra sufficiency.

The Lagrange Interpolation Method

The advantage of Lagrange interpolation method [12, 16, 18] is its unified
expression into the whole interval of interest. But, on the other hand, its
computational complexity is greater than that of linear splines approximation and, in
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case of many interpolating points, the resulting polynomial will be of large degree,
which may cause problems due to cancellation of significant digits during floating
point operations, with subsequent increment in the computational complexity for
the computation of its roots. Thus, this method is recommended in the case of a
few interpolating points. Note that, the effectiveness of the polynomial interpolation
method seems to be dependent on the number of polynomial zeros located into
the period of measurements. However, as before, this is not a real problem, since,
usually in practice, the measurement values are all taken to be positive. Using
Lagrange interpolation, our general algorithmic framework becomes as follows.

Algorithm 2:
Deterministic Prediction Using Lagrange Interpolation
Input: - the interpolation points (¢,, f; (¢);
- the k measurement points;
- the M — k regularity points.
Output: - the zeroes of the functions
FInterpolation(T) = |8critical () || — V(7),
Finterpolation(r) = |l€critical (T)|| — V(7),
glnterpolation(f) = |8critical ()| — Vi (2),
Ginterpolation(f) = ||gcritical(f)|| — Vi (‘E),
GInterpolation(T) = |[8critical (T)[| — V*(2),
;nterpolation () = ll€critical () [| — V*(7)

in a given interval (fx, fx+1);
- the intervals into which the following inequalities are satisfied:
Flnterpolation(f) <0,
lf;nterpo]ation(r) <0,
glnterpolation(f) <0,
inter‘polation(f) <0,
GInter‘polation(T) <0,
(r) <O.

/
Interpolation

1. For each j = 1,2,...,¢ + 1, compute the unique Lagrange polynomial of
degree at most M

' M M Pt
el o= 5w [[ —=
v=1 V=0 £y Y

interpolating the M + 1 given values (t,, f; ().
2. Construct the curve

Hy(t) = Ly (1)
with
Ly i R—>RF i Ly )= (n L] 0. £ o).
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3. Choose four critical tolerance functions

3 (1 4+1
Scritical (1) = (Séri)tical(t)’ cee 3&;;;0)) )

1 ~(l+1
Ecritical (1) = ( érl)tlcal @, .. émlcgl(t))
1 +1
Seritical (1) = (8((;ri)tical(t)’ cro (Erl[lCE)ll (t)> and
1 {+1
€critical () = (6(£ri)tical(t)’ T irltlczil(t))

representing distances from the lowest and highest thresholds outside of which
the regularity is repealed banded.
4. If /g = rg, then

i. Compute the tolerance deviations

ii.

iii.

iv.

/
Finterpolation () and Flmerpo]aﬁon (7)

in the given interval (fg, fx+1).
Determine the intervals (o;, i), (@, B})) C (t.tx41) into which the
tolerance deviations Finerpolation(T) and F (r) are changing sign,
respectively;

For every interval (o;, ;) and (;, B;),

Apply Bisection method for approaching zeroes of Finerpolation(7) in
(a;, B;) and zeroes of F{memo]aﬁon(t) in (af, B);

Apply Newton’s method for computing zeroes of Fiyerpolation(7) in
(a;, B;) and zeroes of Flmerpolanon(r) in (af, B);
Determine the intervals into which the tolerance deviation Finerpolation (T) is
positive using the computed zeroes; any point T in (tx, ty+1) satisfying this
inequality is a potential point to display precarious incident.
Determine the intervals into which the tolerance deviations

Interpolation

Flnterpolation (t) and Finterpolation (7)

are negative and positive, respectively; any point t in (t, ty+1) satisfying
these inequalities is a potential point to display a dangerous incident .
Determine the intervals into which FInterpolatlon(r) < 0; any point T in
(tx, tx+1) satisfying this inequality is a potential point to display a dangerous
incident.

5. Else

i. Determine rthe sets P and P of all points T. T € (i, tx+1) satisfying

dist (7 (%), Hy (%)) < dist (r (%), Hy (%)) and
dist (F(t), Hy (7)) > dist (r (z), Hy (7)) .
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ii.

iii.

iv.

vi.

Compute the rolerance deviations

~ ~ =~ / ~
GInterpolation (7). GInterpolation (D),

GInterpolation (v) and Ginterpolation (7).

Determine the intervals (¢;,d;), (&, d), (ci,d;), (c,d)) C (tr, trs1)

into which the tolerance deviations Ginerpolation(7), G

/
Interpolation

For every interval (&;, d;), (¢, c?i’), (ci,dp), (¢}, d)) C (tx, tkg 1),
Apply Bisection method for approaching zeroes of Glmerpolation(f) in

’ ~
Interpolation (0,

GInterpolation(T) and G () are changing sign, respectively;

(¢, d;), zeroes of G{merpolaﬁon(f) in (¢, d)), zeroes of Ginterpolation(7) in
. ’ . /N
(ci, d;) and zeroes of Glmerpolmon(t) in (¢}, d);

Apply Newton’s method for computing zeroes of Glmerpolation(f) in

(Ci, d;), zeroes of Gimerpolation(f) in (¢}, d), zeroes of Ginterpolation(7) in
g / : T

(ci,d;) Z}Hd zeroes of Glmerpolaﬁon(t) in (¢}, d;).

Determine

a. the intervals I C P into which Glmerpolaﬁon(f) > 0; any point T € P
satisfying this inequality is a potential point to display precarious
incident, because of low performance or sub-sufficiency;

b. the intervals I C P into which Glnterpolaﬁon(f) > 0; any pointt € P
satisfying this inequality is a potential point to display precarious
incident, because of high performance or ultra-sufficiency.

Determine

a. in P the intervals in which élmerpolmon(f) < 0 and é{nterpolation(%) > 0;
any point T € (ty, ty+1) satisfying these inequalities is a potential point
to display dangerous incident, because of low performance or sub-
sufficiency;

b. in P the intervals in which Giyerpolation(r) < 0 and G%merpolmon(t) >
0; any point T € (tx, tr+1) satisfying this inequality is a potential point
to display dangerous incident, because of high performance or ultra-
sufficiency;

Determine

a. the intervals / C P into which Gimerpolaﬁon(f) < 0; any point T €

(tx, tx+1) satisfying this inequality is a potential point to display disas-
trous incident, because of low performance or sub-sufficiency;
b. the intervals I C P into which Gimerpolaﬁon(r) < 0; any point T €
(tx, tx+1) satisfying this inequality is a potential point to display disas-
trous incident, because of high performance or ultra-sufficiency.
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The Least Squares Polynomial Approximation Method

The third method that we use is the least squares polynomial approximation [12, 16].

The advantages of the method are the united formula for the whole interval, and the

degree of the computed polynomial is selected from the user, thus it can be small.

It can be used even if the number of the known points is large. The disadvantage is

that the computed polynomial is not interpolating all (or any of) the given points.
The method consists in the following thinking. Given (M + 1) points

(ti, fj (ti, x0, Y0, 20))

and a degree m, m < M +1, we will find an optimal polynomial p%) () of degree m
that minimizes the 2-norm of the distance of Pz(tfl) (#) from the given (M + 1) points.
In order to evaluate the minimization of the 2-norm, we use the QR factorization and
the fact that || Q||, = 1, since Q is an orthogonal matrix.

Having regard to the above considerations, in Algorithm 3 below, we will use the

following remarks.

1. For every point (¢;, f; (;, X0, Y0, 20)) , We put

() () ym—1 ()

(8 = " .. ) ()
- i m—1°%i .
fi (i, x0, ¥0,20) = am 8" +a,_, 4+ +at +a; 6))

2. Let A be an A x m matrix with A > m, b a vector of length A, and suppose that
we want to minimize the 2-norm of At — b. The QR factorization of A has the

following form:
0

where R is an m x m upper triangular matrix. Thus, A = Q R, and for minimizing
the 2-norm of At — b, it holds

|4t = bl = |QRt = bl = | " | QR — bl = | 0" QR — 07b|

ol )Lz, [

2

where

QTb = [z;:| , with length (c1) = m and length (cp) = L — m.
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Since ¢ is constant, the norm is minimized when Rt — ¢; = 0; thus, in order to
minimize the initial norm, we have to solve the liner system

Rit =c 2)
The algorithm evaluating the previous technique is the following.

Algorithm 3:
Deterministic Prediction Using Least Squares
Input: - the interpolation points (¢,, f; (f,);
- the k measurement points;
- the M — k regularity points.
Output: - the zeroes of the functions
FLeastSquares(f) = [|8critical ()| — V(7),
FLeastsquares (T) = ll€critical ()] — V(7),

GLeastSquares(f) = ||Scritical(f)|| =V (2),

LeastSquares(f) = ||€critical (D) || — Vi (T),
GLeastSquares(T) = |[8critical () || — V*(7),
LeastSquares (T) = ||€critical ()] — V*(T)

in a given interval (i, t¢+1);
- the intervals into which the following inequalities are satisfied:
FLeastSquares(":) <0,
F () <0,

LeastSquares
GLeastSquares(f) <0,

, -

LeastSquares(T) <0,
GLeastSquares(T) <0,
G () <O0.

LeastSquares

1. Foreach j =1,2,...,¢+1,
form the linear system

Txa = f;(T)

ity o tm 1 sy fi (tm. X0, Yo, 20)

e e = :
-1 i
7N R (| aé]) fi (t0, x0, Yo, z0)

N e’
T alh fi(T)

resulting from equation (1).

Apply the QR factorization to 7': [Q, R] =qr(T)
Compute the coefficients a l.(J )
by solving the linear system

,i=m,m—1,...,0 of the polynomial p%) ()
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Rla(-i) = ¢

resulting from (2) applying the LU factorization with partial pivoting.
2. Construct the curve

Huy(t) = Py (1)
with
Py R — RS f s Py () = (t,Pj})(t),...,ij“)(r)).
3. Choose four critical tolerance functions
Seticat()) = (B (®): - Sa ).
Garicat(1) = (Efca 0 -+ Ean )
Susiat 1) = (Ohica(1). - Bt (1) and

1 {+1
eaical() = (€(ica(®): - €lain )

representing distances from the lowest and highest thresholds outside of which

the structure of regularity ceases to exist.
4. If /g = rg, then

i. Compute the tolerance deviations

FLea@tSquares (t) and FLeastSquares ()

in the given interval (t, fx+1).

ii. Determine the intervals (a;, B;), (a), B)) C (f,t+1) into which the

tolerance deviations Fpcassquares(t) and Fj
respectively;
For every interval (o;, ;) and (;, B;),
Apply Bisection method for approaching zeroes of F castsquares (T)
in (a;, B;) and zeroes of FLeastSquares(f) in (af, B));
Apply Newton’s method for computing zeroes of Fpeasisquares (7)
in («;, B;) and zeroes of Fieastsquares(r) in («;, B));

LeastSquares

(7) are changing sign,

iii. Determine the intervals into which the tolerance deviation FieusSquares (T)
is positive using the computed zeroes; any point T in (t, ty+1) satisfying

this inequality is a potential point to display precarious incident.
iv. Determine the intervals into which the tolerance deviations

/
FLeastSquares (t) and FLeastSquares (7)
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are negative and positive, respectively; any point T in (ty, ty+1) satisfying
these inequalities is a potential point to display a dangerous incident.

v. Determine the intervals into which F| _, qums(t) < 0; any point t in
(t, te+1) satisfying this inequality is a potential point to display a dangerous
incident.
5. Else
i. Determine the sets P and P of all points T. T € (t, ty11) satisfying
dist (7 (), Py (7)) < dist (r(7), Pp (7)) and
dist (7 (1), Py (1)) > dist (r(t), Py (t)).
ii. Compute the tolerance deviations
GLeastSquares (‘E) s GLeastSquares (f) ’
GLeastSquares (v) and G/LcastSquares (7).
iii. Determine the intervals (G;, d;), (), d)), (ci, d;), (c},d]) C (tk, tk+1)
into which the four respective tolerance deviations
GLeastSquares (f) ’ GLeastSquares (f) ’
GLeastSquares (), G/LeastSquares ()
are changing sign;
For every interval (¢;, d;), (¢}, d)), (ci, d;), (¢}, d}) C (tk, te+1),
Apply Bisection method for approaching zeroes of GLeastSquareS(f) in
(¢i, d;), zeroes of G’Leastsquares(f) in (¢}, d)), zeroes of GlLeastSquares(T) in
(ci, d;) and zeroes of G/LeastSquares(T) in (c}, d});
Apply Newton’s method for computing zeroes of GLeastSquams(f ) in
(¢, d;), zeroes of Gieastsquares(f) in (¢}, d)), zeroes of GLeastSquares(T) in
(c;, d;) and zeroes of Gieastsquares(r) in (¢, d)).
iv. Determine

a. the intervals / C P into which GLeastSquares(f) > 0; any point T €
P satisfying this inequality is a potential point to display precarious
incident, because of low performance or sub-sufficiency;

b. the intervals I C P into which GLeastSquams(r) > 0; any point T €
P satisfying this inequality is a potential point to display precarious
incident, because of high performance or ultra-sufficiency.
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. in [P the intervals in which GpeasiSquares(t) < 0 and G
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v. Determine

a. in P the intervals in which Greasisquares(f) < 0 and G/LeastSquares(f)

> 0; any point T € (t, ty+1) satisfying these inequalities is a potential
point to display dangerous incident, because of low performance or sub-
sufficiency;

/

Interpolation(r) >

0; any point t € (t, ty+1) satisfying this inequality is a potential point
to display dangerous incident, because of high performance or ultra-
sufficiency;

vi. Determine

a. the intervals / C P into which G

b. the intervals I C P into which G/

/
LeastSquares

T € (tk, tky1) satisfying this inequality is a potential point to display
disastrous incident, because of low performance or sub-sufficiency;
LeastSquares(T) < 05 any point
T € (t, tk+1) satisfying this inequality is a potential point to display
disastrous incident, because of high performance or ultra-sufficiency.

() < 0; any point

6 Numerical Results

In this section, we present some analytical numerical results evaluating the algo-
rithms of Section 5, and we comment the behaviour of the algorithms.

Numerical Examples

Below, we present numerical examples, implementing our algorithms.

Let

1 2 3
Hy (¢, %0, 0, 20) = (H\) (¢, %0, 0, 20) » HS? (¢, x0, Y0, 20) » H3 (£, X0, Y0, 20) )

where H /E/,l ) is a function that passes through the points

@, wi") = (0.227995363116753, 0.005887473341432)
@, wi) = (0.666935900301706, —0.002451487989435)
(1", wi) = (1.088758378092684, —0.026536596177317)
", wi) = (1.222118728436067, —0.083738292365262)

@, wi) = (1.919487917032162, 0.000000000000002),
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H 542) a function that passes through the points
2, w!?) = (1.084431059927606, 0.001824976373948)
(1s?, w) = (1.217471981917524, —0.008796025804148)
11?, w) = (1.303998173014984, —0.005794329946252)
@2, w) = (1.306656948627908, —0.005645884524371)
2, w) = (1.918582850410889, 0.000000000000004)
and H ,S ) a function that passes through the points
@, w?) = (0.477049937449979, 0.003546169430236)
@¥, w) = (0.831405751301321, 0.037059412329365)
(1Y, wl) = (0.969342971854446, 0.076154493784762)
@Y, w) = (1.136154854287057, 0.100711757050127)

@, w?) = (1.858527246374456, 0.000000000000001).

Letalso® = <t, X0, Y0, 205 gél), géz), g?)) be a system universality defined by

1 03, re€][0,1]
t’ b bl = 9

gs (., x0, Y0, 20) { L re(l.2]
5, t€][0,0.5]

e (t,x0.y0,200={ 4.8, 1€ (05,1.5]
45, 1e(15,2]

and
¢ =1 0,2
gs (t,x0,¥0,200=1, te€l0,2]
Let us finally take

Ecritical = 0.4.
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Application of the Lagrange Interpolation Method
Applying the Lagrange interpolation method to the first five pairs of points, we
construct the following polynomial of degree 4:
H,S) (t, X0, Y0, 20) = t* — 3.8349828374454681> + 4.7545505110496917>
—2.230278241661984¢ + 0.309978747075857.

Similarly, applying again the Lagrange interpolation method to the other two sets of
pairs of points, we construct the following polynomials:

H (¢, x0, y0, 20) = t* — 6.1929738607234641° + 14.1722591313109707>
—14.183279563983136¢ + 5.230995486528229
and
HY (1, x0, yo, 20) = * — 4.674114367931685 — 137.5069051498719197>
—4.7816126118478121 + 1.031873971027329.

In the interval [0, 0.5]:

1 2 3
8§ (t, x0, y0,20) = 0.3, g (1, x0, Y0, 20) = 5 and g5 (7, x0, Yo, 20) = 1.

Thus,
D(t*) := dist (D (t*, x0, ¥0, z0) » Hm (t*, X0, Y0, 20)) — €critical =

e RO 2
Hy, (7, x0, Y0, 20) — &g (", X0, Y0, 20)

2 @) 2
+ | Hy (t7, x0, Yo, z0) — 85 (", X0, Y0, Z0)

1

2
3
+ [H%(t*, X0, Y0, 20) — g§ (t*, x0, Yo, zo)] )

—-04

= 107(0.030000000000000(t*)8 — 0.294041421322012(+*)” + 1.277747933120760(:*)°
— 3.245707071889221(t*)° + 5.178371259645941(+*)* — 4.982519922531551(t*)°

+2.361242738501194(r%)% — 0.069018758555689(1*) + 0.00014474440218668).
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Applying a few steps of Bisection and Newton’s methods, we compute the only two
real zeroes (¢]) and (¢3) of this polynomial:

1} = 0.002273099702700 and ; = 0.028800172170581.

These two zeroes belong to [0, 0.5], and thus we may investigate in which subin-
terval, the distance dist (D (£*, xo, yo, z0) » Hy (1}, x0., y0, 20)) exceeds €critical, by
determining the sign of D(r}) := dist (D (¢*, xo, yo, z0) , Hm (1}, x0. y0, 20)) —
€critical- 10 do so, we observe that the computation of the middle of an interval [a, b]
is numerically more stable using the formula a + (b — a)/2 instead of (a + b)/2, so
we have

0+1f
D 5 = 0.006934396087571 > 0 : exceeds

*

ty —tf
D <t;* + %) = 0.037415583826047 < 0 : does not exceed

0513

D (tik + > = 7.639373481094819 > 0 : exceeds.

Thus, the subintervals of [0, 0.5] in which dist (D (t*,x0, yo,z0) , Hm (t*, x0, Y0, 20))
exceeds €critical are

[0, {1 = [0, 0.002273099702700] and [z5, 0.5] = [0.028800172170581, 0.5].

These results can be verified in the following graphs (Figure 4):
Similarly, we may proceed in the other intervals:

05+

4 L - 05 i i i i i i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5 0 0.01 0.02 0.03 0.04 0.05 0.06

Fig. 4 Left. D(}") = dist (D (¢, x0, y0. 20) . Hu (¢}, X0, Y0, 20)) — €critical Right. Blue: D(r) =
dist (CD (ti*, X0, Y0, Z()) , Hy (li*’ X0, Y0, Zo)), Red: €critical
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In the interval [0.5, 1]:

1 2 3
et x0, y0, 20) = 0.3, ¢ (1, x0, 0, 20) = 4.8 and g5 (¢, x0, y0, 20) = 1.

Thus,

D(*) := dist (D (", x0. yo. 20) - Hy (t*, X0, Y0. 20)) — €critical =

= 10%(0.030000000000000(*)8 — 0.294041421322012(+*)7 + 1.277747933120760(t*)6
— 3.245707071889221(t*)3 + 5.182371259645940(+*)* — 5.007291817974445(t*)*

+ 2.417931775026438(1)> — 0.125751876811622(t*) + 0.00146872634829960).

This polynomial has no real roots in [0.5, 1]. Thus, D does not change sign in
[0.5, 1]. We check the sign of D in [0.5, 1]:

1-0.5

dist <0.5+ , X0, Y0, z()> = 21.546863660167102 > 0.

Thus, any point in the interval [0.5, 1] satisfies the inequality. This result is also
verified from Figure 5.

24 T T T T T T T T T

23t - 1
22 | P -
21t g _
20 + A 4
19 | / -
18 | b .
17t/ .

16 |/ -

15 L 1 1 1 1 L 1 1 1
05 055 06 065 07 075 08 085 09 0.95 1

Fig. 5 D(t}) = dist (D (¢, x0, yo. 20) , Hy (£, X0, Y0, 20)) — €critical = 0, in [0.5, 1]
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In the interval [1, 1.5]:

1 2 3
(2, x0, Y0, 20) = 1, 8¢, x0, yo, 20) = 4.8andg$ (1, x0, y0, 20) = 1.

Thus,

D(*) := dist (@ (l‘*, X0, Y0, Z()) s Hy (t*, X0, Y0, ZO)) — €critical =

= 10%(0.030000000000000(t*)8 — 0.294041421322012(¢*)7 + 1.277747933120760(t*)6
— 3.245707071889221(¢*) + 5.168371259645941(t*)* — 4.953602058250208(r*)°

+2.351368067871742(1*)% — 0.094527981428354(r*) + 0.006629023889238).

This polynomial has no real roots neither in interval [1, 1.5] nor in R.
Thus, D does not change sign in [1, 1.5]. We check the sign of D in [0.5, 1]:

dist (1 + , X0, Y0, z()> = 25.099633861696560 > 0.

Thus, any point of the interval [1, 1.5] satisfies the inequality. This result is also
verified from Figure 6.

254 T T T T T T T T T

25.3f 4
25.2¢ 4

2511 4

25+ / 4

24.8} / .
24.7} i
24.6 / 4

24.5

1 105 11 115 12 125 13 135 14 145 15

Fig. 6 D(t,-*) = dist (@ (ti*’ X0, Y0, Z()) , Hy (ti*, X0, Y0, Zo)) — €critical = 0, 1n [1, 1.5]
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22.8 T T T T T T T T T

226 F M R
224 F \ R

222+ \ .

21.6 1 1 1 1 1 1 1 1 1
15 155 16 165 17 175 18 185 19 195 2

Fig. 7 'D(ll-*) = dist (@ (ll-*, X0, Y0, Zo) , Hy (ti*’ X0, Y0, Zo)) — €critical = 0, in [1.5, 2]

In the interval [1.5, 2] :

1 2 3
gfq)(t,XO,yo,Zo) = l,gfg)(t,X(),yo,Zo) =438 andgé)(t,XO,yo,zo) =1

Thus,

D(r*) := dist (D (*, x0, yo. z0) » Hu (*, X0, ¥0. 20)) — €critical =

= 10%(0.030000000000000(+*)® — 0.294041421322012(¢*)7 + 1.277747933120760(t*)°
— 3.245707071889221(t*)° + 5.168371259645941(+*)* — 4.990759901414549(:*)*

+ 2.436401622659608(t*)> — 0.179627658812253(1*) + 0.00971499680840698).

This polynomial has no real roots neither in interval [1.5, 2] nor in R
Thus, D does not change sign in [1.5, 2]. We check the sign of the previous function
in[1.5,2]:

dist (1.5 + , X0, Y0, z()> = 22.689534856364734 > 0.

Thus, any point of the interval [1.5, 2] satisfies the inequality. This result is also
verified from Figure 7.
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A special case: Measurement in the Chebyshev Points of [0, 2]
Assume that the measurements have been done in the Chebyshev points, properly
transformed for the interval [0, 2]:

1.951056516295154, 1.587785252292473, 1.000000000000000,
0.412214747707527 and 0.048943483704846.

Thus,
H [E,Il ) is a function that passes through the points

@, wi") = (1.951056516295154, 0.065558230683740),
@, wi") = (1.587785252292473, —0.240026117055866),
", w) = (1.000000000000000, —0.000731820981905),
", wi) = (0.412214747707527, —0.041221034220753),
", wil) = (0.048943483704846, 0.211766633448476),
H jg) a function that passes through the points
@2, w®) = (1.951056516295154, 0.002603154846258),
@2, w) = (1.587785252292473, 0.006004566492993),
#1?, wiP) = (1.000000000000000, 0.027001193132598),
7, w) = (1.306656948627908, 1.387695745483932),
@, w) = (1.918582850410889, 4.570045178558653),
and H 18) a function that passes through the points
@, w?) = (1.951056516295154, 0.054654055471936),
@Y, w) = (1.587785252292473, 0.010790868704285),
@1, w§) = (1.000000000000000, 0.083052141119750),
@Y, w) = (0.412214747707527, 0.037883303951495),

Y, w) = (0.048943483704846, 0.815285451543443).
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Evaluating the previous procedure (Lagrange interpolation) to the above Chebyshev
points and solving the inequality of the relevant algorithm, we may conclude that
the inequality is satisfied in the following intervals:

[0, 0.002273099702700], [0.028800172170581, 0.5], [0.5, 1], [1, 1.5] and [1.5, 2].
The norm-2 of the difference of the results obtained from the algorithms is
1.314636333821229 - 10712,

Application of the Least Squares Method

In case of many measurements, the use of polynomial interpolation will result to
a polynomial of high degree, which means that it cannot be handled efficiently due
to floating point errors and its increased computational complexity. The use of least
squares concluding to a polynomial of manageable degree is more appropriate.

Supposing that we have 100 measurements (Lagrange interpolation would lead
to a polynomial of degree 99!), we apply Algorithm 3, evaluating the least squares
technique to derive a polynomial of degree 4. The intervals in which the resulting
inequality is positive are

[0, 0.002273099702699], [0.028800172170581, 0.5], [0.5, 1], [1, 1.5] and [1.5, 2].

Application of the Linear Splines Method

We used 500 sets of measured points in each interval (:[0,0.5], [0.5,1], [1,1.5],
[1.5,2]) for every component of H.

Approximating Hy, H and H3 using linear splines and computing the intervals
where the difference is positive, we conclude to the following result:

[0, 0.002257794228617], [0.029015423603700, 0.5], [0.5, 1], [1, 1.5] and [1.5, 2]
The 2-norm error with the other methods is
2.15-107%,

Using 50 instead of 500 measurements in each interval, for every component of
H, the error is similar:

2.31-107%,
but the decrease of the computational time is too significant.

An interesting task is the case that there are some measurement errors in the
initial points.
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In this case, the most appropriate method is the least squares one, which
minimizes the 2-norm of the system At = b, analysed in Subsection 5. Suppose
that there are errors in measured y;s of order of O(1073). Evaluating Algorithm 3 to
100 points, for the functions defined in our example, we get the following intervals:

[0, 0.001903961570183], [0.028255098676371, 0.5], [0.5, 1], [1, 1.5] and [1.5, 2].

The absolute error in the first interval is 3.691381325159999 - 10~ and in the
second is 5.450734942099994 - 10~* for measurement errors of order of 1073 in
each measured point.

Applying Lagrange’s interpolation, the corresponding algorithm fails to compute
the roots of the final distance, and thus the sign of the final computed polynomial
does not change and it is positive for the whole initial interval. Thus, the inequality
holds for every ¢ in [0, 2], which is not correct.

If the measured points are the Chebyshev ones, then the result is quite close to
the real ones:

[0, 0.001447041826483], [0.027872115109573, 0.5], [0.5, 1], [1, 1.5] and [1.5, 2].
For measurement errors of order of 10~3 in each measured point, the absolute

errors are 8.260578762160000 - 10~ in the first interval and 9.280570610080002 -
10~ in the second interval.

Comparison of Algorithms

Comparing the algorithms, we may conclude the following results:

Number of measured Computational
Method points Efficiency Proposal complexity
Linear splines Many High Proposed Low
Linear splines Few Low Not proposed Low
Langrange Many Low Not proposed | Too high
Lagrange Few Good Proposed Low
Chebyshev Many High Not proposed Too high
Chebyshev Few Good Proposed Low
Least squares Many High Proposed Low?
Least squares Few Good Proposed Low?

4Low complexity for polynomials of low degree

According to this table, we infer that Lagrange and Chebyshev’s interpolation
methods are not proposed in case of many measured points, since the polynomial
that is computed is of high degree, causing instability issues due to floating point
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operations and resulting to high computation complexity. The second one can be
evaluated in case that there is the opportunity the measurements to be carried out at
Chebyshev points. In case of few measured points, the behaviour of both methods
is good, and thus they are proposed.

Least squares method is proposed for the case that there are many measured
points or there are measurement errors. The method is efficient, and the computa-
tional complexity is low for polynomials of low degree.

Finally, linear splines method is proposed in case of many measured points. The
computational complexity is low and the computation of the roots of the inequality
of the relevant algorithm is stable, since the splines are polynomials of degree 1.
Also, linear splines require only the continuity of the function in the interpolating
points. In case of few measured points, the method is not proposed.
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Accurate Approximations of the )
Weighted Exponential Beta Function oo

Silvestru Sever Dragomir and Farzad Khosrowshahi

Abstract In this chapter, we provide several error bounds in approximating the
Weighted Exponential Beta function

1
F(a,B;y) = / exp [yx“ (1 —x)ﬁ] dx,
0

where «, 8 and y are positive numbers, with some simple quadrature rules of Beta-
Taylor, Ostrowski and Trapezoid type.

MSC (1991): 26D15

1 Introduction

Both contractor and subcontractors’ failure to meet the liabilities to the suppliers and
financial institutions can force an otherwise successful organization into liquidity,
which is the ultimate cause of insolvency (Davis 1999, [1]). The mishaps tend to
cause damaging impact during both depressed and buoyant economic situations.
These are manifested in cash flow failures by overtrading in boom periods and
income constraints of recessed periods. Construction project expenditure patterns
tend to display growth behaviour and cumulatively take the familiar ‘S’ curve. The
expenditure pattern of construction projects is typically represented by exponential
curves where the rate of growth is proportional to the state of the growth, and
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each value represents a constant percentage of the neighbouring value. While the
traditional methods require extensive knowledge about the project and project
plan, the mathematical approaches are somewhat alienating to the user, as the
logic of the forecast is embedded within the data underpinning the model. The
traditional models typically generate a forecast, which is then depicted graphically.
An alternative approach to forecasting project expenditure has been proposed by
Khosrowshahi [12]. The method takes a reverse approach to the traditional methods.
Instead of forecasting the expenditure values, the method reconstructs the likely
shape of the expenditure pattern and then converts the shape into figure. The shape
of the periodic project expenditure profile embodies characteristics associated with
the physical properties of the project. These shape criteria consist of the following
general and specific characteristics:
General Characteristics. These characteristics apply to all projects.

— Negation of negative values

— Periodic values are discrete and form a pattern

— The baseline periodic pattern is a two-phased monotonic curve monotonically
increasing towards a peak and monotonically decreasing towards the end.

— The commencing and the terminating final values are both zero.

Specific Characteristics. These are characteristics that define the specifics of

each project.

— The position of the peak point on the time and the cost axes.

— The intensity of expenditure from the start to the peak point.

— The distortion of the underlying pattern causing acceleration or retardation
resulting in the generation of additional peaks and troughs.

Therefore, the shape of the expenditure pattern is defined in terms of these
variables. The role of the mathematical model is to generate a pattern converted
by transforming the shape variables into a graphical pattern.

Extensive analysis of project expenditure patterns has revealed that the main
features of the shape of the project periodic expenditure pattern are defined in terms
of a number of variables represented by the following expression (see [11]):

Yo i= exp [bx“(l —x)d] —1,

where

X, =R = a and y, := Q = exp bR(1 — R4 | —1,
P a+d P

where

— @ and R, represent the positions of the project expenditure peak on both the cost
and time axes.
— a and b are parameterized in terms of x, and y, as follows:
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g el 1n(1+yp)d‘
1 =xp x4 (1= xp)

— Parameter d is calculated through numerical method that is derived to rapidly
converge towards a solution within desired error tolerance.

A relationship is established between the properties of the project and the
physical shape of the project expenditure pattern. These are then related and
reflected on the mathematical expression through its parameters.

Motivated by the above considerations, in this paper we introduce the three-
parameter family of functions

fapy @) i=exp[yx* (1 —x)P], x €[0,1], &, B, ¥ >0

and the “Weighted Exponential Beta” function defined by the integral

1 1
F (o, B;y) :=/O Japy (x)dx =/0 exp [yx“ (1 —x)ﬁ] dx, a, B, y > 0.

In the following, by making use of Theory of Inequalities, we provide several error
bounds in accurately approximating the Weighted Exponential Beta function with
some simple quadrature rules of Beta-Taylor, Ostrowski and Trapezoid type.

2 Basic Facts on the Generating Function f, g ,

In Mathematics, the Beta function, also called the Euler integral of the first kind, is
a special function defined by

1
B (a, B) :=/ X TA=x)f"ldx, >0, B>0. (2.1
0

The utility of the Beta function is often overshadowed by that of the Gamma
function, partly perhaps because it can be evaluated in terms of the Gamma function.
However, since it occurs so frequently in practice, a special designation for it is
widely accepted.

We consider the three-parameter generating function fy g, : [0, 1] — [0, 00),

fapy (@) i=exp[yx* (1 — )],

where o, B and y are positive constants. This family can be extended for negative
numbers o and 8 by eliminating either ends of the closed interval [0, 1]. However,
we do not consider this case here.
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Define the simpler two-parameter family that generates the Beta function, g4 g :
[0, 1] — [0, 00),

Gap () =x* (1 —x)F 2.2)

where o and f are positive constants.
We start with the simple fact incorporated in the following:

Proposition 1 Let a, B, y > 0. The function fy g, is increasing on [O, ﬁ],

decreasing on [ﬁ 1], and

) o\ a \( B\
X?[S,xu Ja.py X) = fapy (ot+,3) =Py (oz +,3> (ot +,3) .

2.3)

Proof We have

Japy (x) =exp [Vgot,ﬂ (x)]

and

fapy ) =785 @) exp[ygap )], x €[0,1], (2.4)

showing that the sign of £, 5, on [0, 1] is the same with the one of g, .
Furthermore, we have
8up () = ax®™H (=) —px® (1—0)P L =571 (1 =) o (1 = ) —px]

=21 =0 e — @+ B)x], x € (0, 1),

This shows that g(’y’ﬂ (x) > Oforx € (0, a‘"Tﬁ) and g&)ﬁ (x) < 0O for (ﬁ, 1) ,
which proves the statement. O
We need the following lemma that is of interest in itself, see also [5]:
Lemmal Letoa, 8,y > 0.
1) If0 <a+ B <1, then g4 g is strictly concave on [0, 1].
Define

a@+p—1—Vap(a+p—1) - o
(x+B)@+p—1) a+p

Xl,a,8 =

and
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g+ —D+VJapa+p—1) - o
(@+B)@+B-1) a+p

X208 =

(i) Ifa, B € (0, 1) witha + B > 1, then gy g is strictly concave on [0, 1] .

(iii) Ifa > 1 and B € (0, 1) then gy g is strictly convex on (O, Xl,a,ﬂ) and strictly
concave on (X1,4,8, 1) .

(iv) Ifa € (0,1) and B > 1, then g4 g is strictly concave on (O, xz’a,ﬂ) and strictly
convex on (xz,a’,g, 1) .

(V) Ifa, B > 1, then gy g is strictly concave on (xl,a,ﬁ, xz,a,ﬂ) and strictly convex
on (0, xl,a,ﬁ) U (x2,a,/3» 1) .

Proof If we take the second derivative of g, g on (0, 1), then we get

gg’ﬁ W =al@—Dx*"21=-x)Pf —apx® 11 —x)f!
—apx (A=) BB - (1 —x)f 2
=a(@—D)x*21-x)f = 2aBx* 1 A=) 4+B(B— D x* (1 —x)f2

=221 =02 [a @ = 1) (1 =0 = 2apx (1 = x) + B (B~ 4]

foralla, 8 > 0and x € (0, 1).
Now, consider the two-parameter family of parabolas

hap () =a(@—1)1—x)?=2afx(1—x)+B(B—1Dx% x eR.
We have
ha,ﬁ(x)=a(a—1)(x2—2x+1)—2aﬂ(x—x2)+ﬂ(ﬁ—1)x2
=la@—1)+20+BB-DIx>=2@@—-D+apf)x+a(@—1)
=[a2+2oz/3+,32—(a+ﬂ)]x2—2a(a+ﬂ—1)x+a(a—1)
=[(a+/3)2—(0!+,3)]x2—2a(01+,3—l)x—i—oe(oz—1)
=@+B@+B-Dx>—2a@+B—Dx+a@—1)

forx e R.
The discriminant of this family of parabolas is

Agp =40 @+ -1 —d@+B)@+p—Da(@—1)
=da(@+B—-—Dae@+B—1) —(@+ ) (¢ —1)]

=4a(ot—|—,3—1)(a2+a,3—a—a2—aﬂ+a+ﬂ)
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=4daf(a+p—-1)

fora, g > 0.

Now,if 0 < «+f8 < 1, then Ay g < 0, which shows that the parabola g (x) <
0 for all x € R, implying that g(’;,ﬂ (x) < Ofor x € (0, 1), namely gq g is strictly
concave on [0, 1].

Ifa+pB =1,thenhyp (x) =a(x —1) <0, namely g g is strictly concave on
[0, 1].

Ifaa+ B > 1witha, B > 0then Ay g > 0 and the parabola iy g (-) has two
distinct interceptions with the axis ox, namely

al@+p-1D—-—vap@+p-1

e = @+p) @+p—1)
and
al@+B—-—D+JaBa@+B—-1)
X208 = .

(@+pB)(@+p—-1)

The x coordinate for the vertex is

o
Wab =g €0, 1

for all o, 8 > O.

We also have hy g (0) =a (@ —1)and hq g () =B (B —1).

Now, if a, B € (0,1) witho + 8 > 1, then x1 ¢ g < 0 and x2 ¢ g > 1 showing
that hy g (x) < 0, namely gy, g is strictly concave on [0, 1].

Ifo > 1land B € (0,1), thena + 8 > 1, x14p8 € (O, ﬁ), X2ap >
1, which shows that hep (x) > 0 for x € (0,x1,4,4) and hep (x) < O for x €

X1,a,8, 1) showing that g g is strictly convex on (0, Xl.a, 5) and strictly concave on
Xl,a,8:1).

faoe©)andf > I, thena+ 8 > 1, x1ap < 0, Xoap € (ﬁl)
which shows that he g (x) < 0 for x € (0,x2,64,8) and hep (x) > O for x €
(x2,0,8, 1) showing that go g is strictly concave on (0, x2,4,4) and strictly convex
on (x2,6,8, 1)

Ifa, B> 1, thenx1 44 € (0, O%ﬂ) and x4 € (ﬁ, 1) , which shows that
/’la’/g (x) < 0 for (xl,a’ﬁ,nga,ﬂ) and ha,ﬂ (x) > 0 for x S (O,xl,a,ﬂ) U (x2,a,;37 1)
showing that gy g is strictly concave on (X1,a,ﬁ,x2,a, ﬁ) and strictly convex on
(0, xLa’ﬂ) U (xz,a’ﬂ, 1) . O

We can state the following fact concerning the logarithmic convexity of f, g, .

Proposition 2 Let o, B, y > 0. Define x1,4,5 and x2 4,8 as in Lemma 1.
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(1) Ifa, B € (0,1), then fy ., (x) is strictly log-concave on [0, 1] .

(2) Ifa > 1and B € (0, 1), then fyp,, (x) is strictly log-convex on (0, xl,a,ﬁ) and
strictly log-concave on (xl,a, B 1) .

(3) Ifa € (0,1) and B > 1, then fy g, (x) is strictly log-concave on (0, X2,a,ﬁ)
and strictly log-convex on (xz,a, Bs 1) .

@) Ifa, B > 1, then fyp ., (x) is strictly log-concave on (xl,a,,g,xz,m,g) and
strictly log-convex on (0, xl,a,ﬁ) U ()CQ,(X”g, 1) .

The proof is obvious by Lemma 1 observing that In[ fy,,, ()] = ygap (x) =
yx*(1—x)# xe[0,1]and o, B, y > 0.

3 Taylor’s Type Expansion for f, g ,

We have the following representation result:

Theorem 1 Let o, B, y > 0, then for all x € [0, 1] and natural number n > 1, we
have

"1
Jaupy @) =143y (=2 4 Ry @y ). (3.1)

where

Ry (a, B,y x) (3.2)

1 1
= —'y"Hx"‘(”H) (1 —x)f0+D / exp [ysx“ 1- x)ﬁ] (1 —s)"ds.
n: 0

Proof Let I C R be a closed interval, ¢ € I, and let n be a positive integer. If
f : I — C is such that the n-derivative f is absolutely continuous on /, then
foreachy € I

fO)=T(fic,)+Ri(fi¢,y), (3.3)

where T, (f; c, y) is Taylor’s polynomial, i.e.,

T, (fic.y) = Z (y f<k> (c). (3.4)

k=0

Note that £ := f and 0! := 1 and the remainder is given by

1 y
Ry (fie,y)i=— f =" foY @) ar. (3.5)
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For any integrable function / on an interval and any distinct numbers ¢, d in that
interval, we have, by the change of variable t = (1 — s) c + sd, s € [0, 1] that

d 1
/ h(t)dt = (d—c)/ h((1—s)c+ sd)ds.
c 0
Therefore,
y
f FOY @) (y -0 de
1
=(- c>/ FO(A = s)e+5y) (x — (1 —s)c—sy)"ds
0

1
=(y—o"t! / FOD (1 = s)e+sy) (1 —5)" ds,
0

and from (3.5), we get the representation

fO) = Z (y 00w (3.6)

k=0

1
+%(y—c)"+‘/ FOD (1 = s)e+sy) (1 —5)"ds
: 0

forall y,cel.
Now, if we write the equality (3.6) for the exponential function f (y) = e”,

y € R, and the point ¢ = 0, we get
"k

1 1
expy — 1 = F +— Y y /(; exp (sy) (1 —s)" ds 3.7

for any real number y € R.
If we take in 3.7) y = yga,p (x), x € [0, 1], we get

_ v ilges @]
exp[ygap ] - 1= v —
k=1 ’

1 1
+ =" gwp @] /0 exp [s78a,p (0] (1 = 5)" ds,

which produces the desired result (3.1). O

We have some simple upper and lower bounds as follows:
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Corollary 1 Let«, B, y > 0, then for all x € [0, 1] and natural number n > 1, we
have

"1
—y K (1= x)Pk (3.8)

P k!

< fapy (x)—1

n
Lo ak Bk e’ n+1_a(n+1) B(n+1)
SI;E]/)C (1 —x) —i—my X (1 —x) .

Proof The inequalities in (3.8) follow by (3.1) observing that

1 1
0~y gup 0] fo exp [y5ga.p (0] (1 —9)" ds

IA

1 1 !
i7" e 0] max exp [sygap ()] /0 (1—s)"ds

ey

< n+1
~ (n+1)!

Y"1 gap (0]

forall x € [0, 1]. |

Corollary 2 Let a, 8, y > 0, then we have function series expansion
=1
fa,ﬂ,y (_x) = ] + Z Eykxak (1 _ x)ﬂk
k=1

uniformly on the interval [0, 1] .

Proof Let«, B, y > 0. By (3.1), we have

" k
fupoy @) = 1= ZykM‘

Pt k!
1 n+1 n+1 ! n
= |7 [8a.p (0] | exp [s78up ()] (1 —5)"ds

1 n 1
< —y"" gap (0)] “/0 lexp [sy8ap ()] (1 —5)"|ds

“n!

ey 1 n+l1
< —)/"+1/ (1—s)"ds =e”

n! 0 (n+ 1!

forx € [0,1]and n > 1.
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Consider the positive sequence

n+1
an = y k) n Z
(n+1)!
Then,
Vn+2
. a . 1
lim ntl li (n+2])' = =
n—>o0o a, n—oo _y"t n—o00 (n + 2)
(n+1)!
By using the ratio test for sequences, we conclude that lim,_, o a, = 0, which
proves the statement. a

Now, we can introduce the three variable function F : (0, c0) x (0, 00) X
(0,00) — (0, 00), which we can call the weighted Exponential Beta function,
defined by the integral

1
F(a,B;v) 2=/ exp [yx* (1 — x)P]dx > 1.
0

Then, we have the following representation result in terms of the Beta function:

Theorem 2 For any natural number n > 1 and any «, B, y > 0, we have the
Beta-Taylor representation

n
1
Foiy) =1+ =y Blak+1,k+1)+ Ry (@ By, (3.9)
k=1""
where the remainder R, (a, B; y) is given by

Ry (a, Biy)

1 1 1
— _yn-l-l/() (/(; {xa(n+1) (1- x)ﬂ(n+1) exp [syx“ (- x)ﬂ]} dx)

n!

(1—s)"ds.  (3.10)

Proof 1f we integrate the identity (3.1), we get
1
F(a,B;v) =f0 Japy (x)dx (3.11)

n 1 1
1
=1+ =y [ x** 1 -0Mdx+ | Ri(a.B.y.x)dx
= k! 0 0
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n 1
1
—14) :W"B(ak+1,ﬁk+1>+f Ry (@, B, y, %) dx.
k=1 0

Also

1
/ R, (o, B, y,x)dx
0

1 1 1
= —'y"H / x@FD (1 = x)B+D </ exp [ysx“ (1 - x)ﬁ] 1 -9 ds) dx
n: 0 0

1 1 1
= —yntl / </ @O FD (1 — x)BD) exp [ysx“ (1 - x)’g] dx> (1 —s)"ds,
0 0

n!

where for the last equality, we used Fubini’s theorem. O

Corollary 3 We have the following Beta-Taylor series expansion
o0
[
Fla.Biy)=1+Y —v*Bak+1,Bk+1) (3.12)
Pt k!

uniformly over a, B, y > 0.

Proof Observe that

1 1
0< R (e i y) < —,y"“/ exp (s) (1 — )" ds
n: 0
n+1
-0
(n+ 1!

1 1
= —yntley 1 —=s5)"ds =e¥
n! 0

for n — oo. This proves the claim. O

4 Error Bounds Via Ostrowski Type Inequalities

The following lemma provides an error estimate in approximating the integral mean
by a value of the function in the case when the derivative is bounded. It was obtained
in 1938 by Ostrowski, see [14].

Lemma2 Let f : [a,b] —> R be continuous on [a,b] and differentiable
on (a,b), whose derivative is bounded on (a,b) and let ||f/||

[/ @®)] < co. Then,

o0, (a,b)

SUPte(a,b)
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1 — ath)?
< [ . g} 6= oy @D

1 b
‘f(x)——b_a/a f @) dt 1 b—ay

forall x € [a, b]. The constant 41'1 is sharp in the sense that it cannot be replaced by
a smaller one.

For a recent survey on this inequality, see [2] and the references therein.
We need the following lemma:

Lemma 3 Fora, 8 > 1, we have

_1 \o! 1 \A!
g(/x,ﬂ (X)‘ < max {«, B} (ozj—ﬁ) ((}{iﬁ) . (4.2)

max
x€[0,1]

Proof From the definition of gq g (x), we have

8ap (X) = 8a—1 p—1 (X) [ — (@ + B) x], x €0, 1], (4.3)

which implies that for «, 8 > 1, we have

max |g’ x‘<max ey (x) max la — (@ 4+ B)x a4
xe[O,l]‘ga’ﬂ( ) _xe[o,l]g“ 1,81 ( )x€[0’1]| (a+ B) x| (4.4)

= max {o, B} max go 1 -1 (x).
x€[0,1]

From (4.3), we get

8um1 po1 () =8ga2p2 (X[ —1—(a+p-2)x],x€(0,1).

This shows that g/, _, g1 (x) > 0forx € (0 ) and g/, p_1 (x) < 0 for

a—1
> a+p-2

(#El_z, oo) , which gives that

oa—1
1 =gy 1g-1|—— 4.5
xfen[gﬁ]ga 1-1 () = ga—1p 1<a+ﬁ—2> 4.5)
a—1 '/ p=—1 /!
:<a+ﬁ—2> (a—i—,B—Z) '
By (4.4) and (4.5), we get the desired inequality (4.2). |

We have the following result via Ostrowski’s inequality:

Theorem 3 Fora, B > 1 and y > 0, we have
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1 1\?
|F (@, B5¥) = fapy )] < il (4.6)

a—1 '/ p=1 /!
XymaX{“’ﬁ}(a+ﬂ—2> (a+ﬂ—2>

<o (55) () |

forall x € [0,1].
In particular,

|F @iy —ow (575)| 47

_ ! a—1 '/ p=1 /!
‘ZymaX{“’ﬂ}(a+ﬁ—2> <a+ﬂ—2>

ool (o55) (o5) |

Proof If we write Ostrowski’s inequality for the function f, g, on the interval

[0, 1], then we have
SR 1\?
=137\ 72

1
Fupy (1) — fo Fupy (D)1 7 4.8)

By Hoo,[o,l]

forall x € [0, 1].
From (2.4), we have

Japy @) =v8 s (X)exp[veap (V)] =ve, 5 &) fapy (X), x €10,1],
which shows that

max
x€[0,1]

/
X < max
Japy )’ = yxe[O,l]

a—1 \*"'/ o p—1 !
<rmaien)(555) ()

a \“ g\
X ex )
"7 (a+ﬂ) <a+ﬂ)
where for the last inequality, we used Lemmas 2 and 3.
By employing (4.8), we obtain the desired result (4.6). O

Lo (x ‘ max X
ga,ﬁ( ) xe[O,l]fa'ﬂ’y( )
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In 1997, Dragomir and Wang proved the following Ostrowski type inequality [6],
see also [2, p. 26]:
Lemmad4 Let f : [a, b] — R be an absolutely continuous function on [a, b). Then,
we have the inequality

1 \x — M| ’
S LT

1 b
’f(x)—b—/ ) di
—

forall x € [a, b, where ||-||; is the Lebesgue norm on L1 [a, b], i.e., we recall it

b
lgllia.51.1 1=/ lg ()] dt.
a

The constant % is best possible.

Note the fact that % is the best constant for differentiable functions was proved
in [15].

Theorem 4 Fora, B > 1, y > 0, we have

fa,ﬁ,y (x) _ l _l
F (@ B:7) 1‘5 [2+ * 2” 10

et 1\
Xyma"{“”g}(aiﬂ—z) <a-l|3-/3—2>

forall x € [0, 1] and, in particular,

exp QL _ a—1 _ p—1
F (o, B;y) 2 a+pB-2 a+p—2
4.11)
Fora, B, vy > 0, we also have
|F (@, B;v) = fupy ()] (4.12)
-1 !
= [2 + |x — > :|

« \( B\

forall x € [0, 1] and, in particular,

F @ piy) o (5355 )| (4.13)
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<1ymax{oz B} B («, B) exp y( ad >a< p )ﬂ
-2 ’ ’ a+pB a+p ’

where B (-, -) is Euler’s Beta function.

Proof If we write the inequality (4.9) for fy g, on the interval [0, 1], then we have

1 1 ,
| fupy (X) = F (o, B; ¥)| < |:§ + |x — EH fa”g’VH[O,l],l , (4.14)
forall x € [0, 1].
Now, observe that
' 4.15
f""ﬂ'V H [0,1],1 ( )

1 1
= / dt =
fo Fipy ©ar y/o
1
0

1
= V/O 8a—1p-1 @)l — (@ + B)t| fupy () dt

8hop (0] exp [780, ()]

8ap | fapy () dt

1
<y max o — (a+B)1] f Gat o1 (1) fupy (O dt
t€[0,1] 0

1
— 5 max (o, B) /0 Gamt po1 (1) fupy (D).

Since

1
A 8a—1p—-1() fap,y (1)dt (4.16)

1
< max gy—1p-1 (l)/ Jap.y () dt
re[0.1] 0

a1 N\ g ﬁle .
-(-55) (555) rasn,

and hence by (4.14)—(4.16), we get

1
’fa,ﬁ,y (x) — F (a, B; y)| < [5 +
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a—1 '/ g-1 ﬁ‘lF _
(am) (@) e

that is equivalent to (4.10).
We also have

1
/0 8a—1p-1) fapy @) dt 4.17)

1
< max t _18-1 () dt
= e fa,ﬁ,y ( )/0 8a—1 -1 (3]

_ @ (£
_ew[y<a+ﬁ> <a+ﬁ)]Bﬁ*m’

and hence by (4.14), (4.15) and (4.17), we get (4.12). |

In 1998, Dragomir and Wang proved the following Ostrowski type inequality for
p-norms of the derivative [7].

Lemma 35 Ler f : [a, b] — R be an absolutely continuous function on [a, b). If
fle L, [a, b], then we have the inequality

1 b
‘f(x)——b f S @ dt
—al,

1 ¥ —a\it! h— x\9+! 1/q 1
—_ o)V ’
= (g + D4 [(b—a) + (b—a) } b-a)?|f Hla,bl,p’

forall x € [a, b], where p > 1, % +
on Lpla,b), ie., we recall it

b 1/p
glla,p1,p = (/ Ig(t)l”dt> .
a

Using this tool, we can prove the following result as well:

(4.18)

=1, and |||, p is the p-Lebesgue norm

Q=

Theorem 5 Fora, B > 1, y > 0, we have

1
|F (. Bi ) = fapy @) < ( [xq+1 a1 —x)q“] ! 4.19)

g+l

a B
xymax{a,ﬁ}exp[y (aiﬂ) (aiﬂ) :|

x[B(p@—1+1,pB—1)+D]"?
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forall x € [0, 1], where p > 1, %—1— 617 =1
In particular,
i 14
F(a,By)— eXP(2a+,s)’ (4.20)

<; max {o, B} ex ( * >°‘< p )ﬁ
_2(q+1)1/'4y ’ Py a+p a+p

x[B(p@—1+1,pB—1)+D1"7,

where B (-, -) is Euler’s Beta function.

Proof 1If we write the inequality (4.18) for the function for f, g on the interval
[0, 1], then we have

| fupy () = F (@, B )| 421
1 1/q
P le-l +1- x)lH-l] ‘ / H ’
T (g+ DY [ Jabr 0115
for all x € [a, b], where p > 1, %+ % =1.
Observe that
fis | (422)
@B lo.11.p :

8op (t))p (exp [y 8ap 1)])" dt

l/ p 1
= [ty 0] ar=yr |
fo ®by 0

1
:)/p/
0

1
- y”fo Sa-1 g1 Ol =@+ P tl” £y, (1) dr

/ Pop
8ap O fop, Odt

1
<y? max{ap,ﬂp}/o xP@=D (1 = x)pB=D fa gy 0 dr.

Since, by (2.3), we have

p o o _ o ¢ B B
i ey O = Japy <a+ﬂ>_eXp[”y (a+/3> <a+ﬁ) }

and hence by (4.22), we get
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. p
Japy H [0,1],p

o o B p
< yPmax [a?, P} exp | py <a+/3) (a +’3)

1
X/ 2P@=D (] — B gy
0

a \* B\
= y"maxfa®, p7}exp {py <a+ﬂ) <a+ﬁ) }

XxB(p@-D+1LpB-DH+1,

namely
a \? B\
! <
fa,ﬁ’VH[o’l]’p < y max {a, B} exp |:V (Ol +,3> (O[ +I3>
x[B(pla—1+1ppB-1+D]"7.
Therefore, by (4.21), we get the desired result (4.19). m]

5 Quadrature Rules of Ostrowski and Trapezoid Type
Let
I ca=xo<x1<...<Xp_1 <x=Db

be a division of the interval [a, b], o; (i =0,...,k+ 1) be ‘k 4+ 2’ points so that
o) =a, o €[xi—1,x;](=1,...,k)and ay4+1 = b. Define

hi =xiy1—x; @ =0,...,k—1) andv (h) :=max{h; |i =0,...,k—1}.
Consider the equality

b
/ f@dt =Q (f, Ir, k1) + R (f, I, k1) (5.1

where

k
Q (f I@) =) (i1 — o) f (x) (5.2)

i=0
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is the Ostrowski quadrature rule associated with the division I and the "k 4 2"
points agy1 = (xp, o1, ..., 0k, ¢k+1), While Ry (f, I, ox+1) is the error in
approximating the integral | ab f (¢) dt by the quadrature 2 (f, Iy, ).

If we chose in (5.5)

a—+ x X1+ x2
) =a, 0= =
Xp—2 + Xp—1 Xie—1 + Xk

then we get after some arrangements that

k—1
1
 (f @) = 5 [(xl —a) f@+ Y (vt —xio1) f () + (b —xx-1) f (b)}
i=1

=T (f, It),

where Ty (f, Ix) is called the Trapezoid quadrature rule associated with the function
f and the division /.
In this situation, we have

b
/ f@0dt =T (f, ) + R (f, In) (5.3)
a
where Ry (f, Ix) is the error in approximating the integral by the trapezoid rule
T (f L) -
Let

L : x; :=a—|—(b—a)%, i=0,.. ..k

be the equidistant partitioning of [a,b]. We can then consider the equidistant
Trapezoid rule given by

b P ,
T (f) := M(k—aHT"Zf(aHb—a)’E)

1
k 2 —

fork > 2.
Furthermore, we can approximate the integral as

b
/ f@dt =T (f)+ R (f), (5.4)

where Ry (f) is the error in this equidistant approximation.
Assume that f is absolutely continuous on [a, b] .
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If f/ is essentially bounded on [a, b], namely, f’ € Ly [a, b], then we have the
error bounds [8, p. 19]

IRk (f, Tk, et 1) (5.5)

3 (o

i=

IA

1
52h2||f|| Jab] <b—a> M NP OF

IA

The trapezoid rule error Ry (f, I;) satisfies the better bounds
1 (2 1
2
1= 5 () Ut = 560 15 g
i=0

and the equidistant error Ry (f) satisfies the inequality
1 2 ’
IR (O] = 22 b= [ '] g 0

In terms of 1-norm, we have the error bounds [3], see also [8, p. 51],

|Ri (f, Ii, otgg1)] (5.6)

Xi + Xit1

Qi1 — )

| AR T T

yeees

In particular, we have

1
|Ri (f, I)] < 5V (h) ”f/”l,[a,h]

and
1 /
Re (N < 52 0= | £ 0y
If f' € L,[a.b], p > 1and % + % = 1, then [4], see also [8, p. 35],

[Ri (f, Iis ctgt1)| (5.7

k—1 1/q
1
m |:Z( iv1 — 2D + (i — o) :| (& ||p,[a,b]



Accurate Approximations of the Weighted Exponential Beta Function

1/q
=4 +1)1/q (WA s (th+1)

1 li
: g+ D4 URSORSH VA A OR

Moreover, we have

|Ri (f, T

/g
o7 1 e (Zh"“)

R S Vi
= 2qenn 0T N g @

and

IR (f)] < b =)V

1
2k (¢ + D4
Let

I :0=xg<x1<...<Xp—1 <xx=1

be a division of the interval [0, 1] and g = 0, o; € [xi—1,xi] (i =1,...,

159

k)

and ax4+1 = 1. We define the following Ostrowski type quadrature rule for the

exponential Beta function by

k
Qi (fa,ﬂ,y, I, (x) = Z (atip1 — ;) exp [yxf‘ (1 - xi)ﬂ]

i=0

and the Trapezoid rule by

Tk (fapoys Ik) : |: Z xXigr — xi—p)exp[yx® (1 —x)P]+1 —Xk—1:| .

Consider also the equidistant Trapezoid rule given by
o i B
Ti(fupr) = 1+ zexp (1) (-7)
fork > 2.

Theorem 6 Let Iy, o be as defined above. Then,
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F(a,B:7) = (fupy Ik, @) + Ri (fapoys Ik 2ks1) s
where the remainder Ry, ( Japs Ik, gt 1) satisfies the bounds

|Rk (fa.y Ik k1)) (5.8)

fo/t,ﬂ,yH

00,[0,1]

RN 1 A\
X”ma"{“’ﬂ}<aiﬂ—z> (a—fﬂ—Z)

a \“ g \* {
X exp y(oe—i—ﬂ) <a+,3> s o, fp>1,
|Rk (farpoys Tk @kt1) | (5.9

)

Xi + Xit1
2

fo/c,ﬁ,y H

i1l —
nl 't 1,10,1]

.....

Qi1 —

,,,,,

a \¢ B B
x y max {«, B} B («, B) exp y<a+’3> <a+,3) ,a, >0

and

| Rk (faupoys Iks k)| (5.10)

1 k—1 1/q
m |:Z (@it1 = x)* + (rir — @) :|

foﬁ,ﬁ,y”

p.[0.1]

| k=1 1/q
W |:Z (@ir1 = x)* + (i — Otz+1)q+1:|

o B
X y max {«, B} exp |:y (oziﬂ) <aﬁ'3) ]

x[B(pa-D+1LpB-D+DI"", a p>1,

1,1 _
wherep>1and;+5_1.
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The proof follows from the inequalities (5.5), (5.6) and (5.7), and the fact that
from the previous section, we have the following upper bounds for the norms of

fo;,ﬁ,y

N 2 LA | (L B
max {«,
0By oo 0,1y = ¥ I a+p—-2 a+p—-2

(&) () ]
x exp |y o, B>1,
oa+p a+p

’ (04 “ ,3 p
fa,ﬁ,yHum < y max {a, B}exp |:V <a+ﬂ) <a+ﬂ> }B(a,ﬂ), ap>0

and

: - « \"(_B_\
fa,,g,yH[O,le_Vmax{a,ﬂ}exp V<a+/3) <a+ﬁ)

x[B(p@—D+1LpB-D+DI"", o p>1
Corollary 4 Let Iy be as defined above. Then,
F(a,B:y) =Tk (fapy: Ik) + R (fapy- Ik) -
where the remainder Ry ( Ja.8 Ik) satisfies the bounds

k—1

1
foi,,s,ynoo’[o,” < [Zth} (5.11)

i=0

1 el _1 A\

X”ma"{“’ﬁ}<a(j—ﬂ—z> <af,3—2>

X exp y( al )“( P )ﬁ o, f>1
a+p a+p T '

| R (fapys )| (5.12)

1 / 1
< [Ewh)] Feir| o = [Ev(h)}

o @ B B
x y max {«, 8} B («, B) exp y<a+,3> <a+/3> , o, >0

k—1
1
|Rk (fa,ﬂ,yv Ik)| = 4 § ,hzz
i=0
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and

/
Aﬁwnmu (5.13)

k-1 /9
1 1
b=t (£
2@+ DY\

) k-1 /9
- hq+1
2(g + D4 (Z '

i=0

a B
X y max {«, B} exp |:y (“j‘ﬂ) <af—,3> :|

x[B(pla—D+1pB-D+DI"? o g>1.

IA

Remark 1 Finally, we mention the following simple trapezoid quadrature rule

F(a, ;%) = Tk (fapy) + Ri (fupy)

where the remainder Ry ( fa.p,,/) satisfies the bounds

1 !
< .14
| — 4k f”‘*ﬂ’VHoo,[o,l] (5.14)

_ 1 a—1 \*1/ g—1 /!
_Eymax{a,ﬁ}<a+ﬂ_2) (a+,3—2>

a \“ AN |
X exp y<a+,8> <a+ﬂ> s o, p>1,

|Ri (fap.y)| (5.15)

|Ric (fap.v)

=

1 !
2% f"‘*ﬂ’yul,[o,l]

<iymax{a B} exp y( ¢ >0l< P )ﬂ B(a,B), a, B>0
- 2k ’ a+p a+p e

and

1
2k (g + /4

1 o o B B
S—2k(q+1)1/qymax{ot,/3}exp|:)/ (a—}—,B) (oH—ﬂ) :|

/
Jap.y Hp,[o,l]

|Rk (fa,ﬁ,y)| =

(5.16)
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x[B(pla—D+1L,pB-1D+DIVP, a, B> 1.

The bounds above show that Rk (fu,p,,) — O when k — oo, and therefore
F(a,B;y) =limgoo Ti (fo,)ﬁ,y) fora, B > land y > 0.
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On the Multiplicity of the Zeros of )
Polynomials with Constrained oo
Coefficients

Tamas Erdélyi

Abstract We survey a few recent results focusing on the multiplicity of the zero at
1 of polynomials with constrained coefficients. Some closely related problems and
results are also discussed.

Mathematics Subject Classification (2010): 11C08, 41A17, 26C10, 30C15

1 On the Multiplicity of the Zero at 1 of Polynomials
with Constrained Coefficients

In [17] and [18], we examined a number of problems concerning polynomials with
coefficients restricted in various ways. We were particularly interested in how small
such polynomials can be on [0, 1]. For example, we proved that there are absolute
constants ¢; > 0 and ¢» > 0 such that

eV < min { max |Q(x)|} < e v
0#£QeF, |x€[0,1]

for every n > 2, where F,, denotes the set of all polynomials of degree at most n
with coefficients from {—1, 0, 1}.

Littlewood considered minimization problems of this variety on the unit disk. His
most famous, now solved, conjecture was that the L1 norm of an element f € F; on
the unit circle grows at least as fast as clog N, where N is the number of non-zero
coefficients in f and ¢ > 0 is an absolute constant.

When the coefficients are required to be integers, the questions have a Diophan-
tine nature and have been studied from a variety of points of view.
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One key to the analysis is the study of the related problem of giving an upper
bound for the multiplicity of the zero these restricted polynomials can have at 1. In
[17] and [18], we answer this latter question precisely for the class of polynomials
of the form

n
Q(x) = ajx/, lajl <1, a;jeC, j=12,...,n,
j=0

with fixed |ag| # 0.

Various forms of these questions have attracted considerable study, though rarely
have precise answers been possible to give. Indeed, the classical, much studied,
and presumably very difficult problem of Prouhet, Tarry, and Escott rephrases as
a question of this variety. (Precisely: what is the maximal vanishing at 1 of a
polynomial with integer coefficients with /{ norm 2n? It is conjectured to be n.)

Forn e N, L > 0,and p > 1, let k,(n, L) be the largest possible value of k for
which there is a polynomial Q = 0 of the form

n n 1/p
Q)= ajx/, a;€C,  |a| = L(Z |a,,|f’) :
j=0

j=1

such that (x — D¥ divides Q(x).
Forn € Nand L > 0, let ko0 (n, L) be the largest possible value of k for which
there is a polynomial Q = 0 of the form

n
Q)= ajx/,  a;eC, lag| > L max |a;],
0 l<j<n
j:

such that (x — ¥ divides Q(x).
In [17], we proved that there is an absolute constant ¢3 > 0 such that

|
min |g‘/n(1 “logL) — 1 n] < keo(n, L) < min {C3\/n(1 “Tog L n]

for every n € N and L € (0, 1]. However, we were far from being able to establish
the right result in the case of L > 1. In [18], we proved the right order of magnitude
of ko (2, L) and 3 (n, L) in the case of L > 1. Our results in [17] and [18] sharpen
and generalize the results of Schur [62], Amoroso [1], Bombieri and Vaaler [6], and
Hua [49] who gave versions of this result for polynomials with integer coefficients.
Our results in [17] have turned out to be related to a number of recent and old
publications from a rather wide range of research areas. See [1-16, 18-67], for
example. More results on the zeros of polynomials with Littlewood type coefficient
constraints may be found in [37]. Markov and Bernstein type inequalities under
Erdds type coefficient constraints are surveyed in [36].
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Forn € N, L > 0,and g > 1, let j4(n, L) be the smallest value of k for which
there is a polynomial of degree k with complex coefficients such that

1 n ' 1/q
10(0)| > Z(/X_;IQ(J)I"> :

Forn € Nand L > 0, let oo (n, L) be the smallest value of k£ for which there is a
polynomial of degree k with complex coefficients such that

1 .
1QO)] > + max [Q(j)].
1<j<n
It is a simple consequence of Holder’s inequality (see Lemma 3.6 in [42]) that

kp(n, L) < pg(n, L)

whenevern e N, L > 0,1 < p,q <oo,and1/p+1/qg =1.

In [42], we have found the size of k(n, L) and p,(n, L) foralln € N, L > 0,
and 1 < p, g < oo. The result about wso(n, L) is due to Coppersmith and Rivlin,
[27], but our proof presented in [42] is completely different and much shorter even
in that special case. Another short proof of the Coppersmith—Rivlin inequality is
presented in [41].

Our results in [17] may be viewed as finding the size of koo (1, L) and p1(n, L)
foralln €e Nand L € (0, 1].

Our results in [18] may be viewed as finding the size of ko (n, L), u1(n, L),
ka(n, L), and ur(n, L) forallm € Nand L > 0.

Our main results in [42] are stated below.

Theorem 1 Let p € (1,00] and g € [1,00) satisfy 1/p + 1/q = 1. There are
absolute constants c; > 0 and ¢y > 0 such that

(e L)% =1 < p(n, L) < pg(n, L) < vn(eaL) ™4/ 42

foreveryn e Nand L > 1/2, and

¢3 min {\/n(— log L), n} < kp(n. L) < pg(n, L) < cqmin {,/n(—logL n} +4

for everyn € Nand L € (0,1/2]. Here, ¢c; := 1/53, ¢ := 40, ¢3 := 2/7, and
¢4 := 13 are the appropriate choices.

Theorem 2 There are absolute constants ¢ > 0 and ¢ > 0 such that

civn(l—L)—1=<«i(n,L) < peo(m, L) < cpy/n(1 —L)+1

foreveryn e Nand L € (1/2, 1], and
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c3 min{w/n(—logL ,n} <ki(n,L) < poo(n, L) < C4min{\/n(—logL ,n} +4

foreveryn € Nand L € (0, 1/2]. Note that k1(n, L) = peo(n, L) = 0 for every
n € Nand L > 1. Here, ¢c; := 1/5, ¢ := 1, ¢3 := 2/7, and c4 = 13 are the
appropriate choices.

Note that in [39], extending a result of Totik and Varji in [66], we showed
that if the modulus of a monic polynomial P of degree at most n, with complex
coefficients, on the unit circle of the complex plane is at most 1 + o(1) uniformly,
then the multiplicity of each zero of P outside the open unit disk is o(n'/?).
Equivalently, if a polynomial P of degree at most n, with complex coefficients and
constant term 1, has modulus at most 1 + o(1) uniformly on the unit circle, then the
multiplicity of each zero of P in the closed unit disk is o(n'/?). These observations
were obtained in [39] as a consequence of our “one-sided” improvement of an old
Erd6s—Turdn Theorem in [43]. Namely in [39], we proved that if the zeros of

n
P():=)Y ajz/, a;jeC. apa, #0
=0

are denoted by
Z]Zr]exp(l(pj)s rj>07 (pje[oazn)v j=172"."n’

then for every 0 < o < 8 < 2w, we have

Yoi- ﬁz_ang 16\/nlog R, ,

11

Jjeli(a,B)
and

B —«
ou- s 16,/nlog R ,

jeh(a,pB) d

where
Ri:=la,| " IPI,  Ry:=laol"IP],

and
I (e, B) :={j10[§(ﬂj <B,rj=> 1}, D(a, B) :={j:0l§(,0j <B.rj <1}.

Here, | P| denotes the maximum modulus of P on the closed unit disk of the
complex plane. For better constants in the Erdés—Turdn Theorem in [43], see the
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recent paper [64] by Soundararajan, who also offers a very elegant new approach to
prove the Erd6s—Turdn Theorem in [43].

2 Remarks and Problems

A question we have not considered in [42] is if there are examples of n, L, and p for
which the values of «(n, L) are significantly smaller if the coefficients are required
to be rational (perhaps together with other restrictions). The same question may
be raised about 14 (n, L). As the conditions on the coefficients of the polynomials
in Theorems 1 and 2 are homogeneous, assuming rational coefficients and integer
coefficients lead to the same results. Four special classes of interest are

Fai=10:0@ =) ajz/, aje{-1,0,1} ¢,

J=0

Ny = Q:Q(z):Zajzj, aj €{0,1} ¢ ,

j=0

Ly=10:0@) =) ajz/, aje(-1,1}},

j=0

and

Kn=1Q:0@) =) a;z, ajeC, laj|=1
j=0

Elements of F;, are often called Borwein polynomials of degree at most n. Elements
of N, are often called Newman polynomials of degree at most n. Elements of £, are
often called Littlewood polynomials of degree n. Elements of C,, are often called
unimodular or Kahane polynomials of degree n. In [17], we proved the following
result.

Theorem 3 Let p < n be a prime. Suppose Q € F,, and Q has exactly k zeros at 1

and exactly m zeros at a primitive pth root of unity. Then

log p

HD>k——m.
pim+1) = log(n + 1)

The proof of Theorem 3 is so simple that we reproduce it here.
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Proof of Theorem 3 Let

i
gjzzexp(mj), j=1L2...,p—1.
p

Let Q € F, be of the form

0(x) = (x — DFR),

where R is a polynomial of degree at most n — k with integer coefficients. Then, for
every integer m < k, we have

0™ (x) = (x — DF™S(x),

where S is a polynomial of degree at most n — k with integer coefficients. Hence,

p—1 p—1 p—1
k=[Te™e)=]¢-v""[]sE)=p""N.
j=1 j=1 j=1

where both K and N are integers by the fundamental theorem of symmetric
polynomials. Further,

p—1
K| < l—[ (n+ DHn™ < (n+ HP~DentDh
j=1
Hence, K # 0 implies
P < (n+ DP=DEmED

that is,

(p—D(@m+ Dlogn+1)
—_m < ,
- log p

and the result follows. m]

The following three problems arise naturally, and they have been already raised
in [10], for example.

Problem 1 How many zeros can a polynomial 0 # Q € F,, have at 1?7
Problem 2 How many zeros can a polynomial Q € £, have at 1?

Problem 3 How many zeros can a polynomial Q € K, have at 1?



On the Multiplicity of the Zeros of Polynomials with Constrained Coefficients 171

The case when p = oo and L = 1 in our Theorem 1 gives that every 0 # Q €
Fn,every Q € L, and every Q € K, can have at most cn'/? zeros at 1 with an
absolute constant ¢ > 0, but one may expect better results by utilizing the additional
pieces of information on their coefficients.

It was observed in [17] that for every integer n > 2 there is a Q € F;,, having
at least c(n/logn)!'/? zeros at 1 with an absolute constant ¢ > 0. This is a simple
pigeon hole argument. However, as far as we know, closing the gap between cn'/?
and ¢(n/logn)'/? in Problem 1 is an open and most likely very difficult problem.

It is proved in [11] that every polynomial P of the from

n
P()=Y aj/, lal=1, laj| <1, ajeC
j=0

has at most c./n zeros inside any polygon with vertices on the unit circle 3D,
where ¢ depends only on the polygon. One of the main results of [19] gives
explicit estimates for the number and location of zeros of polynomials with bounded
coefficients. Namely, if

logn
8p :=33m <1,
VT
then every polynomial P of the from
n
P()=) ajz/, lal=lal=1, lajl<1, aj€C
o

has at least 84/n log n zeros in any disk with center on the unit circle and radius §,,.
More on Littlewood polynomials may be found in [7, 37], for example.

As far as Problem 2.3 is concerned, Boyd [23] showed that for n > 3 every
QO € L, has at most

1 2
cllogn)” 2.1)
loglogn

zeros at 1, and this is the best known upper bound even today. Boyd’s proof is
very clever and up to an application of the Prime Number Theorem is completely
elementary. It is reasonable to conjecture that for n > 2 every Q € L, has at most
clogn zeros at 1. It is easy to see that for every integer n > 2 there are Q, € £, with
at least clogn zeros at 1 with an absolute constant ¢ > 0. Indeed, the polynomials
Py defined by

k
P =[] -, k=12..
j=0
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has degree 2! — 1 and a zero of multiplicity k + 1 at 1. By using Boyd’s elegant
method, it is easy to prove also that if M} denotes the largest possible multiplicity
that a zero of a P € L can have at 1 and (Cy) is an arbitrary sequence of positive
integers tending to co, then

1
lim — ke {l,2,....n}: My > C¢| = 0.

n—>o00 n

This was proposed as a problem in the Monthly [40] in 2009, and a few people have
solved it.

As far as Problem 3 is concerned, one may suspect that for n > 2 every Q € K,
has at most clogn zeros at 1. However, just to see if Boyd’s bound (2.1) holds for
every Q € K, seems quite challenging and beyond reach at the moment.

Problem 4 How many zeros can a polynomial P € F, have at « if o] # 1 and
o # 0? Can it have as many as we want?

Problem 5 How many zeros can a polynomial P € £, have at « if || # 1 and
a # 0?7 Can it have as many as we want?

The Mahler measure

1 2 .
Moy(P) :=exp (Z/(; 10g|P(elt)|dt>

is defined for bounded measurable functions P defined on the unit circle. It is well
known that

Mo(P) := lim M,(P),
q—0+

where, for ¢ > 0,
1 2@ g 1/q

M,(P):=|— P(e')| dt .

q(P) <2n/0 (") )

It is a simple consequence of the Jensen formula that

Mo(P) = [e| | [ max({1, |z}
k=1

for every polynomial of the form

P@=c[[e-=w), cucC.
k=1
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Lehmer’s conjecture is a problem in number theory raised by Derrick Henry
Lehmer. The conjecture asserts that there is an absolute constant ;& > 1 such that
for every polynomial P with integer coefficients satisfying P (0) # 0 we have either
My(P) = 1 (that is, P is monic and has all its zeros on the unit circle) or My(P) >
I

The smallest known Mahler measure greater than 1 is taken for the “Lehmer’s
polynomial”

PR =70+ - - -2 - - +z+1,
for which
My(P) = 1.176280818... .
It is widely believed that this example represents the true minimal value: that is,
w=1.176280818. ..

in Lehmer’s conjecture.

In 1973, Pathiaux [57] proved that if Q is an irreducible polynomial with integer
coefficients and My(Q) < 2, then there exists a polynomial P € F, such that Q
divides P. A remark at the end of this paper notes that the proof may be modified to
establish the same result for reducible polynomials. Mignotte [52] found a simpler
proof of this statement for irreducible polynomials Q with integer coefficients and
derived an upper bound on the degree of P in terms of the degree of Q and My(Q).
His proof may also be extended to the reducible case. These results were generalized
and strengthened by Bombieri and Vaaler in [6], as an application of their improved
formulation of Siegel’s lemma.

Similarly, it is a simple counting argument to show that if K > 2 is an integer, the
monic polynomial Q has only integer coefficients, and My(Q) < k, then there is a
polynomial P with integer coefficients in [—k 4 1, k — 1] such that Q divides P.
See the hint to E.8 on page 23 of [7].

The result of Pathiaux [57] leads us to the following observations.

Remark 1 1f
00@) =0+ -7 -5 - - -7+,

then My(Q) = (1.176280818 .. .)4 < 2, hence there is a polynomial P € F, such
that Q divides P.

Remark 2 If Lehmer’s conjecture is false, then the answer to Problem 4 is yes.
Indeed, if Lehmer’s conjecture is false, then for every 1 < @ < 2 there is a monic
polynomial Q such that 1 < My(Q) < u, soif k := [log2/logu] — 1, then ok
divides a polynomial P € F,.
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Remark 3 It remains open whether or not a polynomial P € F,, with P(0) = 1 can
have a zero o of multiplicity at least 5 outside the unit circle.

To find examples of Newman polynomials with constant term 1 and with at least
one repeated zero outside the unit circle had been asked by Odlyzko and Poonen
[56]. This question was later answered by Mossinghoff [54] who found examples of
several such polynomials with repeated zeros outside the unit circle.

To find examples of Littlewood polynomials with at least one repeated zero
outside the unit circle is also a very interesting problem. It is easy to see that such
Littlewood polynomials must have odd degree. Drungilas, Jankauskas, and Siurys
[29] have found a Littlewood polynomial P of degree 195 such that (x> — x + 1)?
divides P. See more in [29, 30, 34, 48].

We close this section by a version of an old and hard unsolved problem known
as the already mentioned Tarry—Escott Problem.

Problem 6 Let N € N be fixed. Let a(N) be the smallest value of m for which
there is a polynomial P € U2 | F, with exactly m non-zero terms in it and with a
zero at 1 with multiplicity at least N. Prove or disprove that a(N) = 2N.

To prove that a(N) > 2N is simple. The fact that a(N) < 2N is known for
N = 1,2,...,12, but the problem is open for every N > 13. In 1999, S. Chen
found the first ideal solution with N > 12:

OF & 11% 4 245 1655 1905 129K 1-173% 212K 12375 +278% 4+ 291F 4 302*
=3% 4+ 55 4 30K +57%+1045+-116% +186F+198% +245K+-272% + 297% + 299k |

valid forallk =1,2, ..., 11.

The best known upper bound for a(/N) in general seems to be a(N) < cN 2 log N
with an absolute constant ¢ > 0. See [21]. Even improving this (like dropping
the factor log N) would be a significant achievement. Note that for every integer
n > 2 there is a polynomial Q € F, having at least c(n/logn)'/? zeros at 1
with an absolute constant ¢ > 0. This was observed in [17] based on a simple
counting argument. The inequality a(N) < c¢N?log N with an absolute constant
¢ > 0 follows simply from this.
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Generalized Barycentric Coordinates m)
and Sharp Strongly Negative Definite e
Multidimensional Numerical Integration

Allal Guessab and Tahere Azimi Roushan

Abstract This paper is devoted to study and construct a family of multidimensional
numerical integration formulas (cubature formulas), which approximate all strongly
convex functions from above. We call them strongly negative definite cubature
formulas (or for brevity snd-formulas). We attempt to quantify their sharp approx-
imation errors when using continuously differentiable functions with Lipschitz
continuous gradients. We show that the error estimates based on such cubature
formulas are always controlled by the Lipschitz constants of the gradients and
the error associated with using the quadratic function. Moreover, assuming the
integrand is itself strongly convex, we establish sharp upper as well as lower refined
bounds for their error estimates. Based on the concepts of barycentric coordinates
with respect to an arbitrary polytope P, we provide a necessary and sufficient
condition for the existence of a class of snd-formulas on P. It consists of checking
that such coordinates exist on P. Then, the Delaunay triangulation is used as a
convenient partition of the integration domain for constructing the best piecewise
snd-formulas in L' metric. Finally, we present numerical examples illustrating the
proposed method.

1 Introduction, Motivation, and Terminology

This paper constitutes the progression of previous works [4, 5, 7, 8], which focused
on the study of some classes of multidimensional numerical integration in the
context of the classical notion of convexity. Here, our objective is to extend the
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results given there for strongly convex functions. To describe our problem of
integration from a numerical standpoint more precisely, let 2 C R? be a non-empty
compact convex set and f : £2 — R be a given function. We sometimes know
beforehand that the function f satisfies various known structural and regularity
properties. For example, it may be known that f has some additional kind of
convexity; therefore, we would wish to use this information in order to get most
appropriate methods for numerical integration of f. In this paper, to get a better
approximation of the integral of our function, we try to approximate it using
cubature formulas, which approximate the integral of all strongly convex functions
from above. The strongly convex functions are widely applied in economic theory
(see [23]) and are also central to optimization theory (see [14]). Indeed, in the
framework of function minimization, this convexity notion has important and well-
known implications. As we will see, the key advantage of using cubature formulas
of such kind is that their associated approximation errors can always be controlled
by the error associated with using the quadratic function. Hence, if we want a more
accurate approximation of the integral of our function, we need to find a better
approximation of the integral of the quadratic function.

To appreciate the problem more clearly, let us start by describing briefly a specific
one-dimensional example, since its simplicity helps us better understand all the
necessary steps through very simple explicit computations. Assume that p is a
fixed nonnegative real number. In one-dimensional numerical integration, say on an
interval [a, b], a simple way of approximating the integral of a given real p-strongly
convex function f : [a, b] — R is first to choose a partition P := {xg, x1, ..., Xp}
of the interval [a, b], such thata = x¢p < x] < ... < x, = b, and then to apply the
classical local trapezoidal quadrature rule 7; (f) = M on each subinterval
I == [x;_1,xi],i = 1,...,n, and to sum up the results. Among its many important
properties, this rule satisfies the well-known Hermite—Hadamard inequality, which
ensures an upper estimate for the exact value of the integral of any convex function:

1 i
—/ fdt < Ti(f), G=1,...,n), ey
Xi—1

Xi — Xi—1

where the sign of equality being achieved if f is an affine function. Recall that
the local trapezoidal rule 7;(f) could be obtained by integrating the barycentric
approximation operator:

Bi[f1(x) := Ai—1(x) f(xi—1) + 2i (0) f(xi), (x € L),

where A;_1(x) and A;(x) are the barycentric coordinates of x with respect to /;,
which are defined as

X — X X — Xi—1
Aic1(x) (= ————, Ai(x) = ———, (x € ).

i—1 — Xi Xi — Xi—1
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Observe that B; is a first-order barycentric polynomial interpolating f at two points,
x;—1 and x; and that the weights A;_; and X; can expressed as

1
s Ai(X) = ————
i

1 xi
1 x

1x
lx,'

1
Aie1(¥) = ————
i

Rearranging terms, it is clear that these weights are nonnegative on /;, and moreover
they satisfy

Aic1() +4i(x) =1, x = A1 (o)X + A (0)x;, (x € 1;). (2)

The trapezoidal rule is the simplest, most well-known, and widely used quadrature
rule. The reason for this popularity lies in the large number of useful theoretical
and computational properties of this rule. It actually served as basic ingredients for
constructing more accurate and adaptive formulas. For this reason, this rule together
with its fundamental inequality (1) has been an effective starting point for several
subsequent investigations, see [2, 6]. Furthermore, in the local error analysis of the
rule T3 (f),

1
ET:(f) 1=E(f)—m/ f@)dt,
1 11— Xi—1

estimate of (1) is a very useful tool. Indeed, let ()2 denote the square function
t — t%, and assume that the first derivative of f is a Lipschitz function with a
Lipschitz constant L(f’) in [a,b] (or f € C L11g, b)), then Hermite—Hadamard
inequality implies the following upper local estimation:

(())

|ET; ()| < ———=L(f") (3)
T; << — x_f12+xi>2>
= 3 L(f) C))
. 2
_ (xi 1;1—1) L(f/), (5)

where equality is attained for all quadratic functions. The literature contains a
number of variations of these estimations, some statements employing the largest
absolute value of the second derivative over the interval [a, b]. In addition, if f
is u-strongly convex, then the following lower local estimation also holds for all
i=1,...,n,

ET: ((.)?
ET;(f) > #u (6)
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= n (7

2
(xi —xi—1)

= T ®)
We did not find any reference to such result. However, the abovementioned
estimates can be derived as an immediate consequence of our multivariate general
results, see Remark 3. Estimates (3) and (6) say that for the trapezoidal rule, we
can always control its approximation error by the Lipschitz constants of the first
derivative, the parameter (of the strong convexity), and the error associated with
using the quadratic function. It should also be noted that equalities in (3) and (6) are
satisfied for all u-strongly convex functions of the form

F() = alx) + %xz, ©)

where a(-) is any affine function. Therefore, in this sense, the error estimates (3)
and (6) are sharp for the class of w-strongly convex functions having Lipschitz
continuous first derivatives. This provides the starting point of the present study.
Indeed, the present contributions of this paper are twofold: first, we would like
to consider the general multivariate variable case. More precisely, this paper deals
with the problem of approximation of the integral of multivariate functions by snd-
formulas, that is, those which approximate from above all strongly convex functions
with Lipschitz continuous gradients. Geometrically, if a function f belongs to
such class, then its gradient V f cannot change too quickly and it cannot change
too slowly either. Functions satisfying these conditions are widely used in the
optimization literature, we refer to Nesterov’s book [14].

Hence, the questions that arise, as a natural consequence of the estimates (3)
and (6), are the following:

e Can we extend the one-dimensional approach to construct a natural multivariate
version of the trapezoidal quadrature rule in any polytope?

* Can the approximation errors for such cubature formulas satisfy similar lower
and upper bounds in the multidimensional case?

We will answer these questions positively by defining and studying a class of snd-
formulas on an arbitrary polytope to approximate the integral of a function by
piecewise cubature formulas. Our extensions are derived in a natural way by using
the generalized barycentric coordinates, which turn out to be appropriate to the
more general multivariate setting. In particular, we will show how the Delaunay
triangulation can be used as a convenient partition of the integration domain for
constructing the best piecewise snd-formulas in L' metric.

This paper is organized as follows: In the next section, we briefly recall key
notions and notations. Then, we introduce the notion of strong convexity and
establish two general characterization results (see Lemmas 1 and 2). These general
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results provide two equivalent conditions for a linear functional to be negative in the
set of convex functions. We then use them to establish a first characterization of the
approximation error of our class of cubature formulas. In order to provide a second
characterization result, Section 3 defines the notion of generalized barycentric
coordinates on polytopes and gives an existence result of them in any polytope.
Here, we provide a necessary and sufficient condition for the existence of the snd-
formulas. It consists of checking the existence of a set of these coordinates. Section 4
uses the generalized barycentric coordinates to construct a multivariate version of
the classical trapezoidal rule in arbitrary higher-dimensional polytopes. As a result,
we get explicit lower and upper bounds for the approximation error when using
continuously differentiable functions with Lipschitz continuous gradients. Indeed,
analogously to the one-dimensional estimates (3) and (6), we offer sharp error
estimates that only depend on the parameter of the strong convexity, the Lipschitz
constants of the gradients, and the error associated with using the quadratic function.
In Section 5, using the Delaunay triangulation as a partition of a polytope, we
present an explicit construction of our sharp cubature schemes. Finally, Section 6
will provide a numerical example to illustrate the efficiency of this approach.

2 General Setting

Our main results in this section first concern two characterization results of any
negative linear functional in the set of convex functions, which hold in a general
framework and will be repeatedly applied in the sequel. We will start in this section
with some of the basic properties of strong convex functions. But first, we need to
introduce some notations, which follow closely those of [3]. Let £2 be a subset of
R?. As usual, we mean by £2° the interior of £2. We say that £2 is measurable if
it has a finite Lebesgue measure, which we denote by |£2|. For measurable £2, the
class L'(£2) comprises all Lebesgue integrable functions f : £2 — R. A property
holds almost everywhere (abbreviated by a.e.) on £2 if it holds on £2 except for a
set of measure zero. Furthermore, we denote by C(£2) the class of all real-valued
continuous functions on §2 and by C k (£2), where k € N, the subclass of all functions
that are k times continuously differentiable. It is convenient to agree that C%(£2) =
C(£2). We denote by ||.|| the Euclidean norm in R? and (x, y) the standard inner
productofx, y € RY. By C 1'1(.{2), we denote the subclass of all functions f, which
are continuously differentiable on £2 with Lipschitz continuous gradients, i.e., there
exists L(V f) such that

IVFf) = VDI =LV lx —yll, (x,y € £2).

We now present the notion of strong convexity, which generalizes the classical
definition of convexity.
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Definition 1 A function f is called strongly convex with parameter i > 0 if dom f
is convex and the strong Jensen inequality holds: for any x, y € domf and ¢t €
(0, 11,

fax+A =0y <tf(x)+ A -0 f(y) - %t(l —0)llx =yl (10)

A simple calculation reveals that this definition is equivalent to the convexity of
g =f- % I.1%. See [11, Prop 1.1.2] for a direct proof of this result, what was
derived using the identity

(L= xl? +tlyll> = 1A — x + eyl = (1 — 1) Ix — ylI*.

Obviously, every strongly convex function is convex. Observe also that, for instance,
affine functions are not strongly convex and if @ = 0, we can get the classical
definition of convexity.

Remark 1 For any positive real number u, the following functions are p-strongly
convex functions:

LSNP, (e < p).

2. Addition of a convex function to a strongly convex function gives a strongly
convex function with the same modulus of strong convexity. Therefore, adding a
convex function to % II. ||2 does not affect u-strong convexity.

Now, we state a first characterization result of linear functionals, which are
negative in the set of convex functions. It is shown that in order to prove such
property for the given functional E, it suffices to check that E is negative in a subset
of strongly convex functions with a given fixed strong convexity parameter. Recall
the obvious inclusion, the set of strongly convex functions is contained in the set of
convex functions.

Lemmal Ler 2 C R? be a compact convex set. Let i be an arbitrary, fixed real
number, and let E be a linear functional defined on C(S2). Then, the following
conditions are equivalent:

(1) For every convex function f € C(52), we have
E(f) <0.
(ii) For every pu-strongly convex function f € C(82), we have
E(f) <0.
Proof (i) implies (ii) is the trivial part of the proof. Indeed, assume that (i) holds. Let

f be u-strongly convex function. Set g := f — %||.||2. By definition, g is therefore
convex. Hence, applying property (i), it follows, by linearity of E
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ﬂﬂs%ﬂwﬂ

Since ||.||* is convex, then again by (i) we have E(|.I» < 0. This shows that (ii)
holds.

Now, assume that (ii) holds. Let ¢ be a positive real number, and let f be a convex
function. Define the function g by

=+ 2|
g = AL
Noting that
iz iz iz
“f="g—=I?
e & 2

and since % f is convex, then by the definition of strong convexity % g is p-strongly
convex. Hence, by (ii), we can conclude that

E (ﬁg) <.
I

Thus, it follows that
E(g) <0,

or equivalently, by virtue of the linearity of E,
€ 2
E(f) = =5 EUID.

In view of the fact that this inequality holds for all ¢ > 0, then by letting ¢ | O, it
follows that

E(f) <0.
Hence, the desired statement (i) is valid and thus means that these two statements

are equivalent. O

If, in addition, the functions belong to C L1((2), then our second characterization
result is given in the following:

Lemma2 Let 2 C R? be a compact convex set. Let E : Ck(2) > R, where
k € {0, 1}, be a linear functional, and let u be a positive real number. Then, the two
following statements are equivalent:

() For every u-strongly convex function g € C1(2), we have

E[g] =0. Y
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(ii) Forevery f € CV1(§2) with L(V f)-Lipschitz gradient, we have

2] LVS)
ELf1 = —E[I112]. =5 (12)
Equality is attained for all functions of the form
[ = ax) +cll.I%, 13)

where ¢ € R, and a(-) is any affine function.

Proof First, we prove (i) implies (ii). Let f be any function from cl1(2) with
L(V f)-Lipschitz gradient. Define the following two functions:

2L(Vf)

+ = + f

Then, according to [3, Proposition 2.2], we know that both of these functions belong
to C11(£2) and are also convex. Hence, by (i) and Lemma 1, it follows that the
functions g_ and g satisfy

Efg+] =0.

Then, by linearity of E and a simple manipulation, we find that
LV LV
E[II?]| =55 = ELf1 = —E [ 112] =57

This is equivalent to (12) and shows that property (ii) also holds.
Now, let us assume that (ii) holds. Then, we deduce that

E[II7] <o, (14)

Let g € C11(£2) be any u-strongly convex function and set

L(V
fi= (g)nn

Then, according to [3, Proposition 2.2], we have
fec " (2) and L(Vf) < L(Vyg). (15)

Since

LV
(g)nn -1



Generalized Barycentric Coordinates and Sharp Strongly Negative Definite. . . 187

it can be written as follows:

(4 2LVH 2 (L(V®) LV
g—(n.n : f>+ll-ll( : . )

we therefore obtain

st = [1EGE - s e [1e) (H52 - 2GL).

2 2 2

Finally, by combining (ii), (14), and (15), we can conclude that (i) is valid. For the
statement on the occurrence of equality, it is enough to note that a linear functional
E satisfying (11) for all convex functions must vanish for affine functions. O

We now define our new general class of cubature formulas, which we formulate as
follows:

Definition 2 Let 2 C R? be a compact set, and let 1 be a positive real number.
For n points x1,...,x, € §2, called nodes, and associated positive numbers
A1, ..., A, we say that

[Aix)i=1,...,n) (16)

defines the w-strongly negative definite cubature formula
n
/ feodx =) Aif(x)+ELf], (17)
Q ,
i=1

if the approximation error E satisfies
E[f]1=0, (18)

for all p-strongly convex functions f € C(52).

We say that (17) is a u snd-formula for short. We also call (16) a u snd-system,
which is said to be of length n if the points x1, ..., X, are distinct. Let us mention
that any u snd-cubature formula approximates the exact value of the integral of a
u-strongly convex function from above. This means that the approximation error
for such cubature formulas is negative on the set of p-strongly convex functions.

Remark 2 Note that a u snd-cubature formula as specified in Definition 2 is always
of order two. In fact, by Lemma 2 and inequality (12), the functional E vanishes for
affine functions, and so the order is at least two. However, if the order were greater
than two, then (12) would imply that E [f] = 0 forall f € C'!(£2). Recall that, in
the univariate case, a quadrature rule is snd-formula if and only if its second Peano
kernel is greater than zero or less than zero; see [9, Chap.I1.4] or [10, Chap. 4.3].
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In the theory of inequalities, inequality (18), with E defined by (17) and valid for
all p-strongly convex functions, has also been called upper Hermite—Hadamard
inequality.

We now present a characterization of our class of cubature formulas in terms of
their associated error functionals. Indeed, we show that for functions in C!'! (£2),
the error estimates based on such cubature formulas are always controlled by the
Lipschitz constants of the gradients, the strong convexity parameter, and the error
associated with using the quadratic function. This result is a direct consequence of
Lemmas 1 and 2.

Theorem 1 Let 2 C RY be a compact convex set. A cubature formula (17) is -
strongly snd-formula if and only if for all ju-strongly convex functions f € C11(2),
its error functional satisfies

~Be[ie) < = e [1e] 252 (19)

In (19), equality is attained for all functions of the form
m
f() =at) + 107,

where a(-) is any affine function.

In order to describe the second constructive method, we introduce the following
notion.

3 Generalized Barycentric Coordinates on Polytopes

In this section, we start by giving a brief overview of the basic elements of
barycentric coordinates in d dimensions, see, e.g., [12, pp. 132-135] for more
details. Let us quickly recall how these so-called coordinates are defined. Fix an
integern > 1,andlet W : = {x, ..., x,} be afinite subset of distinct but otherwise
arbitrary points in R?. The following linear combination,

b = Zaix,- (20)
i=0

is called a convex combination if the coefficients «; are all nonnegative. All convex
combinations of points of the set W define the convex hull of the set W. The
resulting set is a convex set conv(W), i.e., the smaller convex set containing W.
Following the terminology of [22], a convex polytope £2, or simply a polytope, we
mean a set that is the convex hull of a non-empty finite set of points W C R<.
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From now on, let 2 C R¥ be a (convex) polytope generated from a finite subset
of points in R, W:= {x0,...,xp}, 1.e., 2 = conv(W).
A vector x € RY is an extreme point of £ if x € §2 and x cannot be expressed
as a convex combination of two vectors of §2, both of which are different from x.
The set of extreme points of the polytope £2 shall be denoted by Verz(£2). It is well
known that the convex hull of a finite set W is compact, and its set of extreme points
is non-empty and included in W. That is, Vert(§2) # ¢ and Vert(£2) C W.In
what follows, we assume that the number of vertices of §2 is greater than 2.
Introduced by Mdbius in 1827 as mass points to define a coordinate-free geometry
[20], barycentric coordinates over polytopes are a very common tool in many
computations and have many useful applications, ranging from Gouraud and Phong
shading, rendering of quadrilaterals, image warping, mesh deformation, and finite
element applications, see, e.g., [15, 21]. Given a polytope £2 = conv({xy, ..., X,}),
we wish to construct one coordinate function A; (x) per point x; for all x € £2. These
functions are called barycentric coordinates with respect to {x¢, ..., x,} (or £2) if
they satisfy three properties. First, the coordinate functions are nonnegative on £2,

2i(x) =0 (1)

for all x € £2. Second, the functions form a partition of unity, which means that the
equation

Z rix) =1 (22)
i=0

is obtained for all x € £2. Finally, the functions act as coordinates in that, given a
value of x, weighting each point x; by A; (x) returns back x, i.e.,

x = Z A (X)x;. (23)
i=0

This last property is also sometimes referred to as linear precision since the
coordinate functions can reproduce linear functions. For most potential applications,
it is also preferable that these coordinate functions are as smooth as possible.
Constructing the barycentric coordinates of a point x with respect to some given
points in a polytope £2 is often not a trivial task. For simplices, barycentric
coordinates are a very common tool in many computations. Basically, they are
defined as follows: let X; = {vo, ..., vy} be any linearly independent set of d + 1
points in R, and the simplex T with the set of vertices X4 is the convex hull of
X4 (e.g., a triangle in 2D or a tetrahedron in 3D). Let A;(x) be the signed volume
(or area) of the subsimplex of T created with the vertex v; replaced by x. Then, the
barycentric coordinate functions {)g, ..., A4} of the simplex T with respect to its
vertices are uniquely defined by
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(24)

where vol(T') will mean the volume measure of 7. It is easily seen that each point x
of T has a (unique) representation and that x = Zflzo Xi(x)v; and the barycentric
coordinates {Ag, ..., Ay} are nonnegative affine functions on 7. The uniqueness of
this representation allows the weights A; (x) to be interpreted as an alternative set of
coordinates for point x, the so-called barycentric coordinates. Note that a d-simplex
is a special polytope given as the convex hull of d + 1 vertices in d dimensions, each
pair of which is joined by an edge. For n > d, which is the case of interest in this
paper, the linear constraints form an under-determined system.

Barycentric coordinates also exist for more general types of polytopes and will be a
crucial ingredient in what follows. Indeed, we have, see [13, Theorem 2]:

Theorem 2 Let W = {xo,...,x,} be a set of finite points of R, and let the
polytope 2 = conv(W). Then, there exist nonnegative real-valued continuous
functions Lo, A1, ..., A, defined on §2 such that
n n
x = Zki(x)xi and in(x) =1,, (25)
i=0 i=0

foreachx € 2.

Thus, from now on, it proves useful to work with barycentric coordinates. Therefore,

unless otherwise indicated, it is assumed that A;(x),i = O0,...,n, are the
barycentric coordinates of x with respect to a set of finite fixed points {xg, ..., X}
of the polytope

2 =conv({xg, ..., x,}).

We shall not always trouble to repeat this at each stage. Furthermore, they do not
need to be the vertices of £2, of course, the polytope §2 may be generated by another
different set of points {yo, e, yk} on §2.

Note also that Equation (25) can be rewritten in the following general way:

D hix) (x —xi) =0, (26)

i=0

which obviously implies

Z/.;zki(x) (x —x;) dx = 0. (27)
i=0
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Characterization of snd-Cubature Formulas in Terms
of the Existence of a Set of Barycentric Coordinates

From now on, let 2 C R? be a compact convex polytope of positive measure, and
let X := {x1,...,x,} be a finite subset that includes the vertices of §2. Thus, the
convex hull of X must be equal to £2. Now, we provide a necessary and sufficient
condition for the existence of the snd-formulas. It consists of checking the existence
of a set of barycentric coordinates.

Theorem 3 A set a = {(A;,x;) : i = 1,...,n} defines a u snd-cubature formula
on $2 if and only if there exists a set of barycentric coordinates {\1, ..., An} on §2
such that
n
x=) X@x; (ae. on), (28)
i=1
and
A,~=/ rix)dx (i=1,...,n). (29)
Q

Proof Let {(A;,x;) :i = 1,...,n} define a u snd-cubature formula on §2. Then,
according to the definition, the error functional E satisfies, for any p-strongly
convex function f,

E[f1=0. 30)
We deduce then by Lemma 1 that, for every convex function g € C(£§2), we have

Eg]l <0. €2y

This means that the estimate

/Qg(x)dx <Y Aig(x))

i=1

holds for every convex function g € C(S2). Hence, by [7, Theorem 2.1a, p.97],

there exists a set of barycentric coordinates {A1, ..., A, } on £2, which satisfies the
required conditions (28) and (29).
Conversely, assume that there exists a set of barycentric coordinates {A1, ..., A,}

on £2, such that conditions (28) and (29) hold. Let f be convex on £2. Then, since
f is convex, by Jensen’s inequality, it follows from (28) that
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F) <D hi) f(x0).

i=1

Integrating both sides over §2 and using (29), we obtain the inequality
n
EUfl= [ fwdx =Y A <0
$2 i=1

Since the above inequality holds for every convex function, then according to
Lemma 1, we also have, for every pu-strongly convex function,

E[f]=<0. (32)

This shows that {(A;, x;) :i = 1, ..., n} defines a u snd-cubature formula on £2.
O

4 Integral Approximation Using Barycentric Coordinates

Many of useful properties of the classical trapezoidal quadrature rule (1) on
the interval [a, b] can be carried over directly to the d-dimensional hypercube
]_[le[a,-, b;] by using tensor products of d copies of this latter. Non-tensorial
constructions of the trapezoidal curbature formula are rare in the case of an arbitrary
polytope. In general, leaving the tensor product setting causes a lot of difficulties
in theoretical as well as in computational aspects. From the theoretical point of
view, it gets harder to find a suitable set of barycentric coordinates needed for
their constructions as we did for the one-dimensional case. An example of a non-
tensorial construction on surplices with the derivation of an efficient computational
scheme for the trapezoidal cubature formulas can be found in [6]. Using generalized
barycentric coordinates, this section shows how the simple univariate trapezoidal
rule (1) can be extended to arbitrary higher-dimensional polytopes. To this end, let
Xm = {x;}]L,, be a given finite set of pairwise distinct points in £ C R4, with
£2 = conv(X,,) denoting the convex hull of the point set X,,. We are interested in
approximating the integral of an unknown function f : £2 — R from given function
values f(yq), - .-, f(¥,), where Y, := {yi}:.’:O C £. In order to obtain a simple
and stable global approximation of the integral of f on §2, we may consider a u
snd-cubature formula of the following form:

LLf] =) Aif(y). (33)
i=0
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Theorem 3 tells us that there exists a set of barycentric coordinates {Af, ..., A,} on
£2 such that
n
x = Zki(x)yi (a.e. on 2), (34)
i=0
and
A, :/ ri(x)dx (i =0,...,n). (35)
2

For any function f € C!1(£2), the functional

E,[f] = Exlf,A] = In[f]_/gf(x) dx (36)

will be reserved exclusively to denote the incurred approximation error between the
integral of f and its approximation I,,[ f].

We now give a simple expression of the error E,[||. ||2] in terms of the barycentric
coordinates {)Ag, ..., Ay}

Lemma 3 The error E,[|.||*] when approximating the integral of the quadratic
function ||.||2 by In[||.||2] can be expressed as

EILIP1) = Z/Qw) Jx =y dx. (37)
i=0

Proof For f(x) = ||x 1%, we find by a simple calculation that

FE) V@), y —x) = |yi]* =[x = ¥

Hence, multiplying on each side by A;, summing up with respect to i from O to n,
using the linear precision property of barycentric coordinates, and rearranging, we
get the desired result and complete the proof of the lemma. O

The following lemma shows that if the cubature formula /,, approximates every
strongly convex function from above, then it generates a sharp lower bound for the
error of any strongly convex function.

Lemma 4 Let ;1 be a positive real number. If the barycentric coordinate approx-
imation functional I, approximates every wu-strongly convex function from above,
then for every p-strongly convex function f, it holds

%;/me) lx = yi|* dx < Lf] —/Qf(x) dx. (38)
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Equality in (38) is attained for all functions of the form
K2
fx)=ax)+ EIIXII , (39)

where a(-) is any affine function.

Proof Let us fix f as a u-strongly convex function. By the Jensen convexity for
wu-strongly convex functions, see [11], we get

FOD = f@ (V1@ v —x)+ 5 e = v

Hence, multiplying on each side by A;, summing up with respect to i from O to #,
and integrating each term, we get the desired result and complete the proof of the
lemma. The case of equality is easily verified. O

The following lemma gives an upper bound for the absolute value of the error of
any function possessing Lipschitz continuous gradient:

Lemma 5 The following error estimate holds for every function f € C-1(£2) :

In[f]_/ f(x)dx
2

< /Q 2@ e — v, (40)
i=0

Equality in (40) is attained for all functions of the form
K2
f(x)=a(x)+ EIIXII ) 41

where a(-) is any affine function.

Proof This lemma is an immediate consequence of Theorem 1 and Lemma 3. The
case of equality is easily verified. O

Now, everything is set for giving an upper bound and a lower bound for the
approximation error estimate E,[f] = I,[f] — f o f(x) dx of any p-strongly
convex function f, having Lipschitz continuous gradient.

Theorem 4 Let v be a positive real number. Then, for every p-strongly convex
function f € CY1(2) and any x € 2, it holds

n L V n
%Z/ Ai(x) Hx—y,»}lzsln[f]—/ f@x)dx < (zf)Z/ 2 () =y
i=0 Y% £ i=0 Y% @)

Equality in (42) is attained for all functions of the form

Fx) =a@) + %uxnz, 43)
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where a(-) is any affine function.

Proof This is an immediate consequence of Lemmas 3, 4, and 5 and Theorem 1.
The case of equality is easily verified. O

Remark 3 In the univariate case, a simple inspection of the error estimates (42)
reveals that (42) is nicely reduced to the simple form given in (3) and (6).

5 Practical Construction of snd-Cubature Formulas

We now turn to a practical construction of snd-cubature formulas. To this end,
let us first consider the case, where §2 is a non-degenerate simplex in R¢ with
x;,i =1,...,d + 1, being the set of its vertices. Then, each x € £2 has a unique
representation as a convex combination

d+1

x =) n)xi, (44)
i=l1

where A; is the restriction to £2 of the affine function that attains the value 1 at x; and
is zero at all the other vertices of §2. The value X; (x) is the barycentric coordinate of
x with respect to x;. Then, if f is convex, by Jensen’s inequality it follows from (44)
that

f) <Y ki) f(x).

i=1

Integrating both sides over §2 and using the fact that f ori(x)dx = %,i =
1,...,d + 1, we deduce that

/ fodx < Q™R(f), (45)

2

d+1 12|

TraR
= _— i) 46
Q™R (f) ;Hlf(xl) (46)
Consequently, by Lemma 1, the set of barycentric coordinates Ap, ..., Ag4+1 pro-

duces the snd-system

L T T
d+1

It is the only snd-system on §2, which has no other nodes than the vertices.
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Now, let X = {x,~ eRY,i=1,..., n} be an arbitrary set of points of RY. The

previous approach can be generalized when §2 = conv (X) is an arbitrary polytope
in R?. A triangulation .7 of £2 with respect to X is a decomposition of £2 into d-
dimensional simplices such that X is the set of all their vertices, and the intersection
of any two simplices consists of a common lower-dimensional simplex or is empty.
Triangulations of compact convex polytopes exist.! Indeed, given any finite set X
of points that do not all lie on a hyperplane, Chen and Xu [1, p. 301] describe a
lifting-and-projection procedure that results in a triangulation of the convex hull of
X with respect to X. For an explicit statement on the existence of triangulations
with a proof based on an algorithmic method, see [16, Theorem 3, part a].
Now, let Sy, ..., S; be the simplices of .7, and let N; be the set of all integers j
such that x; is a vertex of S;. If x € S; and j € N;, then we denote by A;;(x)
the barycentric coordinate of x with respect to x; for the simplex S;. It is easily
verified that if x € S;j (1) Sk, then A;j(x) = Ajx(x) if j, k € N; and A;;(x) = 0 if
Jj € Ni, k ¢ N;. Therefore, setting

rij(x) ifxeS; and jeN;
gi(x) = {1 %) ,
0 otherwise
fori = 1,...,n, we obtain well-defined barycentric coordinates ¢y, ..., ¢,. This

obviously produces the snd-formula

[ rewdx = 0=+ 111 @7
where
Q“U)zjé 3 B i, 48)
i=1 \jeN; d+1

n
Let T(£2) be any triangulation of the point set X,,. Then, AT¢?) := {AiT('Q) } 0
i=
denotes the set of barycentric coordinates associated with each x; of X,,. Now, we
list the basic properties of A7 ?)_ which are particularly relevant to us:

(1) They are well defined, piecewise linear, and nonnegative real-valued continuous
functions.
(2) The function AiT 62) satisfies the delta property, which equals 1 at x; and O at all

other points in X, \ {x;}, that is, AiT(Q)(x j) = 8;j (8 is the Kronecker delta).

1t seems that in dimension d = 3, the existence was already known to mathematicians like Euler
and Dirichlet.
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We denote by

EID[f1x) = > /D@ fan) - f@). (49)

i=0

As regards the error estimates (49), it was shown that Delaunay triangulation is the
triangulation that minimizes the L” norm of the approximation error E,,T (Q)[||.||2]
among all triangulations, see [3, Theorem 4.10]. This optimality condition also

characterizes Delaunay triangulation.

6 Numerical Experiments in 3D

In this section, we provide some numerical tests, which we perform in order to
validate our theoretical predictions. We have considered the following function of
three variables as test function:

g(x,y,7) =explax + by + cz2),

and the domain of integration is the pyramid Pyr given in the Cartesian coordinate
system (x, y, z) by the inequalities:

Pyr ={(x,y;2) eR:03z7 <x < 1-03z,03z2<y<1-03z,0<z<1}.
(50)
The algorithm for computing the approximate values of the integral is as follows:

1. Pyramid should be decomposed into tetrahedra, see figure 1a.

2. Each of tetrahedra should be mapped onto the reference one, see figure 1b.

3. For integration of function g over the reference tetrahedron, the method Q™R (g)
should be applied. Where Q™R (g) is defined by formula (46).

4. The results are the sums of approximate values of integrals over all tetrahedra in
the decomposition of the pyramid.

Let us give more details about these steps.

For decomposition of the domain Pyr, the DistMesh package was used that is a
simple triangular mesh generator in MATLAB based on Delaunay triangulation.
A detailed description of the program is provided in [18, 19] or http://persson.
berkeley.edu/distmesh. Specifically, we used the code of the Problem #3 from the
web page available at the address:

https://people.sc.fsu.edu/~jburkardt/m_src/distmesh_3d/distmesh_3d.html.

For computing the errors of our methods, we need to compute the exact value of
integral of function g(x, y, z) over the pyramid Pyr, assuming that Pyr is given by
its H-representation (50) or, alternatively, by its corresponding V-representation. We
should mention that some useful methods for computing such integrals are discussed
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XD
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Fig. 1 Domain of the pyramid and its decomposition into tetrahedra generated by DistMesh (a).
The characteristic linear size of tetrahedra is 1/21. Reference tetrahedron (b)

in [17, Section 2]. The exact value of this integral is
Lpyr(8)=K (Aa*+Ba’b+Ca*c+Db*a+Eb*c+ Fh*+Gc +Ha+c*b+Jabe),

10

ab(3a — 3b — 10c)(3a + 3b — 10¢)(3a — 3b + 10¢)(3a + 3b + 10¢)’
A=27(" —e +e P ra+B—y—0-1),

B=27("—e - —a+B—y+0+1),

C=90("tt —e® —el —a+B+y—0+1),

D=27("—el -t —aq—B+y+0+1),

E=90(—e—eb + e —a+ B+y —0+1),

F=21*—e"+e" ™ +ra—B+y—0-1),

G =1000(e" + el —e®P fa—B—y+60—1),

H =300 —e’ —e™ —a—B+y+0+1),

I =300(" —e® —ett —a+B—y +0+1),

J=180(—e% —el — et a4+ B4+y+60—1),

o = 60.3a+0.3b+c’ ‘3 — 60.7a+0.3b+c’ y = 60.3a+0.7b+c, 0 = eO.7a+0.7b+c_

After applying the above algorithm, we got the asymptotics of the relative errors
of our formulas for the case of function g witha = 1, b = 2, and ¢ = 3. The
expression of the relative error for Q3 cubature formula is as follows:

where K =

era(g) - Ipyr (g)

Tra _
EN (g) B Ipyr (g)

)

where Q"?(g) is defined by formula (48). In Table 1, the values of the relative errors
of integration are given for the case of test witha = 1, b = 2, and ¢ = 3.

Table 2 shows the orders of convergence obtained for the test witha = 1, b = 2,
and ¢ = 3. The orders are close to 2.
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Table 1 Errors obtained while integrating g witha = 1, b = 2, and ¢ = 3 over pyramid Pyr

N

4 8 16 32 64 128

E Lra (g) |3.441E-01 |6.520E-02 |1.478E-02 |3.420E-03 |8.312E-04 |2.074E-04

Table 2 Orders of convergence obtained while integrating g witha = 1, b = 2, and ¢ = 3 over
the pyramid Pyr

N

8 16 32 64

E;f,'a(g) 2.46763 2.14976 2.13358 2.05323
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Further Results on Continuous Random m)
Variables via Fractional Integrals ik

Ibrahim Slimane, Zoubir Damani, Shilpi Jain, and Praveen Agarwal

Abstract In this paper, some new fractional weighted inequalities related to
Cebysev, Ostrowski, and Lupas inequalities are established, and some of their
applications for continuous random variables having the probability density function
(p.d.f.) defined on a finite interval are derived. Furthermore, some upper bounds for
fractional expectation and fractional variance are given.

1 Introduction

The well-known results of éebyéev, Griiss, Ostrowski, and Lupas inequalities have
attracted much attention over the years, and many variants of these inequalities have
appeared in the literature [ 1-6]. These inequalities are crucial due to their numerous
applications in various areas of mathematics such as the applications on random
variables via Fractional Calculus for which we would like to refer the reader to
[7-11].

Motivated and inspired by the works mentioned above and the references therein,
in this paper, we provide new fractional integral inequalities of Cebysev, Ostrowski,
and Lupas type as well as applications for continuous random variables.

Let us initially recall the classical results for the Cebysev functional for two
Lebesgue integrable functions f, g : [a, b] - R:
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1 b 1 b 1 b
C(f, 8= h—a / f()g(r)dr — —/ fryde / g(r)dt
—aJ, b—alJ, b—al,

In [12], Cebysev derived the following interesting result involving two absolutely
continuous functions whose first derivatives are continuous and bounded:

1
IC(f. 9l = E(b_a)znf/noo”g/”oos (1

where || f[loo := sSUp;epq,py [ f/(D.
Another inequality for C(f, g) was derived by Griiss [13], under the assumption
thatm < f <M andn < g < N, namely,

1
IC(f. 9l = 7 (M =m)(N —n).

In 1970, Ostrowski [14] proved, among others, the following result that is—in a
sense—a combination of the results by CebySev and Griiss:

1
IC(f. o)l = gb—a)M —m)|lg'lloo- 2)

Finally, a result by Lupas [15] states that

1
IC(f. &)l S;(b—a)llf’llzllg’llz, 3

where f, g are absolutely continuous and f’, g’ € Lj[a, b].
In the following, we present some basic definitions.

2 Some Definitions

Definition 1 ([16]) The Riemann-Liouville fractional integral operator of order
o > 0, for a continuous function f on [a, b], is defined as

t
J;[f(l)]=ﬁ/(r—r)“ilf(t)dt, a>0,a<t<h.

Definition 2 ([11]) The fractional expectation of order « > 0, for a random
variable X with a probability density function / defined on [a, b], is given by
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1
E.X :

b
_ - _ ya—1
=T (a)/ b—-0)*""th(t)dr, a >0, 4

where 2 := JX[h(D)].
For any continuous function v, the fractional expectation of order & > 0 of v(X)
is defined by

b
Eqv (X) = m/ b-0)* v h(t)dt,a > 0. (5)

Definition 3 ([11]) The fractional variance of order « > 0, for X, is defined as

1
2T ()

b
Varg (X) = / (b — 1) Nt — Eu(X))*h(1)dx.

Using the above definitions, the authors in [11] prove the following property for
the fractional variance:

Theorem 1

Varg (X) = Eq(X?) — Eg(X)?, a0 > 0

3 Main Results
Theorem 2
1
0 < Vary(X) < E(b —a),a >0

Proof Due to the following Griiss type inequality:

o < Jo PO @ (ffp(r)g(r)dr)z 1 g ©

< -(M -
1! pydr 12 p(ydr =z-m

provided that p and g are measurable on [a, b], and all the integrals in (6) exist and
are finite,

b
/ p(t)dt >0 and m < g < M, ae., onla,b].
a
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We set in (6),

p(t) = m(b 0 f(r), g(r) =1 — Ex(X), 1 € [a,b].

We observe that in this case m = a — Ey(X), M = b — E,(X) from which we can
derive the desired result.

Let us introduce a fractional weighted type Cebygev functional:

1 1
Cos (f.8) = ———— I f(D)g(b)s'(b)] — ———— J[f (b)s' (b)]
s (f, 8) Tl ()] [f(B)g(b)s'(b)] — TR Lf (b)s" (b))

1 o /
Wja [g(B)s"(D)],

where
. 1 _ \a—1y
J@) = F(a)/(b )" s’ (t)dr

is assumed to be absolutely continuous, and f, g are Lebesgue measurable on [a, b]
and such that the above integrals exist.

Theorem 3 Let J : [a,b] — [J(a),TI(b)] be a continuous strictly increasing
function on Ja,b[, and f, g are as above. One can verify that

I*>m < f(t) < MVt € [a, b].
I**: g : [a, b] — R is absolutely continuous on [a, b].

Additionally, £, € Loola, b],

1
|Cas (f, &) < J“[S O)IM — M)’

_— 7
(b— l)“) v . 7
The constant % is the best possible.

Proof By (2), for the functions f o 31 and go 3L on [J(a), T(b)], we get

1 J(b)

J(a) —3D) J3w
I

1
" [O(a) — ID)? /M

fod Yug o N u)du

J(b)
f o3 Yudu. f g oI Yu)du ®)

J(a)

1
= gl3@ = IBIM = m)]i(g o I lso-
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By the change of variable t = 37! (u), we can prove that

| w y
J(a) — 3(b) 0 I wydu = ————=J7[f(b)g(b)s' (b
el AR LR O e A CECRO)

L s ——— LTI OYAC
3@ =30 b |07 W= Tapyy e L/ )5 O))
— Lo (b)s' (b
3@ —3B) Jow 807 M= Jepgy T 8O O
Also,
~—1N/ g/
H(goJ Yl = ‘ T
WS ]

This completed the proof of the theorem.

Furthermore, let
1 x |
W(x) = —/ b—1)* w)dr
I'a) J,

be a continuous and strictly increasing function on ]a, b[, where w(x) : [a, b] — ]Ri
is a continuous function.

Corollary 1 If f, g satisfy the conditions I*, [**, and % € Lxola, b], then we have
©)

G [2;) leoo

1
[Cow(f. O = 2 J“[w(b)](M rﬂ)‘

As a particular case of the above corollary, we obtain the following:

Corollary 2 If w(x) is a continuous p.d.f. on [a, b] of random variable X, we
have

1
‘E f8lX] — Eq fIX]1Eag[X]| < J“[w(b)](M m)‘ WH (10)
T(@) w lloco
Also, for a = 1, we have
‘wﬂm— < M —m (11
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Theorem 4 Let J be as above and f, g be absolutely continuous on [a, b] such that

g—:, g—; € Lxola, b]. Then, we have

/

8

‘ (b—1)~!
00 T @) s/

f/
(b—1)*~!
I' (o) s'

| 2
ICa,s (f. )] = —(J“[ /(b)]> 12)

12

‘ o]

Proof By making use of (1) for the function f o 3~ and go 31 on [J(a), T(B)],
we get the desired result.

Corollary 3 Suppose that w is as in Corollary 4 and f, g are absolutely continuous

on [a, b, where f;/, ‘% € Lxola, b]. Then, we have

f! g
Tw [ele} T (@) w oo

1 2
1Co,w(f &) = —(Jf‘[w(b)]> 13)

12

Consequently, if w(x) is a continuous p.d. f. on [a, b] of random variable X, we
derive the following result:

Corollary 4
1 2 f
Eo f8[X] — Eo f[X1Eqg[X]| < — | J5 [w(B)] —
12 b=X)
T (@) w oo
|
— | - (14)
(b—Xx)2—1
T @) w oo
If f =g, then
1 2 f/ 2
Eq f2[X] - | < —(J:[w(bn) — (15)
12 b=X)
T (@) w lloo
Therefore, if f = x
‘ 1 2 2
Var, (X)| < —<Ja“[w(b)]) — (16)
(b—X)“ 1
12 A w oo
Corollary 5 For o = 1, we obtain the classical case
g/
‘Efg[X — Ef[X]1Egl X]‘ < 12‘ ‘ (17)
o0
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If f =g, then
1 7112
'Efz[X]— ? < —Hi (18)
12| w||s
Therefore, if f = x, we obtain that
Var(X)| < (19)

Theorem 5 Assume that Jisas above; f, g : [a, b] — R are absolutely continuous
onla, b] and (j, G (j, G € Lla, b). Thus, we get

/

8
((b;t()ol";’l sH1/21l2

f
((b]—_‘l():)fl sH2 11

1
|Cas' (f, &) < —2<J,§"[S’(b)]>’ (20)
T

Proof Using Lupas inequality (3) for the functions f o 37! and g o 37! on
[J(a), I(b)], we have

I S For g o3 (w)du
1 j(b) 1 j(b) »
_M/j(a) fo3 (M)du./;(u) goJ  (u)du 21)

1
< =3 —J(b)]H(foJ |
T

2

We can also show that

J(b) 2 J(b)
[ e vofas |
J(a) J(a)

Thanks to the change of variable r = 31 (u), we derive that

(f 0T Hw)|?

~—1y/
(f o7 ) 5o

Jb) (f/Oj_l)(u) 2 B b 120 5 /
‘/j(a) m _/a jl(l‘) j(l‘)dl‘
-/ | _ro f
AR

Corollary 6 Let w(x) : [a,b] — R} be a continuous function and f, g be

absolutely continuous on [a, b], where
that

(jf;/z, (3,),/2 € Ljla, b]. Then, we have
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/ /

8
|Cow (f, &) = —(J“[w(b)]>H o = (22)
o w2 (b— t) lw)1/2 ((b;t(z)l) lw)l/z
From the above, we immediately deduce the following:
Corollary 7 Ifw is a p.d.f. on [a, b] of random variable X, then
1 o f
Eq f8[X] — Eq fIX1E«8IX]| = 5| L/ wD ||| o7
b4 ((b X) w)/2 112
T (@)
g/
— (23)
(h—X)2-!
CF@ w)!/2 112
If f =g, then
2 1 o f/ 2
Eo f2[X] - Eo fIX1 —2 J [wb)] T 1 (24)
(w21l
If f = x, then
1 2
Vary (X)| < —2<J§‘[w(b)]>‘ —— (25)
Corollary 8 For a = 1, we deduce the following classical result:
! g/
If f =g, then
f/
‘Efz[X] - 2 1/2 (27)
Therefore, if f = x, we get
1112
Var(X)‘ Iyl 28)
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Nonunique Fixed Points on Partial )
Metric Spaces Via Control Functions ez

Erdal Karapinar

Abstract In this note, we aim to emphasize the significance of the nonunique fixed
point results in an abstract space: partial metric space. Indeed, partial metric is a
natural extension of the standard metric from the aspect of computer science. The
presented results aim to cover and unify several results on the topic in the related
literature. We also indicate the validity of the results by a concrete example.

1 Introduction and Preliminaries

The notion of partial metric is one of the most fascinating extensions of the
concept of metric. The main characteristic property of a partial metric, proposed
by Matthews [28], is on the self-distance (indistancy or reflexivity axiom). Despite
the standard metric, in a partial metric, self-distance (the distance of a point to itself)
needs not to be zero. At the first sight, nonzero self-distance can be seen as absurd
and nonsense. On the other hand, the following example indicates that, surprisingly,
this is a very interesting and reasonable case when we consider it in the framework
of computer sciences.

One of the classical metric definitions on the class of all infinite sequences (let
us denote with S;) can be expressed as follows:

d : Sy x Sy : [0, 00) such that d(x, y) = 27 suplnlVi<n such thatx;=y;} (1)

It is obvious that d(x, y) provides all axioms of standard metric on S;. Now,
we take “the point views of computers sciences” into account and reconsider
the mentioned metric function by extending its domain with combining the class
of all finite sequences (let us denote with Sr) with the class of all infinite
sequences. In computer science programming, usage of the finite sequences is more
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reasonable than the infinite sequences when we regard the termination of a program.
Programming with infinite sequence may cause to infinite loop, and hence a program
creates a terrible fault that it is not terminated. After these rough discussions, we
modify the metric above by keeping the rule same but on the extended domain:
union of the class of finite sequence S and infinite sequences S;. For simplicity, let
us fix the letter, S := S U Sy, for the class of finite and infinite sequences. Now, the
new distance function § : § x § — [0, o0) creates a new structure with the same
definition

§:8 xS — [0, 00) such that §(x, y) = 27 suptnl¥i<n such thatx;=yi} )

Itis clear that § is not a metric. Indeed, for the finite sequence x = (x1, x2, - - - , X19),
1

the self-distance §(x, y) = 310 # 0. As it is seen, the example makes the idea

reasonable and worthy.

Hereupon, the letters R(J)r and Ny are occupied to denote the set of nonnegative
real numbers and the set of nonnegative integer numbers, respectively.

In what follows, we recollect the axiomatic definition of partial metric for the
sake of completeness of the text.

Definition 1 (See, e.g., [28, 29]) A function§ : S x S — Rg’ on a (non-empty) set
S is named as a partial metric if the following axioms are fulfilled:

(P1) x=y<&x,x)=38(y,y)=6(x,y),

(P2) 8(x,x) <é8(x,y),

(P3) 8(x,y) =68(y,x),

(P4) 6(x,y) <8(x,2)+8(z,y) =6z, 2),

for all x, y, z € S. Here, the coupled letter (S, §) is said to be a partial metric space.

Although, self-distance needs not to be zero, from (P1) and (P2), we observe that
8(x,y) = 0implies x = y (reflexivity axiom).

Throughout the paper, we presume that S is a non-empty set endowed with
a partial metric §, and F is a self-mapping on a partial metric space (S, §).
Moreover, we shall use the letter d to denote a metric defined on S.

The basic and classical example of a partial metric is the following.

Example 1 (See, e.g., [28, 29]) Let S = Rg and § be defined on S by §(x,y) =
max{x, y} for all x, y € S. Then, (S, §) is a partial metric space.

Example 2 (See, e.g., [22, 32]) Consider functionoj : § x S — Rg (ief{l,2,3})
given by

o1(x,y) =d(x,y)+3(x,y),

o2(x,y) = d(x,y) + max{v(x), v(y)},

o3(x,y) =d(x,y) +a,
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where v : § — Rg is an arbitrary function and a > 0. It is easy to see that all these
three functions form partial metrics on S.

Example 3 (See [28, 29]) Let S = {[a,b] : a,b € R, a < b} and define
3(la, b], [c,d]) = max{b,d} — min{a, c}. Then, (S, §) is a partial metric space.

Example 4 (See [28]) Let S = [0, 1]U[2,3] and define§ : § x S — RBL by

_ | max{x, y} if {x, y} N [2, 3] # ¥,
B(x’y)_{ Ix — y|if {x, y} C [0, 1].

Then, (S, §) is a partial metric space.

On account of the topology of a standard metric space, we are able to define
corresponding topological notions in the setting of a partial metric space, for more
details, see, e.g., [1-32]. In particular, we consider the open ball

Op(x,e) ={yeS:8(x,y) <d&(x,x)+e},

and open cover {OI,(x, €):x €S, e > 0} for all x € S and € > 0. Moreover, the
topology s, induced by a partial metric 8, is classified as Ty topology on S.

Definition 2 A sequence {x,},en in a partial metric space (S, §) converges to a
point x € S (x, — x, in short) with respect to t5 if and only if §(x,x) =
limy, s o0 8 (X, Xp).

Despite the intensive similarity between the definitions and topologies of standard
and partial metrics, the structure of partial metric spaces varies in many aspects.
The most important difference between them is on the uniqueness of a limit. More
precisely, the limit of a sequence in partial metric space is not necessarily unique.
For instance, recon the sequence {m }nen in the partial metric space, introduced
in Example 1. It is easy to see that

sd(m,m) = nlglgo 8(m, ) =m for any integer m.

n?2+n+1

As a result, limit of that sequence depends on the integer m2; hence, it is not unique.
To repair and fix this weakness of the partial metric, we add some certain condition
so that we guarantee uniqueness of the limit of a sequence.

Lemma 1 (See, e.g., [22, 32]) Let {x,},eN be a sequence in (S, §) such that x, —
x and x, — y with respect to ts. If

lim §(x,, xp) =8(x,x) =46(y,y),
n—oo

then x = y.



214 E. Karapiar

In what follows, we underline the connection between the usual metric spaces
and the partial metric spaces. On account of a partial metric (S, §), we deduce the
following functions ds, d3,, dy : S x S — R with the following definitions

ds(x,y) =28(x,y) —8(x,x) = 8(y, y), 3)
dp (x, y) = max{8(x, y) — 8(x, x), 8(x, y) = 8(y, y)}, @)
=38(x, y) —min{d(x, x), §(y, )},
0ifx=y
do(x,y) = 7 5
0(x, ) { 8(x, y) otherwise , )
form standard metrics on S, for more details, see, e.g., [17, 29].
The following topological inclusions are well known and easy to check:
Tp © Tay = Tar S Tdy-
Furthermore, the following equivalence will be useful later on:
lim ds(x,x,) =0< §(x,x) = lim 8(x,x,) = lim &(x,, xp). (6)
n—o0 n—od n,m—oo

We emphasize that for the given partial metric example in Example 1, the corre-
sponding standard metrics ds and d§ provide the Euclidean metrics on S.

The analog of the topological notions, such as, fundamental (Cauchy), complete-
ness, in the setting of partial metric spaces is given below:

Definition 3 (See, e.g., [21, 28, 29])

1. A sequence {x;, },en in (S, §) is called a fundamental (Cauchy) sequence in (S, §)
if limy, — 00 8 (Xn, Xm) exists and is finite.

2. (S, §) is called complete if every fundamental sequence {x; },cn converges with
respect to 75 to a point x € S such that §(x, x) = lim, ;- 00 §(Xp, X))

In what follows, we shall give a characterization of fundamental sequence and
completeness in the setting of partial metric spaces.

Lemma 2 (See [29])

1. A sequence {xp}neN in (S, 8) is a fundamental sequence in (S, 8) if and only if it
is a fundamental sequence in the metric space (X, ds).
2. (S, 68) is complete if and only if the metric space (X, ds) is complete.

We note that the considered partial metric in Examples 1, 3, and 4 provides the
completeness of the corresponding abstract space.
In our context, the following characterization will be useful.
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Lemma 3 (See, e.g., [27]) A sequence {x,},en in (S, §) is a fundamental (Cauchy)
sequence in (S, 6) if and only if it satisfies the following condition:

(x) for each ¢ > O, there is no € N such that §(x,, xXpm) — 6(xp, Xp) < €
whenever ng < n < m.

Lemma 4 Let {x,},eN and {y,}nen be sequences in (S, 8) such that x, — x and
Yn = y with respect to t45. Then,

lim (S(Xna Yn) = (S()C, y)~
n— 00

For our purposes, we need to recall the following notion.
Definition 4 (cf. [11])

1. F is called orbitally continuous if

lim §(F"x, F"ix) = lim §(F"x,z) = 8(z.2) (7)
l,]—>00 11— 00
implies
lim 8(FF"x, FF'x) = lim §(FF"x, Fz) = 8§(Fz, Fz), 8)
i,j—o00 i—00

foreachx € §.
Equivalently, F is orbitally continuous provided that if F"x — z with respect
to 74, then F"itlx — Fz with respect to 745, foreach x € §.
2. (S,6) is called orbitally complete if every fundamental sequence of type
{F" x};ieN converges with respect to 7,4, that is, if there is z € S such that

lim §(F%x, F'ix) = lim 8(F"x,z) = 8(z, 2). )
1—> 00

i,j—>00

In this manuscript, we investigate the existence of a fixed point for certain
mapping in the context of partial metric spaces without caring the uniqueness. More
accurately, this paper is prepared as a typical nonunique fixed point result in the
trend of the famous work of Ciri¢ [11]. The presented results not only extend and
generalize the existing results in the literature but also unify some and enrich this
trend. We shall also provide an example to indicate the advantages in usage of partial
metric spaces rather than standard metric spaces.

2 The Results

In this section, we shall state and prove the main theorems of the paper.
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From now on, we assume that all partial metric spaces (S, §) are orbitally
complete, and self-mapping F on (S, §) is orbitally continuous. Regarding these
assumptions, we shall avoid to put these assumptions to all statements of the
following theorems and corollaries to keep away from the repetitions.

Now, we recall the definition of auxiliary functions that we shall use in the
statements of our results.

A function ¢ : [0, 0c0) — [0, 00) is called a comparison function [10, 31] if it is
increasing and ¢"(t) — 0 as n — oo for every ¢t € [0, 0c0), where ¢" is the n-th
iterate of ¢.

Let @ be the family of functions ¢ : [0, c0) — [0, co) satisfying the following
conditions:

(pl) ¢ is nondecreasing;
+00

(P2) Z¢"(t) < oo forallt > 0.

n=1

Then, a function ¢ € @ is called (c)-comparison function.

More details and examples of comparison and (c)-comparison functions can be
found in [31]. The following crucial lemma underlines the interesting properties of
comparison functions.

Lemma 5 ([31]) If ¢ : [0, 00) — [0, 00) is a comparison function, then

1. each iterate ¢* of ¢, k > 1 is also a comparison function;
2. ¢ is continuous at 0;
3. ¢(t) <tforallt > 0.

It is clear that if ¢ is a (c)-comparison function is a comparison function. Hence, the
properties above are also valid for (c)-comparison functions.

Ciri¢ Type Nonunique Fixed Point Theorems

In what follows, we state and prove the first main result that is inspired from the
work of Ciri¢ [11].

Theorem 1 If there is ¢ € @ such that

min{§(Fx, Fy),d(x, Fx),5(y, Fy)} — min{dfn(x, Fy), di(Fx, )}

10
< BB ) — 18 x) =8y, 0

forall x,y € S, then for each xo € S the sequence {F"xo}neN, converges with
respect to T4y to a fixed point of F.

Proof Take an arbitrary point xo € S. We define the iterative sequence {x,},eN, as
follows:
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Xp+1 = Fx,, neNp.

If there exists ng € Ny such that x,,, = x,,+1, then x,,, is a fixed point of F'. Assume
then that x,, # x,4+1 for each n € Np.
Substituting x = x, and y = x4 in (10), we find the inequality

min{8 (X1, Xn42), § (X, Xng1), 8 (Xp11, Xny2)}
- mln{d,?, (Xn, Xn42), d;sn Xn415 Xn+1)}
< P8 (xn, Xpg1) — 18Cxn, X)) — §(Xpg1, Xnt- 1),

which imply that

min{d (xpn, Xp+1), 8 (Xn+1, Xn42)}
< @ ((xn, Xpt1) — 8(xp, Xp) + S (Xpp 1, Xnt1))
< ¢ (xn, Xnt1))
< 8(xn, Xn41)-

(1)

Suppose 8 (Xng, Xng+1) < 8(Xng+1, Xng+2) for some ng € Ng. Then, the inequality
above yields that

‘S(xn()» xno—i-l) < 5()6"0, xn()+l)1

a contradiction.
Therefore, § (x,,, Xp+1) > 6 (X1, Xn42) forall n € Np.
Hence, by (11), we get

8(Xn1s Xnt2) < BBy Xnt1)) < --- < @"TH(S(x0, x1)), (12)

for any n € N. We shall show that {x,},cn is a Cauchy sequence in (S, §). Indeed,
let n,m € Ny with n < m. Then, by using (12) and (P4), we derive that

m—1
8ins Xm) = 8 (. Xn) < 8, X)) + -+ 81 Xm) — D S0k, x0)
k=n+1
< ¢"(8(x0,x1)) - - + ¢" (8 (x0, x1))
m—1
< Z(Pk(S(xo,xl)) — Qasn — oo.
k=n

As a result, the sequence {x,},en, satisfies condition (x) of Lemma 3. Conse-
quently, it is a Cauchy sequence in (S, §). Since x, = F"xq for all n, and (S, §)
is F-orbitally complete, there is z € § such that x, — z with respect to t4. By
the orbital continuity of F, we deduce that x, — Fz with respect to t4;. Hence,
z = Fz, which concludes the proof.
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The following result is an immediate consequence of Theorem 1 by letting
¢(t) = kt where k € (0, 1).

Corollary 1 If there is k € (0, 1) such that

min{§(Fx, Fy), é(x, Fx),5(y, Fy)} —min{§(x, Fy), §(Fx, y)}

13
< K(5(x. ) — [8(x, ) — 80y, V). (13)

forallx,y €S, then for each xo € S the sequence {F"xo},en, converges to a fixed
point of F.

Regarding the monotonicity of the (c)-comparison function, we derive the
following corollary:

Corollary 2 If there is ¢ € @ such that

min{8(Fx, Fy),(x, Fx),8(y, Fy)} —min{8(x, Fy), 8(Fx, y)}

14
= $(5(x. ), 1

forallx,y €S, then for each xo € S the sequence {F"xo},en, converges to a fixed
point of F.

The following result is an immediate consequence of Corollary 2 by letting
¢ (t) = kt where k € (0, 1).

Corollary 3 Ifthere is k € (0, 1) such that

min{é(Fx, Fy),d(x, Fx),5(y, Fy)} —min{é(x, Fy),§(Fx, y)}

< kS (x, ), (15)

forallx,y € S, then for each xo € S the sequence { F"xo},cnN, converges to a fixed
point of F.

Notice that each metric forms a partial metric, but the converse is not true. Thus, the
following is the immediate consequence of Corollary 2.

Corollary 4 If there is ¢ € @ such that

min{d(Fx, Fy),d(x, Fx),d(y, Fy)} —min{d(x, Fy),d(Fx, y)}

16
“¢Wdix.yy, 19

forallx,y € S, then for each xo € S the sequence { F"xo},cn, converges to a fixed
point of F.

The next result is belong to Ciri¢ [11] in the context of metric spaces that is
derived from Corollary 4 by letting ¢ (¢) = kt where k € (0, 1).

Corollary 5 ([11, Nonunique Fixed Point Theorem of Ciri¢]) If there is k €
(0, 1) such that
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min{d(Fx, Fy),d(x, Fx),d(y, Fy)} —min{d(x, Fy),d(Fx, y)}

< kd(x,y), 4

forallx,y € S, then for each xo € S the sequence { F"xo},cn, converges to a fixed
point of F.

The following are examples where Theorem 1 can be applied but not Corollary 5
for the metrics ds and d,‘fw and dj, respectively.

Example 5 Let S = {0, 1, 2} endowed with a partial metric §(x, y) = max{x, y}
forall x,y € S. Define F : § - X by FO = F1 = 0and F2 = 1. Since (S, §) is
complete, then it is F-orbitally complete. Moreover, it is obvious that F is orbitally
continuous. An easy computation shows that

min{§(Fx, Fy), é(x, Fx),5(y, Fy)} — min{dfn(x, Fy), dfn(Fx, )}
< P(8(x, y) — 18(x, x) — 8y, YD),

for all x, y € S and for certain ¢, e.g., by letting ¥ (¢) = % So, the conditions of
Theorem 1 are satisfied. However, there is no ¢ such that

min{ds(T1, T2),ds(1, T1), ds(2, T2)} — min{ds(1, T2), ds(T1, 2)}
=1-0=1<vy(d,1,2) <d,1,2) =1

is satisfied. Accordingly, Corollary 5 cannot be applied to the complete metric space
(S, ds).

Achari Type Nonunique Fixed Point Theorems

The following theorem is based on the interesting result of Achari [3].

Theorem 2 Suppose that there exists W € @ such that

PEPZEEN <y (8(x, y)), (18)

forall x,y € S, where
P(x,y) =min{d(Fx, Fy)3(x, y),(x, Fx)8(y, Fy)},

Q(x,y) = min{d}, (x, Fx)d3 (x, Fy), d,(y, Fy)d3 (Fx, )},
R(x,y) = min{8(x, Fx), 8(y, Fy)},

with R(x, y) # 0. Then, for each xo € S, the sequence {F"xo},eN converges to a
fixed point of F.
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Proof For an arbitrary initial point x9 € S, we construct an iterative sequence
{Xn}nen, as follows:

Xn41 = Fx,, neNo.
Without loss of generality, we suppose then that x,, # x,,41 for eachn € Ny. Indeed,
if there exists ng € Ny such that x,,; = x,,41, then x,,, is a fixed point of F.

By letting x = x,, and y = x,,+1 in (21) we find the inequality

P(xp, xp11) — O, Xpg1)
R(xp, Xpn41)

< Y (6(Xn, Xn41)),

where

P(Xn, anrl) = min{S(Fxn’ Fxn«l»l)(s(xm xn+l), 5()6”, Fxn)(s(xn+la Fanrl)}a
= min{8 (X1, Xn42)8 (Xn, Xp11), 8 Xy Xnt1)8 (Xn1, Xn12)}

O (X, Xp41) = min{dS (xn, Fxy)dS (Xn, FXns1), d,(ns1, FXns1)dS (F X, Xn41)),
= mln{d,i (xn, xn—t—l)dfn (Xn, Xn42), d;sn (Xn41, xn+2)d§n (Xn41, Xng 1)},
=0,

R(xp, xpt1) = min{8(xp, Fxn), §(Xpy1, Fxpi1)}
= min{8 (x,, Xy41), 6 (Xn+1, Xn12)}-

Consequently, we derive that

S(Xny1, Xn12)8(Xn, Xpt1)
mln{a (xn ) xn+1): ) (xn+1 ) xn+2)

} < ¥ (8(xn, Xny1))- 19)

Suppose for some ng, we have 8(Xng41, Xng+2) = 6(Xng, Xng+1). Then, the
inequality above yields that

8(xn0+1 ) Xn0+2)8 (xn() s Xng+1 )
8(}6,10, xn()-‘rl)

= 1/f(5(xn0’ xn0+1))’

and hence

8(Xng, Xng+1) = Y (8(Xng, Xng+1)) < 8(Xng, Xng+1),

a contradiction. Consequently, we deduce that 8 (x;+1, Xp4+2) < 8(xy, X,41) for all
n € N and further, from (19) , we have

8 ng1s Xng12) < W (8 Gngs Xng41)) < -+ < Y"1 (S(x0, x1)),
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foralln e N.
As a next step, we shall prove that the constructive sequence {x, },en is Cauchy
in (S, 8). Suppose that n, m € Ng with n < m. Then, by using (P4), we find that

m—1
8Cns Xm) < 8 (o, Xug1) + -+ 8(m1, Xm) — Y 8k, xk)
k=n

< Y (8(x0, x1)) - - - + Y"1 (8 (x0. x1))
m—1

< Z 1/fk(8(xo,x1)) — Qasn — oo.
k=n

Accordingly, we get that

Iim ds(x,x,) =0 0=46(x,x) = lim 6(x,x,) = lim §&8(x,,x,). (0)
n— 00 n— 00 n,m—00

Consequently, it is a Cauchy sequence in (S, §). On account of x,, = F"xq for all n,
and regarding the orbitally completeness of (S, ), there is z € S such that x, — z
with respect to t4,. Taking the orbital continuity of F into account, we find that
x, — Fz with respect to 74;. Thus, z = Fz, which concludes the proof.

An immediate corollary of Theorem 7 is obtained by letting ¥ () = k¢ for k €
[0, D)

Corollary 6 Suppose that there exists W € @ such that

P(x,y) — Q(x,y)
R(x,y)

<Y (S(x, y), 1)

forallx,y € S, where

P(x,y) = min{d(Fx, Fy)§(x, y),d(x, Fx)d(y, Fy)},
Q(x, y) = min{d}, (x, Fx)d}, (x, Fy), d},(y, Fy)d3 (Fx, y)},
R(x,y) = min{é(x, Fx),5(y, Fy)}.

with R(x,y) # 0. Then, for each xo € S, the sequence {F"xy},eN converges to a
fixed point of F.

The following is the famous theorem of Achari [3] in the setting of standard
metric spaces.

Corollary 7 ([3, Nonunique fixed point of Achari]) Suppose that there exists k €
[0, 1) such that

P(x,y)— Ly
P < kd(x, y), 22)
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forall x,y € S, where

P(x,y) =min{d(Fx, Fy)d(x, y),d(x, Fx)d(y, Fy)},
Q(x,y) = min{(x, Fx)8(x, Fy), 8(y, Fy)s(Fx, y)},
R(x,y) =min{d(x, Fx),d(y, Fy)},

with R(x,y) # 0. Then, for each xo € S, the sequence {F"xy},eN converges to a
fixed point of F.

Pachpatte Type Nonunique Fixed Point Theorems

Let ® be the set of all functions ¢ € @ with an additional condition
9(1?) < [p®]? forall 1 > 0.

Inspired from the renowned result of Pachpatte [30], we propose the following
result.

Theorem 3 Suppose that there exists ¥ € © such that
m(x,y) —n(x,y) < 3(@(x, Fx)3(y, Fy)), (23)
forallx,y € S, where

m(x, y) = min{[§(Fx, Fy)I?, 8(x, »)8(Fx, Fy), [(y, Fy)]*},
n(x,y) = min{d},(x, Fx)d’,(y, Fy), d’,(x, Fy)d3 (y, Fx)}.

Then, for each xy € S, the sequence {F"xo},eN converges to a fixed point of F.
Proof Fix initial point xo € S, we set up a recursive sequence {x,},cn, by the
following definition:

Xn41 = Fx,, neNp.

We assume, without loss of generality, that the adjacent terms are distinct, that is,
Xp 7 xp41 for each n € Ny. In fact, if there exists ng € Ny such that x,,;, = X,5+1,
then x,, forms a fixed point of F.

By letting x = x,, and y = x,1 in (23), we derive the following inequality:

m(xXp, Xp41) — 0(xn, Xpg1) < P8, Fxp)8(Xng1, Fxng1)),

(24)
= (8 (xn, Xn+1)8(Xnt1, Xn12))s

where
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min{[8(Fxp, Fx, 1112, 8Gn, Xpi )8 (Fxn, Fxpi1), [8Gtnt1, Fxny1)1%)
min{[8 (X415 ¥n12)1% 8y X 1St 1 Xn42)s [8 o1, X212,

m(xp, Xp41)

N, Xpp1) = min{dd, (tn, Fxn)dd, Ceny 1, Fxng1), dd (on, Fxny1)dS (tnp1, Fxn)}
= min{d}, (xn. X1y Xn 15 Xnt2), diy Cons X4 2)eliy (¥ 1 Xy 1)
=0.

Consequently, the inequality (24) turns into

min{[§ (x, 11, xn+2)]27 8(xp, Xp41)8 (Xn41, Xp12)} < P8 (s X 1)8 (X115 Xny2)),
(25)

forall n € N. Suppose that 8 (X, Xng+1) < 8 (Xng+1, Xny+2) for some ng € N. Then,
the inequality (25) becomes

3 (xno s xn0+1)8(xn0+1 > xno+2) <9 (xno > )Cn()+l)(S (xno+1 , xn0+2)) (26)
< 8(xn0’ xn0+1)8(xn0+1 ) xn0+2),

a contradiction. Thus, we have §(x;+1, Xn+2) < 8(Xp, Xp41) for all n € N.
Moreover, keeping the property of ¢ in mind, we derive, from inequality (26), that

8 (Xns Xn1)* < O (net, X)) < [9(nt, x0))1?
8(xn, Xpy1) < 9" (8(xg, x1)) forall n € N. 27

In what follows, we indicate that the recursive sequence {x,},cn is Cauchy in
(S, 8). Consider n, m € Ng with n < m. Then, by using (P4), we find that

m—1

8Cns Xm) < 8 (o, Xng1) + -+ - 4+ 8(Xm1, Xm) — Y 8(xg, xx)

k=n
< 9" (8(x0, x1)) -+ + 0" (8(x0, x1))
m—1
< Z 19k(8(x0,x1)) — 0asn — oo.
k=n

Attendantly, we find that

lim ds(x,x,) =0 0=38(x,x) = lim 8(x,x,) = Llm 8Ct, xm).  (28)
n—oo n—oo n,m— 00

As a result, the sequence {x,},cn is a Cauchy sequence in (S, §). Keeping, x, =
F"xq for all n, in mind, and regarding the orbitally completeness of (S, §),we
deduce that there is z € S such that x, — z with respect to 74,. Employing the
orbital continuity of F, we get that x,, — Fz with respect to 74. So, z = Fz.



224 E. Karapiar

An immediate corollary of Theorem 3 is obtained by letting ¥ (¢) = k¢ for k €
[0, D

Corollary 8 Suppose that there exists k € [0, 1) such that
m(xv y) - n(x, y) < kS(X, Fx)s(ys Fy)a
forallx,y € S, where

m(x, y) = min{[§(Fx, Fy)]?,8(x, y)8(Fx, Fy), [8(y, Fy)I*},
n(x,y) = min{d,fl(x, Fx)d,‘;(y, Fy), d;fl(x, Fy)di(y, Fx)}.
Then, for each xo € S, the sequence {F"xo},eN converges to a fixed point of F.

In what follows, we deduce the renowned result of Pachpatte [30] in the setting
of standard metric spaces.

Corollary 9 ([30, Nonunique fixed point of Pachpatte]) Suppose that there exists
k € [0, 1) such that

m(xv y) - f’l(.x, y) S kd(-xv F-x)d(yv Fy)»
forall x,y € S, where

m(x,y) = min{[d(Fx, Fy)1*,d(x, y)d(Fx, Fy), [d(y, Fy)*},
n(x,y) = min{d(x, Fx)d(y, Fy),d(x, Fy)d(y, Fx)}.

Then, for each xy € S, the sequence {F"xo},eN converges to a fixed point of F.

Conclusion

It is possible to obtain more consequence of the obtained result by considering
different type control functions. Notice also that all obtained results in the context
of partial metric spaces are valid in the setting of standard metric spaces, either.
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Some New Refinement of Gauss—Jacobi )
and Hermite-Hadamard Type Integral et
Inequalities

Artion Kashuri and Rozana Liko

Abstract In this paper, the authors discover two interesting identities regarding
Gauss—Jacobi and Hermite—Hadamard type integral inequalities. By using the first
lemma as an auxiliary result, some new bounds with respect to Gauss—Jacobi
type integral inequalities are established. Also, using the second lemma, some
new estimates with respect to Hermite—Hadamard type integral inequalities via
general fractional integrals are obtained. It is pointed out that some new special
cases can be deduced from main results. Some applications to special means for
different positive real numbers and new error estimates for the trapezoidal formula
are provided as well. These results give us the generalizations, refinement and
significant improvements of the new and previous known results. The ideas and
techniques of this paper may stimulate further research.

1 Introduction

The following notations are used throughout this paper. We use I to denote an
interval on the real line R = (—o0, +00). For any subset K C R", K° is the
interior of K. The set of integrable functions on the interval [a, az] is denoted by
Llay, a2].

The following inequality, named Hermite—-Hadamard inequality, is one of the
most famous inequalities in the literature for convex functions.

Theorem 1 Let f : I € R — R be a convex function on I and ay, ay € I with
ay < ay. Then, the following inequality holds:

f<m+a2> < /uzﬂx)dxs—f(“””(“”. (1)
2 ay —ay Jg, 2
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This inequality (1) is also known as trapezium inequality.

The trapezium type inequality has remained an area of great interest due to its
wide applications in the field of mathematical analysis. For other recent results that
generalize, improve and extend the inequality (1) through various classes of convex
functions, interested readers are referred to [1-33, 35, 37, 38].
The Gauss—Jacobi type quadrature formula has the following:

ap +o00
/ (x —anP(az — x)? f(x)dx = Z B i f (i) + RIS 2

k=0

for certain By, i, yx and rest R}, | f|, see [34].

Recently in [20], Liu obtained several integral inequalities for the left-hand
side of (2). Also in [28], Ozdemir et al. established several integral inequalities
concerning the left-hand side of (2) via some kinds of convexity.

Let us recall some special functions and evoke some basic definitions as follows.

Definition 1 For k € R™ and x € C, the k-gamma function is defined by

k" (nk %—1
) = lim mRE@RE 3)
n—>-00 (x)n,k

Its integral representation is given by

o0 Tk
I(a) = f e~ F ds. )
0

One can note that
Ti(a + k) = ali(a). 5

For k = 1, (4) gives integral representation of gamma function.

Definition 2 ([24]) Let f € L[ay, a2]. Then, k-fractional integrals of order o, k >
0 with a; > 0 are defined as

1 * a
Ijj‘lff(x) = ka(oz)[ x—0F N fdt, x> a
and
1ok = ! az(t )%_1 (t)dt (6)
a fx) = Ko@) /x —X f , a) > X.

For k = 1, k-fractional integrals give Riemann-Liouville integrals.
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Definition 3 ([36]) A set S € R” is said to be an invex set with respect to the
mapping n : S x S — R", ifx +tn(y,x) € Sforeveryx,y € Sandt € [0, 1].
The invex set S is also termed an n-connected set.

Definition 4 Let S € R" be an invex set with respectton : S x § — R".
A function f : § — [0, 4-00) is said to be preinvex with respect to n, if for every
x,y € Sandr € [0, 1],

fx+m@,x) <A =DFf&) +tfQ). (7)

Also, let us define a function ¢ : [0,00) — [0, oo) satisfying the following
conditions:

1
/ &dt < 00, 3
0 1
- (p(s)gAforlfifz ©)
AT ) 27
20 2 fors < (10)
r S
o) @(s) @(r) 1 s
7T | SO osiT g =0 =2, (b

where A, B, C > 0 are independent of r, s > 0. If ¢(r)r® is increasing for some
o > 0and M is decreasing for some 8 > 0, then ¢ satisfies (8), (9), (10) and (11),
see [31]. Therefore we define the following left-sided and right-sided generalized
fractional integral operators, respectively, as follows:

arlgof(x)=/ (pix fdt, x> a, (12)
ay
sl = [TE D p o x < (3)

The most important feature of generalized fractional integrals is that they gen-
eralize some types of fractional integrals such as Riemann-Liouville fractional
integral, k-Riemann-Liouville fractional integral, Katugampola fractional integrals,
conformable fractional integral, Hadamard fractional integrals, etc., see [30].

Motivated by the above literatures, the main objective of this paper is to discover
in Sects.2 and 3 two interesting identities and to establish some new bounds
regarding Gauss—Jacobi and Hermite-Hadamard type integral inequalities. By using
in Sect. 2 the first lemma as an auxiliary result, some new bounds with respect
to Gauss—Jacobi type integral inequalities will be given. Also, using in Sect. 3
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the second lemma, some new estimates with respect to Hermite—Hadamard type
integral inequalities via general fractional integrals will be obtained. It is pointed
out that some new special cases will be deduced from main results. In Sect. 4,
some applications to special means for different positive real numbers and new
error estimates for the trapezoidal formula will be given. These results will give
us the generalizations, refinement and significant improvements of the new and
previous known results. The ideas and techniques of this paper may stimulate further
research.

2 Some New Bounds of the Quadrature Formula
of Gauss—Jacobi Type

Throughout this study, for brevity, we define

dx < oo, n(az,may) > 0.

tg (ﬂ(az,mal)nxﬁ>
Al (D) =/
0 n+1

For establishing some new bounds integral inequalities for Gauss—Jacobi type, we
need the following lemma.

Lemma 1 Suppose thatn = 0,1,2,..., and m € (0, 1] be a fixed number. Let
P = [ma, ma; + n(az, may)] € R be an open m-invex subset. Assume that f :
P — R be a continuous mapping on P° with respectton : P x P —> R for
n(az, may) > 0. Then, for any fixed p, q > 0, we have

(an,may)
/ma1+” T [A* ((n—l—l)(x—ma]))]p
maj i 77(“2’ may)

X[A;‘;,,n (m(" D1 + (@, may) — (n + 1)x> ]qf(x)dx

n(az, may)

1
= n(az, mai) [A,’;‘n(t)]p[A:;w(l - t)]qf <ma1 + ;n(az, ma1)> dt.
n+1 0

n+1
(14)
We denote

, n(az, may)
TP (a1,a2) = B (15)

1
x /0 [As O] [Ah A =D]"f (mal + n;Hn(az, mal)) dr.
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t
Proof Using (15) and changing the variable x = ma; + ?n(az, may), we have
n

n(ap.may)

T n(az,mal)/’”"l+ pEs) [A* ((n—i—l)(x—mal))]p
. n+1 Ja e n(az, may)

fA n(alvaZ) =

X|:A;kn,n (m(n + Dai + n(az, may) — (n + l)x) i|qf(x) n+ 1) W

n(az, may) n(az, may)

(an,may)
_/’"”1‘*” TEom [A* ((n—i—l)(x—mal))}p
may e n(az, may)

X[A;;, . (m(” * Dar + nlay, may) = (n + Dx) ]qf(X)dx.
' n(az, may)

This completes the proof of the lemma.

Corollary 1 Takingn = 0, m = 1, n(az, ma;) = ay — may and ¢(x) = x, in
Lemma 1, we get the following identity:

aj 1
/ (x—an)?(@—x)? f(x)dx = (a—ap)?*H+! / t?(1=0)? f(a1+t(az—a1))dt.
a 0
' (16)
With the help of Lemma 1, we have the following results.

Theorem 2 Suppose thatn = 0,1,2,..., and m € (0, 1] be a fixed number. Let
P = [may, ma; + n(az, may)] € R be an open m-invex subset. Assume that f :
P —> R be a continuous mapping on P° with respect ton : P x P —> R for

k
n(az, may) > 0. If | f|*T1 is preinvex mapping on P for k > 1, then for any fixed
p,q > 0, we have

k—1
k

1 n(az, may)
P9 (a;. ‘< A9 (k 17
724, (@) < (2(n+1)> ST AR a7)

k—1

k

x[@n+ DIfman) 7T + | f (@) [7T]

where

1
a0 = [ (4,01 (4500 0]
m,n 0 ’ ’
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Proof Since | f|*T is preinvex mapping on P, combining with Lemma 1, Holder
inequality and properties of the modulus, we get

n(az, may)

T/, (@) =
‘ f’Am,n(al a)| < nt 1

1
< [ na @ (45,0 - 0]

t
(mcu + ?n(az, mal))

1

n(az, may) ! * kpr o« kq ¢
= ?[‘/O [Am,n(t)] [Am,n(l —l)] dt]

Xx[/o'

k k—1

k—1 &
dt]

f (mal + ﬁﬁ(ﬂlz, mal)>

- n(az, may)

YART (k
n + 1 Am,n( )

k—1

! Kk
X|:/o <<1——>|f(mal)| +—|f(6lz)|" ‘) }
k=1
_ 1 kF n(az, may) D.q kk;1
_(Z(n—l—l)) 2L AT x| @nDIf man FTH Fan T

So, the proof of this theorem is completed.

We point out some special cases of Theorem 2.

Corollary 2 Under the assumption of Theorem 2 withn = 0 and ¢(t) = t, we get

’ fA*(al, az)’ < 0P+ (ay, mar)/Bkp + 1, kg + 1) (18)

X|:|f(ma1)|1<k—1 + |f(a2)|kfli|kkl
2 )

where A} := n(az, map)t.

Corollary 3 Under the assumption of Theorem 2 withn = 0 and ¢(t) =
get

F(a)’ we

a(p+q)+1(a2 may) ,
r+a(a +1)

Tfpff*(al,az)‘ <

YBakp + 1, akq + 1) (19)

x[lf(mal)lkkl +1f @) ]k?l
. ,
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Wwhere A¥ — n“(az,mal)t(x
5= .

T'(a+1)
Corollary 4 Under the assumption of Theorem 2 withn = 0 and ¢(t) = %
we get :
TP ﬁﬁww)ﬂ(ﬂlz, may) akp { akq | 0
. < akp akq
P a)| = (T L 0)

[T @+ 0]

k—1

x[|f<ma1>|k"l +|f<az>|k"1] :
5 ,

& o
x . 0"l (a.may) &y
where A3 = KT, CEETN LA

Corollary 5 Under the assumption of Theorem 2 withn = 0 and ¢(t) = t(ma; +
n(az, may) — H* "V and f(x) is symmetric to x = may + w, we get

Lp+a)+1

k

‘T;’}?*(dl,az)‘ <1 (@2 141 /g (a, k) @2n
Ay

abta

k—1

x[|f<ma1>|k"l +1f (@)™ ]

2

where
may+n(az,may)

CPt™(a, k) = / [(may + n(az, mar))* — t“]kp (22)

maj

x[(may + n(az, ma)® — @may + n(az, mar) — 0] di

x . (maj+n(az,ma))*—(ma;+(1-1)n(az,may))*
and Ay = ~ .

Theorem 3 Suppose thatn = 0, 1,2, ..., and m € (0, 1] be a fixed number. Let
P = [may, ma; 4+ n(az, may)] € R be an open m-invex subset. Assume that f :
P — R be a continuous mapping on P° with respectton : P x P —> R for
n(aa, may) > 0. If | f|! is preinvex mapping on P for | > 1, then for any fixed
p,q > 0, we have

1

1
" x JBL [ fmanl+ChE | f @),
(23)

: n(az, man)r , p.
T/, (e an|sTEEEE AR ()]
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where

! t
Bﬁ}nqn ::'/(; (1 - I’l~|—1>[ (t)] [ m, n(l _t)]th9

1
[} a0 =0
0

chi =
Amn n+1

and Af"f (1) is defined as in Theorem 2.

Proof Since | f|' is preinvex mapping on P, combining with Lemma 1, the well-
known power mean inequality and properties of the modulus, we get

n(az, may)

TP, (a ,a ‘<
‘ f,Am,n( 1 2) - n+l

t
(mal + mn(ag, ma1)> dt

1
< [ 1450 4500 0]
0
-1

1 o
< 2O Ly o) [0 -0 ]|

n—+1

L g
dt}

t
<ma1 + m’)(az, mal))

1
<[ o) 45,00 =0
0

n(az, ma) =
< PRI AR ()]
n +1 mn

1 1
X[fo (45,201 [45,,0=0)]" ((Fﬁ)If(mal)l+—|f(a2)|’>dt}

n(az, may) 7
%[Aﬁf (1)] x JBR | fmanl +CRI | f @)l

So, the proof of this theorem is completed.
We point out some special cases of Theorem 3.

Corollary 6 Under the assumption of Theorem 3 withn = 0 and ¢(t) = t, we get

-1
|77 ar, )| < 0P+ @2, man) < BT (p 1, + 1) 4

<JB(p+1,q +DIfmanl + g + 1, p+2)| (@)l
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Corollary 7 Under the assumption of Theorem 3 withn = 0 and ¢(t) = F( 2 we
get
P4 - PO+ (a5, may) =1 { ! 25
’ f,Az(al,az)’_ et 1) x BT (ap+1,aq +1) (25)
< Blap + 1, aq +2)| fma)| + Blag +1,ap + )| f @)’
Corollary 8 Under the assumption of Theorem 3 withn = 0 and ¢(t) = T F]]:T(a),
we get
& (pa)+1
nh (a2, may) =1 [ po qa
T/ @) < (A R I G 1
T2 (@ a)| = x B ( LT 26)

[kIFk1 (a +k1)]p !

X\/ﬁ(z—+1 n +2)|f(ma1)|l+ﬂ<—+1 k—+2>|f(a2)|l

Corollary 9 Under the assumption of Theorem 3 withn = 0 and ¢(t) = t(ma; +
n(az, may) — %! and f(x) is symmetric to x = maj + Tl(uz’Tm‘”), we get

-1
cram@, 1] T
774 (@1, 0] < (@, mm)[ap—ﬂ] @7)
/ m 1 m 1
< DPam| fman) |l + Do-rm fan)l,
where
1
DA = (28)

aPtan?(az, may)

mai+n(ay,may)
X / (t — a))[(may + n(az, map)® —1*]”

maj

x[(may + n(az, may)* — 2may + n(az, may) — 1)*]"dt
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3 Some New Refinement of Hermite-Hadamard Type via
General Fractional Integral Inequalities

Theorem 4 Suppose thatn = 0,1,2,..., and m € (0, 1] be a fixed number. Let
f : P = [may,ma; + n(az, ma;)] —> R be a preinvex function on P with
n(az, may) > 0, then the following inequalities for generalized fractional integral
hold:

n(az, may) 1
2
S (mal + 3 ) < 245 (D (29
n(az, may) f(may) + f(ap)
X|:(ma1)+1<ﬂf <ma1 + ﬁ) + (ma1+n(a£iria1))I(ﬂf(mal)] = f

t
Proof For 1 & [0, 1], let x = maj + ——n(az. may) and y = may + (1 - nfﬁ)

n(az, may). From the preinvexity of f, we get

7 (mal n 77(“212”1“1)) _ 5 <Xw2Ly) - f(X)erf(y)’
ie.,
2f (mm + M) <f (ma1 + %Hn(az, ma1)> (30)

+f (ma1 + (1 — ntj) n(ay, mal)) .

@ ('7(02, mal),fq)
_x_

. . . n+1 .

inequality with respect to ¢ over (0, 1], we obtain

Multiplying both sides of (30) by

and integrating the resulting

n(a2,ma1)> /1 (2 (’7(“21 mal)ntﬁ>dt
0

t
2 n+l1

2f (mal +

Ly (n(az,mal),,’ﬁ) "
< / ; f (mal + —ln(az,ma1)> dt

1o (n(az,mal)ntﬁ> t
+/ - f (mal + <1 - —) n(az, ma])) dt.
0 n+1

n+1
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Hence,

2f (ma1+ﬁ(az,ma1)>/lw(n(az,mal)ntﬁ>dt
0

i
2 n+1

n(az, map)

< I _ -1 .
= |:(ma1)+ (pf (mal + nt 1 > + (ma1+n(a5_'*_":al>) ¢f(ma1):|

So, the first inequality is proved.
To prove the other half of the inequality in (29), since f is preinvex, we have

f (mal + n;—l—ln(az’ mal)) + f <ma1 + (l — ntﬁ) n(az, ma1)> 31

< f(mayp) + f(a2).

@ (77(612, mal)#)
Multiplying both sides of (31) by - and integrating the resulting

n+1
inequality with respect to ¢ over (0, 1], we obtain

n(az, may)

I R E—— -1
[(’"‘”” “’f(ma1+ ntl >+(ma.+"<“,%f§“”) “’f(mal)}

1 g (n(az, mar)
< [f(may) —l—f(az)]/o ( ; +1>dt

n+1

Therefore, the second inequality is proved. The proof of this theorem is complete.
We point out some special cases of Theorem 4.

Corollary 10 Takingn =0, m = 1 and n(az, may) = ay — may in Theorem 4, we
get [[30], Theorem 5].

Corollary 11 If in Theorem 4, we get n = 0 and ¢(t) = t, then the inequalities
in (29) become the inequalities

1(az, mai) 1
f (ma1 + 5 ) < Yn(ar. may) (32)
X[I(ma1)+f(mal + n(az, may)) + I(mal—&-n(az,mal))*f(mal):l = w,

where I at fandl a5 f are the classical Riemann integrals.
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Corollary 12 [fin Theorem 4, we getn = 0 and ¢(t) = Ifa then the inequalities

)’
in (29) become the inequalities

(33)

n(az,ma1)> _ T+

7 <ma1 * 2 ~ 2n%(az, may)

Sf(may) + f(a2)
2

’

X[ Sy £ mar 402, maD) + o0y maryy £ )| =
where J(jﬁr f and J;", f are the fractional Riemann integrals.
1 2

Corollary 13 If in Theorem 4, we get n = 0 and ¢(t) = %, then the
inequalities in (29) become the inequalities

n(az,ma1)> - Ti(a + k) (34)

S <mal + 5

~ 2f (a2, may)
f(may) + f(a2)

X[ (mayy+J (mai +n(az, may)) + I(,m,l+,7(a2 ma))- f(mal)] < >

Corollary 14 Ifin Theorem 4, we getn = Q0 and ¢(t) = t(mai+n(az, may)—1)*~!
and f(x) is symmetric to x = maj + w, then the inequalities in (29) become
the inequalities

rl(az,mm)) o /ma1+n(az,ma.)
ma+ = x (1)dyt
f< 1 2 (may+n(az, map))*—(ma))*  Jua, F)da

(35)

- f(ma1)+f(a2)'
- 2

Corollary 15 Ifin Theorem 4, we get n = 0 and ¢(t) = 5 exp [ (—ﬂ> t], o€

o
(0, 1), then the inequalities in (29) become the inequalities

n(az,mal)) . 1-a G6)

! (’"“‘ T ) S ey

o o +
X[j(ma1)+f(ma]+n(a2’mal))+j(ma1+'7(a2,ma1))_f(mal)] = f(mal)z f(a2)’
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where ﬂa‘ﬁ fand f:, [ are the right-side and left-side fractional integral operators
1 2

l—o

with exponential kernel and D = (T) n(az, may).

For establishing some new results regarding general fractional integrals, we need to
prove the following lemma.

Lemma 2 Suppose thatn =0, 1,2, ..., andm € (0, 1] be a fixed number. Let f :
P = [mai, may 4+ n(az, ma;)] — R be a differentiable mapping on (ma, ma; +
n(az, may)) with n(az, ma;) > 0. If f' € L(P), then the following identity for
generalized fractional integrals holds:

fma) + f (may + 2ezmo )
2(n+1)

! n(az, may)
_QA;"n’n(l) X |:(ma1)+1<pf (I’l’l(ll + n 1 + (maﬁ_%)—l(pf(ma])

n(az, map)

=2+ 02A () ©7

1
x fo [A;"M(t) — AL (- t)]f’ (ma1 n nt?n(az, mal)> dt.

We denote

n(az, map)
Hr px s = 38
145, @01 42) 2(n + 12A% (1) %)

1
x fo [A;"M(t) — AL (- t)]f’ (ma1 n n’?n(az, mal)> dt.

Proof Integrating by parts (38) and changing the variable of integration, we have

n(az, map)
H * y =
P (1 2) = G D A (D

1 t
X{/O Ay O f (mcn + mn(az,mal)) dt

1 , t
—/0 Ay, (L=0)f (mm +mn(az,ma1)> dt}
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(@, mar) { (1 + DA, (0 f (mar + Fnaz, ma)
T2+ D245, (D) n(az, may) 0
n+1 1 §0<U(az,mal)ntj> t
_ - f <ma1 + —1n(a2,ma1)>
n(az, mai) Jo AT +

(n+ DAL, (1 —1)f (ma1 + on(ar, mal)) I

n(az, may)

0

o prelemantz)
f <mal + ——n(aa, mal)) dt}
n+1

n(az, mar) Jo =t

f(may) + f (mal + W‘j—ﬁ“”)
- 2+ 1)

1 n(az, may)

24z (D) [“”“””"’f <m‘” - ?) * (ma1+"<"31"1“1>)‘I“’f(’"“1)}'

This completes the proof of the lemma.

Remark 1 Takingn =0, m = 1 and n(az, ma;) = ap — map in Lemma 2, we get

fla) + flaz)
2 243 (1)

X |:al+l¢,f(a2) + o (pf(al):|'
(39)

Theorem 5 Suppose thatn =0, 1,2, ..., andm € (0, 1] be a fixed number. Let f :
= [may, ma; + n(az, ma;)] —> R be a differentiable mapping on (may, ma, +

n(az, may)) with n(az, may) > 0. If | f'|4 is preinvex on P for g > 1 and p~' +

g~ ' = 1, then the following inequality for generalized fractional integrals holds:

n(az, may)
|Hyay (a1, a)| < ———— 2 UK (p) (40)

20+ )T Az ()

Hy az (a1, @) =

x¥/2n + V)| f/(man)|4 + | f'(a2)|,

where

Kas (p) :=/ ‘A —ar (=0 . (41)
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Proof From Lemma 2, the preinvexity of | f/|4, Holder inequality and properties of
the modulus, we have

a», ma
|Hfaz (a1, a2)| < 20 e, mar)

+ D2A*(1)

m,n

! t
X/ |45, (1) = Ay, (1 —t)|‘f’ <ma1+—n(a2,ma1)> dt
0 ’ ’ n+1

1

< n(az, map) (/ | A% () — A% (1 — t)\pdt> !
2(n + D2A*(1) ’
1
1 q q
X (/ dt)
0

1
n(ay, may) 1 t , 1
572@;)2/‘,}(]) oK a: (P (/ ((1——)\f(ma1>yq l\f<az>!q)dr>

a2 M) i (o) x Y@+ DI manl + 1 @),

1
Y+ 1) A, ()

t
1 (mal + m’?(f% ma1)>

The proof of this theorem is complete.
We point out some special cases of Theorem 5.

Corollary 16 Takingn =0, m = 1 and n(az, may) = ay — may in Theorem 5, we
get

a3, )| = 5 A*“l()l),v/KATO<p>xJ|f/(a1>|q+|f/<az)|q @)
Ao

Corollary 17 Taking p = q = 2 in Theorem 5, we get

n(az, may)

|Hy, Kay,,
V2 4+ D(n + D243, (1) ’

(@) (43)

m,n

(a1, )| < 2

)y @+ DI manP + 1 £/ (@)lP.

Corollary 18 Takingn = 0, m = 1, n(az, may) = a» — maj and ¢(t) =t in
Theorem 5, we get [[7], Theorem 2.3].

Corollary 19 Takingn = 0, m = 1, n(az, may) = ap — may and p(t) =
Theorem 5, we get [[27], Theorem 8].

[
T@ n
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Corollary 20 Takingn =0, m = 1, n(az, may) = ap — may and ¢(t) = % in
Theorem 5, we get [[12], Theorem 8].

Corollary 21 Takingn =0, m = 1, n(az, may) = a, —maj and ¢(t) = t(ma; +
n(az, may) — )* ' and f(x) is symmetric to x = ma; + M, in Theorem 5,
we get

g/ n(az,may)
2

Ypa+1 x| (mar +n(az, ma)” — (map)* |

|Hy (a1, a2)| < (44)

(2may + n(az, may )P+
2pa

X \I/(mal)p‘)‘+1 + (may + n(az, map))P*+ —

« \/ |/ mand + | f (@)
. .

Theorem 6 Suppose thatn =0,1,2,...,andm € (0, 1] be a fixed number. Let f :
P = [may, may + n(az, ma;)] —> R be a differentiable mapping on (may, ma; +
n(az, may)) with n(az, may) > 0. If | f'|9 is preinvex on P for g > 1, then the
following inequality for generalized fractional integrals holds:

1-1
Hyas (a1, )] < — 12 Kz, (D] (45)

200+ 1)°T7 A%, (1)

m,n

x /Ly, | f/(man)l? + Fag, | '@,

where

1
Las :=/ (n—l—l—t)‘A:‘n’n(t)—A;‘m(l —t)‘dz, (46)
' 0

1
Fas :=f t‘Afnn(t)—A:‘nn(l—t)‘dt, 47)
2= , ,

and K 4x (1) is defined as in Theorem 5.

Proof From Lemma 2, the preinvexity of |f’|?, power mean inequality and
properties of the modulus, we have
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n(az, may)

n+1)2Az (1)

|Hfaz (a1, a2)| < o

m,n

1
t
xf IAZ,n(t)—Ai‘,,,n(l—t)|‘f/ <ma1 +—n(az,ma1)) di
0 n+1

n(az, may) L .
= 2(n + 1243 (1) </o ‘Am,n(t) = Ay (1= t)\dt)

(f |Am n(t) — Ajn,n(l - t)“f/ <ma1 + ;n(aL mal))

1
1-3

1
61)4

n+1

n(az, may) 7

= Y+ 10245, (D) I:KA;‘,“I(I)]

| :
x (/ A%, (=A%, (1=1)] ((1——) £ man |+ | )| ) )
0

_ n(az, may) [
200+ D0 A% (1)

m,n

K s (1)] x oL, | f manlt + Fag, | f'(@)le.

m.n

The proof of this theorem is complete.
We point out some special cases of Theorem 6.

Corollary 22 Takingn =0, m = 1 and n(a>, may) = ay — may in Theorem 6, we
get

ar) -3
|Hy.az (@, a2)| < ZA—(I)[ Ao O] Ly [F @)l + Fag | f @)l
(48)
Corollary 23 Taking g = 1 in Theorem 6, we get

n(az, may)
n+ D34 ()

|Hya; x| La, 1 £ man) + Fag | f @]

(49)

(a1, a)| < B

m,n
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Corollary 24 Under the assumption of Theorem 6 withn = 0 and ¢(t) = t, we get

"<a22’_"j“1) x Y1 manld + £ @), (50)
27*q

q

|Hf,A’{(a1,a2)| <

ta

Corollary 25 Under the assumption of Theorem 6 withn = 0 and ¢(t) = £ @
we get

2¢ — 1 r 1
|Hy (a1, a)| < ( St ) N FEZizin(az,mal) X 1 f'(man|a + | f'(a2)|4.

(S

Corollary 26 Under the assumption of Theorem 6 withn = 0 and ¢(t) = %,
1
we get

26 1 r k
1 )" ale+h) n(az, may) (52)

[zt a) = ( 2i T Ty (a4 ki 4+ 1)

x /1 f/(ma)|? + | f'(a)|4.

Corollary 27 Under the assumption of Theorem 6 withn = 0 and ¢(t) = t(may +
n(az, may) — )~ and f(x) is symmetric to x = maj + w, we get

S ) B e
|Hy g ar. an)| < MO T ) oK YT manid T 17 @i,

247 (D)
(53)
where
AFno(1) = (may + n(az, may))”
. a 9
I 2 , a+1
Kz (1) := —[(mal + n(az, map))*+'-2 (mal + M) +(ma1)°‘+l],
o

- 1
. (m) (m) (m) (m)
KA:; ~—;[F11 —Fy +Fy = Fy ]

and

1

(m)
Fi=
i n?(az, may)
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a+1
X{ (may + n(az, may)) |:(ma1 - n(as man)*t! — (mal n ﬂ(az,mal)) }
o+ 1 2

—1 s a+2
Ta +z[(’”“1 +n(az, man)**? — (mal + W) “

1 1 i a+2
F](’zn) = may + 77(512 mal) N (ma1)a+2
n*(az, may) | @ +2 2

a+1
_amj]l [ <ma1 4 n(az,zma1)> B (ma1)“+1:|},

Fz(lln)' 2(a2T may) {oz —li- 2 [ (ma-+(a, map)* '~ (mal—i_w)wz ]
_%[(maﬁrﬁ(“%’"‘”))a+1 (malJrn(az,Tma]))aH“’
Fz(?)- 2(a;ma1) { (’"“1+Z(ﬁv e [ <mal+w)a+l _(mal)aﬂ}
w42 |: (may + n(az, may))*+? — (mal)‘HZ} }

4 Applications to Special Means

Consider the following special means for different real numbers «, 8 and 8 # 0:
1. The arithmetic mean:

a+p

A=Al f)=—

2. The harmonic mean:

H:=Ha, B) =

Q=
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3. The logarithmic mean:

Li=L@py=—b—"%
In|A] —Inle
4. The generalized log-mean:
ﬂn+l—0{”+l n
L, =Lya,p)=|————|; neZ\{-1,0}
wi= Lu(@. B) [(n—i—l)(ﬁ—oz)} neZ\{-1,0)

It is well known that L, is monotonic nondecreasing over n € Z with L_; := L.
In particular, we have the following inequality H < L < A. Now, using the theory
results in Sect. 3, we give some applications to special means for different real
numbers.

Proposition 1 Let m € (0, 1] be a fixed number, a1, a; € R\ {0}, where a; < ap
and n(az, may) > 0. Then, for r > 2, where g > 1 and p_1 + q_l = 1, the
following inequality holds:

|4 (nan)” mar + n(az, man)Y') = Ly (mar, mar + (a2, mar)) |

T ntaz, mai) (r=1 (r=1 4
< 52 - X \/A (|ma1|‘1 =D |ap|et” ) 54)

Proof Applying Theorem 5 for f(x) = x" and ¢(¢) = ¢, one can obtain the result
immediately.

Proposition 2 Let m € (0, 1] be a fixed number, a1, a; € R\ {0}, where a; < ap
and 1(az, may) > 0. Then, for g > 1 and p~' 4+ g~' = 1, the following inequality
holds:

1 1 ‘< n(az, may)
H (may, may +n(az, may)) L (maj,ma; +n(az,may)) |~ 2¢p+1
(55)

1
)

1
Proof Applying Theorem 5 for f(x) = — and ¢(¢) = t, one can obtain the result
X

X

immediately.

Proposition 3 Let m € (0, 1] be a fixed number, a,ar € R\ {0}, where a; < a
and n(az, may) > 0. Then, forr > 2 and q > 1, the following inequality holds:
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‘A ((may)", (may + n(az, may))") — L, (mai, may + n(az, map)) ‘

<

< — itz ma) x /A (1mar[90=D, az D). (56)
274

Proof Applying Theorem 6 for f(x) = x" and ¢(¢) = ¢, one can obtain the result
immediately.

Proposition 4 Let m € (0, 1] be a fixed number, a1, a; € R\ {0}, where a; < aj
and n(az, ay) > 0. Then, for q > 1, the following inequality holds:

1 1
H (may, may + n(az, may)) L (may, maj + n(az, may))

n(az, may)
1
)2+t

E

(57)
1

o (o)

1
Proof Applying Theorem 6 for f(x) = — and ¢(¢) = t, one can obtain the result
x

X

immediately.

Remark 2 Applying our Theorems 5 and 6 for appropriate choices of function
« tr )

o) = Fo wh@ 9O = timar + n(az, ma) — 0!, where f(x) is

symmetric to x = maj + m and m € (0, 1] is a fixed number, ¢(t) =

éexp [ (—%) t] for « € (0, 1), such that | f'|7 to be preinvex, we can deduce

some new general fractional integral inequalities using above special means. The
details are left to the interested reader.

Remark 3 Also, in Remark 2, if we choose n(az, ma;) = a» — maj;, where
m € (0, 1] is a fixed number, we can deduce some new general fractional integral
inequalities for convex functions using above special means. The details are left to
the interested reader.

Next, we provide some new error estimates for the trapezoidal formula.
Let Q be the partition of the points a; = xp < x1 < ... < x; = ap of the
interval [a1, a2]. Let us consider the following quadrature formula:

az
/ Sx)dx =T(f, Q)+ E(f, Q),
ay

where

k—1
T, =) W(M )
i=0
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is the trapezoidal version, and E( f, Q) denotes their associated approximation error.

Proposition 5 Let f : [a1,a2] —> R be a differentiable function on (ai, az),
where a; < ay. If | f'|? is convex on [ay, a2] for ¢ > 1 and % + 517 = 1, then the
following inequality holds:

k—1
1
EC, )] £ ——— > ip1 — )% x Y177 GOl + 1/ Carnld. (58)

24 Yp+1i=0

Proof Applying Theorem 5 forn =0, m = 1, n(az, may) = a —maj and ¢(t) =
t on the subintervals [x;, x;4+1] (i =0, ..., k — 1) of the partition Q, we have

‘f(x» t ) / "

Xi+1 — Xi

< (X1 — x;) |:|f/(xi)|q + |f’(xi+1)|qi|;. (59)

28p+1 2

Hence, from (59), we get

|E(f, Q)| =

az
/ Sdx —=T(f, Q)’
a

<

k=1 Xi . .
{ [ reoax - Jet S —x,-)H
i=0 \ N

k—

3

i=0

—

{/IXHI Floydx — W(M‘H _xi)H

k—1

1
< i =) x Y@+ [ f i)l
24 Yp+1i=0

The proof of this proposition is complete.

Proposition 6 Let f : [a1,a2] —> R be a differentiable function on (ai, a2),
where ay < ap. If | f'|? is convex on [ay, ap] for ¢ > 1, then the following inequality
holds:

k—1

or L — a0 x @RIl (@)
i=0

q

|E(f. Q)| <
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Proof The proof is analogous as to that of Proposition 5 but uses Theorem 6 for
n(az, may) = ap —majy and ¢(¢t) = t, wheren =0 and m = 1.

Remark 4 Applying our Theorems 5 and 6, where n = O and m = 1, for appropriate

choices of function ¢(t) = #‘;) %; o) = t(ax — ', where f(x) is
1

symmetric to x = %, and ¢(t) = éexp [ (—%) t] for o« € (0, 1), such that

| f'14 to be convex, we can deduce some new general fractional integral inequalities
using above ideas and techniques. The details are left to the interested reader.
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New Trapezium Type Inequalities for )
Preinvex Functions Via Generalized e
Fractional Integral Operators and Their
Applications

Artion Kashuri and Themistocles M. Rassias

Abstract The authors have proved an identity for trapezium type inequalities of
differentiable preinvex functions with respect to another function via generalized
integral operator. The obtained results provide unifying inequalities of trapezium
type. Various special cases have been identified. Also, some applications of
presented results to special means and new error estimates for the trapezium formula
have been analyzed. The ideas and techniques of this paper may stimulate further
research in the field of integral inequalities.

1 Introduction

The following inequality, named Hermite—-Hadamard inequality, is one of the most
famous inequalities in the literature for convex functions.

Theorem 1 Let f : I € R — R be a convex function and p1, p» € I with
p1 < p2. Then, the following inequality holds:

f(p1+pz)§ 1 sz(x)dxff(p1)+f(pz). 0
2 P2 — D1 p1 2

This inequality (1) is also known as trapezium inequality.

The trapezium inequality has remained an area of great interest due to its wide
applications in the field of mathematical analysis. Authors of recent decades have
studied (1) in the premises of newly invented definitions due to motivation of convex
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function. Interested readers see the references [1-6, 8, 10, 11, 13, 14, 18-24, 26—
29, 31-33].

The aim of this paper is to establish trapezium type generalized integral inequal-
ities for preinvex functions with respect to another function, some applications to
special means, and new error bounds for the trapezium formula. Interestingly, the
special cases of presented results are fractional integral inequalities. Therefore, it is
important to summarize the study of fractional integrals. At start, let us recall some
mathematical preliminaries and definitions that will be helpful for further study.

Definition 1 ([30]) A set S € R” is said to be invex set with respect to the
mapping n: S x § — R", if x +1n(y,x) € Sforevery x,y € Sand ¢ € [0, 1].

The invex set is also termed as an n-connected set.

Definition 2 ([25]) Let S € R” be an invex set with respectton : § x § — R”.
A function f : § —> [0, +00) is said to be preinvex with respect to n, if for every
x,y € Sandt € [0, 1],

flx+my,x) < (=) f@)+1f ). (@)

The concept of preinvexity is more general than convexity since every convex
function is preinvex with respect to the mapping n(y, x) = y — x, but the converse
is not true.

Definition 3 ([22]) Let f € L[p1, p2]- Then k-fractional integrals of order o, k >
0 with p; > 0 are defined by

ok _ . Y
L 7™ = thw /pl(x nESWd =
and
1%k _ ! " Tl rd 3
i = e [ 0=t 0, g, )

where I (-) is the k-gamma function.

For k = 1, k-fractional integrals give Riemann-Liouville integrals. For « = k = 1,
k-fractional integrals give classical integrals.

Definition 4 ([15, 16]) Let g : [p1, po] — R be an increasing and positive
monotone function on [p1, pz], having a continuous derivative on (p1, p2). The
left-sided fractional integral of f with respect to g on [p1, p2] of order « > 0 is
defined by

798 _ /x g/(u)f(u)
pd ) (@) Jp [g(x) — g™

du, x > p1, “4)
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provided that the integral exists. The right-sided fractional integral of f with respect
to g on [p1, p2] of order & > O is defined by

p2 g/(u)f ()
= du, P2, 5
pz—f( x) = [« )/ (6 — gl u, x < po 5)

provided that the integral exists.

Jleli and Samet in [10] proved the Hadamard type inequality for Riemann-Liouville
fractional integral of a convex function f with respect to another function g.

Also in [26], Sarikaya and Ertugral defined a function ¢ : [0, 00) —> [0, 00)
satisfying the following conditions:

/ &dt (6)
0 t

— (p(s) < A for 1 i52, (7

o(r) 27 r
<p(2r) Btp( s) for @)
r
1

cvr(;’) B <p(S) <Cpr lfp( ") for rs = 552, ©)

where A, B, C > 0 are independent of r, s > 0. If ¢(r)r® is increasing for some
o > 0 and % is decreasing for some 8 > 0, then ¢ satisfies (6)—(9), see [27].
Therefore, the left-sided and right-sided generalized integral operators are defined
as follows:

p(x —
+1p f (x) =f f(t)dt X > pi, (10)
P X

p;&of(x):/x ‘”f f0di, x < p. (11

The most important feature of generalized integrals is that they produce Riemann—
Liouville fractional integrals, k-Riemann-Liouville fractional integrals, Katugam-
pola fractional integrals, conformable fractional integrals, Hadamard fractional
integrals, etc., see [9, 12, 26].

Recently, Farid in [7] generalized the above integral by introducing an increasing
and positive monotone function g on [p1, p>], having continuous derivative on
(p1, p2). The generalized fractional integral operator defined by Farid may be given
as follows.
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Definition 5 The left- and right-sided generalized fractional integral of a function
f with respect to another function g may be given, respectively, as follows:

0.8 _ [Tegx) —gw)
Gopf ()= /m ) g0 g W) f w)du, x > p1, (12)
Ghis = | " e8W 8D iy ) du, x < po. (13)
x gu) — g(x)

This operator generalizes the various fractional integrals of a function f with respect
to another function g.
The following special cases are focused in our study.

(i) If we take @ () = u, then the operators (12) and (13) reduce to Riemann—
Liouville integral of f with respect to function g.

15 f () = /,, ') f Wydu, x> pi, (14)
2]
I,i_f<x)=/ g f wydu, x < p. (15)

If g(u) = u, then (14) and (15) will reduce to Riemann integral of f.
(ii) If we take p(u) = %, then the operators (12) and (13) reduce to Riemann—
Liouville fractional integral of f with respect to function g.

1 X
80 =5 | lee) - g1 g f wdu, x> pr,  (16)

®.8 _ 1 /172 _ a—1 _/
1,2 f (x) = T@ J. [g(u) —g()]" ™ g () f (u)du, x < pa. (17)

If g(u) = u, then (16) and (17) will reduce to left- and right-sided Riemann—
Liouville fractional integrals of f, respectively.

>iii) If we take @(u) = #’@ then the operators (12) and (13) reduce to k-
Riemann-Liouville fractional integral of f with respect to function g.

kT () ,: [8(r) — g1~ ¢'G) f @) du, x > p1.
(18)

1 P2
L5 f (0 = m/x [g) — g()1* " g'u) f (W) du, x < pa.

19)

If g(u) = u, then these operators in (18) and (19) reduce to k-fractional integral
operators given in [22].

158 f ) =
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(iv) If we take @g(u) = u(g(p2) — u)~! for & € (0, 1), then the operator given
in (12) and (13) reduces to conformable fractional integral operator of f with
respect to a function g.

X

Kpff (x) = / [g@)1* " g () f ) du, x > pi. (20)

P

This operator (20) generalizes conformable fractional integral operator that
was given by Khalil et al. in [17].

(v) If we take p(u) = 7 exp(—Au), where A = ITTO‘ and @ € (0, 1), then the
operators given in (12) and (13) reduce to fractional integral operator of f
with respect to function g with exponential kernel.

X

P 1 /
IS f (x) = &/ exp (—A(g(x) —g)) &' w) f (w)du, x > p1,  (21)
pP1

1 [P
It f () =~ f exp (—A(g(x) — gw))) g () f (w)du, x < pa.

' (22)
Operators in (21) and (22) generalize fractional integral operator with expo-

nential kernel that was introduced by Kirane and Torebek in [18].

Motivated by the above literature, the main objective of this paper is to discover
in Section 2 an interesting identity in order to study some new bounds regarding
trapezium type inequalities of differentiable preinvex functions with respect to
another function via generalized integral operator. By using the established identity
as an auxiliary result, some new estimates for trapezium type integral inequalities
via generalized integrals are obtained. It is pointed out that some new fractional
integral inequalities have been deduced from main results. In Section 3, some
applications to special means and new error estimates for the trapezium formula
are given. The ideas and techniques of this paper may stimulate further research in
the field of integral inequalities.

2 Main Results

Throughout this study, let P = [mp1, mp; + n(p2, mp1)] be an invex subset with
respectton : P x P —> R, where p; < pp andm € (0, 1]. Also for all ¢ € [0, 1],
for brevity, we define

t J—
AL (1) :/O ¢ (g (mpy + un(p2, mp1)) — g(mpy)) (23)

g (mp1 +un(p2, mp1)) — g(mp1)

xg' (mp1 +un(pa, mp1))du < oo
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and

(24)

ALE (1) = [1 ¢ (g (mp1 + n(p2, mp1)) — g (mp1 + un(p2, mp1)))
"N g mpy +n(pa, mp1)) — g (mpy + un(pa, mp1))

xg' (mpy + un(pz, mp1)) du < oo,

where g is an increasing and positive monotone function on P, having continuous
derivative on P° = (mp1, mp1 + n(p2, mp1)).

For establishing some new results regarding general fractional integrals, we need to
prove the following lemma.

Lemmal Let f : P —> R be a differentiable mapping on P°.If f' € L(P), then
the following identity for generalized fractional integrals hold:

fimp1) + f (mp1 + n(p2, mp1))

2
®,8 .8
~ 1 I:G(mpl)Jrf(mPl‘f‘??(Pvapl)) G(mp1+r)(p2,mp1))f(mpl)]
2n(p2, mp1) A (0) ApE (1)
_ M2 mpy) f L ALE @) £ (mp + 10(pay mp1)) (25)
24551~ Jo
_1pa. mpy) / L ALE @) £ (mpr + tn(pa mp1)) .
24550) "~ Jo
We denote
n(p2, mp1) U e
Tf,A,";,'g,A,(’;,'g(pl’ p2) = oz, X Ap® () f7 (mpy + tn(p2, mpy)) dt
24551 " Jo
(26)
n(pa2, mpy) /1 08
—_—— X AR (t mp1 +t ,m dt.
22750 | An () f* (mp1 + tn(p2, mp1))

Proof Integrating by parts Eq.(26) and changing the variable of integration, we
have

n(p2, mp1)

Ty p0s ave(p1, p2) = 2A%E ()

X{Aﬁfﬁ(of(mpl +mpamp) 11
n(p2, mp1) 0 n(p2, mp1)
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y /1 @ (g (mp1 + tn(p2, mp1)) — g(mp1))
o g(mp1+tn(p2, mp1)) — g(mp)

xg' (mp1 + tn(pa2, mp1)) f (mp1 + tn(p2, mm))dt}

_npa.mpy) {Aﬂ‘g(l)f(mpl +tn(P2,mp1))‘1
2455 (0) n(p2, mp1) 0

_ 1 y /1 ¢ (g mp1 +n(p2, mp1)) — g (mp1 + tn(p2, mp1)))
n(p2,mp1) Jo g (mpy1+n(p2, mp1)) — g (mpy +tn(p2, mp1))

xg' (mp1 + tn(pa2, mp1)) f (mp1 + tn(p2, mm))dt}

_ n(p2, mp1)
24%5(1)
AR Q) f (mp1 + n(p2, mp1)) 1
o | Am f (mp1 +n(p2, mp - « G¥8 _Fmpy)
n(p2, mp1) n%*(p2, mp1) mpr+n(p2.mp1))
_ n(p2, mp1)
2A5,%(0)
X{_A%g(())f(mpl) 1 x G¥% | f (mp1 + n(p2, mp1))
n(pa, mp1) n2(pa, mpy) (mp1)* ’
_ f(mp1) + f (mp1 +n(p2, mp1))
B 2
1 [G‘(",;il)J (mp1 +n(p2. mp1)) G‘;’"’i,lﬂ(m,mm))f(mpl)]
2n(p2, mp1) A55(0) ARED) '

This completes the proof of the lemma.

Remark 1 Taking m = 1, ¢(t) = g() = t and n(p2,mp1) = pr — mp; in
Lemma 1, we get

_ S+ flp) 1 /

»
Tr(p1, p2) = 2 oy — p1 f(t)de.

p1
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Theorem 2 Let f : P —> R be a differentiable mapping on P° and n(p2, mp1) >
0. If | f'|4 is preinvex on P for ¢ > 1 and p~' 4+ q~' = 1, then the following
inequalities for generalized fractional integrals hold:

, / q 4 |f q
| T} aze a0 (p1, p2)| < "(Pzzmpl)\q/|f (mpy)| . [f(p2)l @n
ORI GG
X[ AN AR ) }
where
! 1
Bl ) ::/ (a5 0] ar, By = / [a%®)] ar. 28)
m 0 o, A

Proof From Lemma 1, preinvexity of | f|4, Holder inequality and properties of the
modulus, we have

n(p2, mpy)

1
B /0 ALE )| £ (mpy + t(pa. mp1)) |d

’Tf,Aﬂ‘g,Aﬁig(pl’ [72)’ <

n(p2, mp1)
2A%%(0)

1 1
n(p2, mp1) Y e a2 N (Y a
< AR X(/o [ A% 0] dr) </O | mpy + t0(p2. mp1) |th)

1 1
n(p2, mpy) "o PN (N .\
T < (/O [Am (f)] df) (/0 | £/ mpy + tn(p2, mp)) | dt)

 1p2.mpy) ,
24551

1
X/o ARE@|f (mpy + tn(p2, mpy)) |dt

1
1 7
BY(p) ( /0 [ =nlrmpo|* + t|f/(p2)|q]dt>

1

q

n(p2, mp1) ,

1
®.8 / q / q
2A7%(0) BAm (p) x (/(; [(1 — t)|f (mp1)} +l‘|f (p2)| ]dt)

_ n(pa,mp1) \/ [ mpld + | f (po)l4 [\/ By () Bﬁf@)]
= X + .
2 2 A1) An(0)

The proof of this theorem is complete.



New Trapezium Type Inequalities for Preinvex Functions 259

We point out some special cases of Theorem 2.

Corollary 1 Taking p = q = 2 in Theorem 2, we get

n(p2, mpy) \/ L mpD) 2 + £/ (p2) 2

|Tf,A,¢;1»g,A;¢{8(P1, p)| < > 5 (29)
[/Bﬁf @ JBSE (2)}
X .
ARED A55(0)
Corollary 2 Taking | f'| < K in Theorem 2, we get
T (p1. p)| < ZAP2mP1) B + {2 (30)
& A0 , < X .
f A5 AP P2 2 AREQ) AR
Corollary 3 Taking ¢(t) =t in Theorem 2, we get
Sn(p2, mpr) o1 f"(mp)|9 +1f'(p2)|9
1Ty at s (p1. p2)| < Y pz P \q/ f'(mp E f'(p 31
[ {’/Blg(p) + \”/Bf(p) }
X b
g(mp1 + n(p2, mp1)) — g(mp1)
where
mpi+n(p2,mpi) »
Bf (p) :=/ [g(t) — g(mp1)]"dt, (32)
mpi
and
mp1+n(p2,mp1) »
B (p) :=/ [g(mp1 + n(p2, mp1)) — g()]"dt. (33)
mp1
Corollary 4 Taking ¢(t) = % in Theorem 2, we get
Sn(p2,mpr) o1 f'(mp)|9 +1f'(p2)|9
1Tyt (p1, p| = 22! \"/f POl (34)

[ B .y + B (. @)
X
[ ]a}’

g(mpy + n(p2, mp1)) — g(mp1)
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where
¢ mp1+n(p2,mp1) o
B3 (p, o) :=/ [g(t) — g(mp1)]™dt, (35)
mpy
and
p mpi+n(p2.mp1) P
Bi(p.a) :=/ [g(mp1 + n(p2, mp1)) — g(1)]"dt. (36)
mpi

o

Corollary 5 Taking ¢(t) = #F(a) in Theorem 2, we get

|Tf,A§n,A§1 (p1, p2)| < (37)

Jn(p2, mpy) C/If/(mpl)lq + 1/ (p2)|?
2 2

[ UBE(p.a k) + (/B (p.a k) }
X o |
[g(mp1 + n(p2, mp1)) — g(mpp)|*

where

mp1+n(p2.mp1)

BS(p,a. k) :=f [g() — g(mpl)]p’{idt, (38)

mpi

and

B6g(p, o, k) = /

mpj

mp1+n(p2,mpy) po
[g(mp1 + n(p2, mp1)) — g()] * dt. (39)

Corollary 6 Taking @,(t) = t(g(mpy +n(p2, mp1)) — 1%~V in Theorem 2, we get

(p2, mpy)

T/ ae at (1. p2)| < (40)

Z[ga(mpl + n(p2, mpy)) — g“(mpl)]
! q + / q
>(\q/|f<mpl)| . ()4 [{’/B;g(p)—k\’/Bg(p,a)]
where
mp1+n(p2,mp1) »
BS(p) :=/ [g(t) — gmpD)]"dt, (41)

mpi
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and

B{(p.a) :=f

mpy1+n(p2,mp1) [
mpi

P
8 (mp1 +n(p2mp1) = g*(0)] dr. 42)
Corollary 7 Taking ¢(t) = é exp(—At), where A = ITT“, in Theorem 2, we get
n(p2, mp1)

2{1 — exp [A (g(mp1) — g(mp1 + n(p2, mp1))) ]}

|Ts a2 a5, (P15 P2)| <

(43)
|f (mpD|9 + | f'(p2)|? » )
x\q/ LT [\/B;’(m + \/Bf()(p)},
where
mp1+n(p2.mp1) P
B = [ {1—exp [4 (g(mpn—g(r))]} dr, @)
mpy
and
mpy1+n(p2,mp1) p
Bf,(p) == / {1 — exp [A (8(@) — g(mp1 + n(p2, mp1))) ” dr.
mpi
(45)

Theorem 3 Let f : P —> R be a differentiable mapping on P° and n(pa, mp1) >
0.If | f'|4 is preinvex on P for q > 1, then the following inequalities for generalized
fractional integrals hold:

(P2 MpO[ g 1174
1T, acs a1 )] = W[BM (] (46)

X JCHE L mp)la + DYELF(po)le

n(p2, mp1) 0.8 1_5 ql 98\ £r q 0.8 1 q
aaiiy B O] VS et + FLI o
where
1 1
s = /O (1—nA%*(0dt,  DYE = fo LARE (D1, (“47)
1 1
E%® ::/ (1 —naptnde,  F5E ;:/ t AL (1)dt (48)
0 0

and Bﬁ’mg(l), Bﬁf(l) are defined as in Theorem 2.
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Proof From Lemma 1, preinvexity of | /|, power mean inequality, and properties
of the modulus, we have

n(p2, mp1) b
|Tf,A;‘;{8,A,V;{8(P1, P2)| = Tg(l) X / Ar‘/;zg(f)|f/ (mp1 +tn(p2, mp1)) |df
m

1
% X/ A8 @)| " (mp1 + tn(pa, mpy)) |dt

n(p2, mp1) b o, ,
<Wg(1;x(/o A%”’(r)dr) (/0 AREo|f (mP1+tn(p2,mp1))|th>

1 =g / r1 i

gl ( [ antoar) ([ attols mprsnnmpo far)
n(p2, mp1) 0.8 1_% /1 0.8 . / q / q %

< B3] x( - a; [ A=| £ ampo)|*+| £/ (p2)|* Jar

1

n(p2, mp1) 0.8 17% ! 0.8 ’ q / q
Sty [BsE W] X(/o At o =0l £ empn|* + 1] £ (p2)|*Jae

n(p2, mpT o, -1 : :
T A% (B3] 7y ompla + DEE1 /(o)1
m

NP2, P T g 1177 of ooos 0.8
ey B0 B oo+ FEL ol
The proof of this theorem is complete.

We point out some special cases of Theorem 3.
Corollary 8 Tuking g = 1 in Theorem 3, we get
n(p2, MP1T o, :
Ty g, e (P12 p2)| < 2/1<p+;,>(1)[Cﬁflf/(mpnl + Dﬁ,flf/(l?z)l] 49)
m
H(Pz,mpl)[ 0.8 ¢/ 0.8\ o1
———| £ m + Fy ]
AATE ) LEarlS )|+ FLIIS (po)
Corollary 9 Taking | f'| < K in Theorem 3, we get

Kn(po,mp) _ [BLEQD)  BLEQD)
‘Tf,Aw’g,Aﬂvg (171’ P2)| = ) |:A;/;l,g(1) Af,l’g(()) : (50)

m
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Corollary 10 Taking ¢(t) = t in Theorem 3, we get
1
(51

T, 42 A2 (p1,p2)| <
7). | 2Yn(p2, mp1)[g(mp1 + n(p2, mp1)) — g(mp)]

1-1
x{[Bi”(l)] " \"/[Bf(l)n(pz, mp1) = Cf |If @np1)|e + C§ 1 £/ (p) 19

1-1
+[B5] \q/[BZg(l)n(pz, mp1) — E§ |11 mpo)le + Eflf’(pz)lq},

where
mp1+n(p2,mp1)
(t —mp1)(g(1) — g(mpy))dt, (52)

C§ = /
mpi
(53)

mp1+n(p2,mp1)
(t —mp1)(g(mp1 + n(p2, mp1)) — g(1))dt,

8.
E ._f
mpi

and Bf(l), Bg(l) are defined as in Corollary 3 for value p = 1.

Corollary 11 Taking ¢(t) = % in Theorem 3, we get
1

T 4e a2 (p1, p2)| <
5.5, | 24/ (p2, mpD)[g(mp1 + n(p2. mp1)) — gmp)]”

1-1
x{[B;’(l, o] {’/[Bi;’(l, @ (p2.mp1) = CE @] £/ (mpn)l# + CE @)L £ (p2)1#

(54)

1
-2

\‘I/[Bf(l, a)n(p2, mPl)—E‘f(Oé)]lf’(mPl)lq + Ef(a)lf’(lﬂz)lq},

+[Bi0 0]

where
mp1+n(p2,mp1)

Cf(@) = / (t — mp1)(g(t) — g(mp1))¥dt, (55)
mpi
mp1+n(p2,mp1)
Ef(a):= / (t —mp1)(g(mpy + n(p2, mp1)) — g(1))*dt,  (56)
mpi

and Bé"(l, o), Bf(l, «) are defined as in Corollary 4 for value p = 1.



264 A. Kashuri and T. M. Rassias

o

Corollary 12 Taking ¢(t) = % in Theorem 3, we get

1

24/n(p2, mpv|g(mp1 + 1(p2, mp1)) — gmpn)]*
(57)

|Tf‘/\g A,§1(P17P2)| =<

ms

X { [Bsg(l, o, k)]l_é

x{’/[Bsg(l, . K)n(p2, mp1) = Cf (@ k) |Lf (mpy)le + Cf @ )L (p2) 19

+[BéL e, k)]lf%

x;f/ | BEQL akyn(pa.mpy) = Ef @ 0|1 £ (mpy)le + Ef (@, k)|f’<pz)|q},
where

mpi+n(p2.mp1) .
Ci(a, k) = / (t —mp1)(g(t) — g(mp1))*dt, (58)

mpi
< mp1+1n(p2,mp1) W
E7(a, k) :=/ (t —mp1)(g(mpy +n(p2, mp1)) —g@))kdt,  (59)
mpi

and BSg(l, o, k), Bg(l, o, k) are defined as in Corollary 5 for value p = 1.

Corollary 13 Taking ¢, (t) = t(g(mp1 + n(p2, mp1)) — 1%~V in Theorem 3, we
get

Van?(p2, mp1)

g%(mp1 + n(pa, mpy)) — g"‘(mpl)]

T¢ a2 a2 (1, P2)| < 2[ (60)

-1
x { [B5 ] " @l mpole + D @)1 (p)le

-1
+HB{ @] YR @l ompole + FRE (a)lf/(pz)lq},

where
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1
(61)

B3 (1)
C’E (a) == ! -
An (@) an®(p2, mp1)  an(pa, mpy)
X|:g“(mP1+fl(P2,mP1)) ES (o) ]
2 n2(p2, mp1) |’
* 1 g¥(mp1 + n(p2, mp1)) ES(a) ]
D’ () := , 62
an (@) 0”7(172»”1171)[ 2 n%(p2, mp1) (62)
BS(1, @) 1
E*8 (a) := 8 — 63
2 (@) an®(p2, mp1)  an(pz, mp1) 63)
X|:g“(m171+77(172,mp1))_ Ef (o) }
2 n2(p2, mpy) |’
FE (@) 1 [g“(mpﬂrn(pz,mpl))_ Ef (@) ] 64
A0 o (pa, mpy) 2 n*(p2, mp1) |’
(65)

mp1+n(p2,mp1)
(t —mpy)

Ef () := /
mpi

x[20np1) + gmp1 + n(p2, mp1)) — g(0)] ar,

mp1+n(p2,mp1)
(t —mp1)g* (t)dt, (66)

Eg’(a) = f
mpi
where B7’g(1) and Bég(l, «) are defined as in Corollary 6 for value p = 1

Corollary 14 Taking ¢(t) = éexp(—At), where A = 177“, in Theorem 3, we get

gq+1
(I—a)n @ (p2, mp1)

Ty g5 az (P1, p2)| <
2{1 = exp [ 4 (g(mpr) = gmp1 +n(p2mp) |
(67

DAm

1-1 o8
N (Bg(l) (I —a)n(ps mpl)) | f"mpV)Ie + D | f(p2)14

x{[Bg(l)]

1
q q 8 _ Am
<Blo(l) (1 = a)n(p2, mpr)

¢
) | f(mp1)|9 + F2i|f/(pz)|q},

+[B‘f0(1)]1_
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where

1
D% == (68)
Am n2(p2, mp1)

mp1+n(p2.mp1)

<[ (¢ = mpy)|1 — exp [Agmpy) — g0))] |,
mpi

1

g . __
n?(p2, mpy)’

A (69)

mpi+n(p2,mp1)
x / (t— mpl)[l —exp [A(g(1) — g(mp1 + n(pa, mpl)))]]dt,
mpi

and Bg(l), Blgo(l) are defined as in Corollary 7 for value p = 1.

Remark 2 Applying our Theorems 2 and 3 for appropriate choices of func(}ion
git) =t; g(t) =1Int, V¥t > 0; g(t) = €, etc., where ¢(t) = t, %, #F(a);
@e(t) = 1(g(p2) — D)~ fora € (0, 1); ¢(t) = L exp [ (—177“) t] fora € (0, 1),
we can deduce some new general fractional integral inequalities. The details are left
to the interested reader.

3 Applications

Consider the following special means for different real numbers p1, p> and p1p2 #
0, as follows:

1. the arithmetic mean:

p1+p2

A= Alpr.p2) = —

2. the harmonic mean:
2
H:=H(p1, p2) = —>
T m
3. the logarithmic mean:

P2 — Pl

In|pz| —In|p1]
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4. the generalized log mean:

r+1 r+1
Py — D

—,; Z\ {—1,0}.
(r+1)(p2—p1)} rezil }

Ly :=L;(p1, p2) = |:

It is well known that L, is monotonic nondecreasing over r € Z with L_j := L.
In particular, we have the following inequality H < L < A. Now, using the theory
results in Section 2, we give some applications to special means for different real
numbers.

Proposition 1 Let py, po € R\ {0}, where p1 < py and n(p2, mp1) > 0. Then for
reNandr > 2, where g > 1 and p~' 4+ g~ = 1, the following inequality holds:

A((mp1)", (mp1 4+ n(p2, mp1))") — Ly (mp1, mpy + n(p2, mm))‘

< rn(p2, mp1)

Yp+T

Proof Taking f(¢t) = t" and g(t) = ¢(t) = ¢, in Theorem 2, one can obtain the
result immediately.

x {JA (imp1 191, pala=D), (70)

Proposition 2 Let py, po» € R\ {0}, where p1 < py and n(p2, mp1) > 0. Then for
g > land p~' 4+ g~ = 1, the following inequality holds:

! _ ! _ 12, mp1)
H(mpy, mpy + n(pa, mp1))  L(mpy,mpy +n(pa,mp))| ~ Up+1
(71)
1
X

oH (Imp1 29, 1 pa2a)

1
Proof Taking f(t) = " and g(¢) = ¢(t) = t, in Theorem 2, one can obtain the

result immediately.

Proposition 3 Let py, po € R\ {0}, where p1 < pa and n(p2, mp1) > 0. Then for
r € Nandr > 2, where g > 1, the following inequality holds:

|AGnp1)”, mpy + 1(p2 mp))Y') = Ly Gnpr mpy + 1(pa2. mp1)|

1-2¢ ¢-3

<r2 4 n 9 (p2,mpy) (72)

3
x{ L2 of g (jmpy 0=, 21 o) 4+ Y Hm, 7.4 pr, pz)},
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where

n*(p2, mp1)

5 —P(m,pl,pz))wpnq(’” (73)

H(mvrquplvPZ) ::<

+P(m, p1, p)Ip2?Y,

and

(mp1 + n(p2, mp))n*(p2, mp1)
P(m, pi. pa) 1= A PR PR T (74)

(mp1 + n(p2, mp1))> — (mp1)? (mp1 + n(p2, mp1))? — (mp1)?
- 3 + (mp1) > :

Proof Taking f(t) = t" and g(t) = ¢(¢t) = ¢, in Theorem 3, one can obtain the
result immediately.

Proposition 4 Let py, po € R\ {0}, where p1 < pa and n(p2, mp1) > 0. Then for
q > 1, the following inequality holds:

1 1
‘ H(mpy,mp1 +n(p2,mp1))  L(mpy, mp1 + n(p2, mp1))

1-2g

1-2%  ¢-3
<2 7 nd (p2,mp1) (75)

3
x{ al M (Pzémpl) 1 N qﬁ(m,q,pl,pz)},
o @mp112, 1pa)

where

3
T2m)  p(m, py, pa)  P(m, p1. pa)

lmp1|%4 |pa|?4

G(m,q, p1, p2) == , (76)

and P(m, p1, p2) is defined as in Proposition 3.

1
Proof Taking f(t) = " and g(¢) = ¢(t) = t, in Theorem 3, one can obtain the
result immediately.
Remark 3 Applying our Theorems 2 and 3 for appropriate choices of function

1 t% .
I'(a)’ kli(a)’

0o (1) = 1(g(p2) —)* fora € (0, 1); (1) = gexp[(—le“> t] fora € (0,1),

g(t) =1t; g(t) =Int, YVt > 0;, g(t) = €', etc., where ¢(t) = t,
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such that | f'|9 to be convex, we can deduce some new general fractional integral
inequalities using special means. The details are left to the interested reader.

Next, we provide some new error estimates for the trapezium formula. Let Q be the
partition of the points p; = xg < x] < ... < xx = pj of the interval [p1, p>]. Let
us consider the following quadrature formula:

P2
fdx =T(f, Q)+ E(f, Q),
P
where

k—1
r(f, 0=y PO ()
i=0

is the trapezium version and E (f, Q) denotes their associated approximation error.

Proposition 5 Let f : [p1, p2] —> R be a differentiable function on (pi, p2),
where p1 < pa. If | f'|2 is convex on [p1, p2l for g > 1 and p~' +q~' = 1, then
the following inequality holds:

k—1
|E(f. Q)] < x> @ipr = x) Y1 QDI+ CaDld. (TT)

1
NYp+1 &

Proof Applying Theorem 2 form = 1, n(p2, mp1) = p>—mpj and g(t) = ¢(t) =

t on the subintervals [x;, x;j+1] (i =0, ..., k — 1) of the partition Q, we have
fa)+ fiv) 1 /X"“ Fo)dx
2 Xit1 — X Jy,
(Xit1 = Xi) = ;
< w—m/'f CDl7 + L Gl (78)

Hence from (78), we get

2

P2
|E(f, Q)| = / f(x)dx —T(f, Q)'
P1

SIS f@) + f i)

< {/ f(x)dx—%(xiﬂ—xi)”
i=0 Xi

k-1 Xi . .

< { / " fax - Lo G x»H

Il
=}

k—1

1
= Va2 TSI 1S i)l
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The proof of this proposition is complete.

Proposition 6 Let f : [p1, p2] —> R be a differentiable function on (pi, p2),
where p1 < pa. If | f'|9 is convex on [p1, p2] for g > 1, then the following
inequality holds:

k—1

EGL O] =27 x Y i —x) T (79)

i=0

. _ +v\3 I~ I(~.
X{\q/(xm ) (If(x;)lq+2|f(xl+1)lq)+\q/m}7

where
S(g. xi, xit1) 1= (M — P(xi, xim) f @)l (80)
+P (xis xip ) f i)
and
P xie1) = Xi+1(xzu;1 —x;)? _ xi3+13_ X} n xi(xi2+12_ xiz)' @1

Proof The proof is analogous as to that of Proposition 5 but uses Theorem 3.

Remark 4 Applying our Theorems 2 and 3 for appropriate choices of function

gty =1; g(t) =Int, YVt > 0;, g(t) = €', etc., where ¢(t) = t, %, #F(a);

0o(0) = 1(g(p2) = fora € (0. 1); ¢() = Lexp [ (~152) 1] fora e 0, 1),
such that | f|7 to be convex, we can deduce some new bounds for the trapezium

formula using above ideas and techniques. The details are left to the interested
reader.
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New Trapezoid Type Inequalities )
for Generalized Exponentially Strongly ik
Convex Functions

Kuang Jichang

Abstract By using a new general identity and introducing some very general new
notions of generalized exponentially strongly convex functions, new trapezoid type
inequalities are established. We apply these inequalities to provide approximations
for the integral of a real valued function. Approximations for some new weighted
means of two positive numbers are also obtained.

Mathematics Subject Classification: 26D15, 26A51

1 Introduction

In 2018, Awan et al. introduced the new notion of exponentially convex function:

Definition 1 ([1]) A function f : [a, b] — R is called exponentially convex if

fe) (1 _t)f(m)

erxi erx2 ’

flxi+ (1 —=1tx) <t

(1

for Vxi,xp € [a,b],Vt € [0,1] and r € R.

In particular, if » = 0, then (1) reduces to convex function in the classical sense.
Let f : [a, b] — R be a convex function, then the inequality

b
f(a+b)§—b1 ff(x)dxs—f(“”f(b) @)
—aJ, 2

2

is known in the literature as the Hermite—Hadamard inequality (see, for instance,
[2, 3]). In fact, the inequality (2) holds if and only if f is a convex function. The
Hermite—-Hadamard inequality provides approximations for integral mean of a real
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valued function f. The concept of convex function was extended in many directions
and frameworks due to its numerous applications in optimization, variational
methods, geometry, and artificial intelligence. Hence, the inequality (2) has also
been extended and generalized for different classes of generalized convex functions
(see [14] and the references therein).

In 2019, Mehreen and Anwar [8] extended the above Definition 1 by introducing
the new notions of exponentially p-convex function and exponentially s-convex
function in the second sense, respectively. In fact, they can be generalized uniformly
as follows:

Definition 2 Let [a,b] C (0,00). A function f : [a,b] — R is called
exponentially (¢, s)-convex if

+(1—t)sf( *2) 3)

X2

Faxs + 0 —xHley < ¢ f( 1)

for Vxi, x> € [a,b],Vt €[0,1],s € (0, 1], #0and r € R.

In particular, if s = 1, then (3) reduces to exponentially «-convex function in [8];
if @ = 1, then (3) reduces to exponentially s-convex function in [8]; if r = 0, ¢ = 1,
then (3) reduces to s- convex function in [4].

Definition 3 Let [a,b] C R — {0}. A function f : [a,b] — R is called
exponentially harmonically s-convex, if

X1X2 s S(x1) s f(X2)
<t 4
f(tx2+(1_t)x1)_ e + (-1 4
for Vxi,xp € [a,b],Vt € [0,1],5 € (0, 1] and r € R.
If s = 1, r = 0, then (4) reduces to harmonically convex function in [5].
1 1
Fla,By.2) = ——— f T A=Y A =z Par (5)
By —a, @) Jo

is the hypergeometric function, where |z| < 1,y > « > 0, and

1
B(a,m:/ @1 =P ldr, a, >0
0

is the Beta function.
An interesting question in (2) was estimating the difference between the left and
middle terms and between the right and middle terms. Such as

Theorem 1 ([10]) Let f € BV]a, b, then

J@+f®)

! /b d <1Vb 6
> /. fw) ul_ia(f)- (6)
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The constant % is the best possible.

Theorem 2 ([6]) Let | f ,| is convex on |a, b], then

b 1 b b — ’ /
|ﬂ®;ﬂ)_b ‘/fWMMS__&umn+vwm. )
—da a 8

Theorem 3 ([16]) Let f € L[a, b] and |f/|‘1 is convex on [a, b], then

J@+1®)

1 b b—a ’ q ’ a\1/q
> —a[a fdu| < m(lf(a)l +1f @7 (@)

Theorem 4 ([26]) Let | f /| is h-convex on [a, b), that is,

/ / I -2 /
If (ta+ (1 —=0b)| < h(O|f (@) + Th(l —Dlf B,

then
b 1 b b — ! ) )
If(a);f( ) / Suw)du| < —a(/ h(@)do)(|f (@) + | f B)]).
—aJg 2 0
)
Theorem 5 ([23]) Let f/ € LP[a,b],1 < p < o0, % + % =1, then
fl@+fb) (b —a)l/t ,
| > f Sw)du| < m”.f llp- (10)
Theorem 6 ([7]) Let |f//|q is s-convex on [a, b, if ¢ = 1, then
f(a) + f(b) / ( - 61)2 ” ” .
| Sw)du| < G126 _|_3)(|f @) +1f ®)D;
(11)
ifl <q < o0, then
f@+fw) 1 P
5 — b—a/ f(uw)du

(b —a)?

2X4lUm@+buﬂs+$uguwmw+wfam%”% (12)

Theorem 7 ([8] Theorem 3. 6,3.7,3.3,3.5) Let|f ' |9 is exponentially s-convex
onla,bl. If1 < p < oo,%—l—é: 1, then



276 K. Jichang

fla)+ f(b) 1 b
‘ > _b—a/a fu)du

(b - a) 1WKvwn vw%ﬂw

_ q
52(1/113)+1{(s+1)(s+2)}1/q(s+2 ) )+(
(13)
and
f(a)+ f(b) 1P
OO [
(b—a) If @I, M@qu
—2@+4ym“+nuﬁ(e )+ ( )7} (14)
If p =1, then
fla)+ f(b) 1 b
‘ > _b—a/a fw)du
(b —a) uwﬂ If@I
—ZEBGIﬁm'”) +(s+4 }o(15)
and
fla)+ f(b) 1 b
' 5 _b—a/; fdu
(b —a) 1L 1f @] 1f ®)
=0+n6+n T e T 10

Remark 1 ((LL@1)7 4 ('f ®1)? in (13) and (14) should be replaced by L@

@ (b)l , see Theorems 29 and 30 below.

The above (6)—(16) are called trapezoid type inequalities, and they have been
developed for other types of functions and have wide applications in numerical
analysis and in the theory of some special estimating error bounds for some means
and quadrature rules, etc. (see [7-9, 12, 15, 23, 25, 30, 31] and the references
therein).

The paper is categorized as follows:

In Sect.2, we introduce some very general new notions of generalized expo-
nentially strongly convex functions (or exponentially (o, B8, A, A1, A2, S0, ¢, k1, h)-
strongly convex functions ). They unified and generalized many known and new
classes of convex functions. In Sect.3, by using a new general identity and the
above convex functions, new trapezoid type inequalities are established. These
trapezoid type inequalities provide the estimations of integral mean of a real valued
function f and improve and generalize the corresponding results in [8]. In Sect. 5,
approximations for some new weighted means of two positive numbers are also
obtained.
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2 Generalized Exponentially Strongly Convex Functions

Throughout this paper, let & : [a,b] — (0,00) hy; : (0,1) — (0, c0) be given
functions.

Definition 4 Let D be a a-convex set, [a, b] C D. A function f : [a,b] — R is
called exponentially (¢, h1)-convex if

S (x) byl — t)f(xz)

erxi erx2 ’

xS+ (1= 0DxHY*) < hy () (17)

for Vxi,xp € [a,b],Vt € [0,1],5s € (0, 1] and r € R.
In particular, if D = (0, 00), k1 (z) = t*, then Definition 4 reduces to Definition 2.

Remark 2 ([11]) Aninterval D is said to be a «-convex set, if (tx‘l"—i—(l—t)x‘z")l/“ €
D forall x;,x; € D,t € [0,1], wherea =2k +lora = ;-,n=2r+1,m =
2k +1,k,r e N.If D = (0, 00), then o € R — {0}.

Definition 5 Let D be a «-convex set, [a, b] C D. A function f : [a, b] — (0, 00)
is called («a, B, A, A1, A2, S0, t, h1)- convex if

FOXE+ a1 (1 =0xDY) < () (fP (1) +rahi 1 —10) P}, (18)

Vxi,x2 € [a, b], VA, A1, A2, 50, € [0, 1],and B > 0.
If \{ = X = Ag,s0 = 1, then (18) reduces to («a, B, A, Ao, t, h1)- convex
function in [18], that is,

FOXE 4201 = W)™y < {(h1(0) £ (x1) + hoh1 (1 — 1) fP)}VE, (19)

Vx1, x3 € [a, b], VA, Ag,t € [0, 1],and 8 > O.

In the above inequalities (18) and (19), the most innovative part consists of the
fact that possibly different parameters «, 8, A, A1, A2, Ag, ¢, S0, and k1, are allowed,
for example:

If B = Ag = 1, then (19) reduces to («, h1)-convex function in [18];

Ifoa =8 =1,Ar=t,then (19) reduces to (1, Ag)-convex function in [27];
Ifa=p8=1,A=t, X1y =1, then (19) reduces to h-convex function in [27];
Ifa=8=1,A=t,h1(t) =t, then (19) reduces to Ag-convex function in [27];
Ifa=p8=1,x =1,k (t) = t, then (19) reduces to (X, t)-convex function
in [2];

In (18), after replacing A withz, lete = = 1, A1 = Ap = A, we get
flxr +A(1 = )x2) < h(£°) f(x1) + Ah1(1 = 1°) f (x2), (20)

then (20) reduces to (sg, A, i1)-convex function in [29].

If hy(t) = t, then (20) reduces to (sg, A)-convex function in [28].



278 K. Jichang

If k1 (t) = 1, then (20) reduces to (A, P)-convex function in [28].
Ifhi(t) =15, s € (0, 1], then (20) reduces to (sg, A, s)-convex function in [28].
Ifh (t) =¢t*,s € (0, 1], sop = 1, then (20) reduces to (A, s)-convex function in [28].
Ifhi(t) =t(1 —1t),s0 = 1, then (20) reduces to (A, rgs)-convex function in [28].
Ifh (t) = ﬁ, so = 1, then (20) reduces to (A, M T)-convex function in [28].

In (18), after replacing A with ¢, letox = B = 1,50 = 1, A1 = 1, A = 1%,
X € (0, 1), then (18) reduces to i1-convex function of the second sense in [26].

In (18), after replacing A with 7, let Ay = Ay = A, 50 = 1, A (1) =1°,0 < |s] < 1,
then (18) is said to be a («, 8, A, s)-convex function:

FUEx® 4+ 20 —DxHY*y < (25 fFP(x1) + 20 — 1) fP(x2)} VP, (1)

If s =8 =1,A =1, then (21) reduces to a-convex function in [11].
Ifa =8 =5 =1,A =1, then (21) reduces to convex function in the classical
sense.

Ifa =—1,8 =1,A =1, then (21) reduces to harmonically s-convex function
in [5].

Ifa =—-1,5s =B =1, 1 = 1, then (21) reduces to harmonically convex function
in [5].

Ifa=8=1,0<s <1,A=1,then (21) reduces to s-convex function in [4].

Ifs =0, =8 =1,A =1, then (21) reduces to P- function in [2].

Ifs =—1,0a =8 = 1,2 = 1, then (21) reduces to Godunova-Levin function
in [2].

If -1 <s <0,0da=p8=1,A =1, then (21) reduces to Godunova-Levin
s-convex function in [21].

Ifa =5 =1,A =1, then (21) reduces to S-convex function in [2].

Ifs =1, = —1,A = 1, then (21) reduces to harmonically S-convex function
in [13].

Ifa=1,8=—-1,0 < |s| < 1,then(21)issaid tobea (AH, s)-convex function,
where A H means the arithmetic-harmonic means.

Ifa =—-1,6=1,0 < |s|] < 1, then (21) is said to be a (HA, s)-convex
function.

If « = B = —2, then (21) is said to be a (AS, s)- convex function, where AS
means the arithmetic-square harmonic means.

Ifr=t,20=0,0a=8=1,h1(t) =tin (19), then

fxy) <tf(x1),

we say that f is a star-shaped function (see [17]).

Definition 6 ([19]) A function f : [a,b] — R is called strongly convex with
modulus ¢ if

fxi+ (1 =0x2) < tf @)+ 1= 1) f(x2) — ct(1 = 1)(x1 — x2)°, (22)

Vxi,x2 € [a, b],Vt € 0,1],¢c > 0.
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Strongly convex functions have been introduced by Polyak [19] and play an
important role in optimization theory and mathematical economics. Many properties
and applications of them can be found in the literature (see, for instance, [20, 22]
and the references therein).

In 2016, Adamek [24] generalized (21) to the following:

Definition 7 ([24]) A function f : [a, b] — R is called h-strongly convex if

faxi+ A =0x2) <tf(x) + A —1) f(x2) —1(1 = )h(x1 — x2), (23)

Vxi,x2 € [a,b],Vt € [0,1],and & : [a, b] — [0, 00).

In particular, if A(x1 — x2) = c(x1 — x2)%, ¢ > 0, then (23) reduces to (22).

In this section, we want to extend the above definitions to the follow-
ing generalized exponentially strongly convex functions or exponentially
(o, B, A, A1, A2, S0, t, h1, h)- strongly convex functions:

Definition 8 Let (X, | - ||) denote the real normed linear spaces, D be a convex
subset of X, and A, h; : (0,00) — (0, 00) be given functions, in which h, i
is not identical to 0. A function f : D — (0,00) is called exponentially
(a, B, A, A1, A2, 50, t, by, h)-strongly convex if

JlxdlD

FOI I+ 20 =Wl < @) )

JUlx21D

orlnal

+aohy (1 — 1%0)( YYE — (1 — Dh(x) — x2)),

Vx1,xy € D, YA, A1, A2, 50,t € [0, 1], € R, «, B are real numbers and «, 8 # 0.
In particular, if X = R¥, we get:

Definition 9 Let D be a a-convex set of R¥ [a, b] C D. A function f :la,b] >

(0, 00) is called exponentially («, 8, A, A1, A2, S0, t, h1, h)-strongly convex if

f( ]))/3

FOXE+ 21— 2)xHY*) < {hy () (= + Ak (1 — *())(’c()”))ﬂ}”'S

—t(1 = Dh(lx; —X2|), (24)

Vx1, x3 € [a, b], VA, A1, A2, 50, € [0, 1], r € R, o and B are the real numbers, and

a, B #0.
After replacing A with ¢, let .y = Xy = A, hy(t) = t°, 50 = 1 in (24), that is,
fQxf + 20 =)V < (r° (f( ‘))fS +1(1 - rf(%)ﬂ}”ﬂ

—t(1 = 0)h(x1 — x2)), (25)
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Vx1,x3 € [a, b], VA,s,t € [0, 1], 7 € R, @ and 8 are the real numbers, and «, 8 #
0, then (25) is said to exponentially (o, 8, X, s, h)-strongly convex function.

If « = —1, then (25) is said to be an exponentially harmonically (8, A, s, h)-
strongly convex function.

Ifa = —1, A = 1, then (25) is said to be an exponentially harmonically (8, s, h)-
strongly convex function;

Ifa = —1,8 = X = 1, then (25) is said to be an exponentially harmonically
(s, h)-strongly convex function. With condition s = 1, (25) is said to be an
exponentially harmonically A-strongly convex function.

If r = 0, then (25) is said to be a («, B, A, s, h)- strongly convex function.

Ifr =0, =1, then (25) is said to be a (B, A, s, h)-strongly convex function.

If r =0, h = 0, then (25) reduces to (21).

Ifr =0,0 = B = A =s =1, then (25) reduces to (23).

Ifa = 1, 2 = 1, then (25) is said to be an exponentially (8, s, h)-strongly convex
function.

Ifa = 1,8 = A = 1, then (25) is said to be an exponentially (s, #)-strongly
convex function.

Ifoa=1,8=Xx=s =1, then (25) is said to be an exponentially A-strongly
convex function.

Hence, Definitions 8 and 9 are very general notions of convex functions. They
unified and generalized many known and new classes of convex functions.

3 Main Results

Lemma 1 Let D be a a-convex set, [a, b] C D. Iff// € Lla, b], then

@ —aty : ”
M/ [(1 — t)([aa + )\’(1 _ t)ba)4/af ((taa + )\’(1 _ Z)ba)l/a)d[
o 0

AVep
_ a2°’+2f(a) + (Al/ab)2a+2f(kl/ab) + ; / SWww)du,
Ol()»ba - aOt) a
(26)
where

- )\-((X + 2)(C¥ + 3)a°‘b“u°‘+] . (27)

Proof Setting u = (ta® + A(1 — r)b*)!/®, and by integration by parts, we get

1
f t(1 = 0)(ta® + 21— )b £ ((ta® + 11 = 0)b*)/*)d1
0
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o

)Ll/ab "
= G =y / u® — Ab*)(@® — u®u®*3 £ (w)du

—a AVep 2w
— o o o
= m /‘; {(20{ + 3)(61 + AD )l/l

—3(a + Dt — A(a + 3)a*b*u® 2} f (w)du
2
o

= m{(kl/(xb)za—’—z‘f‘(}.l/“b) +a2a+2f(a)

1 Al /ab
“rm/ﬂ f(u)w(u)du}

Multiplying both sides of (28) by (M’ma;z“u)z, we get required equality (26).
In particular, if « = —1, then by Lemma 1, we get:

Corollary 1 Let[a,b] C R —{0}, ' € Lla, b), then

271b 1 b
RS S L

_ (b—2a)?
- 2a2b2 0

If » = 1, then by Corollary 1, we get:
Corollary 2 Let [a,b] C R —{0}, ' € Lla, b, then

b 1 b
f(a);rf()_b_a/ Fwydu
_(b—a)?
T 2a2h?

Lemma 2 ([25]) Let f : [a,b] — R.If f € Lla, b], then

f(a)+ f(b) |
> _b—a/a f(u)du

_ (b—a)?

1
/ t(1—0)f (ta+ (1 —t)b)dt.
0

281

(28)

1
/ t(1=Dta " +2(1 — )b~ 1774 ((ta "+1(1 — )b~ Y Hdt.

(29)

1
f t(1—Dta'+(1 = b4 F (ta '+ — )b~ Har.
0

(30)

€29
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Lemma 3 ([32]) Let f : [a, b] — R. Iff/ € Lla, b], o # 0, then

fla+fb)  « f(u)
2 by — g« ul— o(
b*—a” 1-2 ,
= 2 ; )/0 (taa+(1—t)bta)1—<1/a)f((’““Jr(l — b)) d1. (32)

Taking « = 1 in (32), we get the following identity in [6]:

fla) + f(b) 1P
> _b—a/a fu)du

(b—a)

1
— / (1—20)f (ta+ (1 — 1)b)dt.
2 0

Theorem 8 Let [a,b] C (0, 00), f” € Lla,b], and | f”|1’ is exponentially
(o, B, A, s, h)-strongly convex on [a,b], 1 < p < o0, % + % = 1, and for p =1,

define g = oo, % =0, then

I/ab
a2 f(@) + (M) (A1) + m/ fmd

()»ba _aoz)2
< - 7
- 6l/a¢2

52 s 4
7 2+_,__’4+ 1__ o
x1c ﬁ(s-|-2,3)( +3ﬂ)[ ( B o /3 ( ")

f (b)l”

4 1 a
1o 4 o _ 2 (Zyanl/g
A 7EbY{F (2, a’4’1 A(b) )}

lf (a)l

4
+VPFQ = 4+ %, - —( 2y

a2t 61— LG eynm — ayrr
3 FG == 6.1 =~ ()Dhb — a7, (33)

where w(u) is defined by (27) and

c 1, B >1,
P= 12001 0<p < 1.

Proof By Lemma 1 and using the Holder inequality, we have

l/ozh
122 £ (@) + WV9b)2 22 r AV ob) + m / f@)w(u)dul
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o_ 02 .
< (M’a—f)/ t(1 — ) (ta+a(1 — DB £ (ta®+0(1 — b)) |dr
0

o 02
S()\b a)X

1 1
— 1% )", (34)

where

1
I :/ t(1 = 0)ta® + r(1 — HB*)**dt,
0

1
L = / t(1— 1) (ta® + A1 — DB £ (ta® + A(1 — H)b*)/*)|Pdt.
0
By (5), we get

1
I = (x‘/“b)“/ tA=0[1=(1-— l(c—l)o‘)t]4/“dt
0 Ab

(W Mepyt 1 I a,
= FQ o 1= (). (35)

By using the exponentially (¢, 8, A, s, h)-strongly convexity of | f ! |? on [a, b] and
Cp-inequality (see [2]), we obtain

1
L < (A”“b)“/o tA—n[l—(1 - %(%“)t]“/‘*

I ( O MIROIL (b)| i _

x ([ (———)F +1(1 - t(1 — Oh(b — a)}dt

1 a
1/ \4 _ (1 _ Ny 4 e
<@’"b) /O t(I—n[1—-(1 )L(b) )t]

% {Cy [té/ﬂ'f @ by~ e OV i — aypar
e
- (A”“bﬁ{cﬂ[@”%'p o L O8 he—a), o)

where
1 1 a
b= [P ot - - G,
A b
1 1+(s 1 a 4
L= [ ra=0 P - a - s Eontear
A »'b

I —/1t2(1—t)2[1—(1—l(z)a)t]4/adt
> Ab '



284 K. Jichang

By (5), we get

I —’3—2F(2+i A as oL (37)
SO T T2 R M R A A
B po tuis i la

b= e Pt T TR .

I—1F3 461100, 39
5= FG—=.6.1- (5. (39)

A combination of (34)—(39) gives the required result.
Taking « = —1 in (33), we get the following:

Theorem 9 Let [a,b] C (0, 00), f” € Lla,b], and |f”|” is exponentially
harmonically (B, A, s, h)-strongly convex on [a,b], 1| < p < oo, > + 7= 1,

and for p = 1, define g = oo, é =0, then

f@+ f'b 1 +b bYP (b — ra)?
| 2 T A b—a / Fdul = STt g2/
B2 s s b |f (@]
P Fe+ I, 44421 LT
O IO M A A v
AR a4t S - L OF,

B ra’ et

—iF(3,4, 6,1— i)h(b—a)}l/l’. (40)
30 Aa

Taking g = 1 in (40), we get the following:
Theorem 10 Let [a,b] C (0,00), f € Lla,bl, and |f |7 is exponentially

harmonically (B, s, h)-strongly convex on [a,b], 1 < p < oo, s tg = 1, and
for p =1, define g = 0o, L =0, then
f@+fo 1 f° b2 (b — a)?
| 2 b—al, Fendul = 3= g2
2 4
b p
x(Cp—L_(re4+ a4y 2oL @8
(s +28)(s +3p) B B a’ e
b |If B)P
PRI N VA (]
ﬂ a erb

1 b
——F@3,4,6,1 — —)h(b —a)}'/7. 41
30 a
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Taking 8 = 1 in (41), we get the following:

Theorem 11 Let [a,b] C (0, 00), fﬁ € Lla,b), and |fN|” is exponentially
harmonically (s, h)-strongly convex on [a,b], 1 < p < oo, % + é = 1, and for

p = 1, define g = oo, % =0, then

1 1 b
Iz[f(a)+f(b)]—b—/ fw)du|
—a,

b¥P (b — a)? { 1
X
~ 2 x 6l/4q2/p (s +2)(s +3)

b 1f @)|P
X[F2+s,4,445,1— _)M
a era

b 1f ®P. 1 b
+F<2,4,4+s,1——)—'f ®)] I—=—F(3,4,6, 1—=)h(b — a)}"/P. (42)
a erb 30 a

Taking s = 1, h = 0 in (42), we get

1 1 b
U@+ FO)] - / Fludul
—a

516G, b)('f @ G, )('f O p

where G (a, b) is defined by

a{2b’ + 3ab? — 6a*b + a> — 6ab? log(% )}
(b — a)22-p)

G(a,b) =
Similarly, by different decompositions of the integrand and the Holder inequality,
under the same conditions, we can get different interesting results:
Example I By using the Holder inequality,
1 "
/ tA=0a "+ 20 =b Y f (ta "+ 20 = b~ H Ndt
0
1
< {/ 111 =) (ta" + 21 — )b~ Man /e
0

1
x{ / If ((ta™" + 11 — )b~ Pary!/P, 43)
0

and the exponentially harmonically (B, A, s, h)-strongly convexity of |f "I on
[a, b], we get:
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Theorem 12 Under the assumptions of Theorem 9, by Corollary 1, we have

1 i 1 2" 1b
|§[f(a)+f()» b)]—m/a fu)dul

bE(b — ra)?
T 2)%a?
B I (aw’ 1/ﬁ|f”e<rzz>|" Lo — ane.

x{Cpg (ﬁT)[ 1= 2h

b
(B(g+1,g+1)F(q+1,4q,2g +2,1— E)}l/q
(44)

Theorem 13 Under the assumptions of Theorem 11, we have

1 1 b
SU@ + f o] - = f F()dul
—
<b2(b—a)2
- 2a?
" p " p
L@ 1 )

1+s era erb

b
{(Blg+1,g+1DF(q+1,4qg,2g+2,1— ;)}1/4

x{ 1— éh(b—a)}”p. (45)

Example 2 By using the Holder inequality,
l n
/ tA=0a "+ 20 =)b Y74 (ta™ "+ 20 = b~ H ™ Ydr
0

1 1
5{/ tth}]/qx{/ A=0)P@a + 11 =n)p~ =4
0 0
x| f (ta™" + 11 — )b~y Hy|Pdry!/?, (46)

and the exponentially harmonically (B, A, s, h)-strongly convexity of |f ”|” on
[a, b], we get:

Theorem 14 Under the assumptions of Theorem 9, by Corollary 1, we have

1 B )
FRAUREA l””‘m/ﬂ fdul
_ - Ka)z( L v
T 2xMa? g+1
{CHIB( + =, p+ DF(1+ =, 4p, p+ = +2 1__)|f”<a>|f’
! /37 /3’ ' /3 ’ rd era

S LGRS RE o

]
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—LF(l 4p, p +3, 1——)h(b—a)}1/1’ 47)
p+2

Theorem 15 Under the assumptions of Theorem 11, we have

1 1 b
Iz[f(a)+f(b)]—b—/ f)du|
—a ),

b2(b—a)® 1

= (Zaza) ( +1)1/‘1{B(s+1,p+1)F(s+1,4p,p+s+2,1
- ))('f (“)' )
If ‘(b)|P
+ﬁF(1 JA4p,p+s+2,1— a —
—Lm 4 _2 1/p
p,p+3,1 )h(b a)}’P. (48)
p+2

Example 3 By using the Holder inequality,
1 '
/ tA=0a "+ 20 =b Y f (ta™ "+ 20 = b~ H Ndt
0

1 1
< {/ (1 —nd}'/1 x {/ tP(ta” + A(1 — )b~ ™4
0 0
xIf (a™ 420 = 0b~ ") HPdn)'/?, (49)
and the exponentially harmonically (B, A, s, h)-strongly convexity of | f”|1’ on
[a, b], we get:

Theorem 16 Under the assumptions of Theorem 9, by Corollary 1, we have

sy
—A—lb—a/a Sfw)du|

b*(b — Aa)z{ 1 /s

2x A% g+1

1
SUf@+ FO7)] —

p s s b If @l
——F 1+—,4 —+2,1—-—)——
{C“[s+ﬂ(p+1) P+ +,8’ p’p+ﬁ+ R VA

s s b "b)|P
+3PB(p+1, = + DF(p+1,4p, p+ = +2,1— —)M]
B B ra e’

b
S S 2,4 4,1— —)h(b —a)}'/?.
(p+2)(p+3)F(19+ s4p,p+4, M) (b —a)} (50)
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Theorem 17 Under the assumptions of Theorem 11, we have

1 1 b
U@+ Fo)] - / Fu)dul
— |

2 _ 2
_Pe-a? 1

1/q
TER R
: b If @]
x{——F 1. 4p, 1Y@
{S+p+1 (p+s+1,4p,p+s+ a) a
b //b p
+B(p+],s—|—1)F(p—|—]’4p7p+s+2’1_;)|fe(rb)|

b
- 2,4 4,1 — b —a)}V?. (51
(p+2)(p+3)F(P+ J4p, p +4, a) (b —a)} (51)

Example 4 By using the Holder inequality,
1 "
/ t(1=0ta "+ 20 =™ Y™ (ta™" + 20 = )b~ H ™ Hdr
0
1
< ([ o101 = pyrante
0
1 14
x{/ (ta” "1 — )b~ Y £ ((ta "+ r(1—)b~ )" Pdr} P, (52)
0
and the exponentially harmonically (B, A, s, h)-strongly convexity of | f”|r” on

[a, b], we get:

Theorem 18 Under the assumptions of Theorem 9, by Corollary 1, we have

1 ) 1 )
3@+ 16700 = = [ ol

b
= %{B(ﬁl,ﬁ 1))/
X{Cﬁﬁ[ﬂ% +1,4p, % Y21 %)%
+2 VR, 4p, % 21— %) lf"e(rl;w’]

1 b e
F(2,4p,4,1 Ya(b —a)} /P, (53)
6 ra
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Theorem 19 Under the assumptions of Theorem 11, we have

1 1 b
Iz[f(a)Jrf(b)]—b—/ Sfw)du|
—a ),

b2(b — a)?
< (—2){B(q+ 1,q + D)la
2a
1 b |f @)
X{s+1[F(S+1,4p,S+2,1—;)er—a
b | (b)|P
R Ap s +2,1- L OF (rb)' ]
a e
1 b T
—EF(2,4P,4,1——)h(b—a)} P (54)
a

Example 5 By using the Holder inequality,
] "
/ tA=0)ta "+ 21 =™ Y™ (ta "+ 20 = )b~ H ™Y dr
0
1
< {/ 11 =0 ta" "+ 21 — )b~ a4
0
1 "
x{/ (ta™ +1(1 = b~ NP f ((ta™ +2(1 = )b~ H™H|Pdr)!/P, (55)
0
and the exponentially harmonically (B, A, s, h)-strongly convexity of |f 1P on

[a, b], we get:

Theorem 20 Under the assumptions of Theorem 9, by Corollary 1, we have

1 1 1 27 b
|§[f(a)+f()» b)]—m/a S (u)dul

b2 (b — ra)> »
—W{B(%Ll g+ DF(q+1,29,2g+2,1— a)}
B s |f (a)|p
Cg——I[F 1,2p, = 4+2,1— —
x{ B ,3[ (ﬂ+ D ﬁ+ )wz —
b)|P
Hl/ﬂF(l’zp’ﬂJrz 1__)If [Ql |

1
——F(Q2,2p,4,1— —)h(b—a)}”ﬂ. (56)
6 Aa
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Theorem 21 Under the assumptions of Theorem 11, we have

b
517 @+ f )] - ﬁ / F)dul

b2(b — a)? b
= ( 2a) (Blg+1,q+1)F(qg+1,2q,2q +2,1— =)}/
2a P
"(a)|p b INL
><{—[F(s+1 2p, s+2, 1——)|f | FF(,2p,s 42, 1__)|f (b)) |
e
_1 _ 7 _ 1/p
6F(2, 2p.4.1 )h(b a'’r, 57)
a

Example 6 By using the Holder inequality,
1 "
/ tA=0ta " +20 =b Y f (ta "+ 20 = b~ H Ydt
0
1
< {f 11 =0 ta" "+ 21 — )b~ H a4
0
1 "
Xt [ ea = 0p™) P G = 0p7h D Pan'e, 59
0
and the exponentially harmonically (B, A, s, h)-strongly convexity of |f N|p on

[a, b], we get:

Theorem 22 Under the assumptions of Theorem 9, by Corollary 1, we have

Py
mha), rwa

b2 (b — ra)> »
= W{B(q+1 g+ 1DF(q+1,3q,2q +2, 1__)}

1
U@+ FO7 )] —

If (a)l”

,3 s

I/ (b)lp

+YBFQ, p, E +2,1— —) ]
—lF(Z,p,4, 1— —)h(b —a)l/r. (59)
6 Aa

Theorem 23 Under the assumptions of Theorem 11, we have

1 1 b
U@+ f o] - / Fudul
—~
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b*(b — a)? b,

= 242 {B(CI+1v¢1+1)F(6]+1,3q,2q+2,1__)} q
b b If (b)IP
X{— F(s+1,p,s +2,1— lf ( )l <L LFQ, p,s+2, 1_ |f (b)|
e’

! b

FFQ.p.41 = Dt~ ). )

a

Example 7 By using the Holder inequality,
1 "
f tA=0ta "+ 21 = b™ 7 (ta " + 21 = )b~ H Y dr
0
1
< {/ [ta™' + A1 — )b~ 117 %dryl/e
0
1 "
x{/ P =P f (ta™" + 21 = b~ )" Pde}/P, (61)
0

and the exponentially harmonically (B, A, s, h)-strongly convexity of |f //|p on
[a, b], we get:

Theorem 24 Under the assumptions of Theorem 9, if ¢ # 1/4, then by Corollary 1,
we have

1 1 1 2 b
|§[f(€l)+f(/\ b)] - m/ﬂ S (u)du|

(b _ )La)lJr(]/p) (A‘flb)4q71 _ a4q71
<
= "2(ab)+1/p) 4 — 1

If ( >|P 1/ﬂ|f"(b)|”]
erb

}1/q

x {CgB(p +1, p+1+ﬂ

- B(p+2,p+2)h(b—a)}‘/1’. (62)

Theorem 25 Under the assumptions of Theorem 11, if g # 1/4, then by Corol-
lary 1, we have

b
I%[f(a) + )] - ﬁ f F)dul

4g—1

4q—1
< l(l - l)”(%){bq;a}l/q
“2a b 4q — 1
" a p 4 b p
<(B(p+ 1, pts+ 0y (L0810
e e

—B(p+2,p+2hb—a)/r. (63)
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In particular, if p = s = 1, then by (63), we have

1 1 b
U@+ Fo)] - / Fudul
—/

1
—)?{

b 6 era erb

1[|f (a)] L+ lf® 1

11
< .G~ 1= hb—a) (64

Example 8 By Lemma 2 and using the exponentially (8, s, h)-strongly convexity
of |f |? on [a, b], we have:

Theorem 26 Let f "€ Lla, b), and | f //| is exponentially (B, s, h)-strongly convex
on [a, b), then

1 1 b
U@+ O] - = / F)dul
—

b-a?  BCy @l 1oL 1
=72 Simermee T )= 3ghe - ).

In particular, if B = 1, that is, | f | is exponentially (s, h)-strongly convex on [a, b],
then

1 1 b
SU@+ F o)) - / F)dul

(b —a)? 1 If @l 1f®»l, 1
=7 {(s+2)(s+3)[ i T ab ]—%h(b—a)}. (63)

If s = 1, in (65), that is, |fN| is exponentially h- strongly convex on [a, b], then

1 1 b
Ié[f(a)+f(b)]—b—/ f(uw)dul
—a ),

2
Lo,

L@l Iff o), 1
12 5[ ora

1= ghb—a). (66)

Proof By Lemma 2 and using the exponentially (8, s, h)-strongly convexity of | f "
on [a, b], we have

1 1 b
U@+ f o] - f Fu)dul

_ 2 1 "
5 (b 2a) / t(1=0|f (ta+ (1 —1)b)|dt
0
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2
_@;)/MmMM”@WHl)”(Wwwmlwmmm
(b—a)>

" 1 "
< wmfrWWWhmmEﬁﬂﬂfzww”W%mﬁgm]
2 0 era 0 e’

1
-4/t%1—n%nmb—@}
0

Ce-a? P @l el
=72 Grmetap e T )T g0k

The proof is completed.

Theorem 27 Let [a,b] C (0, 00), f” € Lla,b), and |f”|p is exponentially
(B, s, h)-strongly convex on [a,b], 1 < p < oo, % + ql = 1, and for p = 1,

define g = o0, é =0, then

|—wvo+fw)————/’fwwm
(b — a)? mew B TRk
SW{ ﬂ[B(p+l ’E+1) +s+ﬂ(p+1) e'b ]

1
————h(b—a)}/P.
P+2(p+3)
In particular, if B = 1, that is, | f|P is exponentially (s, h)-strongly convex on

la, b], then

1 1 b
|?f@)+f@ﬂ—jr——f f)du|
—a ),

b—a) Iwa 1
_2w+D””B@+1 St +s+p+1
FEQL 1 W
SR T TP ©7

If s = 1in (67), that is, |f”|1’ is exponentially h-strongly convex on [a, b], then

|[f@)+f@ﬂ—~——f/ fw)dul
(b—a)? L ff@r 1 er
"ﬂp+2Xq+lﬂM{p+1 o b p+3( P (65)
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If p = 1in (68), then

1 1 b
5@+ F )]~ = f F)dul
—

f— 2 !
-0, @l 1 (b)|—h(b @) (©9)
24 era

Proof By Lemma 2 and using the exponentially (8, s, h)-strongly convexity of
|f|? on [a, b], we have

B [f(a)+f(b)]—— / F)dul

(b—a)2
< 5 / t(l—t)|f (ta+(1—t)b)|dt

— 2 "
¢ za) </0 rqdnl/q{/o (A =0P|f"(ta + (1 — O)b)|Pdt}/?

0o [ b (O g BIRCILNRY
sm{/o (1 =nr[@ (T) +(1—1) (T) )
—t(1 _l)h(b—a)]dt}l/P
PR
T 20q+ DV

1
+( / (a- z)!’“‘/ﬂ)dr)'f;#] —( / 1(1 =P dnhb — a)}?
0 0

{C,s[(/ #1B(1 - r)!’d)'f (“)'

(b —a)? s |f (a)|? B TR0k
SW{Cﬁ[B(p+1’E+1) era +s+ﬂ(p+1) et ]
————————h(b—a)}"/".
g+ b

The proof is completed.

Theorem 28 Under the assumptions of Theorem 27, we have

B [f(a)+f(b)]—— / Fu)dul

—ap? "
< 2a) (Bl +1,q+ D)V £ CAC I ROl

s+ ﬂ era erb )

—éh(b—a)}l/”.
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In particular;, if B = 1, that is, | |P is exponentially (s, h)-strongly convex on
la, b], then

1
U@+ FO - / Fu)dul

_ - a)2

" p ” p
= (B(g +1,q + D}V4g (|f (@] +|f Q]

s+1 era erb )

1
—gh(b—a)}]/p- (70)
If s = 1in (70), that is, | f N|p is exponentially h-strongly convex on [a, b], then

1 1 b
S @+ F o= / FG)dul
~

" p " p
< D (Blg+1. g+ oy O T OR Lo —apr. an

If p = 1in (70), then

| f(a)+f(b)]—— / fuwdul
b-a? 1 |If'@ I1f®l, 1
= —5 gl - ghe -l (72)

Proof By Lemma 2 and using the exponentially (8, s, h)-strongly convexity of
|f"|7 on [a, b], we have

15 [f(a)+f(b)]——/ fu)du]

— 2 ! "
< 20) </ tq(l—t)th)l/q{/ I (ta+ (1 = 0)b)|Pdi}'/?

- (b—a)?

p " ()P
{B(g+1,q+D) ”q{f [ ('f (@ )' )+ - )(%)ﬁ)“ﬁ

—t(1 = O)h(b — a)ld}/P

_ b= a)2

< {Bg+1, q+1)}1/4{cﬂ[(f s/ﬁd,)|f (a)|

+(/0 (1— t)s/ﬂdt)lfe#] - (/0 t(1 = t)dt)h(b — a)}/?
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(b—a) 1/q, BCh If @ If O
= 5 B+ Lg+ VIR )

—éh(b—a)}l/f’.

The proof is completed.

Example 9 By Lemma 3 and using the exponentially (o, 8, s, h)-strongly convexity
of | f |? on [a, b], we can prove analogously

Theorem 29 Let [a,b] C (0,00), f € Lla,b), and |f | is exponentially
(B, s, h)-strongly convex on [a,b], 1 < p < oo, % + % = 1, and for p = 1,
1

define g = 00, - = 0.
(i) Ifa # 0,1, then
o f(u)

—a® J, ul—o

1
L@+ F®) - du|

l—apa _ o
_ b b —a®l, BCp

(P Pa+ 2, - )p,2+ 1—()“)

T 2lal(g + DYV B+ B B’
'f(a)| +F, (1——)p,2+— -9 'f(i)'
erd B

—éF(z, (= p a1 = SO —an'r.
o b

(ii) Ifa =1, then

b
U@+ [ fuwau

b— C P b)|P
(b—a) (« BCs )(If(a)l +|f( )

— 1/p
T 2(g+D)Va T (s+B) ) h(b a’r. (73)

In particular, if B = 1, that is, |f/|” is exponentially (s, h)-strongly convex on
[a, b], then

1 1 b
IE[f(a)+f(b)]—b—f fu)du|
—a ),

b-a) 1 If@P [f@&F 1,
S2(61+1)1/q s+1° e + erb ) 6h(b apr.

(74)
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If p = 1in (74), then

1 1 b
5@+ F o)) - / FGu)dul
—

b-a), 1 |f @ 1f®)l, 1
=73 {s+1[ erd er’ 1=

h(b —a)}. (75)
Remark 3 When h = 0, (74) reduces to Theorem 3.7 in [8].
Theorem 30 Under the assumptions of Theorem 29, we have:

(i) If p =1, then

|= f(a)+f(b)]——/ Sfw)du|
b—a BCs B
=5 ST por T am
MEACLN 'ff,lf”]—ih(b—a)}. (76)
erd e 16

In particular, if B = 1, that is, | f /| is exponentially (s, h)-strongly convex on
[a, b], then

1 1 b
U@+ FO - / F(u)dul
—
<b—a 1 1
= STt

LT O L), (77)
e e 16

(ii) If 1 < p < oo, then

1 1 b
Iz[f(a) + fD)] - —a / f(u)dul
—a ),

S L B
(s +B)(s +28) 25/P

x[|f @)” + I/ (iﬂp] - ih(b — a)}l/p.
era e’ 16

(78)

In particular, if B = 1, that is, | f /If’ is exponentially (s, h)-strongly convex on
[a, b], then
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f(a) + ()] - —f fu)du|

. e (S
S0 s+ s +2) 2

L @r e

era et 16

(79)
Remark 4 Equations (76) and (78) improve and generalize the corresponding
results of Theorems 3.3 and 3.6 in [8].

4 Approximations for the Integral of f

Let P ={a = x9o < x1 < --- < x, = b} be a partition of [a, b]. By applying the
trapezoidal rule:

/ feodx = LTI, gy 02 “)3f ©), ¢ la,bl,
one obtain
/  Fdx = $,05) + Ra(). (30)
where
Sulf) = k; T IO 81)
and
Ru(f) = — Z Mf @), & € [t xel. (82)
k=1

The remainder term R, (f) represents the error in approximating | ab f(x)dx by
S,(f).If f* € L®[a, b], then the remainder term is given by

b
[ f(x)dx—sn(f>‘=|Rn<f)|_ If oo Z( — x>, (83)
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Taking xj — xp—1 = b% in (83), we get a classical result in numerical analysis (see
[33] P. 885.):
B ILf lloo 3
(x)dx = Sp ()| = [Ra ()] = 702 (b—a).

Using some results in the above section, under different conditions, we can get new
approximations for the integral of f. In what follows, let

| £ (o)
g(rxk)/p

M, p = max{ l<k=n} j=12 (84)

Theorem 31 Let [a, b] C (0 o0), f € Lla,b),and 1 < p < 0o, ‘+l=1 and

for p =1, define ¢ = oo, = = 0. If | f|P is exponentially s-convex on [a b], then
in (80), for every partition P of la, b], we get:

(i) If 1 < p < 00, then

[Ra(f)] < m{B(pH stO+ }”PZ(xk—xk .
(85)
If xk — xk—1 = h%”, then (85) reduces to
M, (b — a)® 1 p
R ()] = 22 T D 1)1/q{B(P+ Ls+ 1+ pr—— L
(ii) If p =1, then
M> 1 - 3
|Ra(f)] < mZm — xk-1)’ (86)
Ifxp — xp-y = 24,
My 1 (b —a)’
[Ra ()] < 26 EDG
Proof By letting h = 0in (67), we get
Xk
f(xkfl);‘ J () ik — Xe1) — / Fwydu
Xk
(xx —x1)° |/ =017 L@,
= 2T {Blp+1,5s+1) T +S+p+1 po }
_ 3
MopOk =) gy gy gy — Ly,

2(qg + /e s+p+1
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Summing over k from 1 to n, we get

) By TP RN R
= 2(q +1)1/q{ (prlstbt o

f fw)du— Sn(f)‘ PPy e—xe-1)’.
k=1

By letting 4 = 0 in (65) and similar arguments, we get (86). The proof is completed.
By letting 2 = 0 in (70), (72), and similar arguments, we get

Theorem 32 Under the assumptions of Theorem 31, we have
(i) If 1 < p < 00, then
R(P = —20 (B g+ )Y o~ (8D
S — '

If xp —xp_1 = b%“, then (87) reduces to

Zp( )

W{B(‘] +1,q 4+ D}

|Rn () <

(ii) If p =1, then

R(f)] < 22 (88)
s+1 —

Ifxp — xp—y = 24

M (b — a)?
R < = @
Ra (P = =500
By letting h = 0 in (74), (75), and similar arguments, we get:
Theorem 33 Let [a, b] C (0 ), f € Lla,bl,and 1 < p < o0, L L4+ L=1 and

for p = 1, define g = oo, — = 0. Iflf |” is exponentially s-convex on [a b), then
in (80), for every partition P of la, b], we get:

(i) If 1 < p < 00, then

My ) S _ 2
Ra (D < s T T)7 ;(xk xe-1)’. (89)

If xp — x4—1 = b%“, then (89) reduces to

My (b —a)?

|Rn(f)| = nz(q + 1)1/(1(s —+ 1)1/17.
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(ii) If p =1, then
|Ru ()] < —Z(xk—xk 2.

If xp — x4—1 = b%“, then (90) reduces to

My 1(b —a)?

Ra (P = =50

By letting h = 0 in (79), (77), and similar arguments, we get
Theorem 34 Under the assumptions of Theorem 33, we have

(i) If 1 < p < 00, then

|Ra ()] = 2(z/q){(er DG 12)

b7
If xp — xp—1 = 75,

My, ,(b — a)?

IRa(D = — /2 (s+ D(s+2)

(ii) If p =1, then

M
Ry ()] < m( s+ 2S>Z<xk —x-1)

If xp —xp—1 = b%”, then (92) reduces to

My (b — a)?

IR, ()] < m

5+ 2)
s+ 55

5 Approximations for Some New Means

We consider the means for 0 < a < b as follows:

(1) Defining the new weighted mean

aP + w(ab)?/> +bP _1_
K ,b) = P=q
Pl D) = e T bt )

(s + —)}”P > o — ).
k=1

{ : (s+;—s>}”f’.

301

(90)

oD

92)

93)
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where the weight ® > 0, p # ¢, and p and g cannot both be zero. If we take
g = 0, then (93) reduces to the Heron mean:

a? + w(ab)P/® + b? o,

H,(a,b) = 94
pla,b) ={ 12 94)
Taking w = 0 in (94), we get the power mean :
P4 pP
Mya,b) = (),
Taking w = 0, g = p — 1in (93), we get the Lehmer mean:
aP + bP
Lp(a,b) = W (95)
In particular,
2ab
Lo(a, b) =
o(a, b) arb

is the harmonic mean;

b
Li@.b) = Aa.b) = >
is the arithmetic mean;
2 2
a+b
Ly(a,b) =
2(a, b) b
is the inverse harmonic mean of the first kind;
3 3
a’+b
Li(a,b) = ——
3(a, b) a’ +b?

is the inverse harmonic mean of the second kind.
(2) The logarithmic mean

b—a
L(a,b)y = ——.
logh —loga
(3) The Stolarsky mean
b? —aP _
Sp(a,b) = {(——}"/*"=D ps£o, 1.

pb—a)
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(4) The identric mean
1 S,(a,b)=1(a,b LAY
1m pla,b) =1(a,b) = e(aa) .
Theorem 35 Ler 1 < p < oo, % + %, =1, and
|A(aY+2 b?+2) Ig( b)l
then
s+DGs+2b—-a)* 1 a° b 1 _
As < D { (671 e’_b) - gh(b —a)}; (96)
(s+ D(s+2)(b—a)? 2a° 4b°
As < o wra 5 —a)}; o7
+DGs+2b—-a): 1 o b 1
Ay < — 4+ ) ——h(b—a));
s < 3 {s i (em e’b) g (b —a)}; (98)
A, < EFDEFDG - a)*(ab)*+?
2
x(B(g+1,q+ 1) x 5] (S(jji)p( . b). (99)
In particular, if s = 1, that is,
= |A@@®, b%) — S3(a, b)|.
then
(b —a)2 1 a b 1
Ay < { (— —) - gh(b —a)};
(b—a)? 2a 4b .
A= — {W"‘eﬁ_h(b_a)},
a b 1
A =3k -a(oo+ 5 = ch(b—a)k
A1 <380 (b — a)(B(g + 1,9 + DY/IS75 (a, b).
Proof Let f(x) = iy, s # —1, -2, then f(x) = x*. Using (66), (69),

and (72), we get (96), (97), and (98), respectively. To prove (99) holds, we apply the
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integral representation of S,:

1
Spi1(a, b) = {/ [th+ (1 — H)a)Pdt}/?,
0

and Corollary 2, we get

1
(s+D(s+2)

_ (b—a)*(ab)*™
=

— 12 2+s 1 1
< %{/ t9(1 — t)th}l/(I{/ [th+ (1 — t)a]_(4+s)pdt}l/p
0 0

|A@@ 2, b — $5H5(a, b))

1
/ t(1 = 0)tb + (1 — al~“dr
0

B b — a)Z(ab)Z-i-s

2 {B(g+1,q+ )57 (a,b),

1-(4+s)p

which implies that (99) holds. The proof is completed.

Theorem 36 Let 1 < p < o0, % + (—i =1, and

1 2
Aa(p) = |A@/PT2, p1/P2) (P a, b)),

(i) If 1 < p < o0, then

(p+1DQ2p+ )b —a)?
202 (p +2)(q + D4
1 a b

p+lera b

Ax(p) <

_ ; _ 1/p.
{ oy 3h(b a)}'?, (100)

(p+DC2p+ 1D —a)?

Ax(p) < - {Bg+1,q+ D}/
4p
(L 2 -y, (101)
ere el 3
(p+D@p+Hb—a), 1 a b 1
Map) = s G T ) T ghe o)

(102)
(ii) If p =1, then
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) —a)2 20  4b

Ax(1) = Gt o b —ak

)
A1y < 20 =S . a9

era erb

- %h(b —a)k;

1 b 1
A2(1) = 3(b = )l ——= (7 + =) — <h(b — )}

2
Proof Let f(x) = grpmrmx/”*? x > 0, then fx) = S x(/p,
|f (x)|? = x. Using (68), (71), and (74), respectively, we get the required results.
Theorem 37 Let

A3(p) = |A@EPHDe, PHDE) — L(e" ") SP (e, M, p # 1,0,

Then
(b_a)z 2 (p+1-r)a (p+1-r)b
A3(p) = =P+ 1?2 + 4¢P )—h(b—a));  (103)
b—a)? 1)2 1
As(p) < 2“) (P oriona oty _ Ly g os
s+ 1 6
b—a) p+1 a , 1
Aa(l’)<( 5 ){”H[(”“ Ja 4 P tl >”]—gh<b—a>}. (105)

Proof Let f(x) = ™% then | f" (x)] = (p + D)?e™D*. Using (69), (72),
and (75), respectively, we get the required results.

Theorem 38 Ler 1 < p < oo, and

A4 = |log G(a, b) —logI(a,b)|.

Then
Ay < @ Iza) (Z(a2Pe™" 4 b2y — —h(b—a)};
N2
Ay < (bz—a){z 2T 4 42T — h(b — a));
(b—a)2 1 —2 —ra -2 —rb ! :
Ay < (b—a){ 1 la -1 —ra+b—1 —rb] h(b—a)}-

- 2 s+ 1
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Proof Let f(x) = logx, x > 0, then f (x) = x~!, " (x) = —x~2. Using (66),
(69), (72), and (75), respectively, we get the required results.

Theorem 39 Let 1 < p < oo, and

As =A@’ b") = SV, (a,b) + w[A(@?'?, b"1?) — s (a, bll.

(P/2+
Then
b—a)? 2
As < ( a) {_P[( 1)aP*2+§(§_l)a(p/2)72]
+TIZ[(P — 02+ 25— DpPD ] — @+ Db — )k
b-a) 1 2 w p -
As = = ((p — Da"~ — g2
5= T (= Va2 4 2 - Da )

P2 @ -2y L e
L p = b2+ L = 1)) - (0 + D06 — )

b—-a) 1 ) _
As < al~ = (/-1
s o L@ Falr/

w 1
+er£b(bp—1 + 26PN~ Z@+ 2k - a).

/2 / _ —
Proof Let f(x) = X5ty > 0, then f'(x) = L5(xP~1 4 gx(P/27h),

") = L[(p — DxP"2 + 22 — xP/D-2]. Using (69), (72), and (75),
w+2 232
respectively, we get the required results.

Taking @ = 0 in Theorem 39, we get the following results similar to Theorem 35:

Theorem 40 Let 1 < p < oo, and

Ag = |A(a?, b”)—SpH(a b)l,

2 2
then Aq < GO {p(p— D[ + 22277 h(b ~0): A < o (plelpe? 4
b —§h(b—a)}.

h(b —a)}: Ap < 5L
Remark 5 Kuang [2] introduced the followmg double weight mean:

al~!

s+1 [

w1 (aP + bP) + 2wy (ab)P/?

K (w1, 0, p) = ( 2(w1 + @)

)P, (106)
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where p # 0, w1, w2 > 0, w1 + w2 > 0.
Itis easy to note that K (1, 5, p) = Hp(a, b). Hence, by replacing H(a, b) with
K (w1, w2, p), we can get some results similar to Theorem 39.
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1 Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[13] concerning the stability of group homomorphisms.

The functional equation f(x +y) = f(x)+ f(y) is called the Cauchy equation.
In particular, every solution of the Cauchy equation is said to be an additive
mapping. Hyers [7] gave a first affirmative partial answer to the question of Ulam for
Banach spaces. Hyers’ theorem was generalized by Aoki [2] for additive mappings
and by Rassias [10] for linear mappings by considering an unbounded Cauchy
difference. A generalization of the Rassias’ theorem was obtained by Gavruta [6]
by replacing the unbounded Cauchy difference by a general control function in the
spirit of Rassias’ approach.

The functional equation f(x + y) + f(x — y) = 2f(x) + 2f(y) is called
the quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. The stability of quadratic
functional equation was proved by Skof [12] for mappings f : E; — E», where
E1 is a normed space and E> is a Banach space. Cholewa [3] noticed that the
theorem of Skof is still true if the relevant domain E; is replaced by an Abelian
group. The stability problems of various functional equations have been extensively
investigated by a number of authors (see [1, 4, 5, 8, 9, 14, 15]).

Definition 1 Let X be a linear space. A nonnegative-valued function || - || is an
F-norm if it satisfies the following conditions:

(FNp) ||x|| = 0if and only if x = 0;

(FN2) ||Ax]| = ||x]|| for all x € X and all A with |A| = 1;
(EN3) [lx + yll < llxll + llyll forall x, y € X;

(FN4) ||Apx|| = O provided A,, — O;

(FNs) ||Ax, ]| — 0 provided x,, — O.

Then, (X, || - ||) is called an F*-space. An F-space is a complete F*-space.

An F-norm is called 8-homogeneous (8 > 0) if ||tx| = |¢|?||x| forall x € X
and all r € C (see [11]).

In Section 2, we solve the additive-quadratic p-functional inequality (1) and
prove the Hyers—Ulam stability of the additive-quadratic p-functional inequality (1)
in fBz-homogeneous complex Banach space. In Section 3, we solve the additive-
quadratic p-functional inequality (2) and prove the Hyers—Ulam stability of the
additive-quadratic p-functional inequality (2) in 82-homogeneous complex Banach
space.

Throughout this paper, let 1 and B, be positive real numbers with 8; < 1 and
B2 < 1. Assume that X is a B1-homogeneous real or complex normed space with
norm | - || and that ¥ is a S>-homogeneous complex Banach space with norm || - ||.
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2 Additive-Quadratic p-Functional Inequality (1)
in 8-Homogeneous Complex Banach Spaces

Throughout this section, assume that p is a complex number with |p| < %
We solve and investigate the additive-quadratic p-functional inequality (1) in
complex normed spaces.

Lemmal (i) If a mapping f : X — Y satisfies M1 f(x,y) = 0, then f =
> + fe, where fo(x) = LS o ghe Cauchy additive mapping and
2
fe(x) := w is the quadratic mapping.
(i) If a mapping f : X — Y satisfies M> f(x,y) = O, then f = f, + f., where
folx) := w is the Cauchy additive mapping and f.(x) := w
is the quadratic mapping.

Proof (i)

My fo(x,y) = folx +y) = fox) = fo(y) =0

for all x, y € X. So, f, is the Cauchy additive mapping.

1 1
My fe(x,y) = Efe(x +y+ Efe(x —y) = fe(x) = fe(y) =0
forall x, y € X. So, f, is the quadratic mapping.
(ii)

xX+y

My fo(x,y) =21, (T) — fox) = fo(y) =0

forall x, y € X. Since M5 f(0,0) =0, f(0) = 0 and f, is the Cauchy additive
mapping.

Mo fulx,y) = 2f, (%) Y (x K y) L) — fo3) =0

for all x,y € X. Since M f(0,0) = 0, f(0) = 0 and f, is the quadratic

mapping.
Therefore, the mapping f : X — Y is the sum of the Cauchy additive
mapping and the quadratic mapping.

Lemma 2 (i) If an odd mapping f : X — Y satisfies

1M1 f e, MIF< oM f(x, ) 3)

forallx,y € X, then f : X — Y is additive.
(ii) If an even mapping f : X — Y satisfies (3), then f : X — Y is quadratic.
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Proof (i) Assume that f : X — Y satisfies (3).
Since f is an odd mapping, f(0) = 0.
Letting y = x in (3), we get

If(2x) =2f ()| <0,

and so f(2x) =2 f(x) for all x € X. Thus,

r(3) =35 o

forall x € X.
It follows from (3) and (4) that

Ifx4+y) = f&x) = fODI =<

P (2f (—x = ) ) — f(y)) H
=l fx+y) = fF&) = FDII,

and so

fa+y)=fx)+ 1)

forall x,y € X.
(ii) Assume that f : X — Y satisfies (2.1).
Letting x = y = 01in (2.1), we get

IF O = 112pf O]

So, f(0) =0.
Letting y = x in (2.1), we get

H%f@x) —-2f(x)| <0,

and so f(2x) =4 f(x) for all x € X. Thus,

r(3) =3 )

forall x € X.
It follows from (3) and (5) that

1 1
Hzf(xﬂLy)JrEf(x—y)—f(X)—f(y)H
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<2f< >+2f( 2y)—f(X)—f(y))H

1 1
Ef(ery)JrEf(x—y)—f(x)—

= lpl”

and so

e+ +fx=y)=2f0)+2f()

forall x,y € X.

We prove the Hyers—Ulam stability of the additive-quadratic p-functional
inequality (3) in B-homogeneous complex Banach spaces for an odd mapping
case.

Theorem 1 Letr > ﬁ 2 and 0 be nonnegative real numbers, and let f : X — Y be
an odd mapping such that

M1 f e, < oMo f e, I+ OdxN™ + 1IvI7) (6)

forall x,y € X. Then, there exists a unique additive mapping A : X — Y such that
A < 20 g 7

IfCx) =AMl _mﬂxﬂ (7

forall x € X.

Proof Letting y = x in (6), we get

I 2x) = 2f ()1 < 20]x]|" ®)

for all x € X. So,

o2 (§)] = o

for all x € X. Hence,

Pr(z) -2 ()]

IA

m—1
X2 (5)- 277 (57|

9 Mzl 5B
= 3 2 sl ©)

j=l
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for all nonnegative integers m and [ with m > [ and all x € X. It follows from (9)

that the sequence {2 f (2)‘—,()} is Cauchy for all x € X. Since Y is a Banach space, the
sequence {2 f (zx—k)} converges. So, one can define the mapping A : X — Y by

for all x € X. Since f is an odd mapping, A is an odd mapping. Moreover, letting
! = 0 and passing the limit m — oo in (9), we get (7).

It follows from (6) that
2 (r(57) -G ()]

[A(x +y) — A(x) — A(y)|l = lim

n—o0

= |20 (2 (55) -1 () -1 (3)]
Ban
+ lim odlxl” + NIyl

n—oo 2B1rn

o (152) )
o (152) o)

forall x, y € X. By Lemma 2, the mapping A : X — Y is additive.
Now, let T : X — Y be another additive mapping satisfying (7). Then, we have

for all x, y € X. So,

[AGx+y) = Ax) — AW =

la@ =Tl = |24 (57) - 27 (3|

=[ra(z) -2 G+ () -7 ()]

49  2Pa
< s xl
2B1r _ B2 2Bi1gr

which tends to zero as ¢ — oo forall x € X. So, we can conclude that A(x) = T (x)
for all x € X. This proves the uniqueness of A, as desired.

Theorem 2 Let r < B2 4nd 6 be nonnegative real numbers, and let f : X — Y

be an odd mapping satisfying (6). Then, there exists a unique additive mapping
A : X — Y such that

26
If(x) =A@ =< M_—IIXII’ (10)

2B1r

forall x € X.
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Proof 1t follows from (8) that

Hf(x) S7@0) = ol
for all x € X. Hence,
m . 1 j
‘zlf(zl A Z e )‘ﬁf(z’“x>‘
=l
2 2ﬂ1r1
< EZ S oIl (1)

j_

for all nonnegative integers m and [/ with m > [ and all x € X. It follows from
(11) that the sequence {zi,, f(2"x)} is a Cauchy sequence for all x € X. Since Y

is complete, the sequence {% f(2"x)} converges. So, one can define the mapping
A:X — Yby

. 1
A(x) = nli)nolo Z—nf(Z"x)

for all x € X. Moreover, letting / = 0 and passing the limit m — oo in (11), we
get (10).
The rest of the proof is similar to the proof of Theorem 1.

Now, we prove the Hyers—Ulam stability of the additive-quadratic p-functional
inequality (3) in S-homogeneous complex Banach spaces for an even mapping case.

Theorem 3 Letr > @ and 0 be nonnegative real numbers, andlet f : X — Y be
an even mapping satisfying f(0) = 0 and (6). Then, there exists a unique quadratic
mapping Q : X — Y such that

2.28
Ifx) = Q) = mll x| (12)
forall x € X.
Proof Letting y = x in (6), we get
1
Hzf(ZX) =2f()| <20|x|I" 13)

for all x € X. So,

|7 —ar (2)] = 2l s
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for all x € X. Hence,

[4r(3) -7 ()] = ZH‘” 7 () =1 ()l

9. 2B M=l ppj

< ar Zzﬁl,,enxnf (14)
J=

for all nonnegative integers m and / with m > [ and all x € X. It follows from (14)
that the sequence {4k r (zx—k)} is Cauchy for all x € X. Since Y is a Banach space, the

sequence {4% f ( 7))} converges. So, one can define the mapping Q : X — Y by
X
= lim 47 ()
0 = lim 47 (%
for all x € X. Since f is an even mapping, Q is an even mapping. Moreover, letting

! = 0 and passing the limitm — oo in (14), we get (12).
It follows from (6) that

1 1 —
H—Q<x+y>+59<x y) —Q(x)—Q(y)H

I
5

IA
T_
g8
//
()
~
A/
[\:) >'<
i+
=
—
+
(S}
~
//~
N k
3
+
=
—
~
~~
2 =
~—
|
~
A~
R
~—~—
~—

4Ban
+ lim 6l + 1yl

oo 2Birn
y) — Q) — Q(y)) H

o (e (57) <2 ("
for all x, y € X. So,
1 x+y 1 xX—y
H§Q< > )+§Q< )—Q(X)—Q(y)”

() 20(152) =)

for all x, y € X. By Lemma 2, the mapping Q : X — Y is quadratic.
Now, let T : X — Y be another quadratic mapping satisfying (12). Then, we
have




Additive-Quadratic p-Functional Equations in S-Homogeneous Normed Spaces 317

loe - Tl = [470 (57) =47 ()|

e (55) -1 (S—q)H er () -4 ()]

2.2629 4P
SZﬂlr 482 2/31qf

IA

which tends to zero as ¢ — oo for all x € X. So, we can conclude that Q(x) = T (x)
for all x € X. This proves the uniqueness of Q, as desired.

Theorem 4 Letr < % and 0 be nonnegative real numbers, and let f : X — Y be
an even mapping satisfying f(0) = 0 and (6). Then, there exists a unique quadratic
mapping Q : X — Y such that

2.2P¢
1£G) = QI = g5z Il (15)
forall x € X.
Proof It follows from (13) that
”f(X) - —f(2X) = 2ﬁ IIXII
for all x € X. Hence,
1 i 1
—r2lx) — m _ P Jj+1
‘4,f(2x) IR EDY 2 (%) = x)‘
j=
20 "3 2bir
<5 Z Yiall (16)

j=l
for all nonnegative integers m and / with m > [ and all x € X. It follows from

(16) that the sequence {4% f(2"x)} is a Cauchy sequence for all x € X. Since Y

is complete, the sequence {4l,, f(2"x)} converges. So, one can define the mapping
Q:X—Yby

Q) = lim %f@’%)

for all x € X. Moreover, letting I = 0 and passing the limit m — oo in (16), we
get (15).
The rest of the proof is similar to the proof of Theorem 7.
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Remark 1 1f p is a real number such that —% <p< % and Y is a f-homogeneous
real Banach space, then all the assertions in this section remain valid.

3 Additive-Quadratic p-Functional Inequality (2)
in B-Homogeneous Complex Banach Spaces

Throughout this section, assume that p is a complex number with |p| < 1.
We solve and investigate the additive-quadratic p-functional inequality (2) in 8-
homogeneous complex normed spaces.

Lemma 3 (i) Ifan odd mapping f : X — Y satisfies

Mz f e, I < oMy f(x, Y 17
forallx,y € X, then f : X — Y is additive.

(ii) If an even mapping f : X — Y satisfies f(0) = 0and (17), then f : X — Y
is quadratic.

Proof (i) Assume that f : X — Y satisfies (17).
Letting y = 0in (17), we get

o1(3) - eo] =o.

andso f (3) = 3 f(x) forall x € X.
It follows from (17) and (18) that

1f G+ y) — F) — fFO)l = Hzf (%) — @) = FO) ”

<lplPfx+y) — fx) = FODI,

and so

fa+y)=fx)+ 1)

forall x,y € X.
(ii) Assume that f : X — Y satisfies (17).
Letting y = 0in (17), we get

r(3) o] <o

andso f (3) = 1 f(x) forall x € X.
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It follows from (17) and (19) that
1 1
Hzf(X+y)+Ef(x—y)—f(x)—f(y)H
X+y X —y
= () v2r (F32) - s - s

1
zf(x'i‘)’)"i‘zf(X—y)—f(x)—

<|pl”

and so

e+ +fx—y)=2f0x)+2f()

forall x,y € X.

We prove the Hyers—Ulam stability of the additive-quadratic p-functional
inequality (17) in B-homogeneous complex Banach spaces for an odd mapping
case.

Theorem 5§ Letr > ’22 and 6 be nonnegative real numbers, and let f : X — Y be

an odd mapping satisfying

M2 f e, < oMy f (e, I+ 0l + Iyl (20)

forallx,y € X. Then, there exists a unique additive mapping A : X — Y such that

If(x) — A = zmzrm—:zﬁzllxllr 21)
forall x € X.
Proof Letting y = 0in (20), we get
[r@ =21 (3)| = 2r (5) - reo| <ensir 22)

for all x € X. So,

Pr(z) -2 ()l = ZHZJf(zJ) 1 ()|

2B2j

< Z A Ol (23)
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for all nonnegative integers m and / with m > [ and all x € X. It follows from (23)
that the sequence {2 f (2)‘—,()} is Cauchy for all x € X. Since Y is a Banach space, the

sequence {2 f (zx—k)} converges. So, one can define the mapping A : X — Y by
X
A(x) = lim 2 (—)
) P ! 2k

for all x € X. Since f is an odd mapping, A is an odd mapping. Moreover, letting
! = 0 and passing the limit m — oo in (23), we get (21).
The rest of the proof is similar to the proof of Theorem 1.

Theorem 6 Let r < B2 4nd 6 be nonnegative real numbers, and let f : X — Y

!
be an odd mapping satisfying (20). Then, there exists a unique additive mapping
A : X — Y such that

28179 .
1£ () = AW = 35—z Il (24)
forall x € X.
Proof 1t follows from (22) that
1 2817 .
Hf(x) - 50| = S50l

for all x € X. Hence,

m—1

=2

3 F (25) = gees (27)

m .
pLI

< E ~0]x[" (25)
=it 202

1 I 1 m
?f(ZX)— z—mf(2 x)

for all nonnegative integers m and [ with m > [ and all x € X. It follows from
(25) that the sequence { % f(2"x)} is a Cauchy sequence for all x € X. Since Y

is complete, the sequence {zln f(2"x)} converges. So, one can define the mapping
A:X —> Yby

1
A) = lim oo f(2")

for all x € X. Moreover, letting /[ = 0 and passing the limit m — oo in (25), we
get (24).
The rest of the proof is similar to the proof of Theorem 1.
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Now, we prove the Hyers—Ulam stability of the additive-quadratic p-functional
inequality (17) in B-homogeneous complex Banach spaces for an even mapping
case.

Theorem 7 Letr > 2’31 2 and 0 be nonnegative real numbers, and let f : X — Y
be an even mapping satisfying f(0) = 0 and (20). Then, there exists a unique
quadratic mapping Q : X — Y such that

If(x) — QM) = zﬁzrﬁieﬁ [lx " (26)
forall x € X.
Proof Letting y = 0in (20), we get
[r@ =47 (3)] = |47 (3) - reo| <enxr )

for all x € X. So,

[#r(5) -7 ()] = ZH4’ () -+ (9]

4B2J
< Z arr oIl (28)

for all nonnegative integers m and [ with m > [ and all x € X. It follows from (28)
that the sequence {4* f ( 7))} is Cauchy for all x € X. Since Y is a Banach space, the

sequence {4* f (2k)} converges. So, one can define the mapping Q : X — Y by
0(x) = lim 4°f ()
Tk 2k

forall x € X. Since f is an even mapping, Q is an even mapping. Moreover, letting
! = 0 and passing the limit m — oo in (28), we get (26).
The rest of the proof is similar to the proof of Theorem 3

Theorem 8 Letr < 2’31 2 and 0 be nonnegative real numbers, and let f : X — Y
be an even mapping satisfying f(0) = 0 and (20). Then, there exists a unique
quadratic mapping Q : X — Y such that

2B1rg

IfG) = QW = Z5—57 il (29)

forall x € X.
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Proof 1t follows from (27) that

1 Bir ,
Hf(x)—zf@x) = 270l
for all x € X. Hence,
1 1 gy 1
- Iy & m - J o Jj+1
‘4,f(2x) w /@) =X o (x) = g f (271)
J=
m Birj .
< ) it (30)
j=1+1

for all nonnegative integers m and [/ with m > [ and all x € X. It follows from
(30) that the sequence {4i,, f(2"x)} is a Cauchy sequence for all x € X. Since Y

is complete, the sequence {4% f(2"x)} converges. So, one can define the mapping
Q:X—Yby

Q(x) := lim 4i,,f(2"X)

for all x € X. Moreover, letting / = 0 and passing the limit m — oo in (30), we
get (29).
The rest of the proof is similar to the proof of Theorem 3.

Remark 2 If p is a real number such that —1 < p < 1 and Y is a B-homogeneous
real Banach space, then all the assertions in this section remain valid.
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1 Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[19] concerning the stability of group homomorphisms. The functional equation
f(x +y) = f(x) 4+ f(y) is called the Cauchy equation. In particular, every
solution of the Cauchy equation is said to be an additive mapping. Hyers [12] gave
a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
Theorem was generalized by Aoki [2] for additive mappings and by Rassias [17] for
linear mappings by considering an unbounded Cauchy difference. A generalization
of the Rassias theorem was obtained by Gévruta [9] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Rassias’ approach.
Gilanyi [10] showed that if f satisfies the functional inequality

1270 +2f() = fx =l = Ifx+ W, 3)

then f satisfies the Jordan-von Neumann functional equation

2f)+2f() =fx+y)+ flx—y).

See also [18]. Fechner [8] and Gildnyi [11] proved the Hyers—Ulam stability of the
functional inequality (3).

Park [14, 15] defined additive p-functional inequalities and proved the Hyers—
Ulam stability of the additive p-functional inequalities in Banach spaces and
non-Archimedean Banach spaces. The stability problems of various functional
equations and functional inequalities have been extensively investigated by a
number of authors (see [3, 5-7]).

The notion of a quasi-multiplier is a generalization of the notion of a multiplier
on a Banach algebra, which was introduced by Akemann and Pedersen [1] for
C*-algebras. McKennon [13] extended the definition to a general complex Banach
algebra with bounded approximate identity as follows.

Definition 1 ([13]) Let A be a complex Banach algebra. A C-bilinear mapping P :
A X A — A is called a quasi-multiplier on A if P satisfies

P(xy,zw) =xP(y, D)w

forall x, y, z, w € A.

This paper is organized as follows: In Sections 2 and 3, we prove the Hyers—Ulam
stability of the bi-additive s-functional inequalities (1) and (2) in complex Banach
spaces by using the direct method. In Section 4, we investigate quasi-multipliers
on Banach algebras associated with the bi-additive s-functional inequalities (1)
and (2).
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Throughout this paper, let X be a complex normed space and Y be a complex
Banach space. Let A be a complex Banach algebra. Assume that s is a fixed nonzero
complex number with |s| < 1.

2 Bi-additive s-Functional Inequality (1)

In [16], Park solved the bi-additive s-functional inequality (1) in complex normed
spaces.

Lemma 1 ([16, Lemma 2.11) If a mapping f : X*> — Y satisfies f(0,z) =
f(x,0) =0and

lfx+y,z—w+ fx—y,z4+w)—2f(x,2) +2f(y, w) “4)
< s<2f(x;ry,z—w>+2f<x;y,z+w>—2f(x,z)+2f(y,w))H

forallx,y,z,w € X, then f : X2 — Y is bi-additive.

Using the direct method, we prove the Hyers—Ulam stability of the bi-additive
s-functional inequality (4) in complex Banach spaces.

Theorem 1 Let ¢ : X2 — [0, 00) be a function satisfying
vy =Y Ve (55.57) < oo 5)
j=1

forallx,y € X. Let f : X* — Y be a mapping satisfying f(x,0) = f(0,z) = 0
and

1f Gt vz =)+ F = .24 w) — 2£(x.2) + 20 (v ) ©)
< s <2f (’%,z—w) +of (x;y,z—irw) —2f(x,z)+2f<y,w)>H

+o(x, y)o(z, w)

forall x,y,z,w € X. Then there exists a unique bi-additive mapping P : X* — Y
such that

1
If(x.2) = Px, )|l = S¥(x, X)o(z. 0) )

forallx,z € X.
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Proof Lettingw = 0and y = x in (6), we get
1F(2x,2) =2f(x, 2 < ¢(x,x)p(z,0) (®)

forall x, z € X.
It follows from (8) that

Hf(x 2= 2f< ’Z>H—‘/’(2 2)‘p(z 0

for all x, z € X. Hence,

m—1

PrGo) -2 (ol =X (59 -2 ()] ©
p
%i 0 (55 57) ez 0)

for all nonnegative integers m and / with m > [ and all x, z € X. It follows from

(9) that the sequence {2kf(2"—k, z)} is Cauchy for all x, z € X. Since Y is a Banach
space, the sequence {2¥ f(2,z)} converges. So one can define the mapping P :

2k
X2 - Y by
P(r,2) = lim 247 (27.2)
’ T k—o00 2k’
for all x, z € X. Moreover, letting [ = 0 and passing to the limit m — oo in (9),

we get (7).
It follows from (5) and (6) that

IP(x+y,z—w)+P(x—y,z+w) —2P(x,2) + 2Py, wl

(1 () (5 ) 2o )|

< m [ (o1 (55w 2r (G ovw) 20 (3 9) w21 (55ow) )|
+lm 2% (57 57) ¢ 0

:

Hs <2P (%z - w) +2p (x g Y i w) —2P(x.2) +2P(y. w)) H

forall x,y,z, w € X. So

IPx+y,z—w)+Px—y,z+w) —2P(x,2) +2P(y, w|
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X+y X =Yy
s|2P T,z—w +2P > ,2+w ) —2P(x,z) +2P(y, w)

=<

for all x, y, z, w € X. By Lemma 1, the mapping P : X2 — Y is bi-additive.
Now, let 7 : X?> — Y be another bi-additive mapping satisfying (7). Then we
have

IP(x,2) — T(x, 2)|| = quP (;—qz) 24T (2% z) H

= [ (502 G+ e (o) 20 (o)

o7 ) $E 0,

<2‘1<I>< ,
= 24’ 24

which tends to zero as ¢ — oo for all x, z € X. So we can conclude that P(x, z) =
T (x, z) for all x, z € X. This proves the uniqueness of P, as desired.

Corollary 1 Let r > 1 and 0 be nonnegative real numbers and f : X* — Y be a
mapping satisfying f(x,0) = £(0,z) =0 and

1F G+, 2—w) 4+ Fr =y, 2+ w) — 2£(x, 2) + 2£ (v, w)| (10)
< s@f(x;yw—u>+2f<x;{Z+w>—2ﬂn@+2ﬂ%w0H

FOx ™ + Iy I Alzll” + [lwl")

forall x,y,z, w € X. Then there exists a unique bi-additive mapping A : X2 >y
such that

26
If(x,2) —Alx, 2|l =

r r
e LM e

forallx,z € X.

Proof The proof follows from Theorem 1 by taking ¢(x, y) = VO(|x|I” + yII")
forall x,y € X.

Theorem 2 Let ¢ : X> — [0, 00) be a function satisfying

Wi y) =Y %(p (2J'x, 2/y) < 00 (11)

j=0

forall x,y € X. Let f : X*> — Y be a mapping satisfying (6) and f(x,0) =
f(0,z) = 0forall x,z € X. Then there exists a unique bi-additive mapping P :
X2 — Y such that
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1
If(x,2) = P(x,2)| < E‘If(x,X)w(Z,O)
forallx,z € X.

Proof It follows from (8) that

1 1
Hf(x, 7) — Ef(Zx, | = ?ﬂ(x,x)(ﬂ(z, 0)

forall x, z € X.
The rest of the proof is similar to the proof of Theorem 1.

Corollary 2 Let r < 1 and 0 be nonnegative real numbers and f : X* — Y be a

mapping satisfying (10) and f(x,0) = f(0,z) = 0 for all x,z € X. Then there
exists a unique bi-additive mapping P : X* — Y such that

1f G 2) = P, Dl = 5— ™zl
forallx,z € X.

Proof The proof follows from Theorem 2 by taking ¢(x, y) = VodlxIm + Iyl
forallx,y € X.

3 Bi-additive s-Functional Inequality (2)

In [16], Park solved the bi-additive s-functional inequality (2) in complex normed
spaces.

Lemma 2 ([16, Lemma 3.11) If a mapping f : X*> — Y satisfies f(0,z) =
f(x,0) =0and

HZf(x;y,z—w)+2f(x;y,z+w)—2f(x,z)+2f(y,w)H (12)
<ls(fx+y,z—w)+ fx—y,z4+w) =2f(x,2) +2f(Q, w)ll

forallx,y,z,w € X, then f : X2 — Y is bi-additive.

Using the direct method, we prove the Hyers—Ulam stability of the bi-additive
s-functional inequality (12) in complex Banach spaces.

Theorem 3 Let ¢ : X> — [0, 00) be a function satisfying (5). Let f : X*> — Y be
a mapping satisfying f(x,0) = f(0,z) = 0and
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HZf(x;y,z—w>+2f(x;y,z+w)—2f(x,z)+2f(y,w)H (13)

<ls(fx+y,z—w)+ fx—y,z+w) =2f(x, ) +2f(y, w)ll
+o(x, y)o(z, w)

forall x,y,z,w € X. Then there exists a unique bi-additive mapping P : X*> — Y
such that

1
If (e, 2) = Plx, )|l = 79(2x, 0)¢(z. 0) (14)

forall x, z € X, where W is given in the statement of Theorem 1.

Proof Lettingy = w = 0in (13), we get

H4f (3 Z) —2fx,2) H < ¢(x,0)¢(z, 0) (15)

forall x, z € X.
It follows from (15) that

x 1
[ =27 (5.2)] = 506 0060
forall x, z € X.
The rest of the proof is similar to the proof of Theorem 1.

Corollary 3 Let r > 1 and 0 be nonnegative real numbers and f : X* — Y be a
mapping satisfying f(x,0) = f(0,z) = 0and

2
Sls(fxr+y,z—w+ fx—y, z4+w) =2f(x,2) +2f(y, w)ll
FOx ™ + Iy I Alzll™ + flwl”)

H2f<x—;y,z—w>+2f(x_y,z+w)—2f(x,z)+2f(y,w)H (16)

forall x,y,z,w € X. Then there exists a unique bi-additive mapping P : X* — Y
such that

r—1

10— Pl < 2D

Il 1"

forallx,z € X.

Proof The proof follows from Theorem 3 by taking ¢(x, y) = VodlxIm + lIylh
forall x,y € X.
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Theorem 4 Let ¢ : X2 — [0, 00) be a function satisfying (11). Let f : X* — Y
be a mapping satisfying (13) and f(x,0) = f(0,z) = 0 forall x,z € X. Then
there exists a unique bi-additive mapping P : X*> — Y such that

1
If(x.2) = Px. )|l = 7% (2%, 0) (2. 0)

forall x,z € X, where W is given in the statement of Theorem 2.

Proof It follows from (15) that

1 1
Hf(x, 7) — Ef(Zx, | = Z¢(2x, 0)¢(z, 0)

forall x, z € X.
The rest of the proof is similar to the proofs of Theorems 1 and 3.

Corollary 4 Let r < 1 and 6 be nonnegative real numbers and f : X*> — Y be a
mapping satisfying (16) and f(x,0) = f(0,z) = 0 for all x,z € X. Then there
exists a unique bi-additive mapping P : X* — Y such that

r—1

If(x,2) = P(x,2)|l = 22_2,

lxl” 1z ll”
forallx,z € X.

Proof The proof follows from Theorem 4 by taking ¢(x, y) = VO(|x|I” + yII")
forall x,y € X.

4 Quasi-multipliers in Banach Algebras

In this section, we investigate quasi-multipliers on complex Banach algebras
associated with the bi-additive s-functional inequalities (4) and (12).

Lemma 3 ([4, Lemma 2.1]) Let f : X> — Y be a bi-additive mapping such that
fOx, uz) = auf(x,z) forallx,z € Xand as,p € S' :={v e C : |v| = 1}.
Then f is C-bilinear.

Theorem 5 Let ¢ : A2 — [0, 00) be a function satisfying

o0
Uiy =Y 2 (;—jzy—/) <00 (17)
j=1

forallx,y € A. Let f : A> — A be a mapping satisfying f(x,0) = f(0,z) =0
and
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If G+ ), wz —w)+f (A —y), w(z+w)=2xunf (x, )+22uf (v, w)|

(3

+o(x, y)o(z, w)

=

,z—w> +2f <x ; y,z+w> —2f(x, 2+2f(y, w)) H (18)

forall A, n € St and all x, v,z,w € A. Then there exists a unique C-bilinear
mapping P : A*> — A such that

1
If(x,2) = Plx, )|l = Z¥(x, X)g(z, 0) 19)

forall x, z € A.
If, in addition, the mapping f : A> — A satisfies

If(xy, zw) — xf (v, Dwll < @(x, y)*0(z, w)? (20)

forall x,y,z,w € A, then the mapping P : A*> — A is a quasi-multiplier.
Furthermore, if, in addition, the mapping f : A> — A satisfies f(2x,z) =
2f(x,z2) forall x,z € A, then the mapping f : A> — A is a quasi-multiplier.

Proof Let A = u = 1in (18). By Theorem 1, there is a unique bi-additive mapping
P : A> — A satisfying (19) defined by

P = i 2 (5

2}’1

for all x, z € A.
Letting y = x and w = 0 in (18), we get

| fQ2rx, uz) = 22pf (x, 2|l < @(x, 0)p(z, 0)
forallx,z € Aandall A, u € St So

I1P(2Ax, uz) = 2P (x, 2)|| = lim 2"
n—oo

() -2 (5.9

nrn

27!

< lim 2"¢ (1 i) 0(z,0) < lim
n— o0

n— 00 o’ on

@(x, x)p(z,0) =0
for all x,z € A and all A, u € S'. Hence, P2 x, nuz) = 2AuP(x,z) and so

POux,uz) = AMuP(x,z) forall x,z € Aand all A, u € st By Lemma 3, the
bi-additive mapping P : A2 — A is C-bilinear.

It follows from (20) that
Xy X y
f(zn.zn’zw) - z_nf(z_n’z) w”

: n X y 2 2
= Jlim 4% (55 35) ¢ G =0

| P(xy, zw) — xP(y,z7)w| = lim 4"
n—0oo
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for all x, y, z, w € A. Thus,
P(xy,zw) = xP(y, 2)w
forall x, y, z, w € A.

If f(2x,z2) =2f(x,z) for all x, z € A, then we can easily show that P(x, z) =
f(x,z) forall x, z € A. Hence, the mapping f : A> — A is a quasi-multiplier.

Corollary 5 Let r > 2 and 0 be nonnegative real numbers, and f : A> — A be a
mapping satisfying f(x,0) = f(0,z) = 0 and

| f(A(x +y), u(z — w))+f(A(x—y), u(z+w))=2xu1f (x, 2)+2A1f (y, w)||
s (Zf (% z—w) 2f (? z+w) 2 F(x, )42 (s w)) H @1)

FOx 1™ + Iy I Alzl” + llwl”)

=<

forall A, u € S and all x, v,2,w € A. Then there exists a unique C-bilinear
mapping P : A*> — A such that

29 r r
If(x,2) = P(x,2)| < 5 Izl

2r —

forall x, z € A.
If, in addition, the mapping f : A> — A satisfies

I £ (xy, zw) — xf (v, Dwll < O2Ux " + Iy 1Dzl + fwll")? (22)

forall x,y,z,w € A, then the mapping P : A> — A is a quasi-multiplier.
Furthermore, if. in addition, the mapping f : A> — A satisfies f(2x,7) =
2f(x,z2) forall x,z € A, then the mapping f : A> — A is a quasi-multiplier.

Proof The proof follows from Theorem 5 by taking ¢(x, y) = VO(|x|I” + |yII")
forallx,y € X.

Theorem 6 Let ¢ : A> — [0, o0) be a function satisfying

o0

W y) =Y %(p (2J'x, 2/y) < 00 (23)
j=0

forall x,y € A. Let f : A> — A be a mapping satisfying (18) and f(x,0) =

f0,z) = 0 forall x,z € A. Then there exists a unique C-bilinear mapping P :
A? — A such that

1
If(x,2) = P(x,2) < z‘l’(x»x)w(z, 0)
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forall x, z € A.

If, in addition, the mapping f : A®> — A satisfies (20), then the mapping P :
A% — A is a quasi-multiplier.

Furthermore, if. in addition, the mapping f : A> — A satisfies f(2x,z) =
2f(x,z2) forall x,z € A, then the mapping f : A> — A is a quasi-multiplier.

Proof The proof is similar to the proof of Theorem 5.

Corollary 6 Let r < 1 and 6 be nonnegative real numbers, and f : A> — A be
a mapping satisfying (21) and f(x,0) = f(0,z) = 0 forall x,z € A. Then there
exists a unique C-bilinear mapping P : A> — A such that

Il lzl"

If@x.2) = Px. 9l = 57—

forall x,z € A.

If, in addition, the mapping f : A®> — A satisfies (22), then the mapping P :
A% — A is a quasi-multiplier.

Furthermore, if, in addition, the mapping f : A> — A satisfies f(2x,z7) =
2f(x,z) forall x,z € A, then the mapping f : A> — A is a quasi-multiplier.

Proof The proof follows from Theorem 6 by taking ¢(x, y) = VodlxIm + lIylh
forall x,y € X.

Similarly, we can obtain the following results.

Theorem 7 Let ¢ : A%> — [0, 00) be a function satisfying (17). Let f : A> — A
be a mapping satisfying f(x,0) = f(0,z) = 0and

2
<ls(fx+y.z—w) + fx—y,z+w) —2f(x, 2)+2f(y, w)l (24)
+o(x, Y)e(z, w)

2f< x+y,u(z w)) +2f (A—,M(z+w)> =2apf (x, )20 f (v, w)H

forall A, u € St and all x, v,z,w € A. Then there exists a unique C-bilinear
mapping P : A2 — A such that

1
||f(x9 Z) - P(x9 Z)” S Zq/(zxa 0)¢(Z’ 0)7

forall x € A, where W is given in the statement of Theorem 5.

If, in addition, the mapping f : A®> — A satisfies (20), then the mapping P :
A% — A is a quasi-multiplier.

Furthermore, if, in addition, the mapping f : A> — A satisfies f(2x,z) =
2f(x,z2) forall x,z € A, then the mapping f : A> — A is a quasi-multiplier.
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Corollary 7 Let r > 2 and 0 be nonnegative real numbers, and f : A> — A be a
mapping satisfying f(x,0) = f(0,z) = 0and

HZf (x% M(z—w)) 2f (ﬂ% ,u(z—i—w)) 2huf (e, )2 f (v, w)H

= lIs (f &y, z—w)+ f(x—y, z4w) =2 f (x, 2)+2f (y, w)) | (25)
FOx 1" + Iy I Alzl™ + llwl”)

forall A, n € S and all x, v,2,w € A. Then there exists a unique C-bilinear
mapping P : A*> — A such that

r—1

150~ P2l < 2

[ E4 8

forall x € A.

If, in addition, the mapping f : A®> — A satisfies (22), then the mapping P :
A% — A is a quasi-multiplier.

Furthermore, if, in addition, the mapping f : A> — A satisfies f(2x,z) =
2f(x,z2) forall x,z € A, then the mapping f : A> — A is a quasi-multiplier.

Proof The proof follows from Theorem 7 by taking ¢(x, y) = VodlxIm + lIylh
forall x,y € X.

Theorem 8 Let ¢ : A2 — [0, 00) be a function satisfying (23). Let f : A — A be
a mapping satisfying (24) and f(x,0) = f(0,z) = 0 forall x,z € A. Then there
exists a unique C-bilinear mapping P : A> — A such that

1
| f(x,2) = P(x,2)|l < Z'J’(2x,0)<p(z,0)

forall x,z € A, where W is given in the statement of Theorem 6.

If, in addition, the mapping f : A®> — A satisfies (20), then the mapping P :
A% — A is a quasi-multiplier.

Furthermore, if, in addition, the mapping f : A> — A satisfies f(2x,z) =
2f(x,z2) forall x,z € A, then the mapping f : A> — A is a quasi-multiplier.

Corollary 8 Let r < 1 and 6 be nonnegative real numbers, and f : A — A be a

mapping satisfying (25) and f(x,0) = f(0,z) = 0 for all x,z € A. Then there
exists a unique C-bilinear mapping P : A> — A such that

r—I1

2-2r

If(x,2) = P(x,2)|l =

™1zl

forall x, z € A.

If. in addition, the mapping f : A*> — A satisfies (22), then the mapping P :
A% = A is a quasi-multiplier.
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Furthermore, if, in addition, the mapping f : A> — A satisfies f(2x,z) =

2f(x,z) forall x,z € A, then the mapping f : A> —> Aisa quasi-multiplier.

Proof The proof follows from Theorem 8 by taking ¢(x, y) = VodlxIm + Iylh
forall x,y € X.
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On the Stability of Some Functional )
Equations and s-Functional Inequalities L

B. Noori, M. B. Moghimi, A. Najati, and Themistocles M. Rassias

Abstract In this work, the Hyers—Ulam type stability and the hyperstability of the
following functional equations

e+ +fx—y)=f2x)+ fy)+ f(=y),
flax +y) + fax —y) = f(ax) +af (x),
flax +y)+ flax —y) = flax) +af(x) + f()) + f(=y)

are proved. We also introduce and solve some s-functional inequalities, and we
prove their Hyers—Ulam stabilities.

1 Introduction

The functional equation (£) is called stable if any function g satisfying the equation
(&) approximately is near to true solution of (§). S. M. Ulam in 1940 [16] introduced
the stability of homomorphisms between two groups. More precisely, he proposed
the following problem: Given a group (G1,.), a metric group (G2, *,d) and a
positive number €, does there exist a § > 0 such that if a function f : G; — G3
satisfies the inequality d(f(x.y), f(x) * f(y)) < & for all x, y € Gy, then there
exists a homomorphism 7' : G; — Gj such thatd(f(x), T(x)) < e forallx € G?
If this problem has a solution, we say that the homomorphisms from G to G2
are stable. In 1941, D. H. Hyers [7] gave a partial solution of Ulam’s problem for
the case of approximate additive mappings under the assumption that G| and G2
are Banach spaces. T. Aoki [1] and Th.M. Rassias [14] provided a generalization
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of the Hyers’ theorem for additive and linear mappings, respectively, by allowing
the Cauchy difference to be unbounded. During the last decades, several stability
problems of functional equations have been investigated by several mathematicians.
A large list of references concerning the stability of functional equations can be
found in [2, 4, 5, 8-13, 15].

In this paper, we deal with the following functional equations:

fx+y»+fx—y)=f2x)+ f()+ f(=y), )]
flax +y) + flax —y) = f(ax) +af(x), ()
flax +y)+ flax —y) = flax) +af (x) + f(y) + f(=). (3)

2 Solutions of Functional Equations (1), (2) and (3)

Theorem 1 Let X and Y be vector spaces. A function f : X — Y satisfies (1) if
and only if f is additive.

Proof Let f satisfy (1). Letting x = 0 in (1), we get f(0) = 0. Letting y = x

in (1), we infer that f is odd. Therefore, (1) implies f(x +y) + f(x —y) = f(2x).

Replacing x by % and y by % in the last equation, we get f is additive.
Conversely, if f is additive, it is easy to check that f satisfies (1).

Theorem 2 Let X and Y be vector spaces. If functions f, g : X — Y satisfy

fa+N+fx—-—y»=Ff2x)+g(y)+g(=y), x,yelX, “4)

then f — f(0) is additive and g(x) + g(—x) = f(0) forall x € X.

Proof Letting x = 01in (4), we get f(y) + f(—y) = f(0) + g(y) + g(—y) for all
y € X. Therefore, f satisfies f(x+y)+ f(x—y) = fFRX)+fO)+ f(—=y)— f(0)
forall x, y € X.Itis easy to see that f — f(0) satisfies (1). Then, f— f(0) is additive
by Theorem 1.

Letting y = x in (4), we infer that g(x) + g(—x) = f(0) forall x € X.

Theorem 3 Let X and Y be vector spaces. If functions f, g : X — Y satisfy

fa+N+fx—y)=gC2x)+g(y) +g(=y), x,y€X, &)

then there exist an additive function A : X — Y and a quadratic function Q : X —
Y suchthat f = A+ Q+ f(0) and g = A—i—%Q—{—g(O),

Proof Letting y = 0in (5), we get g(2x) = 2f(x) — 2g(0) for all x € X. Letting
x =0in(5), wegetg(y)+g(—y) = f(y)+ f(—y)—g(0) forall y € X. Therefore,
3g(0) =2£(0), and f satisfies
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JE+N+fa=y)=2fC)+fDM+ f(=»)-2f0), x,yeX. (6

Itis easy to see that F = f — f(0) satisfies F(x+y)+ F(x—y) =2F(x)+ F(y)+
F(—y) for all x,y € X. Then, F has the form F = A+ Q,where A : X — Y is
additive and Q : X — Y is quadratic (see [3]). This proves that f = A+ Q + f(0).
Since g(2x) — g(0) = 2F (x), we get g(x) = g(0) + A(x) + %Q(x) forall x € X.

Theorem 4 Let X and Y be vector spaces. If functions f, g, h : X — Y satisfy

fx+y)+fx—y)=hx)+g(y)+g(=y), x,yeX, @)

then there exist an additive function A : X — Y and a quadratic function Q : X —
Y suchthat f = A+ Q+ f(0), h =2A4+20 + h(0), and g. = O + g(0), where
8e 1S the even part of g.

Proof Letting y = 0in (7), we get h(x) = 2f(x) — 2g(0) for all x € X. Letting
x=0in(7),wegetg(y)+g(—y) = f(y)+ f(—y)—h(0) forall y € X. Therefore,
2£(0) =2g(0) + h(0), and f satisfies

Ja+N+fax=—=2fx)+ )+ (=) -2f0), x,yeX.

Itis easy to see that F = f — f(0) satisfies F(x+y)+ F(x—y) =2F(x)+ F(y)+
F(—y) for all x,y € X. Then, F has the form F = A+ Q,where A : X — Y is
additive and Q : X — Y is quadratic. This proves that f = A + Q + f(0). Since
h(x) —h(0) =2F(x),we get h(x) = h(0) +2A(x) + 2Q(x) for all x € X. On the
other hand, we have

gy +g(=y)=f() + f(=y) —h(0)
=Fy)+ F(=y) +2f(0) — h(0)
=200y +2g0), yeX,

which completes the proof.

Theorem 5 Let X and Y be vector spaces, and let a # 0, 1. If a function f : X —
Y satisfies (2), then f is additive.

Proof Letting x = y = 0in (2), we get f(0) = 0. If we put x = 0 in (2), we
infer that f is odd. Letting y = 0 in (2), we obtain f(ax) = af(x) for all x € X.
Therefore, f satisfies f(ax + y) + f(ax —y) = 2 f(ax) for all x € X. Replacing
x by x/a in the last equation, we get f(x +y) + f(x —y) =2f(x) forall x € X.
This shows f is additive.

Theorem 6 Let X and Y be vector spaces, and let a # 0. If functions f, g : X — Y
satisfy f(0) = 0 and

flax +y) + flax —y) =g(x) +af(x), x,yeX, ®)
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then f and g are additive.
Proof Letting y = 01in (8), we get 2 f (ax) = g(x) + af (x). Therefore, f satisfies
flax +y) + f(ax —y) = 2f(ax) for all x € X. Replacing x by x/a in the last
equation, we get f(x +y) + f(x —y) =2f(x) for all x € X. Then, f is additive.
It follows from 2 f (ax) = g(x) + af (x) that
gx+y)=2f(ax +ay) —af(x +y)
=[2f(ax) —af ()] +[2f(ay) —af(y)]
=gx)+g(y), x,yeX

Therefore, g is additive.

Theorem 7 Let X and Y be vector spaces, and let a € 7\ {0, £1}. If a function
f : X — Y satisfies (3), then f is additive.

Proof We may suppose that f # 0. Letting x = y = 0in (3), we get f(0) = 0. If
we put y = 0 in (3), we obtain f(ax) = af (x) for all x € X. Therefore, f satisfies

flax+y)+ flax —y) =2f(ax)+ f(y) + f(=y), x,yeX. 9
Replacing x by x/a in (9), we get
Ja++fax=y=2f)+fOM+ f(=y), x.yeX. (10)

We claim that if f is even, then f = 0. If f is even, it follows from (10) that
f(ax) = a®f(x) for all x € X. On the other hand, we have f(ax) = af(x) for
all x € X. Hence, a® = a, which is a contradiction. Since fe (the even part of f)
satisfies in (3), we infer that f, = 0 and f is odd. Therefore, (10) implies that f is
additive.

Theorem 8 Let X and Y be vector spaces, and let a € Z \ {0}. If functions f, g :
X — Y satisfy

flax+y)+ flax —y) =g(x) + fO) + f(—=y), x,yeX, (11)

then there exist a quadratic function Q : X — Y and an additive function A : X —
Y suchthat f = Q+ A+ f(0)and g = 2[a2Q + aAl.

Proof Letting y = 0 in (11), we get 2f(ax) = g(x) + 2f(0) for all x € X.
Therefore, f satisfies

flax+y)+ flax—y) =2f@@x)+ f)+ f(=y)=2f0), x,yeX. (12)

Replacing x by x/a in (12), we get
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e+ + =) =2f)+ M+ f(=y)=2f0), x,yeX.  (13)

Therefore, the function /2 : f — f(0) satisfies h(x +y)+h(x —y) = 2h(x)+h(y)+
h(—y) for all x, y € X. Then, there exist a quadratic function Q : X — Y and an
additive function A : X — Y suchthath = Q + A. Hence, f = QO+ A+ f(0) and
g =2[a’>0Q +aAl.

3 Some s-Functional Inequalities

Lemma 1 Letr X be avector space and Y be a normed space, and let s be a complex
number with 2|s|> < 1. If a function f : X — Y satisfies

If(x+y) = f) = fDI
SlIslfx+»+ =y —f2x)—fO) = fFE0IL
forall x,y € X, then f is additive.

(14)

Proof Letting x = y = 0in (14), we get f(0) = 0. Letting y = —x in (14) and
using f(0) = 0, we get || f(x) + f(—=x)|| < Is|l|f(x) + f(—x)]| for all x € X.
Since |s| < 1, we infer that f is odd. Therefore, (14) means

If(x+y) = f) = fOI
SIsbf G+ )+ fx —y) = fEOII,

for all x,y € X. Letting y = x in (15), we get f(2x) = 2f(x) forallx € X. It
follows from (15) that

Ifx4+y)+ fx—y) = fQ2x)]
< IsLfQx) + f2y) — fQ2x 4+ 2]l
S20sLf )+ fO) = fx+ 01

for all x, y € X. Therefore,

15)

If G+ = f) = FOI 2PN +3) = F) = fFWIL x,y€X.

Since 2|s|?> < 1, we get f(x +y) — f(x) — f(y) = Oforall x, y € X. This proves
that f is additive.

Lemma 2 Let X be a vector space and Y be a normed space, and let s be a complex
number with |s| < 1. If a function f : X — Y satisfies

[fx+y)+fx=y) = fQ2x) = f(y) = fF(=l
S Isf x4+ y) = fF0) = FODIIL

16)



344 B. Noori et al.

forall x,y € X, then f is additive.
Proof Letting x = y = 01in (16), we get f(0) = 0. Letting y = —x in (16) and
using f(0) = 0, we get || f(x) + f(=0)| < Is|llf(x) + f(—=x)| for all x € X.
Since |s| < 1, we infer that f is odd. Therefore, (16) means

Ifx+y)+ flx—y) = fQ2x0)]

S slf G +y) = fx) = fFDIL

a7

forall x,y € X. Letting y = 01in (17), we get f(2x) = 2f(x) forall x € X. It
follows from (17) that
2f)+ fO) = f+I=11F2x)+ f2y) — f(2x +2y)
S IsLf@x) = flx+y) = flxe =
< IsPIFE) + £O0) = fE+ W,

forall x, y € X. Since |s| < 1,we get f(x+y)— f(x)— f(y) =0forallx,y € X.
This proves that f is additive.

Theorem 9 Let X be a normed space and Y be a Banach space. Suppose that s is
a complex number with 2|s|*> < 1. Let a function f : X — Y satisfy

If(x+y) = f) = fFO
SIS+ + fx=y) = fQx) = fFO) = fFE=0II (18)
+ellxll” + 1y, x.ye€X,

for some nonnegative real numbers r < 1 and e. Then, there exists a unique additive
mapping A : X — Y such that

2¢ r
lf(x)—A®)| < mﬂxﬂ , x€X. (19)

Proof Letting y = —x in (18), we get

1) = f(x) = f(=x)

< sLFO) — fx) = fEO0Il +2ex],  x e X.
Therefore, we have

2¢e

lx]I", xe€X. (20)
1 —|s|

£ O0) = fx) = fF(=0)I <

Letting y = x in (18) and using (20), we get
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2
1f @x) =2f Ol < 5 _8|s| lxll", x €X. ey

Replacing x by 2"x in (21) and dividing the resulting inequality by 2"*!, we obtain

‘ on+l 1—s|
Hence,
N m n—1
e RIS |
S | f(;’:llx) B f(;’:x) | )

—1
ellx|” = 27 \k
< (_) . xeX,

Tl-lsl 2 \2

for all nonnegative integers m and n with n > m. It follows from (22) that the
}n 1s Cauchy for all x € X. Since Y is a Banach space, the sequence

se f@2"x)
quence {5
{f%}:x) }n converges. So, one can define the mapping A : X — Y by
21’!
AW = tim L&Y e x.
n—oo 2N

Moreover, letting m = 0 and passing the limit n — oo (22), we get (19). We now
show A is additive. It follows from the definition of A and (18) that

JAG +3) = A = AW
1
= lim | f@" G+ — f@0) = f2")|

S QA2 ) f Qx=2) = f @)= £ 2" )— (<2

1

< lim —

n—o00 2N

. 2r n r r

+ lim (—) e(lxl” + Iy
n—o00 \ 2

=ls[Ax +y) + Alx —y) — AQ2x) — AQY) — A=D1 x, yeX.

By Lemma 1, we infer that A is additive. Finally, it remains to prove the uniqueness
of the additive mapping A. Assume that 7 : X — Y be another additive mapping

satisfying (19). Then, we have
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IA@ - Tl = o 4@ - 7@
< zi AQ) - f@| + 2ian(2"x) — 7@

2"\ 4e ,
S (?) a—nrpa— "

which tends to zero as n — oo for all x € X. So, we can conclude that A = T', and
this proves the uniqueness of A, as desired.

Theorem 10 Let X be a normed space and Y be a Banach space. Suppose that s
is a complex number with 2|s|> < 1. Let a function f : X — Y satisfy (18) for
some nonnegative real numbers r > 1 and €. Then, there exists a unique additive
mapping A : X — Y such that

2¢ r
lf(x) —AX)| < mﬂxﬂ , xeX. (23)

Proof A similar argument as in the proof of Theorem 9 yields the inequality (21).
Replacing x by x/2"*! in (21) and multiplying the resulting inequality by 2", we
obtain

+1 X X 2\n+l ¢
o f<2"+1) ‘2"f(ﬁ>H < (z_r) 1_—|S|IIXI|’, xeX, neN.

Hence,
n—1
21 (5) 2" (55)] = | 2 21 (5mr) =21 ()]
T -] e

k=m

—1
ellx|l” % 2 \k+1
< llx | Z( ) Cxex

S-ls| & 2r

for all nonnegative integers m and n with n > m. It follows from (24) that the
sequence {2”f(2x—,,)}n is Cauchy for all x € X. Since Y is a Banach space, the
sequence {2" f (37)} converges. So, one can define the mapping A : X — Y by

. n X
Ax) = lim 2 f(z—n) xeX.
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Moreover, letting m = 0 and passing the limit » — oo in (24), we get (23). Since
the rest of the proof is similar to the proof of Theorem 9, we omit the rest of the
proof.

Remark 1 By using Gajda’s function (see [6]), we infer that Theorems 9 and 10 are
false for r = 1.

Theorem 11 Let X be a normed space and Y be a Banach space. Suppose that s is
a complex number with |s| < 1. Let a function f : X — Y satisfy

Ifx+»+fx—=y)—f2x)—= f) = fF=I
<slfGx+y) = f&) = fFOII (25)
+e(llx”+lyl"), x,yeX,

for some nonnegative real numbers r < 1 and e. Then, there exists a unique additive
mapping A : X — Y such that

ILf(x) = A < <", xeX. (26)

Proof Letting x = y = 0in (25), we get £(0) = 0. If we let y = 0 in (25), we have
If2x) =2f) <ellx|”, xe€X. (27

Replacing x by 2"x in (27) and dividing the resulting inequality by 2"*!, we obtain

xe X, neN.

L2500 - L2 <52

Hence,
n

f@)  fQM @) f@k
| =1 2[5 -]l

n—1

F* 1y fkx)
| - 29)
=m
r n—l r
2\ k
<SIIJCII (_) rexX
2 2
k=m

for all nonnegative integers m and n with n > m. It follows from (28) that the

sequence {f (2: x) }n 18 Cauchy for all x € X. Since Y is a Banach space, the sequence

(520

converges. So, one can define the mapping A : X — Y by
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2n
A(x) := lim f(znx), xeX.

— 00

Moreover, letting m = 0 and passing the limit n — oo (28), we get (26). Since the
rest of the proof is similar to the proof of Theorem 9, we omit the rest of the proof.

Theorem 12 Let X be a normed space and Y be a Banach space. Suppose that s
is a complex number with |s| < 1. Let a function f : X — Y satisfy (25) for some
nonnegative real numbers r > 1 and ¢. Then, there exists a unique additive mapping
A : X — Y such that

ILf(x) — AN <

€ - )
Sl xex. (29)
Proof A similar argument as in the proof of Theorem 11 yields the inequality (27).
Replacing x by x/2"*! in (21) and multiplying the resulting inequality by 2", we
obtain

2n+1f(2nx+1> a 2nf<2x_")H S %(;)Hlnxnr’ veX el

Hence,

RORC R CORE)

n—1
k+1 X k X

ST -] o
—1

ellx|I” o /2 \kH!

STy (27) » *¥EX,
k=m

for all nonnegative integers m and n with n > m. It follows from (30) that the
sequence {2" f (2"—,,)},1 is Cauchy for all x € X. Since Y is a Banach space, the
sequence {2" f (2)‘—,1)},1 converges. So, one can define the mapping A : X — Y by

A(x) == lim 2"f(i), xeX.
n—00 n
Moreover, letting m = 0 and passing the limit n — o0 in (30), we get (29). Since

the rest of the proof is similar to the proof of Theorem 9, we omit the proof.

Remark 2 By using Gajda’s function (see [6]), we infer that Theorems 11 and 12
are false for r = 1.

Theorem 13 Let X be a normed space and Y be a Banach space. Suppose that s is
a complex number with Is|? < 2 and that ¢ : X x X — [0, 400) is a function such
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that ¢(x,0) = 0 for all x € X and satisfies one of the following conditions:

L):O, x,y € X.

iy, on ,
fim £ 2 o 0 lim 2"<p(i,
o on

n— 00 on n— 00

Let a function f : X — Y satisfy

[f&x+y)+fx=y) = fQ2x) = f(y) = fF(=

€1V
SIsLfx+y) = f0) = fFDIT+(x,y),  x,yeX.

Then, f is additive.

Proof Letting x = y = 01in (33), we get f(0) = 0. If we let y = 0 in (33), we have
f(2x) =2f(x) forall x € X. Two cases arise: If lim;,_, oo W = 0, then

If G+ 3) + Fe =) = £Q@0) = FG) = F=D

= %llf@”x +2) 4 f@x = 2"y) — fQ) — £ — (=2

< %lls[f(z”x +2"y) — f2") — FQ I + 21n<p(2"x, 2"y)

=lslf&x+y)— f) = fFOWIl+ 2in¢>(2"x, 2"y), x,yeX,neNl
Therefore,

If G2+ fa =) = fQ20) = fG) = F(=)

SIS+ 3) = ) = FONI+ 379@"%, 2", xye X, nel.
Letting 7 — 00 in the above inequality, we obtain (16). Hence, we conclude that
£ is additive by Lemma 2,

I£1im, o0 270 (35, 37) = 0, then

If G4 3+ flx—3) = fQ20) = FO) = f=Dl
(5430 + 7 (53— 1(5) ~7(5) (= 5
(G +3)-1(3) @)+ 2o 3)

= IsLf G +3) = ) = FON+2"9 (3

=2"

<2

X
,2—n), x,ye X, neN.
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Therefore,

Ifx+y)+fx=y) = f2x) = f) = FE=

<L+ = f0 = FON+2"%(55. 5 ), xyeX. neN.

Letting n — 4-o00 in the above inequality, we obtain (16). Hence, we conclude that
f is additive by Lemma 2.

Corollary 1 Let X be a normed space and Y be a Banach space. Suppose that s is
a complex number with |s| < 1 and that o, B and y are nonnegative real numbers
satisfy one of the following conditions:

B>0,,a+8,y€(,1), or >0, a+8,yec(,+o0).
Let a function f : X — Y satisfy
[fGx+y)+fx—y)—f2x) = f() = fF=D

S IslfGxe4+y) = fF0) = fFODII
+ellx|UyIP +elyl”, x,yeX,

for some nonnegative constants 6 and ¢e. Then, f is additive.

Lemma 3 Let X be avector space and Y be a normed space, and let s be a complex
number with |s| < 1. If a function f : X — Y satisfies

[fx+y)+ flx—y) = fQR)]
SsLfGe+y) = f) = fFOIIL

(32)

forall x,y € X, then f is additive.
Proof Letting x = y = 0in (32), we get (0) = 0. Letting y = 0 in (32) and using
f(0) =0, weget f(2x) =2 f(x) for all x € X. It follows from (32) that
2f@+fO) = fx+ I =1F2x) + fQ2y) — f2x +2y)]
SIsLf@x) = fx+y) = fx =]
<IPIS@) + £ ) = fG+ 0,

forall x, y € X. Since |s| < 1,we get f(x+y)— f(x)— f(y) =0forallx,y € X.
This proves that f is additive.

Applying a similar method given in the proof of Theorem 13, we obtain the
following:
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Theorem 14 Let X be a normed space and Y be a Banach space. Suppose that s is
a complex number with |s| < 1 and that ¢ : X x X — [0, +00) is a function such
that ¢(x,0) = 0 for all x € X and satisfies one of the following conditions:

. 9(2"x,2"y)

n—o00 2

0, or lim 2"<p<2x—n y):O, x,y€X.

n—00 ’ 2_”
Let a function f : X — Y satisfy

[fx+y)+ flx—y)— fQCO)
Sslf G +y) = ) = FDIT+ 9. y), x.yeX.

(33)

Then, f is additive.

Corollary 2 Let X be a normed space and Y be a Banach space. Suppose that s is
a complex number with |s| < 1 and that a, B and y are nonnegative real numbers
satisfy one of the following conditions:

B>0, a+8,ye1), o B>0 a+p ye((l,+00).
Let a function f : X — Y satisfy

[fx+y)+ fx—y) = fQC]
S Isbf x4+ y) = f0) = fFODII
+ellx“IylP + 01y, x,ye€X,

for some nonnegative constants 0 and ¢. Then, f is additive.

Lemma 4 Let X be avector space and Y be a normed space, and let s be a complex
number with 2|s|> < 1. If a function f : X — Y satisfies

If(x+y) =) = fO
SIsff G+ )+ fx = y) = fFEOIIL

(34)

forall x,y € X, then f is additive.

Proof Letting x = y = 0in (34), we get f(0) = 0. Letting y = x in (34) and using
f(0) =0, weget f(2x) =2f(x) for all x € X. It follows from (34) that

If2x) — fx+y) — fx = I < IsIIF2x) + fQ2y) — f2x +2y)]|
L2UsPIfx+y) + fFx—y) — FROI,

forall x, y € X. Since 2|s|> < 1, we get f(x+y)+ f(x —y)— f(2x) = 0 for all
x,y € X. This proves that f is additive.
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Proposition 1 Let X be a vector space and Y be a normed space, and let s be a
complex number with 2|s|* < 1. Suppose that a function f : X — Y satisfies

Ifx4+y) = fx) = fFODI

(35)
SIslf G4y + fx =) = fFROl+ellx =y,

forall x,y € X, where ¢ and r are nonnegative real number with r # 1. Then, f is
additive.

Proof Letting x = y = 0 in (35), we get f(0) = 0. Letting y = x in (35) and
using f(0) = 0, we get f(2x) = 2 f(x) for all x € X. Two cases arise: If r < 1, it
follows from (35) that

If(x+y) = fx) = fODI
1
= z—nllf(2"x +2"y) = f2"0) = fFQ"W
1
< |2—n|||f(2”x +2") + fQ@"x = 2"y) = F" DI+ 2—n||2”x =2

1
=lslfx+y)+ fx—y) = fFCOIl + 5”2")6 29I, x,yeX, neN.

Therefore,
Ifx+y)— fx)—FI

1
SIsLfx+ )+ fx—y) = fEOIIl + 2—,,||2"x -2'yI", x,yeX, nel

Letting n — 400 in the above inequality, we get (34). Hence, f is additive by
Lemma 4. If r > 1, it follows from (35) that

If(x+y) = f) = fOI

=2|r(52) - 1(3) - ()]
<2l (52) + 1 (G -G+
= IsLf(x+ ) + f(x —y) — FQOI] +2" xz_ny)(’, xyeX, neN.

Therefore,

If(x+y) = f) = fOI

X —
21’[

r

SIslf+ )+ fx—y) = fQ0II+2" . x,yeX, nel.
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Letting n — +o0 in the above inequality, we get (34). Hence, f is additive by
Lemma 4.
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Stability of the Cosine-Sine Functional m)
Equation on Amenable Groups ik

Ajebbar Omar and Elqorachi Elhoucien

Abstract In this paper, we establish the stability of the functional equation

fxy) = f(x)eg(y) +gx) f(y) +h(x)h(y)

on amenable groups.

1 Introduction

The stability problem of functional equations goes back to 1940 when Ulam [14]
proposed a question concerning the stability of group homomorphisms. Hyers [6]
gave a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers’s theorem was generalized by Aoki [3] for additive mappings and Rassias
[10] for linear mappings by considering an unbounded Cauchy difference. The
stability problem of several functional equations has been extensively investigated
by a number of authors. An account on further progress and developments in this
field can be found in [5, 7, 8].

In this paper, we investigate the stability of the trigonometric functional equation

Jay) = fx)g(y) +gx) f(y) +h(0)h(y), x.y € G ey

on amenable groups.
The continuous solutions of the trigonometric functional equations

fxy)=f®eg(y) +gx)f(y), x,ye G 2
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and

fay)=fOfQy)—egx)gy), x,yeG 3)

are obtained by Poulsen and Stetker [9], where G is a topological group that
need not be abelian. Regular solutions of (2) and (3) were described by Aczél
[1] on abelian groups. Chung et al. [4] solved the functional equation (1) on
groups. Recently, Ajebbar and Elqorachi [2] obtained the solutions of the functional
equation (1) on a semigroup generated by its squares. The stability properties of
the functional equations (2) and (3) have been obtained by Székelyhidi [13] on
amenable groups.

The aim of the present paper is to extend the Székelyhidi’s results [13] to the
functional equation (1).

2 Definitions and Preliminaries

Throughout this paper, G denotes a semigroup (a set with an associative composi-
tion) or a group. We denote by Z(G) the linear space of all bounded complex-valued
functions on G. We call a : G — C additive provided that a(xy) = a(x) +a(y) for
all x,y € G and call m : G — C multiplicative provided that m(xy) = m(x)m(y)
forall x,y € G.

Let ¥ be a linear space of complex-valued functions on G. We say that the
functions fi,- -+, f : G — C are linearly independent modulo ¥ if A| f; + - -
-+ Ay fu € ¥V implies that Ay = --- = A, = 0 for any Ay, - -+, A, € C. We say
that the linear space ¥ is two-sided invariant if f € ¥ implies that the functions
x = f(xy)and x — f(yx)belongto ¥ forany y € G.

Notice that the linear space A(G) is two-sided invariant.

3 Basic Results

Throughout this section, G denotes a semigroup and ¥ a two-sided invariant linear
space of complex-valued functions on G.

Lemmal Let f,g,h: G — C be functions. Suppose that f, g and h are linearly
independent modulo V. If the function

x = fxy) = f(x)g(y) — g(x) f(y) = h(x)h(y)

belongs to V¥ for all y € G, then there exist two functions @1, 93 € V¥ such that

Y(x,y) = 01(x) f(y) + @2(x)h(y) 4
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forall x,y € G, where

Yx,y) = fxy) = fF(0)g(y) —g(x) f(y) — h(x)h(y) )

forallx,y € G.

Proof We use a similar computation as one of the proofs of [13, Lemma 2.1].

Since the functions f, g and & are linearly independent modulo ¥ so are f and
h, then f and h are linearly independent. Then, there exist yg, zo € G such that
F(o)h(zo) — f(z0)h(yo) # O, which implies that f(yo)h(zo) # 0 or f(zo)h(yo) #
0. We can finally assume that f(yo) # 0 and & (zp) # 0. By applying (5) to the pair
(x, yo), we derive

g(x) = ap f(x) + a1 h(x) +az fxyo) — a2 ¥ (x, yo) (6)
for all x € G, where g := — f (y0) 'g(») € C, a1 := —f(yo) ' h(y) € C and

ay == f(y0)~! € C are constants. Similarly, by applying (5) to the pair (x, zo), we
get that

h(x) = Bo f(x) + B1 g(x) + B2 f(xz0) — B2 ¥ (x, 20) )
for all x € G, where By := —h(z0)~'g(z0) € C, p1 := —h(z0) " f(z0) € C and

B> = h(zo)~! € C are constants.
Let x € G be arbitrary. Substituting (7) into (6), we obtain

g(x) = o f(x) + a1 [fo f(x)+ B1g(x) + B2 f(x20) — B2 ¥ (x, 20)]
+an f(xy0) — a2 ¥ (x, yo)
= (a0 + o1 Bo) f(x) + a1 B1 g(x) + a1 B2 f(xz0) — a1 P2 ¥ (x, 20)
+ a2 f(xyo) — a2 ¥ (x, yo)-

So that

(I —oa1B1) g(x) = (o + a1 Bo) f(x) + 182 f(xz0) — a1 B2 ¥ (x, z0)

(8
+ oo f(xyo) — a2 ¥ (x, yo).

Since f(yo)h(zo) — f(zo)h(yo) # 0 and f(yo)h(zo) # 0, we get that oy 81 # 1.
So, x being arbitrary, we derive from (8) that there exist yp, y1, 2 € C such that

gx) =yo f(x)+y1 f(xyo) +y2 f(xz0) — y1 ¥ (x, ¥0) — Y2 ¥ (x, 20) )

for all x € G. Similarly, we prove that there exist 8o, §1, 52 € C such that

h(x) = 8o f(x) + 81 f(xy0) + 82 f(x20) — &1 ¥ (x, yo) — 82 ¥ (x, 20) (10)
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for all x € G. Let x, y,z € G be arbitrary. In the following, we compute f(xyz)
first as f((xy)z) and then as f(x(yz)). By applying (5) to the pair (xy, z), and
taking (9) and (10) into account, we obtain
F((xy)2) = fxy) g(z) +g(xy) f(2) + h(xy) h(z) + ¥ (xy, 2)
=[f(x)g(y) +g(x) f () + h(x)h(y) + ¥ (x, y)]1g(z)
+vo fey)+y1 fxyyo)+ya fxyzo)=y1 ¥ (xy, yo)—y2 ¥ (xy, 20)1f (2)
+[80 f(xy)+81 f(xyyo)+32 f(xyz0)—81 ¥ (xy, yo)—82 ¥ (xy, z0)1h(2)
+ ¥ (xy, 2)
=[f()g) +g(x) f(y) +h()h(y) + ¥ (x, y)]g(2)
+r[f(0)g(y) +g() f(y) +h(x)h(y) + ¥ (x, ¥)]f(2)
+ 1 Lf (0)g(yyo) + 8(x) f(yyo) + h(x)h(yyo) + ¥ (x, yyo)1f(2)
+ 72 [f(0)g(yz0) + 8(x) f (yz0) + h(x)h(yzo) + ¥ (x, yz0)] f(2)
+ 80 [f()g(y) +80) f () + h(x)h(y) + ¥ (x, y)]h(z)
+ 81 [f (g (yyo) + &) f(yyo) + h(x)h(yyo) + ¥ (x, yyo)lh(z)
+ 82 [f(0)g(yzo) + &) f (yzo) + h(x)h(yzo) + ¥ (x, yz0)]h(2)
= ¥ (xy, yo)+r2 ¥ (xy, 201 f(2) — [81 ¥ (xy, yo) + 82 ¥ (xy, 20)]h(2)
+ ¥ (xy, 2).

So that

F(xy)z) = fF)lg(Mg@) +r0 g f(2) + v18(yyo) f(2) + v28(yzo) £ (2)
+ 80 8(Wh(2) + 81 g(yyo)h(2) + 82 g(yz0)h(2)]
+ 8L (Mg@) +yo fFW @+ 1 f(yyo) f(2)+ v fyzo) f(2)
+ 80 f(Mh(2) + 81 fyyo)h(2) + 82 f(yzo)h(2)]
+ h(x)[h(y)g(@) + yo h(y) f(2) + y1 h(yyo) f (z) + y2 h(yz0) f (2)
+ 80 h(y)h(z) + 81 h(yyo)h(z) + 82 h(yz0)h(2)]
+ v, y) + v ¥, yyo) + 2 ¥ (x, yzo) — v1 ¥ (xy, yo)
=2 vxy, 201 @) + ¥ (x, y)g@) + [0 ¥ (x, y) + 81 ¥ (x, yyo)

+ 8 Y (x, yz0) — 81 ¥ (xy, yo) — 82 ¥ (xy, z0)]1h(2) + ¥ (xy, 2).
(1)
On the other hand, by applying (5) to the pair (x, yz), we get that

fx(y2) = f(x)g(yz) + g(x) f(yz) + h(x)h(yz) + ¥ (x, y2). 12)
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Now, let y, z € G be arbitrary. By assumption, the functions

X = W(Xv )’), X = 1/’()‘: yYO)7 X = T/f()ﬁ YZ0)7 X = T/f()ﬁ YZ)

belong to #'. Moreover, since the linear space ¥ is two-sided invariant, the functions

x = Y(xy, yo), x = ¥(xy, z0), x = ¥(xy, z)

belong to . Hence, by using (11), (12) and the fact that f, g and & are linearly
independent modulo ¥/, we get that

fO)=fMeg@ +1Ivo fFO) +v1 fyyo) +v2 f(yzo)lf(2) (13)
+[80 f () + 81 f(yyo) + 62 f(yzo)lh(2).

From (9), (10) and (13), we get

) =g+ +ri vy, yo) + 2 ¥ (v, z0)1f (2)
+ [h(y) + 81 ¥ (y, y0) + 82 ¥ (¥, 20)]h(2)
= (Mg + g f @) +h(h(@) +yi ¥(y, yo) + 2 ¥ (y, 20)1f(2)
+ [81 ¥ (¥, y0) + 82 ¥ (¥, 20) ] (2).

Hence, by using (5), we obtain
Y (y.2) =i (. yo) + 29 (v, 201 (2) + [81 ¥ (¥, yo) + 82 ¥ (¥. 20)1h(2).
So, y and z being arbitrary, we deduce (4) by putting
@1(x) =71 ¥ (x, yo) + v2 ¥ (x, z0)
and
@2(x) = 81 ¥ (x, yo) + 2 ¥ (x, z0)

for all x € G. This completes the proof of Lemma 1.

Lemma?2 Let f,g,h : G — C be functions. Suppose that f and h are linearly
independent modulo ¥ and g € V. If the function

x = flxy) = f(x)g(y) — g(x) f(y) = h(x)h(y)

belongs to ¥V forall y € G, then g is multiplicative.
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Proof Lety, z € G be arbitrary. By using the same computation as one of the proofs

of Lemma 1, we obtain from (11) and (12), with the same notations, the following
identity:

f)g(yz) +gx) f(yz) + h(x)h(yz) + ¥ (x, yz)

= fg(»g@ + 108 f(2) +vi18(yyo) f(2) + ¥28(yz0) f(2) + o g (¥)h(2)
+381 8(yyo)h(2)+82 8 (yz0)h(2) 1+ () f (1 g()+yo f () f @) +y1 f(yyo) f(2)
+v2 f(y20) f (2)+80 f (MA(2)+81 f(yyo)h(2)+82 f(yzo)h(2)]+h(x)[h(y)g(z)
+v0h(y) f (@) + y1h(yyo) f(2) + v2 h(yz0) f(2) + 8o h(y)h(z) + 81 h(yyo)h(2)
+ 82 h(yzo)h(D)] + [yo ¥ (x, y) + 1 ¥ (x, yyo) + v2 ¥ (x, y20) — y1 ¥ (xY, yo)
=2 ¥(xy, z0)1f(2) — ¥ (x, ¥)g(2) + [8o ¥ (x, y) + 81 ¥ (x, yyo) + 82 ¥ (x, yzo)
— 81 ¥ (xy, yo) — 82 ¥ (xy, z0)1h(2) + ¥ (xy, 2)

for all x € G. So that

FIEME@ + 08 f (@) + v1 8(ryo) f(2) + v28(y20) £ (2) + 80 &(y)h(2)
+ 81 8(yyo)h(2) + 82 8(yz0)h(z) — g(y2)] + h(x)[h(¥)g(2) + Yo h(¥) f(2)
+v1 h(yyo) f (2) + v2 h(y20) £ (2) + 80 h(y)h(z) + 81 h(yyo)h(z)

+ 82 h(yz0)h(z) — h(y2)]

=—g@fMg@+yo f) f@D+y1 f(yyo) f(@)+y2 f(yzo) f(@)+80 f(¥)h(z)
+ 81 f(yyo)h(z) + 62 f(yzo)h(2) — fFOD] = [ ¥ (x, y) +y1 ¥ (x, yyo)
+ 2 ¥ (x, yz0) — V1 ¥ (xy, yo) — v2 ¥ (xy, z0)1f (2)

—[Bo ¥ (x, y) + 81 ¥ (x, yyo) + 82 ¥ (x, yzo) — 81 ¥ (xy, yo) — 82 ¥ (xy, 20)](2)
— Y (xy.2) + ¥ (x, y2)

14

for all x € G. Since g € ¥, the function x — ¥ (x, t) belongs to ¥ forallt € G

and 7 is a two-sided invariant linear space of complex-valued functions on G, we

get that the right-hand side of the identity (14) belongs to ¥ as a function of x, so

does the left-hand side of (14). Since f and /4 are linearly independent modulo 7,
we get that

geg@) +r0g) f(2) + v1g(yyo) f(2) + v22(yz0) f(2) + 30 g(¥)h(z)
+ 81 g(yyo)h(z) + 82 g(yzo)h(z) — g(yz) = 0. S
(15)
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So, y and z being arbitrary, we get that

gy —g(»g@ =g + v1 g(yyo) + 2 8(yz0)1f(2)
+ [80 g(¥) + 81 g(yyo) + 82 g(yz0)1h(2)

(16)

for all y, z € G. Now, let y € G be arbitrary. Since g € ¥ and ¥ is a two-sided
invariant linear space of complex-valued functions on G, we derive from (16) that
the function

2= Yo g +v1 8(vyo) + 12 8(yzo)1f (2) + 80 g(») + 81 g(yyo) + 82 g(yz0)1h(2)

belongs to #'. Hence, seen that f and h are linearly independent modulo ¥/, we get
that y9 g(y) + y1 g(yyo) + ¥2 g(yzo) = 0 and 8o g(y) + 81 g(yyo) + 2 g(yz0) = 0.
Substituting this back into (16), we obtain g(yz) = g(y)g(z) for all z € G. So,
y being arbitrary, we deduce that g is multiplicative. This completes the proof of
Lemma 2.

Lemma3 Let f,g,h : G — C be functions. Suppose that f and h are linearly
dependent modulo V. If the function

x = fxy) = f(x)g(y) — g(x) f(y) — h(x)h(y)

belongs to V for all y € G, then we have one of the following possibilities:

(1) f =0, gisarbitraryandh € ¥;

2) f,g.he?;

3) g—l—%f =m—Xro, h—XAf = ¢, where . € C is a constant, ¢ € ¥V and
m : G — C is a multiplicative function such thatm € ¥;

@4 f=am—ab, g= La‘xzm—i—#b—)\(p,h =ailm — arb + ¢, where
a, A € C are constants, m : G — C is a multiplicative function and b, ¢ € V;

O f=rfg= go—%fo—)up, h =X fo+ ¢, where ). € C is a constant, p € V
and fo, go : G — C satisfy the sine addition law

Foxy) = fo(x)go(y) + go(x) fo(»), x,y € G.

Proof Let v be the function defined in (5). If f = 0, then g is arbitrary and the
function x + h(x)h(y) belongs to ¥ for all y in G. Hence, h € ¥. The result
occurs in (1) of Lemma 3. In what follows, we assume that f # 0. We have the
following cases:

Case 1: h € ¥. Then, the function x +— h(x)h(y) belongs to ¥ for all y in G.
So, the function x — f(xy) — f(x)g(y) — g(x) f(y) belongs to ¥ for all y in G.
Hence, according to [13, Lemma 2.2] and taking into account that f # 0, we get
that one of the following possibilities holds:
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() f,g,h € ¥, which occurs in (2) of Lemma 3.
(i) g=mand h = ¢, where ¢ € ¥ and m : G — C is a multiplicative function
such that m € ¥ This is the result (3) of Lemma 3 for A = 0.

(i) f=am—ab,g= %m—i—%b,h = ¢, where ¢ € Cisaconstant,m : G — C
is a multiplicative function and b, ¢ € ¥'. This is the result (4) of Lemma 3 for
A=0.

iv) fxy) = f(x)g(y) +g(x)f(y) forall x,y € G and h = ¢, where ¢ € ¥,
which is the result (5) of Lemma 3 for A = 0.

Case2: h & V. If f € ¥, then the function x — f(xy) belongs to ¥ forall y € G,
because the linear space ¥ is two-sided invariant. As the function x — ¥ (x, y)
belongs to ¥ for all y € G, we get that the function x — g(x)f(y) + h(x)h(y)
belongs to ¥ forall y € G. Since h ¢ ¥, we have h # 0. We derive that there exist
a constant ¢ € C \ {0} and a function k € ¥ such that

h=ag+k, (17
so that

Vx,y) = fxy) = f(x)g(y) —g(x) f(y) — (e g(x) + k() (e g(y) + k(y))
= fxy) = f)g(y) — g0) f(y) —a? g(0)g(y) — & g(k(y) — ak(x)g(y)
— k(X)k(y)
= f(xy) = k(0)k(y) — g (¥) + & g(3) + @ k(¥)] — gL (x) + a k(x)]
= fxy) —k@)k(y) = g@Lf(¥) + ()] — gWLf (x) + ak(x)]
forall x, y € G. Since the functions x — f(xy), x > k(xX)k(y),x — gW[f(x)+
ak(x)] and x — ¥ (x, y) belong to ¥ for all y € G, we derive from the identity

above that the function x — g(x)[f(y)+«a h(y)] belongs to ¥ forall y € G, which
implies that g € ¥ or f(y) + @ h(y) = O forall y € G. Hence, since « € C \ {0},

1
we getthat g € ¥ or h = —— f. So, taking (17) into account, we get that 1 € 7,

o

which contradicts the assumption on /4, and hence f € #. As f and h are linearly
dependent modulo ¥/, we infer that there exist a constant A € C \ {0} and a function
@ € ¥ such that

h=xf+o. (18)

So, we get from (5) that
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Yx,y)=fxy)— f)g(y) —g@) f() — A fx)+ o)A f() + o)
= fy)—FX)g)—gx) fF(N=A2 F(X) fF ) =A F(X)9(Y)—A 9(x) f(¥)

—o@)e(y)
)\‘2
= f(xy) —eX)e(y) — f)lg(y) + > fO) +2re(y)]

)\‘2
—[g(x) + X f@) + 2] f (),

for all x, y € G, which implies that

V(x,y) +o)e(y) = fxy) = fF)P () — o) f(y) 19)

for all x, y € G, where

)\'2
¢3=g+?f+)»¢~ (20)

Since ¢ € ¥ and the function x — v (x, y) belongs to ¥ for all y € G, we get
from (19) that the function

x = fxy) = f()e(y) —o(x) f(y)

belongs to ¥ for all y € G. Moreover, ¥ is a two-sided invariant linear space
of complex-valued function. Hence, according to [13, Lemma 2.2] and taking into
account that f, h € ¥, we have one of the following possibilities:

(i) ¢ = m, where m € ¥ is multiplicative. Then, we get, from (20) and (18), that
g+ ’\—22 f=m—Agandh — A f = ¢, where ¢ € ¥ The result occurs in (3)
of Lemma 3.

(i) f=am—ab,¢ = %m+%b, where m : G — C is multiplicative,b : G — C
isin ¥ and @ € C is a constant. Taking (20) and (18) into account, we obtain,

respectively,
! + lb 22 ( b) — A
= — -0 — — (X — —
g=apmrpmylemma ¢
1 —ar? 14+ a2
= b—A
5 m + 5 ()
and

h=aim—arb+ ¢.
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So, the result (4) of Lemma 3 holds.

(i) f(xy) = f(x)p(y) + ¢(x) f(y) for all x, y € G. The result (5) of Lemma 3
holds easily by using the identities (18) and (20). This completes the proof of
Lemma 3.

Lemmad4 Let f,g,h : G — C be functions. Suppose that f and h are linearly
independent modulo V. If the functions

x> fxy)— f)g(y) —gx) f(y) —h(x)h(y)
and
x = f(xy) — f(yx)

belong to V forall y € G, then we have one of the following possibilities:

2 2
M) f=-2fo+220 =" fotpgo+ Lo h=2rpfo+rgo— oo,
where A € C \ {0} and p € C are constants, ¢ € V and fy, go : G — C satisfy

the cosine addition law

Soxy) = fo(x) fo(y) — go(x)go(y)

forallx,y € G;
(2)

Fxy) = A2 M(xy) = (f(x) — A2 M@x)m@y) +m@)(f () — 12 M(p))

+ 2% m(xy) + ¥ (x, y)

forallx,y € G,

1
g=5Bf+Bh+m
and
Bf+h=AM—im,

where B € C and A € C \ {0} are constants, m, M : G — C are multiplicative
Sfunctions such thatm € V', M & ¥ and s is the function defined in (5);

3

fxy) = fm(y) +m(x) f(y) + HX)H(y) + ¥ (x, y),

12
g=§ﬂ f+Bh+m
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and
H(xy)—m((x)H(y)—Hx)m(y) = n1 ¥ (x, y)+n2m(x)L1(y)+n3 m(x)L2(y)
+na ¥ (x, 1(y) +n5 ¥ (x, (y) +ne L1(xy) +n7 La(xy)

for all x,y € G, where B,n1,---,n7 € C are constants, m : G — C is
a multiplicative function in ¥, L1, Ly, € ¥, 1,1, : G — G are mappings,
H = B f + h and ) is the function defined in (5);

@ flxy) = f@)gy) +g) f(y) +h()h(y) forallx,y € G.

Proof We split the discussion into the cases of f, g and & are linearly dependent
modulo ¥ and f, g and A are linearly independent modulo 7.

Case A: f, g and h are linearly dependent modulo ¥'. Since f and h are linearly
independent modulo ¥/, we get that there exist a function ¢ € ¥ and two constants
o, B € C such that

g=af+Bh+o. (21)
By substituting (21) into (5), we obtain

Y (x, )= (xy)—f@la f)+Bh(M)+e]—la f()+Bh(x)+e(x)]f(y)
— h(x)h(y)
=fy)=2a fx)f(W—f@e)—e) f ()= f()h()—Bhx)f(y)
— h(x)h(y),

for all x, y € G, which implies that

Y,y = fxy) = Qa =B FO) — F)e() — () f ()
—[B fx)+hIB f(y) +h(M]

(22)

for all x, y € G. We have the following subcases:
Subcase A.1: 2 # B2. Let x, y € G be arbitrary, and let § € C \ {0} such that
8 =—Qa —p. (23)

Multiplying both sides of (22) by —52 and then adding ¢(xy) — ¢(x)¢(y) to both
sides of the identity obtained, we derive

— 8P (x, y) + o(xy) — o(X)p(y) = =87 f(xy) + @(xy) — [6* F(X) f ()
— 82 F()p() =82 9(x) F (M) +ox)eN] + 82 [B f(x) + h()IIB £ () + k()]



366 A. Omar and E. Elhoucien

So, x and y being arbitrary, we get from the identity above that
— 8% (x, )+ 9(xy) —9X)p() = fo(xy) — fo(x) fo(y) + go(xX)go(y),  (24)
for all x, y € G, where
for==8f+o (25)

and

go:=8(B f+h). (26)
Let y be arbitrary. As ¢ € 7, the function x — @(x)@(y) belongs to ¥, and
since the linear space ¥ is two-sided invariant, we get that the function x — ¢(xy)
belongs to #'. Moreover, by assumption the function x + v (x, y) belongs to 7.

Hence, the left-hand side of the identity (24) belongs to ¥ as a function of x. So
that the function

x = folxy) = fo(x) fo(y) + go(x)go(y)
belongs to 7. On the other hand, by using (25), we have
foxy) = folyx) = =8> (f(xy) — f(yx) + p(xy) — p(yx)
forall x € G. So, y being arbitrary, the function x — fo(xy)— fo(yx) belongs to ¥
for all y € G because the functions x — f(xy) — f(yx) and x — @(xy) — @(yx)

do. Moreover, fy and gg are linearly independent modulo ¥ because f and & are.
Hence, we get, according to [13, Lemma 1], that

SoGxy) = fox) fo(y) — go(x)go(y)

1
forall x, y € G. By putting > = 3’ we get, from (25), that

f=-2%fo+2%. 27)

By putting p = B, we get, from (26), that b = A go — B (=A% fo + A%@), which
implies that

h=2xp fo+*g —Apg. (28)

So, we derive from (21), (27) and (28) that
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g=0o (=22 fo+ 22 @)+ B (o fo+hgo— o)+
= (—ad’ + BAp) fo + Brgo + (@h® = fip + 1)
= (—ad’ +p) fo+ pgo+ @ = p* + .
Using (23), we find, by elementary computations, that «A> = % p’— % Hence, from
the identity above, we get that

2 2
o -p
fo+pgo+ .

2

The result obtained in this case occurs in (1) of Lemma 4.
Subcase A.2: 2o = B2. In this case, the identity (22) becomes

Vx,y) = fxy) — f(x)e(y) — @) f(y) — Hx)H(y) (29)
for all x, y € G, where
H:=8f+h. (30)

Since f and & are linearly independent modulo ¥ so are f and H. Moreover, ¢ €
¥ . Hence, according to Lemma 2, there exists a multiplicative functionm : G — C
in ¥ such that ¢ = m. So, the identities (21) and (29) become, respectively,

g=%,32f+/3h+m. 31)
and

Yx,y) = flxy) = fOm(y) —m(x) f(y) — H(x)H(y) (32)

for all x,y € G. We use similar computations to the ones in the proof of [4,
Theorem]. Let x, y,z € G be arbitrary. First, we compute f(xyz) as f(x(yz))
and then as f((xy)z). From (32), we get that
F(&x(y2)) = fx)m(yz) +m(x) f(yz) + Hx)H(yz) + ¢ (x, y2)
= fmyz) + m@)[f(y)m@) +m(y) f(2) + Hy)H ) + ¥ (y, 2)]
+ H(x)H(yz) + ¥ (x, y2),

so that

fGx) = fOm(yz) +mxz) f(y) +mxy) f(2) +mx)H(y)H(z)
+mx)Y(y,2) + Hx)H(yz) + ¥ (x, y2).

(33)
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On the other hand,

f((xy)2) = fxy)m(2) + m(xy) f(2) + H(xy)H(2) + ¥ (xy, 2)
=[f@m») +m&x) )+ HX)HY) + ¥ x, »)Im(z) +mxy) f(2)
+ Hxy)H(2) + ¥ (xy, 2),

and hence

F((xy)z) = fym(yz) +mxz) f(y) + m(xy) f(z) + H(x)H(y)m(z)
+m@Qy(x, y) + Hxy)H(z) + ¥ (xy, 2).

(34)

From (33) and (34), we get that

H@X)[H (yz2)—H (y)m(z)—m(y)H (2)1-H (2)[H (xy)—m(x) H (y)—H (x)m(y)]

=m@Y(x,y) —m@)Y(y, 2) + ¥ xy, 2) — ¥ (x, y2),
(35)

for all x, y,z € G. Since f and H are linearly independent modulo 7/, they are, in
particular, linearly independent. So, there exist z1, zo € G such that

fz)H(z2) — f(z22)H(z1) # 0. (36)

Let x, y € G be arbitrary. By putting z = z; and then z = z» in (35), we get,
respectively,

H (x)ki(y) — H(zi)[H (xy) — H(x)m(y) —m(x)H(y)] = ¥i(x, y), (37)

where

ki(y) := H(yz;) — H(y)m(z;) — m(y)H(z;)

and

Yilx,y) :=mz)¥(x, y) =m@)Y(y, zi) = ¥ (¥, yzi) + ¥ (xy, zi) (38)

for i = 1, 2. Multiplying both sides of (37) by f(z2) fori = 1, and by f(z;) for
i = 2, and then subtracting the identities obtained, we get that

H(x)k3(y)+Lf (z1)H(z2)— f(z2) H(z)I[H (xy)—H (x)m(y)—m(x) H (y)I=v3(x, y),
(39)
where

k3(y) := f(z2)k1(y) — f(zDk2(y)
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and

Y3(x, y) = f)yi(x, y) — fzDva(x, y). (40)
So, x and y being arbitrary, we get, taking (36) and (39) into account, that
H(xy) — H(x)m(y) —m(x)H(y) = H)k(y) + P(x, y) (41)
forall x, y € G, where

k(x) := =[f (1) H(z2) — fE)H )] ks (x)

and

®(x,y) ==[f()H(z2) — f(2)H@)] ' ¥s(x, y) (42)
for all x, y € G. Substituting (41) into (35), we get that

HX)[Hk(E) + Py, 2] — H@QHXkK(y) + P(x, y)]
=m@QYx,y) —m@)Y(y,z) + ¥y, 2) — ¥(x, yz),

which implies that

H(xX)[H(y)k(z) — H(2)k(y) + @(y,2)] = H@)P(x, y) + m() ¥ (x, y)

—mX)Y(y,2) + ¥ (xy, 2) — ¥(x, yz)

(43)
for all x, y,z € G. Now, let y, z € G be arbitrary. Since 7 is a two-sided invariant
linear space of complex-valued functions on G, and the functions x — m(x) and
x = ¥(x,y) belong to ¥, we deduce from (38), (40) and (42) that the functions
x = @(x,y) and x — ¥;(x, y) belong to ¥ fori = 1, 2, 3. Hence, the right-hand
side of (43) belongs to ¥ as a function of x. It follows that the left-hand side of (43)
belongs to ¥ as a function of x. As f and H are linearly independent modulo 7/,
we derive, from (43), that H (y)k(z) — H(2)k(y) + ®(y, z) = 0. So, y and z being
arbitrary, we get that

H(2)k(x) = Hx)k(z) + D (x,2) (44)

forallx,z € G.

On the other hand, we deduce from (36) that f(z1)H(z2) # O or f(z2)H(z1) # O,
so we can assume, without loss of generality, that H (z1) # 0. Replacing z by z; in
the identity (44), we derive that

k(x) =y H(x) + ®1(x) (45)
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forall x € G, where y := H(z1) 'k(z1) and
®i(x) == H(z) ™' ®(x, 21) (46)

for all x € G. From (41) and (45) we get that
H(xy) = Hx)m(y)+m)H(y)+y Hx)H(y)+HX)@1(y)+P(x,y)  (47)

forall x, y € G. Since the functions m and x — @ (x, y) belong to ¥ forall y € G,
we get, from (47), that the function

x = H(xy) = H(x)[m(y) + @1(y) + vy H(y)] (48)

belongs to ¥ for all y € G. As H ¢ ¥, we get from (48), according to [12,
Theorem], that there exists a multiplicative function M : G — C such that

m+d+yH=M. (49)
We have the following subcases:
1
Case A.2.1: y # 0. Putting A = — € C \ {0}, we obtain from (49) the identity
14
H=MM—)m— ). (50)

Let x, y € G be arbitrary. Since m and M are multiplicative, we get from the identity
above that H(xy) — H(yx) = X @1(yx) — A @1(xy). Taking (47) into account, we
get that H(x)@1(y) — H()P1(x) + P (x, y) — P(y,x) = A P1(yx) — A Pi(xy).
So, x and y being arbitrary, we obtain

Hx)®P1(y) = H(y)P1(x) + @(y,x) — P(x,y) + 1 P1(yx) — A P1(xy)  (5D)

for all x, y € G. Now, let y be arbitrary. As seen earlier, the functions @1 and x
@ (x,y) — D(y, x) belong to ¥. So, ¥ being a two-sided invariant linear space of
complex-valued functions on G, we get from (51) that the function x — H (x)®1(y)
belongs to #. Taking into account that f and H are linearly independent, we get
@1(y) = 0. So, y being arbitrary, we obtain @; = 0. Hence, using (50), we get that

H=AM—\m. (52)
Substituting this back into (32), we get, by an elementary computation, that

Fxy) = A2 M(xy) = (f(x) — A2 M@)my) +m@x)(f () — A2 M(p))

+ A2 m(xy) + ¥ (x, y),
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for all x, y € G. We conclude from (30), (31), (52) and (53) that the result (2) of
Lemma 4 holds.

Case A.2.2: y = 0. Let y € G be arbitrary. The identity (45) implies that k = @;.
Hence, we derive from (44) that

H(x)®1(y) = Hy)P1(x) — P(x, y),

for all x € G. Since the function x — @ (x, y) belongs to ¥/, we get, taking the
identity above and (46) into account, that the function x — H (x)®1(y) belongs to
V. As f and H are linearly independent modulo ¥/, we infer that @(y) = 0. So, y
being arbitrary, we get that @; = 0. Hence, the identity (47) becomes

H(xy) =m(x)H(y) + Hx)m(y) + @(x, y). (54)

On the other hand, by using (38), (40) and (42) with the same notations, we derive
that there exist n; € C withi =1, - - -, 7 such that
P(x,y) = myx,y) +nm@)Y(y,z1) + mmE)Y(y,z2) + nay(x, yz1) +

ns ¥ (x, yz2) +n6 ¥ (xy, z1) + n7 ¥ (xy, 22)
x,y € G. We get that

P(x,y) =myx,y) +nmm@)Li(y) +n3mx)La(y) +na ¥ (x, [1(y))

+ 15 ¥ (x, 12(y)) + n6 L1(xy) + 17 L2(xy)
(55)
for all x, y € G, where

Li(x):=v(x,z)

fori =1,2andforallx € G,and!/; : G — Gisdefinedfori =1,2by/;(x) = xz;
for all x € G. Hence, we get, from (54) and (51), the identity

Hxy) —m(x)H(y) — Hx)m(y) = m ¥ (x,y) + n2m(x)L1(y) +n3m(x)L2(y)

+na ¥ (x, Li(y) + 05 Y (x, 1(y) + ne L1(xy) +n7 La(xy)
(56)
forall x,y € G.
We conclude from (30), (31), (32) and (56) that the result (3) of Lemma 4 holds.
Case B: f, g and h are linearly independent modulo #". Then, according to
Lemma 1, there exist two functions ¢y, ¢ € ¥ satisfying (4), where ¢ is the
function defined in (5). Let y € G be arbitrary. Since the functions x — ¥ (x, y) and
x > f(xy)— f(yx) belong to ¥ by assumption, so does the function x > ¥ (y, x).
Seeing that ¥ (y,x) = ¢1(y)f(x) + ¢2(y)h(x), and that f and & are linearly
independent modulo ¥, we get that ¢1(y) = ¢2(y) = 0. So, y being arbitrary,
we deduce that ¥ (x, y) = O for all x,y € G. Then, the result (4) of Lemma 4
holds. This completes the proof of Lemma 4.
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4 Stability of Equation (1) on Amenable Groups

Throughout this section, G is an amenable group with an identity element that we
denote e. We will extend the Székelyhidi’s results [13, Theorem 2.3], about the
stability of the functional equation (2), to the functional equation (1).

Theorem 1 Let f, g, h : G — C be functions. The function

x, )= flxy) — f(x)g(y) — g) f(y) — h(x)h(y)

is bounded if and only if one of the following assertions holds:
(1) f =0, gisarbitrary and h € B(G);
(2) f. g heBG):
(3)

f=am+to. 2
g:(l—%a)m—)»b—%(p,
hz)\.am—i_b—'—)\-(ps

where A € C is a constant, a : G — C is an additive function, m : G — C
is a bounded multiplicative function and b, : G — C are two bounded

functions;
4)
f=am—ab,
2 2
g = 1—£«x m+1+’2’”‘ b— o,

h=alm—alb+ g,

where o, .. € C are two constants, m : G — C is a multiplicative function
and b, ¢ : G — C are two bounded functions;

&)
f = o
AZ
h=hxfo+b,

where A € C is a constant, b : G — C is a bounded function and fo, go :
G — C are functions satisfying the sine addition law

Foxy) = fo(x)go(y) + go(®) fo(y), x,y € G;
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(©)

f==22fo+ %D,

2 2
g =" fo+pgo+ 55 b,
h=2xo fo+Xrgo—Apb,

where p € C and . € C \ {0} are two constants, b : G — C is a bounded
function and fy, go : G — C are functions satisfying the cosine addition law

So(xy) = fo(x) fo(y) — go(x)go(y), x,y € G;
(7

f=A2M+am+b,
g =pBr(1 — 3BMNM + (1 — pAym — 5p*am — 5% b,
h=AM1—-BMM—Lm—Bam— Bb,

where § € C and » € C \ {0} are two constants, m, M : G — G are two
multiplicative functions such that m is bounded, a : G — C is an additive
function and b : G — C is a bounded function;

®)

f=%a2m+%a1m+b,
g:—}Tﬂzazm—i-ﬁam—;ltﬂzalm—i—m—%ﬁzb,
h:—%ﬂa2m+am—%,3a1m—,3b,

where B € C is a constant, m : G — C is a nonzero bounded multiplicative
function, a,a; : G — C are two additive functions such that a # 0 and
b : G — C is a bounded function;

) g= —%,BZf+(1 +Baym+pBbandh = —B f +am+ b, where € C is
a constant and a : G — C is an additive function, m : G — C is a nonzero
bounded multiplicative function and b : G — C is a bounded function such
that the function

-1 1 2 -1 1 2
(. y) > fleyym((xy) ) = sa”(xy) — (f()m@x™7) = 5a%(x))

1
— (fOym@y™" - zaz(y)) —a()b)m(y™") —a(»)b)mx~h

is bounded;
(10) f(xy) = f(x)g(y) +gx) f(y) +h(x)h(y) forall x,y € G.

Proof First, we prove the necessity. Applying Lemma 3(1), Lemma 3(2), Lemma
3(4), Lemma 3(5), Lemma 4(1) and Lemma 4(4) with ¥ = ZA(G), we get that
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either one of the conditions (1), (2), (4), (5), (6) and (10) in Theorem 1 is satisfied
or we have one of the following cases:
Case A:

)LZ
g+—f=m—Ab
2
and
h—Af=b,

where A € C is a constant, » : G — C is a bounded functionand m : G — C is
a bounded multiplicative function. From (5) and the identities above, we obtain, by
an elementary computation,

2

g=—%f+m—kb, (57)
h=Af+b (58)

and
fxy) = fOmy) —m(x) f(y) = ¥(x,y) + bx)b(y) (59)

for all x, y € G. If m # 0, then, by multiplying both sides of (59) by m((xy)™h),
and using the fact that m is a bounded multiplicative function, and that the functions
b and ¢ are bounded, we get that the function (x,y) +— f xy)m((xy)™h) —
FOm(x™" — f(y»)m(y~1) is bounded. Notice that we have the same result if
m = 0. So, according to Hyers’s theorem [11, Theorem 3.1], there exist an additive
function a : G — C and a function ¢y € Z#(G) such that f(x)m(x~") —a(x) =
bo(x) for all x € G. Then, by putting ¢ = m ¢p, we get that f = am + ¢ with
¢ € A(G). Substituting this back into (57) and (58), we obtain, by an elementary
computation, that g = (1 — %a)m —Ab— %(p andh =Aam+ b+ Ag. So, the
result (3) of Theorem 1 holds.

Case B:

Fxy) = A2 M(xy) = (f(x) — 22 M@)my) +mx)(f () — A2 M(y))

+ 22 m(xy) + ¥ (x. )
forall x,y € G,
L)
g=§,3 f+Bh+m
and

Bf+h=xiM—im,
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where B € C and A € C \ {0} are constants, m, M : G — C are multiplicative
functions such that m € Z(G), M € $(G) and ¥ is the function defined in (5). If
m # 0, then, by multiplying both sides of the first identity above by m((xy)~') and
using that m is multiplicative, we get that

(f(xy) — 22 M(xy)m((xy)™)
= (f()=A> M@)mx™HH(F ) =22 MG)m(y™H+r2+m((xy) " Hy(x, y)

for all x, y € G. Since the functions m and y are bounded, then we get from the
identity above that the function

() > (@) = A2 M@y)m(@) ™) = (f () = 22 M)m(x™"

— (S =M M)ImG&™H
is bounded. Notice that we have the same result if m = 0. So, according to Hyers’s
theorem [11, Theorem 3.1], there exist an additive function a : G — C and a
function by € £ (G) such that

(f () =22 M@)mx~") = ax) = bo(x)
for all x € G. By putting b = m by, we derive that
f= AMM+am+b

withb € Z(G). As g = %,BvaL,Bh—i-m and 8 f +h =AM — A m,, we obtain

h=—-BO>M+am+b)+1M—im
=21—-BAMM —rm—Bam—Bb

and
g:%ﬂz(k2M+am+b)+ﬁ(k(l—,3A)M—Am—,3am—,3b)+m
= Bl ! MM + (1 — BA L g2 ! 2p
= BA( —5,3) +({1 -8 )m—zﬁ am—zﬁ .

The result occurs in (7) of Theorem 1.
Case C:

fxy) = fmy) +m@) f(y) + Hx)H(y) + ¥ (x, y),
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H(xy) — Hx)m(y) —mx)H(Q) =m ¢ x,y) +mmx)Li(y) +n3m(x)La(y)
+na (e, 1Y) +n5 ¥ (x, (y)) +ne L1(xy) +n7 La(xy)

forall x,y € G,

1
g=B f+Bh+m
and
H=Bf+h,

and where 8, 11, - - -, n7 € C are constants, m : G — C is a bounded multiplicative
function, L, L, € AB(G), l1,l : G — G are mappings and ¥ is the function
defined in (5).

If H € A(G), then f and h are linearly dependent modulo #(G). So, according
to Lemma 3, one of the assertions (1)—(5) of Theorem 1 holds.

In what follows, we assume that H ¢ Z(G). Since the functions m, L, L, and
Y are bounded, we get from the second identity above that the function

(x,y) = H(xy) = H@x)m(y) —m(x)H(y)

is bounded. Hence, m # 0 because H ¢ Z(G). Then, according to [13, Theorem
2.3] and taking the assumption on H into account, we have one of the following
subcases:

Subcase C.1: H = am + b, where a : G — C is additive and b € 4(G). Then,
B f + h = am + b, which implies that

h=—-Bf+am+b.

Moreover, since g = %,32 f + Bh+ m, we get that

1
g=—3Ff+m+pam+pb.
Let x, y € G be arbitrary. By using the first identity in the present case, we get that

v (x, y)=f(xy)—fx)m(y)—m(x) f(y)—(a(x)m(x) + b(x))(a(y)m(y) + b(y))
= fxy) = f)m(y) —m(x) f(y) — a(x)a(y)m(xy) — m(x)a(x)b(y)
—m(y)a(y)b(x) — b(x)b(y).

Since m is a nonzero multiplicative function on the group G, we have m(xy) =

m(x)m(y) # 0and m((xy)~) = m(x"Hm(y~!) = (m(x))"'(m(y))~'. Hence,
by multiplying both sides of the identity above by m((xy)~!), we get that
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m((xy) "W (x, YB3 = fay)m((xy)™) — fF@m™h — fFym@y™")
—a@)a(y) —a@)bm(y~") —a(»)b)m(x~"h

1 1
= (fxy)m((xy)™") — Eaz(xy» — (fym(x™" — §a2<x)>
1
— (fomGy™" - 5a2<y>> —a(X)b(y)m(y™") —a)bx)mx).

So, x and y being arbitrary and the functions m, b and ¢ being bounded, we deduce
that the function

—1 1 2 -1 1 2
(x,y) = flxy)ym((xy)™) — 4 (xy) = (fx)m(x—") — 74 (x))

1
— (fOym@y™" - 5a2<y)> —a()b)m(y™") —a(y)bx)ymx~h

is bounded. The result occurs in (9) of the list of Theorem 1.

Subcase C.2: H(xy) = H(x)m(y) + H(y)m(x) for all x,y € G. Since m is a
nonzero multiplicative function on the group G, we have m(x) # 0 for all x € G.
Then, in view of H ¢ %(G), we get from the last functional equation that there
exists a nonzero additive function a : G — C such that H = a m. Substituting this
back in the first identity in the present case and proceeding exactly as in Subcase
C.1, we get that the function

(x, y) > 2F ym((xy) ™" — @ (xy) — QFOmx ™" — a?(x))
- 2fmy™H —a* ()

is bounded. Hence, according to Hyers’s theorem [11, Theorem 3.1], there exist an
additive function a| : G — C and a function by € AB(G) such that 2 f @WmGx~—H -
a?(x) = a; (x) + bo(x) for all x, y € G. So, by putting b = %m bg, we deduce that
b € A(G) because m, by € A(G) and

1 1
f:zazm—i—ialm—i—b. (60)

Since H = B f +hand g = %ﬁzf + B h + m, we get, by using (60) and an
elementary computation, that g = —%ﬂz a’lm+ Bam — }‘,82 aym-+m — %ﬂzb
and h = —%ﬂ a’lm+am— %ﬂ a;m — B b. The result occurs in (8) of the list of
Theorem 1.

Conversely, we check by elementary computations that if one of the assertions
(1)—(10) in Theorem 1 is satisfied, then the function (x, y) — f(xy) — f(x)g(y) —
g(x)f(y) — h(x)h(y) is bounded. This completes the proof of Theorem 1.
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1 Introduction

Fora > 8 >0,h >0and# € R, let x € C([tp — h, oo[) with x’[
C1([ty, oo[) be a solution of the following inequation:

to,00[ €

x'(t) < —ax(t)+ B max x(0),t € [ty, ool.
gelt—h,t]

By Halanay’s lemma ([14]), there exists k > 0, y > 0 such that
x(t) < ke 7 forallt € [ty — h, ool.

There exist some proofs of Halanay’s Lemma ([9, 12, 14]....) and a large number
of papers on Hanalay’s lemma and Halanay-type lemma ([3, 4, 7, 9, 13, 15, 17, 18,
29, 30], ...).

The aim of this paper is to present an introduction to Halanay’s lemma from
the weakly Picard operator theory point of view.
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2 Preliminaries
In this section, we will present several basic notions and results that are important

for a good understanding of our main theorems.

The Operator mlax on a Space of Continuous Functions

Letfgp € Rand a, b € C([ty, +00[) be two mappings such that a(r) < b(t), V¢
to. Let ap := inf{a(t) | t > t9}. We suppose that —oo < ag < fo. Let I(¢)
[a(?), b(?)], for each t > #y. Now we consider the operator

v

max : C([ag, +oo[) — C([t9, +o0[),

defined by
max(x)(t) := max x(0).
1 0el (1)
Lemma 1 For the above mIaX operator, we have the following properties:
@) the mIaX operator is increasing;

(i) m[ax(kx) = kmax(x), Vk € R*, Vx € C([ag, +00]);
(iii) |m1ax(x)(t) - mlax(y)(t)| =< mflx(lx —yD(@), Yx,y € C(ag, +o0[).

For examples of mlax operators, see [1, 2, 8,9, 11, 14, 20, 21]....

Functional Differential Equations with Maxima

Let f € C([tg, +00[xR?). We consider the functional differential equation
x'(0) = f(t,x(), m;lX(x)(t)), 1= 1. ey
By a solution of this equation, we understand a function
x € C(lag, +00)NC' ([to, +00)):={x € C([ao. +00D)| |11, +o0f € C' ([t0, +00D)}.
which satisfies (1).

The Cauchy problem for (1) is the following: given ¢ € C([ao, #p]), the problem
is to study the solution x of (1), for which
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x|[ao,l0] =¢

For this Cauchy problem, see [1, 2, 5, 9, 14, 16, 19, 24],...

Halanay Functional Differential Equation with Maxima

In [14] (pp. 378-380), Halanay has considered the following equation:

xX'(t) = —ax(@)+B max x(0), t > 1o, )
Oelt—h,t]

wherea > 8 > 0,h > 0and fp € R.
In equation (2), the interval function is / (t) = [t — h, t]. In this case,

a(t) =t —h, b(t) =tand ay =ty — h.

In his work [14], Halanay remarked that there exists y > 0 such that the function
x € C([to—h, +00[) given by x (1) := e~V =) is a solution of (2) on [tg—h, +00[.

Weakly Picard Operators on (X, —)

We will present now the basic notion related to the weakly Picard operator theory
in the general context of an L-space in the sense of Fréchet.

Let X be a nonempty set. Denote by A(X) the diagonal of X x X. We also denote
by s(X) := {(xy)nenlxn € X, n € N} the set of all sequences in X.

Let ¢(X) C s(X) a subset of s(X) and Lim : ¢(X) — X an operator. By
definition, the triple (X, c¢(X), Lim) is called an L-space ([10]) if the following
conditions are satisfied:

(1) If x, = x, foralln € N, then (x,,)pen € c(X) and Lim(x,) ey = x.

(i) If (xp)nen € c(X) and Lim(x,),eny = x, then for all subsequences, (xp,)ien,
of (x,)nen we have that (x,,)ieny € c(X) and Lim(x,,)ieny = x.

By definition, an element of c(X) is a convergent sequence and x := Lim(x,),en
is the limit of this sequence. In this case, we can also write x,, — x as n — +00.

Throughout this paper, we denote an L-space by (X, —).

Recall now the following important abstract concept.

Definition 1 (I.A. Rus [26]) Let (X, —) be an L-space. An operator A : X — X
is, by definition, a weakly Picard operator (briefly WPO) if:

(i) Fa #;
(ii) for each x € X, the sequence (A" (x)),en converges to an element x*(x) € Fy
asn — oo.
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In particular, if F4 = {x*}, then A is said to be a Picard operator (briefly PO).
If (X, —) is an L-space and A is a weakly Picard operator, then the following set
retraction can be defined
A® X — Fy, A®(x) := Lim(A" (x))nen-
Let (X, <) be an ordered set and A : X — X. Then we denote by

(LF)s :={x € X :x < A(x)} respectively (UF)4 :={x € X : A(x) < x},

the lower (respectively upper) fixed point set of A.
Let (X, —) be an L-space and < be an order relation on X. If the following
implication holds

Xpn Xy, forallmeN,x;, - xe X, y, > yeX=>x =<y,
then the triple (X, —, <) is called an ordered L-space.

The following results were given in [26] and [21]. See also [23, 27, 28]

Theorem 1 (Abstract Gronwall Lemma) Let (X, —, <) be an ordered L-space
and A : X — X be an operator. Suppose that:

(i) Aisa PO (we denote by x; its unique fixed point);
(ii) A is increasing.

Then:

(a) u < x}, foreveryu € (LF),;
(b) x} 2, foreveryv € (UF)4.

In the case of weakly Picard operators, the following Gronwall-type lemma
holds.

Theorem 2 Let (X, —, <) be an ordered L-space and A : X — X be an operator.
Suppose that:

(i) Aisa WPO;
(i) A is increasing.

Then:

(a) foreachx € X withx < A(x) = x < A®(x);
(b) foreachx € X withx > A(x) = x = A®(x).

In the same setting, the following abstract comparison theorems take place.

Theorem 3 (Abstract Gronwall-Comparison Lemma) Ler (X, —, <X) be an
ordered L-space and A, B : X — X be two operators. Suppose that:
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(i) A and B are POs (we denote by x’;, respectively, x} their unique fixed point);
(1) A is increasing;
(iii)) A(x) < B(x), for every x € X.

Then, for each x € X withx < A(x) = x < xz.
In the case of weakly Picard operators, the following theorems hold.

Theorem 4 Let (X, —, X) be an ordered L-space and A, B : X — X be two
operators. Suppose that:

(i) A and B are WPOs;
(1) A isincreasing;
(iii)) A(x) < B(x), for every x € X.

Then, the following conclusions hold:

(a) foreveryx,y € X withx <y = A®(x) < B®(y);
(b) if, additionally, the operator B is increasing, then for each x € X such that
x> AKx) = x > B®®x).

Theorem 5 (Abstract Comparison Lemmna) Let (X, —, <X) be an ordered L-
space and A, B, C : X — X be three operators. Suppose that:

(i) A, B, and C are WPOs;
(ii) the operator B is increasing;
(iii)) A(x) < B(x) < C(x), for every x € X.

Then, forevery x,y,z € X withx <y <z = A®((x) < B®(y) < C*®(2).

In particular, if (X, d) is a metric space and — is the metric convergence, the
following concrete lemmas hold.

Theorem 6 Let (X, d, X) be an ordered and complete metric space and A : X —
X be an operator with closed graph. Suppose that:

(1) A is a graphic contraction, i.e., there exists o € [0, 1[ such that
d(A(x), Az(x)) <ad(x, A(x)), forevery x € X;

(i) A is increasing.
Then:

(a) Aisa WPO;
(b) foreachx € X withx < A(x) = x < A®(x);
(¢) foreachx € X withx = A(x) = x = A®(x).

Theorem 7 Let (X, d, <) be an ordered and complete metric space and A, B :
X — X be two operators with closed graph. Suppose that:

(i) A and B are graphic contractions;
(i1) A is increasing;
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(iii)) A(x) < B(x), for every x € X.
Then, the following conclusions hold:

(a) A and B are WPOs;

(b) foreveryx,y € X withx <y = A®(x) < B®(y);

(c) if, additionally, the operator B is increasing, then for each x € X such that
x> Ax) = x> B®(x),

Fiber Contraction Theorem

The following result will be an important tool in our approach.

Theorem 8 (Fiber Contraction Principle) Let (X, d) and (Y, p) be two metric
spaces, such that p is a complete metricon Y. Let A : X x Y — X x Y given by

A(x,y) = (B(x), C(x,y))

be a triangular operator, i.e., B: X — X and C : X x Y — Y. Suppose that:

(i) Bisa WPO;
(i) there exists a € [0, 1[ such that the operator C(x,-) : Y — Y is an «a-
contraction;
(i) if (x*, y*) € Fy, then the operator C(-, y*) : Y — Y is continuous in x*.

Then, the following conclusions hold:

(@) A is a WPO in the L-space (X x Y,—), where — denotes the termwise
convergence;
(b) if, additionally, B is a PO, then A is a PO too.

3 The Cauchy Problem for Halanay Equation

The Cauchy problem for equation (2) is equivalent to the following functional
integral equation with maxima:

(p(t)a r e [tO - h’ to]vt
X)) = e~ =10y (10) —1—/3/ e“(‘v_’)e max x(0)ds, t > 1y,
fo

els—h,s]

3)

in the space C([ty — h, +00[).
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Now we consider the operators
Ay 2 C([to — h, +o00[) — C([to — h, +00[),

defined by

Ay (x)(t) ;= the right hand side of (3),
and for each T' > 1y, the operator

Apr :Clto—h,T]— Clto — h, T],
defined by

Ay 7(x)(t) := the right hand side of (3),

fort € [to — h, T].

In what follows, we shall prove that the operator A, 7 has a unique fixed point,
for each T > 1o, i.e., the operator A, has a unique fixed point, i.e., the Cauchy
problem for the Halanay equation has a unique solution. For this, we use the Burton
method of progressive contractions ([6]; see also forward step method in [22] and
step by step contraction principle in [25]), in terms of max-norm. In the case of
equations with mlax operator, we cannot use the Bielecki norm technique.

Theorem 9 The Cauchy problem for Halanay equation has in C([t) — h, +o0[) N
Cl([ty, +o0]) a unique solution.

Proof LetT > tog. Let m € N* be such that

T — T —
l:=u<1 and h > t().
m m

We denote

T —19 T —1
t =ty + oot i=t0+k vyt i=T.
m m

We remark that the operator Ay ;, is an [-contraction. Let x{ its unique fixed point.
For

Cyrlto —h, o] :=={x € Clto — h, 2] | x =x7}
[to—h.1]

we consider the operator

Ayt Cyxlto — h, ] = Cyx[to — h, 12].
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This operator is an /-contraction. Let xJ be its unique fixed point. We remark that

* *
X = X;.
2 1

[to—h,11]

By induction, we consider the operator
Ay - Cxplto — by tip1] = Cyrlto — by k1], k=1,m — 1,

which is an /-contraction with x , its unique fixed point and

* *
X = Xx;.
k+1 k

+ [to—h,t]

So, x; is the unique fixed point of Ay T

Remark 1 By the fiber contraction theorem, it follows that A, is PO with respect
to the uniform convergence on each compact subinterval of [f9 — &, +o0[. For to
prove this, it is sufficient to prove that for each T > 1y the operator A, 7 is PO
with respect to uniform convergence on [ty — &, T]. For to do this, we shall use fiber
contractions principle.

First, let U := C[ty — h, t1] and V := C[t1, 2] and (3) writing in the following
form:

), t €lto — h, 1],

e—ali— to)¢([0)+ﬁ/ a(s—1) r[na;(l ]x(Q)ds t € [ty, 1,
e|ls—n,s
x(t) = o—alt— IO)(P(tO)‘l‘,Bf o260 I[na)}i ]x(@)ds @
s—h,s

+,3/ S max  x(9)ds, t € 11, b).
O€ls—h,s]

andv :=x
[to—h,t1]

If we denote u := x

ol then we can write (4) in the following
1,12
form:

@(t), re [tO _hvtOL

_ t
U =\ gt (1) + / S0 max  u(0)ds, t € [to, 1],
1 Oels—h,s]

4]
v(t):e‘“("’O)(p(to)+ﬂ/ 070 max u(®)ds
1o Oels—h,s]

t
+/3/ D max( max u(f), max v(@)) ds, t € [t1, 1]
t

Oels—h,t] telty,s]
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or

{u = A1(u)

v = Ax(u,v),

where A; := Ay, and Az : U x V — U defined by
1
Az(u,v)(t)::e_“(t_t")w(to)+,3/ max u(0)ds
1o

t
+/3/ ¥ max( max u(6), max v(O)) ds.
f Oe Oelty,s]

[s—10,t1]
From the fiber contraction principle, we have that the operator
A:UxV —->UxV, A(u,v) = (A1(u), Ar(u, v))
is PO.
From the definition of A, we have that the operator A, ;, is PO. By a similar way,
we prove that Ay ;, is PO, choosing

U:=Cltop—h,t], V:=Cltr, 3], A1 := Ay,

and A; suitably defined. By induction, we prove that A, 7 is a PO.

Remark 2 Since A, is PO and is increasing, from Abstract Gronwall lemma we
have that

x € C([to — h,+00)), x < Ap(x) = x < x¥,
and
x € C([to — h,4+00]), x = Ay(x) = x > x*.
Remark 3 Let us consider the operator
E :C([to — h, +oo[) = C([to — h, +o0])
defined by
x(t), t € [to — h, 1o],

. t
Ex® = e""(”’O)x(to)—i—/ ™D max  x(0)ds, t € [ty, +00l.

to Oels—ty,s]
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If we denote for each ¢ € C[tg — h, to],
Cy([to — h, +00[) := {x € C([tg — h, +00D)| X|jty—n,10] = ¢}

It is clear that we have the following:

« Clto—h, 4o = | J (o —h, +ooD,
@eClto—h,tp]

* E(Cy(lt, +00D)) C Cy(lto, +00D),

. = A,

Cy([10,+00[)

From this, we have that the operator E is WPO.
For ¢ € Clty — h, to], we denote by @, the function ¢ : C([fy, +00[) defined by

o _ {(p(t), t €[ty —h, 1],
@(to), t € [tg, +ool.

We remark that for fixed point xz of A,, we have that x; = E®(Q).
Since E is WPO and E is increasing, we have Abstract Gronwall lemma for E,
ie.,

x<Ex) =x<E>®x)

x> E(x)=x>E®®x).

From this, we have that if X:;l_ is the unique fixed point of Ay, i = 1,2, and if
@1 < @2, then x; < xg . Indeed, it follows from the increasing of £°°, and from

o1
xi, = EX@), xk, = EX@).
If x* € E; and x is such that x < E(x) and x <x* ,then x < x™*.

[to—h.to] — [t0—h.1o]

4 Halanay Functional Differential Inequation: Halanay
Lemma

Fora > B > 0 and 7y € R, we consider the Halanay inequation

x'() < —ax() + 'BQEI[ItlE—l;z( t]x(G), t €[ty —h,+ool. 5)

Let x € C(tg, +00[) N C([tg — h, +00[) be a solution of this equation. Then we
have that x < E(x), where E (x) was defined in Remark 3.
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Let y > 0 be such that e 7¢~0) ¢ € [ty — h, +00[ is a solution of Halanay
equation (2). Notice that there exists k > 0 such that

x(1) < ke 70T V1€ [tg— h, 1p)].

Since e 7)€ [y — h, +00[ is a solution of (2), then ke™?~0) ¢ € [1) —
h, +oo[ is also a solution of (2), i.e., it is a fixed point of the operator E. From
Remark 3, we have that

x(t) <ke 70 Vi€ 19— h, o0l

So we have

Halanay Lemma. If x is a solution of (5), then there exists k > 0, y > 0, such
that

x(1) < ke VU0 V¢ € 19— h, +oo.

S Halanay-Type Results

Halanay’s lemma generated several papers concerning functional differential
equations and functional integral equations.
All these results are, in fact, Chaplygin-type results and Gronwall-type results.
In our opinion, it is more appropriate to consider Halanay-type results, concrete
Chaplygin-type results, and concrete Gronwall-type results for equations with
maxima.
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An Inequality Related to Mobius )
Transformations oo

Themistocles M. Rassias and Teerapong Suksumran

Abstract The open unit ball B = {v € R": |v| < 1} is endowed with Mobius
addition @, defined by

_ (1+2(wv) + IVI*)u + (1 = [Juf*)v

udyv
14 2(u, v) + [lul?||v]?

’

for all u, v € B. In this article, we prove the inequality

[l —livil _ vl < [[all + vl
L flaff{ivil — R DI

in B. This leads to a new metric on B defined by
dr(u,v) = tan”" || —u @y v,
which turns out to be an invariant of Mobius transformations on R” carrying B onto

itself. We also compute the isometry group of (B, dr) and give a parametrization of
the isometry group by vectors and rotations.

1 The Unit Ball of n-Dimensional Euclidean Space R”

Let B denote the open unit ball of n-dimensional Euclidean space R”, that is,

B={velR":|v| <1}, (1)
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where || - || denotes the usual Euclidean norm on R”. It is known in the literature that
B forms a bounded symmetric domain, naturally associated with the Poincaré and
Beltrami—Klein models of n-dimensional hyperbolic geometry. In fact, the Poincaré
metric dp corresponding to a curvature of —1 is given by

dp(x,y) = cosh™! (1 + 2l — yI” ) ) 2)
I —IxIHA =Nyl

for all x,y € B [4, p. 1232]. Furthermore, the Cayley—Klein metric associated with
the Beltrami—Klein model is defined via cross-ratios; see, for instance, [4, p. 1233].

From an algebraic point of view, the unit ball has a group-like structure when it
is endowed with Mobius addition @) defined by

(142w, v) + [[v]Pu + (1 — [u]?)v
udPyv=
1+ 2(u, v) + [luf2|v|?

3)

Mobius addition governs the unit ball in the same way that ordinary vector addition
governs the Euclidean space; see, for instance, [3, 6, 11]. Furthermore, Mobius
addition induces the well-known Mobius transformation of B of the form

_ _ 20w+ vIPut (= fulP)v
B =0 Oy = T P @

called the hyperbolic translation by u, for all u € B [6, p. 124]. A remarkable
result of Kim and Lawson shows strong connections between the geometric and
algebraic structures of the unit ball. In fact, they relate the Poincaré metric with
Mobius addition:

dp(x,y) =2tanh™" || = x By yl| (5)
for all x, y € B; see Theorem 3.7 of [4]. Equation (5) includes what Ungar refers to

as a gyrometric [10, Definition 6.8]. More precisely, the (Mdbius) gyrometric and
the rapidity metric of (B, @) are defined by

P X y) = —x®um Yyl (6)
and by

dy(x,y) = tanh™! (opr(x, y)) 7)

for all x, y € B, respectively.
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A Nonassociative Structure of the Unit Ball

The space (B, @) shares many properties with abelian groups, called by some a
gyrocommutative gyrogroup and by others a Bruck loop or a K-loop. Henceforth,
(B, @) is referred to as the Mobius gyrogroup.

The group-like axioms satisfied by the Mobius gyrogroup are as follows.

(I) (IDENTITY) The zero vector 0 satisfies 0 Dy v=v =v Py 0 forall v € B.
(Il) (INVERSE) For each v € B, the negative vector —v belongs to B and satisfies

(—V)Ouv=0=vPy (—v).

(III) (THE GYROASSOCIATIVE LAW) For all u, v € B, there are automorphisms
gyr[u, v] and gyr[v, u] in Aut (B, @)s), such that

udy (vey w) = udy v) By gyrlu, viw
and
By V) By w=udy (v&uy gyr[v, ulw)

for all w € B.
(IV) (THE LOOP PROPERTY) For allu, v € B,

gyrfu @y v, v] = gyr[u, v] and gyr[u, v @y u] = gyr[u, v].
(V) (THE GYROCOMMUTATIVE LAW) For allu, v € B,
udy v=gyr[u, v](v Oy u).
The automorphism gyr[u, v] mentioned in Item (III) is called the gyroautomor-

phism generated by u and v. It is uniquely determined by its generators via the
gyrator identity described by the formula

gyrfu, viw = —(u @y v) Oy Dy (v Oy w)) (®)

for all w € B. Sometimes it is convenient to denote —v by ©v, the (unique) inverse
of v with respect to Mobius addition. Some elementary properties of the Mobius
gyrogroup are collected in Table 1.
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Table 1 Properties of the Mobius gyrogroup (cf. [7, 10])

Gyrogroup identity Name/reference
Louw=Ly ! Inverse of gyrotranslation
Cudy Wdyv)=v Left cancellation law
S @y v) = gyr[u, v[(Sv &y Su) of. (ghy ' =h~lg™!
(6u Bu V) By gyrlou, vI(OV Sy W) = Sudy W of. (g7 h)(h k) = g7k
gyr[©u, ©v] = gyr[u, v] Even property

gyr[v,u] = gyr~![u, v], the inverse of gyr[u, v] Inversive symmetry

Isometries of the Unit Ball

It is known in the literature that the transformation Ly: v — u @y v preserves
the gyrometric pys; see, for instance, [4, Lemma 3.2 (v)]. Thus, Ly preserves the
rapidity metric dys. In fact, every isometry of (B, djs) must be of the form L, o t,
where 7 is the restriction of an orthogonal transformation on R” to the unit ball, due
to the fact that any Mobius transformation that fixes 0 is orthogonal. The following
theorem shows that the metric geometry of B with respect to djs is homogeneous.

Theorem 1 (Homogeneity) For each pair of points X and 'y in B, there is an
isometry T of (B, dy) such that T (X) =y. In particular, B is homogeneous.

Proof Letx,y € B. Define T = Ly o Lox. Then T is an isometry of B, being the
composite of isometries of B. Furthermore, T(x) =y @y (©X By X) =Y. O

By using the gyrogroup formalism, a point-reflection symmetry of B is easy to
construct, as shown in the following theorem.

Theorem 2 (Symmetry) For each point x € B, there is a symmetry Sx of B, that
is, Sx is an isometry of (B, dy) such that S,% is the identity transformation I of B
and X is the unique fixed point of Sx.

Proof Let ( be the inversion map of B, that is, ((v) = &v for all v € B. Since
ov = —v for all v € B, ¢ is simply the negative map: v — —v. Note that ¢ is an
isometry of (B, dys) for ¢ is linear and preserves the Euclidean norm. Furthermore,
t(v) =vifandonlyifv=0.

Given x € B, define Sy = Ly ot o Loyx. Then Sy = Ly ot o L;l, and so

§2 = (LyotoL Yo (LyotoL{)=LyolloL ' =LyoL '=1

Note that Sy # I; otherwise, we would have Ly ot o Ly I'— I and would have
t = I, a contradiction. It is clear that Sy is an isometry of B. By construction, x is a
fixed point of Sx. Suppose that y is a fixed point of Sy, that is, Sx(y) = y. It follows
that X @y ((EX Dy y) = Y, and hence, ((EX Dy y) = OX Dy y. As mentioned
previously, 0 is the unique fixed point of ¢ and so ©x @y y = 0. This implies that
X=y. O
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We close this section with the following theorem whose proof is straightforward
(and so is omitted).

Theorem 3 If € Aut(B, &y ) and ||[t(v)|| = ||Vl for all v € B, then t is an
isometry of B with respect to dy. In particular, the gyroautomorphisms of (B, ®yr)
are isometries.

2 The Negative Euclidean Space and Its Clifford Algebra

It seems that the formalism of Clifford algebras is a suitable tool for the study
of the Mobius gyrogroup [2, 5]. Let us begin with the definition of an underlying
vector space that will be used to built a unital associative algebra in which Mobius
addition has a compact formula. The negative Euclidean space has R" as the
underlying vector space, but its inner product is a variant of the Euclidean inner
product defined by

B(u,v) = —(u,v), u,veR" 9)

Note that (9) defines a nondegenerate symmetric bilinear form on R”. Also, the
associated quadratic form is given by Q(v) = —||v||* for all v € R".

The negative Euclidean space induces a real unital associative algebra, which is
unique up to isomorphism, called the Clifford algebra of (R", B) denoted by C¢,
[5]. To describe the structure of C¢,,, let {eq, €5, ..., e,} be the standard basis of R”.
Then C/,, has a basis of the form

{ej: I=0orl ={1<i;<ir<---<iy<n}}, (10)

where e; = e;e;,---¢;, for I = {1 < i < ip < -+ < iy < n} and
ey = 1, the multiplicative identity of C¢,. Hence, a typical element of C¢,, is of

the form Z Arer with A7 in R. The binary operations of vector addition and scalar

I
multiplication in C¢,, are defined pointwise. The product of two elements in C¢,, is
obtained by using the distributive law (but not assuming that algebra multiplication
is commutative) subject to the defining relations
el-2=—1 and eje; = —eje (11
foralli, j € {1,2,...,n} withi # j. The base field R is embedded into C¢,, by the
map A — A1, and the original space R” is embedded into C¢,, by the inclusion map
[7, Section 3].
There is a unique involutive algebra antiautomorphism of C¢, that extends

the identity automorphism / of R”", called the reversion, denoted by a +— a.
Furthermore, the grade involution denoted by a + a is a unique involutive
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automorphism of C¢,, that extends — I, whereas the (Clifford) conjugation denoted
by a +— a is a unique involutive antiautomorphism of C¢,, that extends —I. The
grade involution is used to define a Clifford group (also called a Lipschitz group),
which is a group under multiplication of C¢,, defined by

I, = {g € Ct,: gisinvertible and gvg~' € R" forall v € R"}. (12)

The conjugation of C¢,, gives rise to a group homomorphism of I7,. In fact, define a
map 7 by

n(a) = aa, a e Ct,. (13)

Then the restriction of 1 to I}, is a homomorphism from I, to the multiplicative
group of nonzero numbers, denoted by R* [8, Proposition 2]. If an element a in
C¢,, has the property that n(a) € R and n(a) > 0, we define |a| = +/n(a). It is not
difficult to see that |v| = ||v|| for all v € R".

The following theorem summarizes basic properties of C¢,, that will be used in
Section 3, especially the proof of Theorem 7.

Theorem 4 (Proposition 5, [8]) The following properties hold in the Clifford
algebra Cl,,.

1. uwv+va = —2(u, v) forallu, v e R".
2. v2 = —||v||? for all v € R".
1 —
3l—uveMand(1—u) ' = —— 2 forallu, v € R with [[ul||v] % 1.
n(l —uv)
-1 n(w) o
4, n(w(l —av)™') = ————— forallu, v,w € R" with |lu]|||v| # 1.
n(l —uv)
In view of Theorem 4 (2), if v # 0, then v is invertible with respect to
1
multiplication of C¢,, and v 1= —WV. Furthermore, by Lemma 1 of [8],
v
ywyv ! = TS VWV
vl

belongs to R" for all nonzero vectors v € R” and all w € R". This implies that
R"\ {0} < I},, and we obtain the following theorem.

1

Theorem 5 Every transformation of the form w — qwq~— ", where w € R" and

q € I, defines an orthogonal transformation on R".

Proof Letw € R” and let ¢ € I},. Clearly, |g0g~!|| = 0 = ||0]|. Therefore, we
may assume that w # 0 and hence w € I,. Since 1 is a homomorphism from I, to
R*, it follows that n(gwg 1) = n(g)n(w)n(g)~" = n(w) and so

lgwg ™"l = \/n(gwg=") = /n(w) = |lwl.
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1 -1

It is clear that the map w — gwg ™" is linear and bijective for w > ¢~ ' wq defines
its inverse with respect to composition of maps. O

Using the Clifford algebra formalism, one gains a compact formula for Mobius
addition, as shown in the following theorem.

Theorem 6 (Theorem 5.2, [S]) In C¢,, Mobius addition can be expressed as

udyv=u+v)(1—uv)! (14)
for allw, v € B. The gyroautomorphisms are given by gyr[u, v]w = qwg ", where
_ l—uv
=1 "w

forallu,v,w € B.

3 Metrics on the Mobius Gyrogroup and Their Isometry
Groups

In this section, we prove a useful inequality involving Mobius addition and the
Euclidean norm as an application of the Cauchy—Schwarz inequality, using the
Clifford algebra formalism. This enables us to define a variant of norm metric
on the Mébius gyrogroup. This metric turns out to be a characteristic property of
Mébius transformations on R carrying B onto itself, where R" is the one- point
compactification of R”. We then give a complete description of the corresponding
isometry group via a gyrogroup approach.

Theorem 7 The inequality

[[all — vl l[all + vl

Slu@y vl = ———— (15)
L+ [[all{iv] 1 —{fall{iv]

holds in the Mobius gyrogroup.
Proof Using the Cauchy—Schwarz inequality, we have
—lhallivil < (w, v) < [lul/]lv]]
for all u, v € R". This implies that
n@+v) = [l — @v+vu) + V1> = [ul]> + 20, v) + [VI* < (ull + Vi)

and that n(u + v) > (Jul| — ||v|)? forallu, v € R". Let u, v € B. As in the proof
of Proposition 5 (4) of [8], we have (1 —uv) > (1 — |[u]||v|))? and
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n(1—uv) = 142w, v) + lu*v]* < (1 + [[ullv])?.

Hence, by Theorem 4 (4),

llu @ V|I=\/m< (lall +1vID*_ fj + v
n(=uv) =\ (= Jlivib? ~ 1= fufvi’

and similarly

n@+v) | Qul = IvD? = vl
@ = 9
1 Sv Y= aw =V Ot malliviD? = 1+ fuivill

as required. O

In view of (15) and the well-known trigonometric identity, the tangent function
is needed in order to obtain a bounded metric on the unit ball of R”. In fact, define
a function || - |7 by

Ivlz = tan™" ||v]| (16)

EL)

for all v € B. Here, T stands for “tan—!.

Theorem 8 || - |7 satisfies the following properties:
1. Ixll7 = 0and ||x||7 = 0 ifand only if x = 0;

2. lexlr = lxlr;

3. 0xlr = lyllr < Ix@um ylir < IXllr + llyllr;

4. llgyrfu, vIxll7 = [IxlI7

forallu,v,x,y € B.

Proof Ttem (1) follows from the fact that tan~! is a strictly increasing injective
function on (—o0, 00). Item (2) follows from the fact that | — x|| = ||x]|.
To prove (3), set x = tan~! ||x|| and y = tan™" ||y]. By Theorem 7,

I — iyl _ Ix @ vl < IXI[ + Iyl
L4 [Ix[liyll — T 1= Ixllyl

andsotan (x — y) < [|x®n Y|l < tan(x + y). Since tan—! is an increasing function,
it follows that x — y < tan™! | x @y y|| < x+y, as claimed. By Theorem 6, there is
an element ¢ € I}, for which gyr[u, v]x = gxg~'. It follows from Theorem 5 that

-1
l

-1 —1
llgyr[u, vIx||7 = tan™" [lgxg || = tan™" [[x[| = [Ix]|7,

which proves (4). |
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As a consequence of Theorem 8§, we obtain a new metric on the Mobius
gyrogroup. Unlike the Poincaré metric, this metric is bounded as shown in the
following theorem.

Theorem 9 Define dr by

drx,y) = ex®mylr (17

forallx,y € B. Then dr is a bounded metric on B.

Proof By Theorem 8 (1), dr(x,y) > Oforall x,y € B and dr(x, y) = 0 if and only
if x =y. Letx,y, z € B. Using appropriate properties of the Mobius gyrogroup in
Table 1, together with Theorem 8, we obtain

ley@uxir = ©@y®ux)lr = lgyr[Oy. x1(©x®u Y)lir = ©XxDum ylI7,
and so dr (y, X) = dr (X, y). Furthermore, we obtain

dr(x,z) = ©x®um zlr
= [(ex®um y) ®u gyr[Ox, yI(Oy &M )1
=lexeuylr + lgyrlex, yl(©y @m 2t
=llox®uylr+loyodmzir
=dr(x,y) +dr(y, z).

This proves that dr satisfies the defining properties of a metric.
T
Note that d7 (0, v) = ||[v||[r =tan~! ||v|| < tan™' 1 = 7 for all v € B. Hence,

T mw oW
dr(x,y) <dr(x,0)+dr(0,y) < 1 + =3

for all x,y € B. a

Although dr is quite different from the Poincaré metric, both generate the same
topology on the unit ball. It is clear that the Poincaré metric and the rapidity metric
of the Mobius gyrogroup generate the same topology since the former is twice the
latter.

Theorem 10 The topologies induced by dr and dy are equivalent.
Proof Note that d7(u, v) < dy(u, v) for all u, v € B since

fx) = tanh™' x — tan~! x

defines a strictly increasing function on the open interval (0, 1). This implies that
the topology generated by dy; is finer than the topology generated by dr. Next, we
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prove that the topology generated by dr is finer than the topology generated by djy.
Letu € B and let ¢ > 0. Choose § = tan~! (tanhe¢). Let v € By, (u, §). Then
dr(u,v) < §, thatis, | ©u®uy vl < tan~! (tanh €). It follows that

dy(u, v) = tanh™! leudyv| <e
for tan and tanh™' are strictly increasing functions. Hence, v € By, (u, €). This
proves By, (u, 8) € By, (u, €). O

Let O (R") be the orthogonal group of R”, that is,
O (R") = {r: 7 is a bijective orthogonal transformation on R"}. (18)
Set
OB) = {rlg: T e ORM}, 19)

where 7 | is the restriction of t to B. It is clear that O (B) forms a group under
composition of maps since B is preserved under orthogonal transformations on R”.
Given u, v € B, note that gyr[u, v] satisfies the following properties:

1. gyr[u, v]0 = 0;
2. gyr[u, v] is an automorphism of (B, ®y);
3. gyr[u, v] preserves the Mobius gyrometric.

Hence, by Theorem 3.2 of [1], there is a bijective orthogonal transformation on R”,
denoted by Gyr[u, v], for which Gyr[u, v]|g= gyr[u, v]. This proves the following
inclusion:

{gyr[u, v]: u,v € B} € O (B).

Next, we compute the isometry group of (B, dr).

Lemma 1 The left gyrotranslation Ly : v — u@®yy v defines an isometry of (B, dr)
forallu € B.

Proof By Theorem 10 (1) of [9], L, is a bijective self-map of B. Using appropriate
properties of the Mobius gyrogroup in Table 1, we obtain
© @&y x) @&y udy y)l = lgyrfu, xj(€xSw) &y (udn y)|
= [(ex ) ®u gyr[x, ul(u®um y)|
= [(ex©ow) &y gyr[ox, Cul(udn Y|l
=l|lex®myl.

It follows that



An Inequality Related to Mobius Transformations 401

dr (Lu(x), La(y)) = | © Lu(X) &M Lua(Wlr = l©XOM yllr =dr(X,y). O
Theorem 11 The isometry group of (B, dr) is given by
Iso(B,dr) ={Lyot:ueB, teOB)] 20)

Proof For convenience, if p € O (R"), then the restriction of p to B is simply
denoted by p. By Lemma 1, Ly is an isometry of B with respect to dr. Let p €
O (R™). Using (3), we have p(x) &y p(y) = p(x Dy y) for all x,y € B since p is
linear and preserves the Euclidean inner product. Hence, the restriction of p to B is
indeed an automorphism of (B, @) since p(B) € B and p~! € O (R"). It follows
that

dr(p(x), p(y)) = llp(©x®u Ylr =l©x®m ylr =drx,y).

Thus, p is an isometry of Band so {Lyot: ue B, 7 € O(B)} C Iso (B, dr).

Let T € Iso (B, dr). By definition, T is a bijective self-map of B. By Theorem 11
of [9], T = Lr() o p, where p is a bijective self-map of B fixing 0. As in the proof
of Theorem 18 (2) of [7], L;go) = Lgr(0) and so p = Loy () o T. Therefore, p is
an isometry of (B, dr). Since dr (p(x), p(y)) = dr(X,y), and tan~! is injective, it
follows that

l© X &y oW =1OSxDuyl

for all X,y € B. Thus, p preserves the Mobius gyrometric. By Theorem 3.2 of [1],
p = t|p, where 7 is a bijective orthogonal transformation on R". This proves that

Iso(B,dr) C{Lyot:ueB, teOB] |

By Theorem 11, every isometry of B with respect to d7 can be expressed as the
composite of a left gyrotranslation with an orthogonal transformation restricted to
B. This expression is unique in the sense that if Ly oo = Ly o § with u, vin B
and «, B in O (B), then u = v and « = . Furthermore, we have the following
composition law of isometries of (B, d7):

(Luoa)o(Lyop) = Lugyaw o (gyrlu, a(v)] o o B) 21

for allu,v € B and «, B € O (B), a formula comparable to the composition law of
Euclidean isometries.

Since v — Ly defines a one-to-one correspondence from B to the set of left
gyrotranslations of B, we have

Iso (B, dr) = B X gy O (B). (22)
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Here, B gy O (B) is the semidirect-product-like group whose underlying set is
B Xgyy OB) ={(v,7): ve B, € OB)} 23)
with group law

(w, a)(v, B) = (@ Dy a(v), gyr[u, (V)] oo 0 ) (24)

for all u,v € B and «, 8 € O (B). This is a result analogous to the fact that the
isometry group of the Euclidean space is the semidirect product of R” and O (R"):

R"xO@R") ={(v,7): veR" 7 € OR")},
where the group law is given by

(w,a)(v, p) = (u+a(v), 0 p)

for allu,v € R" and o, 8 € O (R"). The group B Xgy O (B) is known as the
gyrosemidirect of B and O (B) [10, Section 2.6].

Theorem 12 Let T be a self-map of B. The following are equivalent:

T preserves the Poincaré metric dp;

T preserves the rapidity metric dy;

T preserves the Mobius gyrometric pyy;

T preserves the metric dr generated by || - || 7.

e

Proof The theorem follows directly from the fact that dp(x,y) = 2dp(x,y) and
that tanh~! and tan~! are injective. O

Corollary 1 Iso (B, dp) = Iso (B, dy) = Iso (B, pyr) = Iso (B, dr).

Recall that a Mobius transformation of R” that leaves B invariant is called a
Mobius transformation of B [6, p. 120]. It is known that the isometry group of the
Poincaré ball model (B, dp), also called the conformal ball model, can be identified
with the group of Mobius transformations of B; see, for instance, [6, Corollary 1
on p. 125]. By Corollary 1, Equation (24) provides a parametric realization of the
Mobius transformation group of B in terms of vectors and rotations. Furthermore,
dr is an invariant of Md&bius transformations of B in the sense of the following
theorem.

Theorem 13 Every Mobius transformation of B restricts to an isometry of (B, dr),
and every isometry of (B, dr) extends to a unique Mdobius transformation of B.

Proof Let ¢ be a Mobius transformation of B. By Theorem 4.5.2 of [6], ¢ restricts
to an isometry of (B, dp). By Corollary 1, ¢|p is an isometry of (B, dr). Let o be an
isometry of (B, d7). By the same corollary, o is an isometry of (B, dp) and, hence,
extends to a unique Mobius transformation of B by the same theorem. O
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Abstract In this paper, introducing multi-parameters and using properties of series,
we prove a half-discrete Hilbert-type inequality in the whole plane with kernel in
terms of the hyperbolic tangent function. The constant factor related to the Riemann
zeta function and the gamma function is proved to be the best possible. In the
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1 Introduction

Assuming that p > 1, % + ql =1,ay,b, >0,

O<Zam<oo O<qu<oo

m=1

we have the following well-known Hardy-Hilbert inequality with the best possible

constant factor —2*— Sm(n/p) (ctf. [1]):

00 00 by 00 p [ q
2224-;1 = sin(Z/P) (X_:]a,ﬁ> (sz> . v

n=1m=1

If f(x), g(y) >0,
0</ fP(x)dx < 00 and ()</ g1 (y)dy < oo,
0 0

then the following Hardy—Hilbert integral inequality holds true (cf. [2]):

1 1

f(x)g(y) o q

/ / — y<—sm(n/p) (/ fP(x)dx) (/0 g‘1<y>dy>,
@)

T - .
where the constant factor ST 18 the best possible.

In 2011, the following half-discrete Hardy—Hilbert inequality with the same best
possible constant factor was proved (cf. [3]):

| 1
bof @) n o " (Spe)”
Z/ x+n a = sinGr/p) (./o fp(x)dx) <11X:; bn) . v

Inequalities of the form (1), (2) and (3) are essential for various applications in
mathematical analysis (cf. [2, 4-6]).

A survey of the work conducted in the area of Hilbert-type inequalities with
homogeneous kernels of negative degree was presented in 2009 in [7]. Some new
inequalities with homogenous kernels of degree 0 as well as with non-homogenous
kernels were investigated in [8—10]. The inequalities in all of these works are
constructed in the quarter plane of the first quadrant. Other kinds of Hilbert-type
inequalities were also established in [11-32].

In 2007, a Hilbert-type integral inequality in the whole plane was proved by Yang
in [30]. Additionally, the following Hilbert-type integral inequality in the whole
plane was established in [31]:
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o o0 1
/ / T ayp/ 8Wdxdy
=l |:/OO |x|p(l_§)_1fp(X)dx:|p [/OO |y|q(l—§)—1gq(y)dy:|q W

where the constant factor

A A A

is the best possible. He et al. have also proved some new Hilbert-type inequalities in
the whole plane with the best possible constant factors (cf. [33—40]).

In this paper, introducing multi-parameters and using properties of series, we
prove the half-discrete Hilbert-type inequality (5) in the whole plane with kernel in
terms of the hyperbolic tangent function:

sinh(u)  2e™"

1 —tanh(u) =1— =
cosh(u) e*+e ¥

(u=0)

and a best possible constant factor:

NCACR

n|=1""
42°v —2) <o) (a)
<—=r=)¢-

y(@p)elr Y 14

'S} l, 0
x [ f |x|”“+">—1f”(x>dx]' DRIy )
—00

n|=1

where p > 0,0 <y <o <1,

1
o(s) :=Zk—s (Res > 1)

k=1

is the Riemann zeta function and
o0
I(s):= / e v ldv (Res > 0)
0

is the gamma function (cf. [41]).
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Moreover, we also obtain an extension of (5) with multi-parameters. In the form of
applications, we additionally present equivalent forms, a few particular inequalities,
operator expressions and reverses.

2  Weight Functions and Some Lemmas

In what follows, we assume that p € R\{0, 1},

1 1
—+-=16e{-1,1}, a,be(—1,1),p>0, O0<y <o <1.
2

We set

— yl+by T
st =1 - (o i )

yI+by 1y
2 T oy 20 ©)
yIEby 1y yl+by gy * Y ’
[(l‘xl‘-%—a[;)‘s] + e,p[m]
wherefrom
. y(+b)
g(x,y) = 1— tanh (p ray ) v > 0),
L Iyl +by |,
g(x,)’)—l tanh(p{ x(l_"_a)]a} > ( >O)7
g(—x,y) =1 —tanh <,0{[ |2}1| ~|—by ) (x > 0),
= 1— M y
g(x, —y) =1 —tanh (p[(|x| +ax)8] ) (y>0).
Lemma 1 We define two weight functions w (o, n) and @ (o, x) as follows:
[ (In| + bn)°
w(o,n): —/_ g(x,n)—(pc| )i dx (In] € N), @)
IXI +ax)™%
w (o, x) : Z g(x, W (x € R\{0}). )]

[n]=1
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Then,
(i) we have

421 = (%)
y@p)°/r (1 —a?)

w(o,n) =k,(0) =

€ Ry (In] € N); €))

(ii) we also have

kp(0)(1 — (0, x)) < @ (0, x) < kp(o) (x € R\{0}), (10)
where
; 20/y
(0:%) = S ety — INCIE)
BT L4
y /”[(Hans] u%—1(1 — tanh(u))du
0

1

Proof We obtain

0 o . .
Q)(U, n) :/ g(x’n)w+/ g(x’n)w
0

—o0 [x(a — 1)]i+oe [x(a + 1)]i+oe

B PRS0, L N (B0
=y SR a e T S e

Setting

{ |n| + bn }V <res { |n| + bn }V>

u= — LU= —_—

Pl —ap P R+ op

in the first (resp. second) integral above, by the Lebesgue term-by-term integration
theorem (cf. [42]), we deduce that

o= (——p 1)1 /oo =1(1 — tanh(u))d
o,n) = — tan
w(o,n ot 114) 70 ), u u))du

a
_ Z1
e 2”MV

4 [}
= / du
yoo/v(l—a?) Jo 14e 2

= —-— —_—dU
)/,0”/7’(1 _ a2) o = e(Zk+2)u
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4 * (4k+2) (4k+4)
- - u _ ,— u
~ypolv(l—a?) /o %k e

4 = * 4k+2 4k+4 £-1
T D) AT
- 0
k=0

4 = [ k —Qk+2)u,, Z—1
Zmzfo (=D 0y du (v = 2k +2)u)
k=0

e¢]

= 4 e Vur ldUZi
y2p)°7 (1 —a?) Jo = k+ hely

Ar (%) o (— k!
a y(zma/y(l—a?)kg kelv

Since % > 1, we obtain that

P koly = koly = (2k)elr
= 201/}/ (277 =2) 4(%)'
We then deduce (9).
We have
—0 _ ) _
o)=Y g(&ﬂ)% + Zg(x,n)%

n=1

n=—1

<|x|+ax> —do g(x —n) (x| 4+ ax) ™% & g(x n)
)1 o Z (l—i-b)]_” Z (12)

Since for y > 0 we have

2pu’ M1 — ey 2yur—le”

(euV + e—uV)Z o e’ + e—u’ <0,

%(1 — tanh(u?)) =

it follows that for 0 < o < 1 both

glx,—y) glx,y)
l1—0o and 1—0o
y y
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are strictly decreasing in y € (0, 00). By (12) and the decreasing property of series,
we have

ooy < I an =
Ty Sy oy @
(|x|+ax>—“0/ gCry)
aroe e ®

Setting
_p[ y(1—b) ]V (res u_p[ y(1+b) D
(x| + ax)? 8 (x| + ax)?
in the first (resp. second) integral above, by simplifications, we obtain

4271 =) (9)E(%)
y@p)e /7 (1= b?)

(o, x) < = k(o).

By (12) and the decreasing property of series, we also obtain that

D5 > (Ix| + ax)=%° / g —y)
W aye e @
<|x|+ax)—5“/ g,y
(1+b)1_" 1 yl o y

Setting again

_, [M]V <res ‘= p [MT)
(] +ax)? > (] + ax)?
in the first (resp. second) integral above, by simplifications, we have

21
w (o, x) > m / - uv (1-— tanh(u))du

:IJ’
|)c|+a)c)‘S

o
+— u (1 — tanh(u))du
o/Y(14+b / 1
ve ( + ) (M:ax)a}

21
mf 4?1~ tanhG))du

])/
(IXI+ar)3

=kp(o)(1 —6(o,x)) > 0.
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We obtain that

lim (1 — tanh(x)) = 1, lim (1 — tanh(u)) =0

u—0 U— 00

and thus 0 < 1 — tanh(u) < 1 (u € (0, 00)). Hence, we have

20y

0<6(o,x) = 20077 =) (5)¢(2)

p[]#ba}y s
X/ ™5 =11 — tanh(u))du
0
Y
20/)’ p[ﬁ] o-1
S uvy du
202007 — I (3)¢($)

_ y2p)°"” [ 1+b }
2029 =DT()5(%) LIx] +ax)®

namely, (10) and (11) follow.
This completes the proof of the lemma.

Lemma?2 Ife > 0, and

o8]

1
Hy(b) == T

Inl=1

then it holds

1

+ 01(1)) (14 02(1)) (¢ — 0T). 13)

Proof We have

He(b) = Z [ b - 1)]1+€ + Z [n(b+ 1)]1+€

n=1

1 00
= [(1 _ b)1+s (1 +b)1+ai| Z n1+s (14)

n=1
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By (14) and the decreasing property of series, we derive that
1 1 =1
H.(b) = 1 2 -
=(b) |:(1+b)1+8 + (1_b)l+si| ( +n=2n1+8>

i+ e ()
< (1+b)1+8 (l—b)H‘g 1 y1+e

1 2
= g(m +o1()( +¢),

1 n 1 /"O dy
(+p)t T a—pe] ),y
1 2 ol
e\1-p2 )
Hence, we obtain (13).

This completes the proof of the lemma.

H(b)

\

Lemma 3 For ¢ > 0, setting

1
Es = {x GR\{O};(|x|+—ax)5 > 1},

we have

H / 1 d 1 2
= - _dx=-—"
s g (Ix| + ax)!+oe g1 —a?
Proof Setting
+ 1
Ef i=1x>0; ———— >1¢,
[x(1 +a)]

E_:={x<0;;zl},
[(—x)(1 —a))?

it follows that E5 = Ej” U E; and

S

Hr — 1 dx n 1 dx
YT Ut a)l+e g X178 (= gy Jpo (—)THee

413

5)

Setting u = [x(1 + a))® (resp. u = [(—x)(1 — @)1%) in the first (resp. second)

integral above, we obtain
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g (L, /00 due 1 2
" \1+ad 14 L ulte el —a?’

Therefore, (15) follows.
This completes the proof of the lemma.

3 Main Results

Theorem 1 Suppose that p > 1, and

T 4277 =D ($)¢($)
Kap(0) :=ka (0)k;, (0) = @ (1 —aa(l =

(16)
If f(x), by = 0, such that

o0
0< / (x| + ax)PIH=1 £P(x)dx < oo, and

—0o0

oo
0< Z (n| + bn)?0==1p1 ~ o,

In|=1

then we have the following equivalent inequalities:

2 [ p(In| + bn)”
I:= Z [OO (1 — tanh (W)) f)bpdx < Ky p(0)

Inj=1Y~

1

1 (o) q
x[/ <|x|+ax)ﬁ<‘+5“>‘1ff’(x>dx]p S (b =158 | (17)

In|=1

P

ad o o p(In| + bn)¥ b
Ji=1{ Y (nl+bn)? 1[/ <1—tanh<m))f(x)dx]

In|=1 -

< Kap(©) [ / " (x] +ax>”“+3")—1f”<x)dx]", (18)

—00
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q 1
00 o8} q
—gdo— p(n| + bn)¥
D= qo0—1 1 —tanh (=) | bu | d
2 [m(|x|+ax) |,§1( an ((|x|+ax)51’ o | dx
1
o0 q
< Kap©@) | Y (n|+bn)1=07 b0 | (19)
|n|=1

In particular, for a = b = 0, we deduce the following equivalent inequalities:

o [ Inl \”
Z/ (1—tanh (,0 <—> )) F(x)bpdx
=17~ |x|8
4207 —2) <o> <o)
<= ~Zr(=)¢c(=
y (4p)°lY y y
1

00 > 00 a
x ( / |x|”“+3”>‘1ff’(x>dx> DO (20)
—00

In|=1

|-

gl e [/_Z (1 ~ tanh (p (%)V» f(X)dxr

420" =2y (o o et o >
= @l F<?>§<?> U_m'x' ! (X)dx} @b

Q[

* so—1 - In \"
|x|79°°~ <1 — tanh <p <—> )) b dx
/_oo MZ:] x]? !

42007 —2) o o - g(1—0)—174 '
= y(4p)g/y—F<;)f(‘> 2 e =

Inl=1

Proof By Holder’s inequality with weight (cf. [43]) and (7), we obtain

o0 p
[/ g(x, n)f(X)dx]

[oo e, my ELE @0 TP £ G0 (nl 4 b)) P
= x.n )
_Oog (In] + bn)A=2)/pP  (|x| + ax)(+é9)/q
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= T ()i

00 (|n]| 4 bn)(1—0)@—1 r-l
X f g(x,n) [ dx
—o0 (Ix] + ax)!+oo
@~ (0, n) /°° (x| + ax) @D

= Gaixbmpr T | B T G by e

fP(x)dx

fP(x)dx.

Then by (9) and the Lebesgue term-by-term integration theorem (cf. [42]), in view
of (8), we deduce that

S =

: (|x| + ax)H00e-D
Jl =< ka (U) ll;]/ (|Vl| +bl’l)1_‘7 f (x)dx
1
: (|x| + ax)IH80)(p—D) »
= k! .
“ / In|=1 (In| + bn)'—° fP(x)dx
1 oo , .
=k / @ (0, %) (x| + ax)P 1+ f”(x)dx} " (23)

Hence, by (10), since

1 1

Kap(0) = ki (0)k] (o),

we deduce (18).
By Holder’s inequality (cf. [43]), we have

o]

1=y |:(|n|+bn)_f’l+gf

In|=1 B

g(x, n)f(x)dx} [(In] + bn)? " by]

1

o0 q
> lnf+ byt =10 | (24)
|n|=1

Then by (18), we deduce (17). On the other hand, assuming that (17) is valid, we set

%) p—1
by := (In| + bn)P°~! [/ g(x, n)f(x)dxi| (|n] € N).
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Then, we obtain that

1

P

[o]
Jo=| 3 (nl+ om0l

In|=1

In view of (23), it follows that J; < oo. If J; = 0, then (18) is trivially valid; if
J1 > 0, then by (17), we have

o0
> (In| + byt =" b
In|=1

1
P

=J{ =1 <Kap(0) [/Oo (x| + ax)f’“””)—lff’(x)dx}

o é
< | Y (nf+ by =07 b
n|=1
.
Jo=| 3 (nl+ byt =]

In|=1

1
< Kap(0) [/ (Ix] +ax)P<1+5“>1fP(x)dx] "

That is, (18) follows, which is equivalent to (17).
By Holder’s inequality with weight, we also obtain that

e q

Y g, mb,

[ Inl=1

o0

(Ix] + ax)+°9)/4 (|n| 4 bn)1=)/P

- Inlz—l g (In] 4 bn)1=9)/P (|x| 4 ax)(1+9)/a

n

0 (Ix] _|_ax)(l+8cr)(11—1)

D gbrm (In] + bn)1 =@

_|n|:1

IA

o
(In| + bn)—2a-D
X Z glx,n) (|x| +ax)1+5" bn

Inl=1

-1 @ (1-0)(g—1)
(w (0, x))1 Z 2, n)(lnl + bn) Y

= (Ix| -{-ax)_q&’_l = (|1x| +ax)1+6<7 n -
nl=
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By (10) and the Lebesgue term-by-term theorem, we obtain that

— 1
1 oo X (I—0)(g—1) !
(|n| + bn) q
P q
h<kalo) /;oo |112=:l #(x,n) (x| + ax)!+30 bpdx
_ .
1 o0 ?
=kJ (@) | D ol n)(n|+bn)? =7 pl | (25)
| In]=1

Hence, by (9), we deduce (19).
We have proved that (17) is true. Setting
o0 q_l
FO) = (xl+a0) ™7 [ 3" g, mby | (x € R\{OD),

|n|=1

it follows that

—00

1
b= [/ (x| +ax)”(1+3”)_1fp(X)dX]q ,

and in view of (25), we derive that J, < oo. If J, = 0, then (19) is trivially true; if
J2 > 0, then by (17), we have

/ (x| + ax)P1H=1 £2 () dx

0]

1
o >
=J] =1 <Kap(0) [/ (Ix| +ax)1’(1+5")_1fp(x)dxi|1

—00

1

oo q
x| D0 (nl+ by =07 1p0 |

In|=1

00 1-1
J2=[/ (|x|+ax)1’<1+5“>—1ff’(x)dx} '

o0 ql
< Kap(©@) | D (n+bm)? =711 |

In|=1

namely, (19) follows.
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On the other hand, assuming that (19) is true, by Holder’s inequality and similarly
to as we proved (24), we have

1

1< [/Oo (x| +ax)p(1+5")1fp(x)dxi| " . (26)

—00

Then by (19), we obtain (17), which is equivalent to (19).
Therefore, the inequalities (17), (18) and (19) are equivalent.
This completes the proof of the theorem.

Theorem 2 With regard to the assumptions of Theorem 1, the constant factor
K, (o) in (17), (18) and (19) is the best possible.

Proof For0 <& < go, wesetod =0 — 3 (€ (0, 1)),

1

ST E)HL’ x € Es,

F(x) :={ (xltan)
0,x € R\Ejs,

and
by = (n| +bn) 07" (jn] e N).

By (13) and (15), we have

1

I = [/OO (x| +ax)”(l+8”)_lf”(x)dxi|p

1

q

i ~,
3" (Il + bm)?1= =15
Inj=1

00 dx 5 0
N [/oo (Ix] +ax)38+1:| ; (In] +bn)54rl

1
1 i

2 » 2 L
=% (1 _az> [(1 ) +o1 (1)1 +02(1))]

By (10), we also have that

Z / g(x, n) f(x)bpdx

|n|=1

q

1

_ (|x| +ax)—5(5+8)—l

- /E ‘ (In| +bn)1=7

n|=1
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/ @ (5, x) dx > k(3) 1 -6, x) J
= _— o _—
gy (x| +ax)pet1 0 =0 L et

= kp(5) / d—x _f dx
— £, (Ix| + ax)detl Es O((|x| +ax)5(a+%)+1)

—¢e0(1)).

Lo — 5
= — g — —
P g 1—a?

If the constant factor K, (o) in (17) is not the best possible, then there exists

a positive number k, with K, 5(0) > k, sucp that (~17) is satisfied when replacing
K4 (o) by k. Then, in particular, we have ¢/ < gk, namely,

£ 2
k (a_;) (1_,12 —80(1))
2 \7 2 i
<k.<l—a2> [(m-ﬁ-ol(l)) (1+02(1)):| .

It follows that

2 2
k k
b(a)l—azi <1—a2>

S =

1
2 q
(+2) o

namely,

4277 =2 (5)5($) -

Kao(0) = e — a1l = 1 =

This is a contradiction. Hence, the constant factor K, (o) in (17) is the best
possible.

The constant factor K, p(o) in (18) (resp.(19)) is still the best possible.
Otherwise, we would reach the contradiction by (24) (resp. (26)) that the constant
factor K, p(0) in (17) is not the best possible.

This completes the proof of the theorem.

4 Operator Expressions

Suppose that p > 1. We set the following functions:

@ (x) := (x| + ax)PIT=L gnd w(n) = (|n| + bn)?1—~1,
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wherefrom
@' (x) = (x| +ax)" 7,
and
wI=P(n) = (In| + bn)P°~! (x € R\{0}, |n| € N).

Define the following real weight normed linear spaces:

1
Lyo® :=1f=FC i1 lpe = (/ @(x)|f(x>|f’dx>‘ <oo},

—00

1
L,p1-¢(R):=1h= h(x); ||h||q’¢1—q = </ ¢1—4(x)|h(x)|‘1dx>q < oo} ,

1

o
lgw :=3b={ba)yi: 1bllgw == [ D w@Ib? | <oo
In|=1
o) P
Lgior i = e = ez llellppir = | D@ Pm)eal” | < o0
In|=1

(a) Inview of Theorem 1, for f € L, ¢ (R), setting

HY (n) :=/ g(x, m)| f(x)ldx (In| € N),

—00

by (18), we have

o ”
NHON, gip = | Y@ P)HD )P | < Kap@)]I fllp.e < 00,
In|=1
27)
namely, HWD ¢ lp’lpl—p.

Definition 1 Define a Hilbert-type operator
T Lyo®) =1, g1

in the whole plane as follows: For any f € L, ¢(R), there exists a unique
representation T f = HWD € 1, 41, satisfying
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(T fyin) = HV (n),

for any |n| € N.

In view of (27), it follows that
TP £l = IHVN, g1-r < Kasllfl1p.o
and then the operator 7! is bounded, satisfying

T £l pis

T M = u
p
fE0eL,o® I fllpo

< Kap(0).

In virtue of the fact that the constant factor K, 5 (o) in (27) is the best possible, we
have

421 =) ()
y@p)/v (1 —a?)la (1 — b2/

TV = Ky p(o) = (28)

If we define the formal inner product of 7" f and b (e l4,w) as follows:

TV fb) =) ( / g(x,n) f (x)dx)bn,

e

then we can rewrite the equivalent forms (17) and (18) in the following manner:

@D £.0) < ITVNNf 1w l1bllg.e 1T fll,gi- < ITOHNfllpo. (29

(b) In view of Theorem 1, for b € I, y, setting

e ¢]

H(x) := Z g(x,mb, (x € R\{0}),
n|=1
we obtain, by (19), that
o0 i
NH|, p1-0 = [ / ¢“f(x)(H‘2><x)>‘fdx} < Kap(0)|[bllg.e < oo,

—0oQ
(30)
namely, H® ¢ L, g1-¢(R).

Definition 2 Define a Hilbert-type operator
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T® :lyw — Ly yi-e(R)
in the whole plane as follows: For any b € [, y, there exists a unique representation
TPb=H® e L, y1-(R),
satisfying
(TPb)(x) = HP (x),

for any x € R.

In view of (30), we have
NTPbll, g1-0 = 1HP,.01-0 < Kap(@)1bllg.w.
and then the operator 7® is bounded, satisfying

1T @bl o1

@ = -
b0yl Pllgw

< Ka,b(a)-

As the constant factor K, ;,(o) in (30) is the best possible, we have
TN = Kap(o) = 11TV, (31)
If we define the formal inner product of T@pand f (e L »,@(R)) as follows:
00 o0
(TPb, f) = f > g, myby f (x)dx,
=1
then we can rewrite the equivalent forms (17) and (19) in the following manner:
(TP, £) < ITDN-N1fllpwllbllg.e. ITDbll, g0 < TP Ibllgw.  (32)

Remark 1

(i) For§ =1, (20) reduces to (5). If f(—x) = f(x) (x > 0), b—, = b, (n € N),
then (5) reduces to the following half-discrete Hilbert-type inequality (cf. [6]):

g/ooo (1=tanh (o (%)")) F@bud

2020/ —2) (a) <a>
< —7"—7I—)C¢|—
y (4p)°lr % %
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00 % 0 %
x|:/0 xp(1+”)1fp(x)dx:| [an“)‘bz} . (33)
n=1

(i) For 6 = 1, (17) reduces to the following particular inequality with homoge-
neous kernel of degree 0:

3 > |n| + bn\Y
SN

1

< Kap(o) [ / (Ix] +ax)”“+"“f”(x)dx}p

—00

1

o0 q
x| Y (nl+ by pT (34)

n|=1

(iii) For 6 = —1, (17) reduces to the following particular inequality with
non-homogeneous kernel:

> f (1 — tanh (p[(x| + ax)(n| + bn)]")) f (x¥)bndx

In|=1""

1
< Kap(0) [ / (x| +ax)p“")1f"(x)dX} ’

—00

o0 q
< | Y nl+ b=l (35)

In]=1

The constant factors in the above inequalities are the best possible.

5 Two Kinds of Equivalent Reverse Inequalities

In the following, for the cases in 0 < p < 1 and p < 0, we still use ||b]|4,» and
[1 £l p,w as the formal symbol.

Theorem 3 Suppose that 0 < p < 1. If f(x), b, > 0, satisfying
0<Ifllpw <00, 0 <|lbllge < o0,

then we have the following equivalent inequalities:
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o [ p(In| + bn)”
I = Z_ /;oo (1 — tanh (W)) f(x)b,,dx

In|=1

1

> Kup(0) [ / h (1-6(o, x)>(|x|+ax)'f“+5">‘1f%x)dx} " ibllg.0. (36)

1

p

J

0 00 + bn)Y P
= Z(|n| + bn)Po ! Uoo (1 — tanh (%)) f(x)dx:|

|n]=1
1

> Kap(0) [ f ” (1 —6(0, x))(|x] + ax)"“”")‘lf"(x)dx}” , (37)

—00

1
00 4 q

~ [ U—=6(0x)'1 o(n| + bn)?
J2 1= /_oo (x| + ax)ado+1 Z (1 _tanh<(IXI + ax)% )) b |

In|=1

> Kap(@)lbllg.0. (38)

where the constant factor K, (o) is the best possible.

Proof Similarly, by the reverse Holder inequality (cf. [43]) and (7), we obtain that

00 p
[/ g(x, n)f(x)dX]

a)p_l(d, n) 00 (x| +ax)(1+50)([7—1)
> — , P(x)dx.
- (|n|+bn)po._l /;oog(x n) (|n|+bn)1_o. f (x) X

In view of (9), the Lebesgue term-by-term integration theorem (cf. [42]) and (8), we
deduce that

1

1 0o P
Ji = ki (0) [ / @ (0, x) (x| + ax)f’“”")—lf"(x)dx] : (39)

—00

Hence, by (10), we obtain (37).
By the reverse Holder inequality (cf. [43]), we also have that

- i
=00 ) (nl+bn)? =07 b | (40)

In|=1
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In view of (37), we obtain (36).
On the other hand, assuming that (36) is valid, we set

oo p—1
b, = (|In| + bn)p”_1 |:/ g(x, n)f(x)dxi| (Jn] € N).

Then, we obtain that

1

oo
Ji=1 Y (nl+bm? =7 1p]

n]=1

In view of (39), it follows that J; > 0. If J; = oo, then (37) is trivially valid; if
J1 < oo, then by (36), we have
1611 o = ! =1
1

> Kap(0) [/ (1 —6(a, x))(|x| +ax)P<‘+5”“fP<x>dx]" 16l1q.

—00

]

11T = 1 > Kap(0) [ / (1= 0(c, x)(|x] +ax>ﬂ“+“")—1f”<x)dx]",

—00

namely, (37) holds, which is equivalent to (36).
Similarly to as we obtained (39), we have

1

1 0 7
>kl (@) | > e n)(n|+bn)?" =7 bl | (41)

In|=1
Hence, by (9), we deduce (38). We have proved that (36) is valid. Setting

-1
00 q

1—6(0,x)' ™4
f@) ::W% > gl mba | (e R\(OD),
|n|=1

it then follows that

1

= [/OO (1 —0(0, X)) (Jx| + ax)”“%“*lf”(x)dx}q :

—00

egld in view of (41), we obtain that .72 > 0. If fz = 00, then (38) is trivially valid; if
Ja < oo, then by (36), we have



On a Half-Discrete Hilbert-Type Inequality in the Whole Plane 427

/oo (1 —0(c, ) (x| + ax)PIHI= P (ydx = J4 = 1

—00

> Kap(0) [ / ” (1 —6(0, x))(|x| +ax)ﬂ“+5">—1f"(x>dx]” 11611g.2

—00

00 1*%
72=[ / (1—e<a,x>)(|x|+ax)l’“+5‘”lf"(x)dx} > Kap(@)|1bllg.0,

namely, (38) follows. On the other hand, assuming that (38) is valid, by the reverse
Holder inequality (cf. [43]), we obtain

1

I> [ f ~ (1= 060, 0) (] +ax>”“+““>‘1f"(x)dx}" B, 42)

Then by (38), we get (16), which is equivalent to (38).
Therefore, inequalities (36), (37) and (38) are equivalent.
Fore > 0, wesetog = o +§ =),

1

~ 1 & 11 X € E ’
fx) = { (x| +ax)’ P! ’

0, x € R\Es,
and
Ny (0—5)—-1
by := (In| +bn)" 4 (In] € N).

Then by (13) and (15), we obtain that

1
n: = U (1—9<a,x))<|x|+ax>1’“+3">‘f*’(x)dx}p

1

o0 q
< | Y (Inf + by == 1B]

Inl=1

1
© (1 =0(0,x)dx]7? | = 1
[/_oo (Ix] + ax)®e+! ] 2 (In] + bn)s+!

n|=1

2 1 foo dx 5
el —a? —oo O((Jx] 4+ ax)sete)tl
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Q=

]

Z (|n| + bn)g‘H

1/ 2 T2 i
=z<1_a2 ) [<l_b2+ol<1>>(1+oz(1>)}

By (10), we also have that

Z[ g(x, n) f(x)bydx

|n|=1
)l + bn) !

Z e

In|=1" Es (|x|+ax) b
IR bn)@—)~1

Z X T dx

~ (x| +ax)

w (o, n) 1
- lnlzzl (nl+ by 1~ e )HZ] (nl & e

1 £ 2
= —kg <0 + —) ( 5 +01(1)) (1 4+ 0a(1)).
e D —-b

If the constant factor K, , (o) in (37) is not the best possible, then there exists
a posmve number k, with K, (o) < k, such that (37) is valid when replacing
K, (o) by k. Then, in particular, we have el > skll, namely,

2
b, <a N %) (1 - +01(1>> (14 02(1))
1

2 % 2 4

It follows that

2 2 2/p 2 2/q N
@O rme) \ioe) e

namely,

42017 =) ($)¢($)
>
y 4p)7/7 (1 —a®)Va(1 —b?)V/r =

Ka,b(a) =
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This is a contradiction. Hence, the constant factor K, (o) in (36) is the best

possible.

The constant factor K, (o) in (37) ((38)) is still the best possible. Otherwise, we
would reach a contradiction by (40) ((42)) that the constant factor K, 5(o) in (36)

is not the best possible.

Theorem 4 Suppose that p < 0. If f(x), b, > 0, satisfying 0<|| flp.w, [|bllg,0 <

o0, then we have the following equivalent inequalities:
o

* p(Inl + bn)¥
1 = Z /;oo (1 — tanh (W)) f(x)b,,dx

In|=1

> Kap @) fllpwllbllg.e.

- ot [ [ p(In| + bn)” P
Ji = Z(|n|+bn)” 1[/ (l—tanh<m))f(x)dx:|

In|=1 -

\

Kap (I fllpw,

0]

q
o 1 p(n| + bn)?
Jr = _— 1 —tanh | —m8M8— b d
2 /,oo (x| + ax)95o+1 Z( o <(|x|+ax>5y m|

In]=1

> Kap(0)lbllg. @

where the constant factor K, (o) is the best possible.

Proof For p < 0, by the reverse Holder inequality (cf. [43]) and (7), we find

00 P
[f g(x, n)f(X)dX]

oP" (o, n) /°° (x| + ax) @D

< 7
= G bmre 1 | 8T ey

fP(x)dx.

(43)

S|

(44)

q

(45)

Then by (9), the Lebesgue term-by-term integration theorem (cf. [42]) and (8), we

deduce that

1
1 s »
J1 > ki (0) [ / @ (o, x) (x| + ax)!’““")—lff’(x)dx] :

—00

Hence, by (10), we obtain (44).

(46)
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By the reverse Holder inequality (cf. [43]), we have

o i
=00 Y (nl+ b7 =710 (47)

n|=1

Then by (44), we deduce (43).
On the other hand, assuming that (43) is valid, we set

00 p—1
bm=WHWN”%/ AWWWMQ (Inl € N)

—00

q

and find J| = ||b||(i¢. In view of (46), it follows that J; > 0. If J; = oo, then (44)
is trivially valid; if J; < oo, then by (43), we have

bllg o = I =1 > Kap(@IIfllpwllbllg,e,
-1
Ji=1bllg o > Kap (@I fllpw.

namely, (44) holds, which is equivalent to (43).
Similarly, we obtain that

1

1 0 1
Jr > kf (o) Z w(o,n)(In| + bn)d 1=~ 1pd | . (48)

In|=1

Hence, by (9), we deduce (38). We have proved that (43) is valid. Setting

1 > !
f(-x) = W nIZ:1g(.x, n)bn (.x € R\{O}),
p
it follows that J, = ||f||;’l1, and in view of (48), we get J, > 0. If J, = oo,

then (45) is trivially valid; if Jo < oo, then by (43), we have

WFI1D g =5 =1 > Kap@)IIfllpwllbllg.e
-1
L= 111"y > Kap(@)lbllga,

namely, (45) follows.
On the other hand, assuming that (45) is valid, by the reverse Holder inequality
(cf. [43]), we obtain
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1

1> [/OO (x| +ax)”<1+8f’>—1fp(x)dx}" J.

Then by (45), we get (23), which is equivalent to (45).
Therefore, inequalities (43), (44) and (45) are equivalent.
For0 <& < |p|(c —y), wesetd = o +% (> y),

1

Foo) =1 Qxlan)® Pt
0, x € R\Es,

x € Es,

and
By == (n| + bn) "0 (In| € N).

Then by (13) and (15), we obtain that

o0 = o0
I = [/ (x| +ax)”(l+5")_1f”(x)dx]p (In| + bny11 == 1p]

- In|=1

(e ¢] 1 q

o0 dx %
B [/oo (|x|+ax)58+1] 2 (| + bn)e+1

[n]=1

1

1 2 7 2 :
Zg(l_a2> |:(1—b2 +01(1))(1+02(1))i| .

By (10), we still have

I:= Z /OO g(x,n)f(x)gndx

In]=1""~
00 (c—£)-1
b q

= Z/ g(x,n) (Inl + n)a - 1dx

ni=17 B (x| +ax)" o

0 hoo G—e)—1

(In| + bn)

< X, n = dx
: nz_:l/_oog( "l ax@

1

In|=1 [n|=1

1 e 2
= gka(U + ;)(1——b2 +o1(D)( + 02(1)).

_ w@,n) >
= 2 Gt~ @ 2 G

431

(49)

<=
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If the constant factor K, (o) in (43) is not the best possible, then there exists
a positive number k, with K, 5(0) < k, such that (43) is valid when replacing
K4 (o) by k. Then, in particular, we have ¢/ > ¢k, namely,

2
kaq <C7 + %) (m +01(1)> (1 +02(1))

2 \7 2 7
>k<T??) Kffﬁ*ﬂwn)a+@0»}'

It follows that

1 1

oy i (<2 V (2} s o
AT T =N\ 2 1) ¢ ’

namely,

4271 =) (9)E(%)

Ku,b(a) = 7/(410)0/)/(1 _ a2)l/q(1 — bz)l/p =

This is a contradiction. Hence, the constant factor K, ,(c) in (43) is the best
possible.

The constant factor K, , (o) in (44) ((45)) is still the best possible. Otherwise, we
would reach a contradiction by (47) ((49)) that the constant factor K, (o) in (43)
is not the best possible.
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Analysis of Apostol-Type Numbers and )
Polynomials with Their Approximations i
and Asymptotic Behavior

Yilmaz Simsek

Abstract In this chapter, using the methods and techniques of approximation of
some classical polynomials and numbers including the Apostol-Bernoulli num-
bers and polynomials, we survey and investigate various properties of the Boole
type combinatorial numbers and polynomials. By applying the p-adic g-integrals
including the bosonic and fermionic p-adic integrals on p-adic integers, we study
on generating functions for the generalized Boole type combinatorial numbers and
polynomials attached to the Dirichlet character. These numbers and polynomials
are related to the generalized Apostol-Bernoulli numbers and polynomials, the
generalized Apostol-Euler numbers and polynomials, generalized Apostol-Daehee
numbers and polynomials, and also generalized Apostol-Changhee numbers and
polynomials. With the help of these generating functions, PDEs and their functional
equation, many formulas, identities and relations involving the generalized Apostol—
Dacehee and Apostol-Changhee numbers and polynomials, the Stirling numbers, the
Bernoulli numbers of the second kind, the generalized Bernoulli numbers and the
generalized Euler numbers, and the Frobenius—Euler polynomials are given. Finally,
by using asymptotic estimates for the Apostol-Bernoulli polynomials, asymptotic
estimates for Boole type combinatorial numbers and polynomials are given.
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1 Introduction, Definitions and Notations

Special numbers and polynomials have played an important role in theory of the
approximation and analytic inequalities. These numbers and polynomials have been
used in almost all areas of mathematics, in physics, and in engineering problems.
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In this chapter, we use the following standard notations and definitions:
No=1{0,1,2,3,...}.

Z denotes the set of integers, Q denotes the set of rational numbers, R denotes the
set of real numbers, C denotes the set of complex numbers, and Z, denotes the set
of p-adic integers.

We assume that In z denotes the principal branch of the multi-valued function In z
with the imaginary part J(Inz) constrained by the interval (—m, ]. For example,
for z € C, we have

Inz=1In|z| +iargz

with —7 < iargz < m.
For z € C, setting

exp(z) = €.

For x € R, [x] denotes the integral part of x.
In addition to the above standard notations, we also give the following notations:

1, m=0)
0 _{0, (n eN),

and the Pochhammer’s symbol for the rising factorial is given by the following
notation:

v_FO+v _
)Y = o A+ D) tv—1),

and
00 =1

for . # 1, where v € N, A € C, and I" (1) denotes the gamma function, which is an
important special function in mathematics.

' | wveN,zeO
v v! v!

<z>=z(z—1)-~-(z—v+l) 2@

and

(-



Analysis of Apostol-Type Numbers and Polynomials with Their. . . 437
Observe that
(=2)" = (=D" ),

(cf. [8, 83, 86]).

Bernoulli Type Polynomials and Numbers and Euler Type
Polynomials and Numbers

Here, the generating functions of Bernoulli type numbers and polynomials and Euler
type numbers and polynomials are given. With the help of approximation theory,
asymptotic estimates for these polynomials are also given.

The Apostol-Bernoulli polynomials, B,(x; 1), are defined by means of the
following generating function:

o0
t t"
Falt,x;3) = ———e'* =) " B,y(x; )=, (1.1)
— !
Le 1 = n!

where A € C, and the following set denotes the poles of the function Fy4 (¢, x; A).
If

P={2nin—InA:neZ},
when A # 1, and
P={2nin:neZ}

when A = 1; under this condition, O is a removable singularity. Setting A — 1, the
set P has been reflected in various discontinuities. That is, when A = 1 and A # 1,
the radius of convergence of the series in (1.1) is 27 and |In A|.

Substituting x = 0 into (1.1), we have

Bn(2) = Bu(0; 1).

Here, 5,(1) denotes the so-called Apostol-Bernoulli numbers (cf. [16, 31, 53, 60,
84, 87]; see also the references cited in each of these earlier works).

By using (1.1), few values the Apostol-Bernoulli numbers and polynomials are
given as follows:

By (2) =0,

1
Bi(h) = o1
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—2X
B = —,
2 (M) 12
3A(A+1)
B3(A\) = ——, ...
3 (A) G 1)
and
By (x;4) =0,
1
Bl(X,)»)Zm,
2
3 62 32 (A + 1)
Bs (x; L) = 2_ ,
e e R T AT

and so on (cf. [1-43, 4648, 50-86]; see also the references cited in each of these
earlier works).

By using the following Lipschitz summation formula, the following Fourier
series of the polynomials 5, (x; A), for any (A € C, (A # 0)), was given by Luo
[52]:

exp 2wivx)

n! e
Bu(x;h) = =8, (s ) — —~ Y (1.2)
A veZni0) 2miv —log )
where
5, (i 1) 0, A=1
n (X3 A) =91 (D!
w7 1

(cf. see also for detail et al. [56]).

In the work of Navas et al. [56], using the appropriate approximating sums over
the sets F £ P, substituting x = 0 into the Fourier series of the polynomials
Bn(x; X) in equation (1.2), Navas et al. gave an asymptotic expansion for the
Apostol-Bernoulli numbers B, (1), by the following theorem:

Theorem 1 ([56]) Let A € C with A # 0. Let F be a finite subset of the set of P
satisfying

max {|w| : w € F} <min{jw|: w € P\F} = 8.

For all integers n (>2), then we have
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1 1
Ba()/ ) == —+0 <ﬁ—> :

weF

where the constant implicit in the order term depends only on A and F.

It is easy to see the following relation:

B, (x) = thﬁ B (x; A),

where B, (x) denotes the Bernoulli polynomials (of the first kind) (cf. [3—43, 46—
48, 50-78, 80-90]; see also the references cited in each of these earlier works).
Some properties of the Bernoulli polynomials are given as follows:

% {B, x)} =nB,_1 (x),

|
Bo, (5) = (21*2" _ 1) Bo,.and

1
Boy—1 (5) =0 (=1,
and
Bn = Bn(o)

denotes the Bernoulli numbers (of the first kind). Observe that

AR T

The well-known Euler formula including the Riemann zeta function ¢ (z) and the
Bernoulli numbers is given as follows:

By, = ()" 2@2m)! 2m) " ¢ (2n),

where n € N (cf. [3-43, 46-48, 50-78, 80-90]).
The following well-known inequality was given by Kouba [42]:

1<¢(@n)<?2, (1.3)

where n € N.

Remark 1 We observe that with the help of the above inequality, the lower and
upper bounds of Bernoulli numbers B, can be easily found. Consequently, it is
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known that the finite arithmetic sums, which contain the Dedekind sums and the
Hardy sums, are closely related to the Bernoulli numbers and polynomials. Perhaps
with the help of (1.3), the lower and upper bounds of these sums may be easily
found.

Let z € C. The cosine and sine functions are defined, respectively, by

k g2
T = —1)/ ,
2% (2) jgo( )(Zj)!
and
k g2+
= L
Tott1 (2) JZ:(:)( Y G
(cf. [10]).

It is well known that the series of the function 7;, (27 z) is uniformly convergent
on a compact subset to cos (2rz) if n is even, and to sin (2rz) if n is odd (cf.
[10, 42, 56]). Therefore, we have the following well-known approximation result
for Bernoulli polynomials B, (z) and the function 7,, 27 z):

Theorem 2 Forall z € C, n > 2, we have (withk = [4])

2m)" 1
g (1) 21, )| < 2ot
2n! 2
(cf- [10]).
Corollary 1 The following sequences converge uniformly on compact subsets of C:
(=t @m* By (z) — cos (27z)
2 (2k)!
and
B (27T)2k+1 )
—pr =B 2
(=D 3 Ok 3 1)1 D2k (z) — sin (2mz)
(cf- [101]).

For» = 1,n > 1,and 0 < x < 1, equation (1.2) reduces to the following
well-known Fourier series for the Bernoulli polynomials:

o0

n! exp (2wivx)
Qmi)" Z n

B,(x) = —

veZ\{0}
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(cf. 12, 8, 52, 86]).
The Apostol-Euler numbers of the first kind, &, (x; A), are defined by means of
the following generating function:

Fpi(t,x; 1) = m _25 (x; A)— (1.4)

(A €C; |t] < when X =1 and |t| < |In(—A)| when A # 1).
By using the following Lipschitz summation formula, Luo [52] gave the follow-
ing Fourier series of the polynomials &, (x; A), for any (A € C, (A # 0)):

Z exp ((2v — Dmix)

En(x; A )
(i 1) = (v — Dmi — log1)"*!

(1.5)

vEZ

Substituting x = 0 into (1.4), we have the first kind Apostol-Euler numbers:
En(h) = & (0; 1). (1.6)

When A — 1 into (1.4) and (1.6), we have the first kind Euler polynomials and the
first kind Euler numbers, respectively:

E,(x) = Allm1 En(x; 1) (1.7
and

E, = )}Hnl En(V) (1.8)

(cf. [3-43,46-48,50-78, 80-88]; see also the references cited in each of these earlier
works).

For» = 1,n > 1,and 0 < x < 1, equation (1.5) reduces to the following
well-known Fourier series for the Euler polynomials:

En(x) = —

exp ((2v — Dmivx)
)n+1 Z
(cf. 2, 8, 52, 86]).
For x = 0, by using (1.4), few values of the Apostol-Euler numbers of the first
kind are given as follows:

2
5() ) = m,

2\
5 = =,
W=
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2. (0 — 1)
n="""2
& (1) TR
20 (A2 —4r+1)
="
&0 o+ D

(cf. [9-43,46-48,50-78, 80-86]; see also the references cited in each of these earlier
works).

The second kind Apostol-Euler polynomials, & (x, A), are defined by means of
the following generating function:

2

Fpa(t,x;A) = ————
Palf, %3 4) rel + A le

oo ln
=) (1.9)
n=0

(cf. [75,71, 86)).
Combining (1.4) with (1.9), we have the following well-known relation:

1
EF(x; 1) = 22"E, (x;r ,/\2>. (1.10)

By combining (1.5) with (1.10), we arrive at Fourier series of the polynomials
E¥(x; 1) by the following theorem:

Theorem 3 Let A € C(A # 0). Then we have

on+ly,) O exp ((2U2—1)ni(x + 1))

K . (1.11)
Azl vez (Qv —Dri —log AZ)"+1

Erx; x) =

Substituting A = 1 and x = 0 into the above relation, a relation between the first
and second kind Euler numbers is given as follows:

1
£ =25 5)

(cf. [36, 69, 75, 77, 86]; see also the references cited in each of these earlier works).
Substituting A = 1 into (1.11), we have

ontly) X exp ((%) wi(x + 1))
(JTi)n+1 . (ZU — 1)n+1

& (x) =
€L

Combining (1.1) with (1.4), we have the following well-known relation:

Ba(x; 1) = —% 1 (X3 —A) (1.12)
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(cf. [75, 77, 86]; see also the references cited in each of these earlier works).
The A-Bernoulli polynomials (Apostol-type Bernoulli polynomials), 8B, (x; A),
are defined by means of the following generating function (see [39]):

) logh+1 , < N
Fg(t,x,)»):me =nX_g%n(x,/\)E (1.13)

(|t] < 2w when A = 1 and |#| < |log A| when A # 1) with
B,(A) =B,(00; 1)
denotes the A-Bernoulli numbers (Apostol-type Bernoulli numbers) (cf. [18, 39, 68,

74, 871).
By using (1.13), a few values of the A-Bernoulli numbers are given by

log A
2) =
Bo(L) o1
and
A—1—Alogh
B = S E%
r—-1

If n > 1, then we have

By =2 (”,)fB,-(x).
j=0

Therefore,

Alogh — A2
By() = o2l
r-1

A relation between the A-Bernoulli numbers and the Frobenius—Euler numbers
is given as follows (see [39, Theorem 1, p. 439]):

Bo0) = 2% (1)

A—1 A

and

log A 1 n 1
%n()\) - x— lHn <X> + 3 — lHn—l (X) s
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where H,, (%) denote the Frobenius—Euler numbers, which are defined by means of
the following generating function:

1—u > t"
&mm=d_u=zymma, (1.14)
n=

where u € C with u # 1 (¢f. [27], [39, Theorem 1, p. 439], [67, 87]; see also the
references cited in each of these earlier works).

We also note that '* Fr(z, u) gives us well-known generating function for the
Frobenius—Euler polynomials H,, (x; u).

In [72], we gave the following functional equation:

g4 v (0. 1Y + Facr 002
A'_l f ’A’ A 9 b .

Fp(1,0; 1) =

By using the above functional equation, we have

Hn (l) — (k _ 1) %n(k) - Bn()&)’
A log A

where log A # 0.
The Humbert polynomials l'I,(f‘z,, (x) defined by Humbert in [15] with the
following generating function:

o0
(1 —mxt +") 7 =3 0%, (0"
n=0

(cf. [15], [57, 83, p. 86, Eq-(26)]), and the recurrence relation for these polynomials
is given as follows:

m+D0%, @) —mx (n+2) 0L, )~ +mr—m+ 1)1 (x) =0

n+1,m n—m+1,m

(cf. [9, 55]; see also the references cited in each of these earlier works).
The generalized Humbert polynomials P, (m, x, y, p, C) are defined by the
following generating function:

o0
(C —mxt + ytm)p = Z P,(m,x,y, p, O)t",
n=0
and it is clear that

Pa(m, x,1, =2, 1) = I, (x)

(cf. 19, 13, 55, 57)).
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Apostol-Bernoulli Polynomials and Numbers and Apostol-Euler
Polynomials and Numbers Attached to Dirichlet Character

Here, the generating functions of generalized Bernoulli type numbers and poly-
nomials attached to Dirichlet character and generalized Euler type numbers and
polynomials attached to Dirichlet character are given.

Letd € Nand (Z/dZ)* denotes the unit group of reduced residue class modulo
d. Throughout this paper, x is a Dirichlet character with modulo d, which is a group
homomorphism, i.e.,

X+ (Z/dZ)* — C\{0}

(cf-12D.

Let x be a non-trivial Dirichlet character with conductor d. Let A be a
complex number. The generalized Apostol-Bernoulli numbers attached to Dirichlet
character, B, , (1), are defined by means of the following generating function:

A el
Z Adeetj)((]) ZB,,X(A)— (1.15)

Jj=0

(cf. [1, 28, 32, 34, 65, 87]; see also the references cited in each of these earlier
works).
By combining (1.15) with (1.1), we have

d—1

By () =d""" Y M x(j)B, (— xl’)

j=0

and for the trivial character x = 1, we have

Bn ()\) = Bn,l(k)

(cf 11, 28, 32, 34, 65, 87]).

Let x be a non-trivial Dirichlet character with conductor d. Let A be a complex
number. The generalized Apostol-Euler numbers attached to Dirichlet character,
&En,x (A) are defined by means of the following generating function:

d—1 iti . 00
(=2 e x(j) "
22}—Wd+1 =2(j)5n,x<x)a (1.16)
J= n=

(cf. [32, 34, 87]; see also the references cited in each of these earlier works).
By combining (1.16) with (1.4), we have
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d—1 .
Eay ) =d" Y (=1 (D& (é AP) .

j=0
For the trivial character x = 1, we have
gn()\) = gn,l ()L)

(cf. [32, 34, 87]).

Combinatorial Type Numbers and Polynomials

Here, the generating functions of combinatorial type numbers and polynomials,
including the Stirling numbers, the Bernoulli numbers and polynomials of the
second kind, and the combinatorial numbers and polynomials, are given.

The Stirling numbers of the first kind, S;(n, k) are defined by means of the
following generating function:

o]

k
F1(t, k) = (log(lﬂ)) ZSl(n k)—. (1.17)

These numbers have the following properties:

$1(0,0) = 1.
If K > 0, then

S1(0, k) = 0.
If n > 0, then

S1(n,0) =0.
If K > n, then

Si(n, k) =0.

By using (1.17), one easily has the following recurrence equation for the number
S1(n, k):

Si(n+1,k) = —nSi(n, k) + S1(n, k — 1)
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(cf. [3,6,7, 64,70, 71]; see also the references cited in each of these earlier works).
The Bernoulli polynomials of the second kind, b, (x), are defined by means of
the following generating function:

t . ad "
Fpa(t, x) = m(l +1)* = ,;b"(x)”’ (1.18)

(cf. [64, pp. 113-117]; see also the references cited in each of these earlier works).
The Bernoulli numbers of the second kind, b, (0) are defined by means of the
following generating function:

t > t"
FbZ(t)zngb”(O)ﬁ' (1.19)

These numbers are computed by the following formula:

n—1

> (’Z) bi(0) = nl81,
k=0

where 8,1 denotes the Kronecker delta (cf. [64, p. 116]). The Bernoulli polynomials
of the second kind are defined by

x+1
ba(x) = / (Wadut.

Substituting x = 0 into the above equation, one has

1
0

The numbers b, (0) are also the so-called the Cauchy numbers (cf. [64, p. 116],
[23, 41, 62, 64, 72]; see also the references cited in each of these earlier works). In
[38], Kim et al. gave a computation method for the Bernoulli polynomials of the
second kind that is defined as follows:

n

by(x) = Z %1[) ((x i x1+1> ,
=0

and also Roman [64, p.115] gave

" nSi(n—1,1—1
ba(e) = by(@) + ) LD
=1



448 Y. Simsek

By using the above formula for the Bernoulli polynomials and numbers of the
second kind, few of these numbers are computed as follows, respectively:

bo(x) =1,

1
bi(x) = E(ZX + D),
1 2
by(x) = 6(6)6 -1,
1 3 2
b3(x) = (4_1)(4x —6x"+ 1),
1 4 3 2
ba(x) = %(30)6 — 120x7 4+ 120x~ — 19), ...

and

19

1 1
bo(0) =1,51(0) = ok b2(0) = 5 b3(0) = b4(0) 30

Here we note that when the ordinary generating function is taken instead of the
exponential generating function, each of these numbers must be multiplied by 1/n!,
where n denotes the index of each bernoulli numbers of the second kind, that is one
takes the following numbers: by (O)

The A-array polynomials S” (x A) by the following generating function (see
[70]):

(Ae —1

Falt,x,v; ) = —ZS"(x x) (1.20)

where v € Ny and A € C (cf. [3, 6, 70, 71]; see also the references cited in each of
these earlier works).

The A-Stirling numbers, S>(n, v; 1), are defined by means of the following
generating function:

(Ae —l

Fs(t,v; \) = ZSz(n v: ,\) 1.21)

where v € Ng and A € C (¢f. [53, 70, 84]; see also the references cited in each of
these earlier works). By using (1.21), one easily compute the following values for
S>(n, v; L)
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$(0,0; 1) =1,
S$2(1,0; ) =0,
S(1,1;0) =4,
$2(2,0; 4) =0,
SHQ2, 1; ) =X, ...
and
A— 1Y
S$2(0,v; A) = %
v!

Substituting & = 1 into (1.21), then one easily arrives at the Stirling numbers of
the second kind:

S, v) =Sm,v; 1)

(cf. [7-43,46-48,50-78, 80—88]; see also the references cited in each of these earlier
works).

The Daehee polynomials are defined by means of the following generating
functions:

log (1 > n
Fp(z.1) = Ma o) = ZDH(Z)%,
n=0 ’

so that, obviously,
Dn = Dn (0)

denotes the Daehee numbers (cf. [25, 62, 72]).
The Peters polynomials si (x; A, i), which are Sheffer polynomials, are defined
by means of the following generating functions:

o0

X , "
m(l +1)' = ;Sk(xv)nli)n!

(cf. [21, 64]). If u = 1, then the polynomials s (x; X, u) are reduced to the Boole
polynomials. If A = 1 and u = 1, then these polynomials are also reduced to the
Changhee polynomials, which are defined by means of the following generating
functions:

2 o0 t"
X
0Dt = ;—o: Cha(x)—.
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By using the above equation, we have
Chy, = Chy(0),

where Ch,, denote the Changhee numbers (cf. [24, 35], and also see [18, 24-26, 30]).

In [76], we defined Boole type polynomials and numbers. That is, the numbers
Y, (A) and the polynomials Y, (x; A) are defined by the following generating
functions, respectively:

2(1 4 A)* ad "
Ft,x,))=———2 =Y ¥, (x: 1) — 1.22
(tx }) = S nX_(j)n(x,)n! (1.22)
and
2 ad "
Ft,\)=—— =Y Y, (W) —. 1.23
@, %) A(l4+ar)—1 nz_(:) "()n! (1.23)
Note that

Y,(A) = Y,(0; ).

Recently, some generalizations of these numbers Y, (1) and polynomials Y, (x; A)
have been studied (cf. [22, 4345, 73, 76, 81, 82, 89]).

From (1.22) and (1.23), we have a few values of the polynomials Y, (x; A) and
the numbers Y,, (1) as follows:

2
Yo(x;4) = m7
Yi(e: 2) 22 222
X; = X — s
: =17 =12
Yo 1) 222, 6 —2a2 N 404
X, = X7 — X s
2 A1 O —1)2 O —1)3
223 5 12at -6 , 2200 — 1t 43 1218
Y3(x; A) = x° — X"+ 3 X — T
r—1 (A—1) (A — 1)’ =1
and
Yo(u) = 2
0 = rP—1
212
i) =

- 1Y
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vy = 2
0= 13

Vo) = -2
O

Ya(h) = 480 ,
(r—1)°

(cf- [76, 89)).
By using the above generating function, we get the following recurrence relation
for the numbers Y, (1):

Theorem 4 Let
2
Yo(A) = ——.

Ifn > 1, we have

2

Ya(h) = A” Yuo1(0) (1.24)

—1
(cf. [73, 76]).

In [48], Kucukoglu and Simsek defined the following combinatorial numbers and
polynomials, respectively:

log(1 + At) > "
.F t;)\-, = = I )‘-9 R
a0 = T =1 ’;n,d( by
and
o tn
Ga(t, 55 q) = (L4 A0 Fa(t; 3, 0) = 3 Inalx; 2 q) —. (1.25)
n=0 ’

In [47], Kucukoglu defined higher order of the polynomials I, 4(x; A, g) and the
numbers I, 4(A, g). She gave various properties of these numbers and polynomials
(cf. for detail, see [43, 46-49]).

Simsek and So [81] defined the following special polynomials y7 ,(x; A, g, d):

I+ + )"
i1 +rd + 1

o0
tn
Ka(t,x; 1, q) = = X(:)y7,n(x;)\,q,d)ﬁ. (1.26)
n=|
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Substituting x = 0 into (1.26), we have the special combinatorial numbers:

y7,n()"7 ‘17 d) = y7,ﬂ(0; )“7 qv d)v

and also substituting d = 1 into (1.26), we also have the special combinatorial
polynomials:

y7,n(x; )\" q) == y7,n(x; )"7 qa 1)'

(cf- [80D)
By combining (1.25) with (1.26), we get the following functional equation:

Gat,x; A, )Ka(t,y;i 4, q) = 1+ q)G2a(t, x + y; X, q).

By using the above functional equation, we derive

o M 0 M 0 e
D a9 Y yia(ih g = = 121) hipatc + yi A @) -
=0 n: =0 n. =0 n.

Therefore,

oo n n tn o tn
DD na@ ke DY1aem (i 2 g d) = =121 Lupa(x 4+ yi 2 @) -
m n! n!

n=0m=0 n=0
Comparing the coefficients of ;—n, on both sides of the above equation, we arrive at
the following theorem:

Theorem 5

(2]

m=

1 & (n
Lo+ yih @) =— > )Ina: % @)y10-m(i k. q. d).
m

In [82], they gave generalization of the numbers y7 , (A, g, d) that are defined by
the following generating function:

Folt:n.q.d) = 14q v_im(,\ o (1.27)
RS D= Gt rand 1) T &V d Oy :

They also defined generalization of the polynomials y7 ,(x; A, g, d) as follows:

n

o0
t
Go(t.x: 4. q.d) = 1+ A Fy(t: 1. q. d) = ) :y;v,)l(x;k,q,d)—'. (1.28)
0 ’ n
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By (1.27) and (1.28), we have

W0, g, d) = y20: 1, q. d).
and

1
yin(xi h,q,d) = y{,i(x; r.q.,d).

Few values of the numbers y;ZV)l (A, g, d) are given as follows:

14+g¢g 2
2)

)\‘7 ’d e T g 4 9
Yot 4 @) <(xq>d+1>

240 0v) (1 + 9)?

(2
rq,d) =
D= TG 1

)

and
8(d1M)*(Aq)* (1 + ¢)*
()4 + D)*

02 + Cd)r (k) (A +9)°
() + 1*

2
YWk q.d) =

(cf. [81, 82]).

We have recently defined various kind Peters and Boole type combinatorial
numbers and polynomials. Thus, we inserted some notations for these numbers
and polynomials. For instance, in order to distinguish them from each other, these
polynomials are labeled by the following symbols:

Yin(x; A, q),

j=1,2,...,7,and also Y, (x; 1). Therefore, the number 7 is only used for index
representation for these polynomials (cf. [82]).

2 p-Adic g-Integrals Equations

Here, we survey some fundamental properties of p-adic g-integrals equations.
We give some examples for these integrals. By using p-adic g-integrals on Z,,
generating functions for the generalized Apostol-type numbers attached to Dirichlet
character are given in [76]. Using these generating functions with their functional
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equations, relations between these numbers, the A-Bernoulli numbers, and the
Stirling numbers are given.

We now give standard notations for p-adic g-integrals on Z,. Let Z, be a set of
p-adic integers. Let K be a field with a complete valuation and C'(Z » —~> K)bea
set of continuous derivative functions. That is, C'(Z » —> K) is contained in

d
{f : X — K: f(x) is differentiable and d—f(x) is continuous} .
X

We assume that p is a fixed prime in the next section.
The distribution on Z,, is defined by

X

tg(x + pN7,) = [ZN]’

where g € C), with |1 —¢|, < 1 and

1—g*
ﬁs Q7él

[XJ=[xiCI]={
x, q=1.

Let f € C 1(Zp — K). Therefore, the p-adic g-integrals of the function f are
defined by

1
‘é f)dpg(x) = lim —= 3" f(x)q* (2.1)

N—o00 [pN] —

(cf- [29D).
Let f € CY(Z, — K) and

EY{f(0)) = f(x +d).

A p-adic g-integral equation of (2.1) is defined on Z, as follows:

_1 n—1 o, n—1 )
q" f E"{(f (0)}dpg (x) — f F @) dg (0 =1— (Zq-’f (j) +logq Zq-’f(j)),
Z, j=0

i g4q =
(2.2)
where 7 is a positive integer (cf. [29, 34]).

Example 1 Substituting f (x) = e'* into (2.2), we obtain
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1
fe’xduq (*) = — Zq ¢/ +logq Zq e'
jf

—1 logq
Z,

From the above equation, we get

1 g—1/( q"¢ —1 g" —1
d = t lo
/e ta () q"e" —1logq < ge' =1 " ger —1 21
Zp

Thus

— 1\ t+logg
txd — q =7
/e g () (10gq ge' —1

P

Combining the above equation with (1.13), we have

[e’e} M 00 t
Z Mg x) | — = Z (_gg (x; A)) L
= / a n! = log I

p
Comparing the coefficients of fl—n, on both sides of the above equation, we get
/ xdpg (x) = —% (x: 2.
logg
Zp

n [34, Theorem 3], Kim gave the following formula for p-adic integral:

n—1
q /E"f(x)du g () — (= 1)"/f(X)du g () =121 _(=D"""g7 £ (j).
Z, j=0

(2.3)
If d is an odd positive integer, then (2.3) reduces to

d—1
q f E‘f (x)du—q () + f fdu_g ) =121 (-D'g/ f(). @4
j=0

Zp Zp

and if d is an even positive integer, then (2.3) reduces to
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d—1
q° f E'f (x)dpu—g (x) — [ f@du—gx)=121Y (=D'q/ f(j).  25)
ZP

Z, j=0

The Volkenborn ( p-Adic Bosonic) Integral

When g — 1, (2.1) reduces to the Volkenborn (p-adic Bosonic) integral, which is
defined as follows:

Let f € CY(Z p» —> K). Then we have the following Volkenborn ( p-adic bosonic)
integral on Z :

iy
/ f@du ) = fim 5 3 f @), (2.6)
x=0

Zp
where
w1 (x) = (x + PNZp)

denotes the Haar distribution, which is defined by
7 (x +pN7Z ) !
1 = —
p N

(cf. [66]; see also the references cited in each of these earlier works).

In the work of Kim [29], the Volkenborn integral is also the so-called bosonic
p-adic integral or the Volkenborn integral on Z,. The Volkenborn integral on Z,
is used to construct generating functions including Bernoulli type numbers and
polynomials and the other special numbers and polynomials.

Some basic properties of this integral are given as follows.

The Volkenborn integral in terms of the Mahler coefficients is given by the
following formula:

9] _1)n
/f(X)dm =) (n+)1 an,
Z, n=0

where

o0

)= Za"(i) e C'(z, > K),

n=0
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and

<x) _x=Dx =2 (x—j+ 1D

J J!

denotes the Mahler coefficients (cf. [66, Proposition 55.3, p. 168]).
Let f : Z, — K be an analytic function and x € Z,. Let

fx) = Zanx".
n=0

The Volkenborn integral of this analytic function is given by

/ (Zw") dur @)= Yan [ ¥y 0
7 n=0 n=0 7
P P

(cf. [66, Proposition 55.4, p. 168]).

Some nice and interesting results of p-adic integral or Volkenborn integral are
given as follows.

The following property is very important in order to construct generating
functions for special numbers and polynomials:

m—1
f f@du @+ f (). @7
j=0

Zp

/f(x +m)duy (x) =
ZF

where
;o d
)= Ef(x) =)
(cf. [29, 31, 66, 91]; see also the references cited in each of these earlier works).

The p-adic integral representations of the Bernoulli numbers and polynomials
are given as follows:

/xndﬂl (x) = By (2.8)
Z,
and

/ (z+x)"dpy (x) = By(2) (2.9)
A

14
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(cf. [29, 31, 66]; see also the references cited in each of these earlier works).
Formulas in (2.8) and (2.9) are known as Witt’s type formulas for the Bernoulli
numbers and Bernoulli polynomials, respectively.

x ey
/(j>dm =" (2.10)

P

Theorem 6

(cf. [66]).

The Fermionic p-Adic Integral

The fermionic p-adic integral on Z, is used to construct generating functions
for Euler type numbers and polynomials and also other special numbers and
polynomials.

The fermionic p-adic integral on Z, is given by

PV -1

Z[f(x)dﬂ—l(x):ngnoo ; (=" f (), 2.11)
where
pot@+pNZy) = (=D
(cf. [31]).

Let f € CI(Z,, — K). When ¢ — —1 in (2.3), Kim [32] gave the following
integral equation:

d—1
/ E‘f (x)ydp—1 (x) = (=1)? / fduy (x) =2 (=D f),
Z, Z, j=0

(2.12)

where d is a positive integer. When d = 1, equation (2.12) is reduced to the
following well-known integral equation:

f £+ Ddp () + / F ) dior (x) =2 (0)
Z, Z,

(cf- [32D).
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By using (2.11), the Witt’s formulas for the Euler numbers and polynomials are
given as follows, respectively,

/x"dp._l x) =E, (2.13)
Z[’
and
f (@ 42" dpy () = En(2) 2.14)
YA

P

(cf. [16, 31]; see also the references cited in each of these earlier works).

x =1/
/(j)du—l x) = —; (2.15)

Zyp

Theorem 7

(cf. [24]).

3 Generalized Apostol-Type Numbers Attached to Dirichlet
Character yx

Let x be a non-trivial Dirichlet character with conductor d. Let A be a p-adic integer.
We set

O, 0) =21+ A" x(x) (3.1)
(cf. [73, 76]). Substituting (3.1) into (2.2), we have
d—1

q—1 i i 2
q)! (1 + 1) x(j)log (A + A°t
((Aq)d(l +and — l)logq j; ( )

/ K+ A () pg (1) =
ZP
d—1

-1 . .
g 3" )l (14T x () (3.2)
=0

* A4 (1 +2a)d —1

From the above integral equation, we constructed the following generating func-
tion for the generalized Apostol-Daehee numbers attached to Dirichlet character x
with conductor d as follows:
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(q — Dlog (A + 2%) + (g — 1) logq "i (hq)! (1 + A0 x ()
logg < (g +a0)? =1

Fo(tiq, A, x) =
where
o0 tn
Fo(t: 4,10 = ) Dnx O ) (33)

(cf. [73, 76)).

where H,,—1(j/d; 1/1d) denotes the Frobenius-Euler polinomials (cf. [73, 76]).

The generalized Apostol-Daehee numbers attached to Dirichlet character x
with conductor d are related to the Bernoulli numbers of the second kind and the
polynomials 7, 4(x; A, ¢). This relation is given below.

By combining (1.25) with (1.19), we get the following functional equation:

d—1

<1og (Aq) FroO)+10) Y (=D x(j) (hq)! Ga(t, j; %, q).
j=0

AMFp(t5q, A, x)=
log
By using the above functional equation, we obtain

00 o
> D1, )~

n:
n=0

n n

— Dlog(r . .
- Z @ =DIog Gy ) gy 3 (Z)Ambmm)lnm,d(j;x,q)%

lOg q j=0 m=0

oo d—1

1
7= Z Z( D X() ) omr.a (i q)—

+AT
ogq —~

Comparing the coefficients of ;—H, on both sides of the above equation, we arrive at
the following theorem:

Theorem 8 Letn € N. Then we have

gn—l,x()"Q)
— D1 A d—1 ' oo
= @D OECD S i) gy Y (")x'"—lbmw)ln_m,d(j; r )
nloggq = = \m

d—1

1 YD () 0 Limralii 2 q).
ogq =
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By (3.3), we get

d—
(g —Dlogh , _1) Fy(ut)

1 .
i . J
F@(z;q,x,m:( Tond o jX_E)(M)’x(x)FA<d10g(1+/\t),d;(kq)d>

d-1 .

—1 .

) > @) x()Fa <d10g(1 +21), é; (kq)d> -
Jj=0

dloggq

Combining the above functional equation with (1.1) and (1.19), we get the following
result:

Theorem 9 Let m € N. Then we have

1)log A 1 :
mm_l,x(x,w:((q Jlogh a- )Zq x(»Z( )Am+-/—l—1bm_z<0)

log g™

l .
x Y a"'B, (é; (,\q)d> S, n) (3.4)
n=0

+—Z(kq)’x(1)zd” 'B, <— (Aq) >S1(m—1,n)

n=0

(cf. [73,761).
If g — 11in (3.4), we get the following corollary:
Corollary 2 Let m € N. Then we have

d—1 m
log A .
Dot () = —2 Zx(ﬁZ(?)Am”_Hbm—z(O) (3.5)
KL—; =0
d—1
de" 'B, (— Ad> Sid, )+ M x ()
j=0

m—1

de" 'B, (— xd) Si(m —1,n).

Substituting A = 1 into (3.5), for m € Ny, we get

mx—qu)Zd" 1Bn( )Sl<m n) (3.6)

(cf. [73, 76]).
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By combining (3.6) with the following well-known identity

d—1 .
-1 . J
Bn,X = dn ;)X(J)Bn <3> )
j:

we arrive at the following result.

Corollary 3 Let m € N. Then we have

m
Dy =Y BuySi(m.n) 3.7)
n=0

(cf. [73,76]).
Substituting At = ¢’ — 1 into (3.3), we get:

Theorem 10 Let m € N. Then we have

m—1

Duy (b )S2m —1.n)  d" ' (g=Dloghg) ‘& 5 i
EO 0 = oz iZ:%)(xq) X(DBn—1 (meq) )

d—

-1 dm—l 1 . .
T Y ) x()Bm (i; (Aq)d) (3.8)
mloggq = d

(cf. [73,76]).
When A = 1 and g — 1, (3.8) reduces to the following corollary:
Corollary 4 Let m € N. Then we have

m
Buy =Y D ySalm,n)

n=0
and
3 g D) ey diw’x(jm (l i)
2 I Z m-1\ 553 )

where Hy,,—1(j/d; l/kd) denotes the Frobenius-Euler polinomials (cf. [73, 76]).

The generalized Apostol-Daehee polynomials attached to the Dirichlet character
X, with conductor d, are defined by means of the following generating function:

(0.¢]
tn
Fo(e,t:q, %00 = Fo(t; g, ) +A0° =) Dy @h ) (G9)
n=0 ’

(cf. [73, 76]).
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v
Substituting z = ) x; (3.9), we have
j=1

v

v ij'
Fo | Y xj.tiq, 0 x | = Foliq,h, )(1+A)="
j=1

By using (3.3) and (3.9), and also we assume that [Af| < 1, then we have

v n
n ,
On.x E Xjiq, | = E (J,)@n_j,x()»,q))J (X1 +x24-+xy); .
j=1 j=0

Since

n

GEn= (’;) ) M.

J=0

we obtain the following theorem:

Theorem 11 Let n € Ny. Then we have

v n
n .
Dn.x ij; 94| = Z <j))\j©”—j,x()‘v q)
j=1 j=0

v

<Y MG [T @G

St Tt jy=v J UL j)=1
where
v
Z M(jl, -~~7jv) l_[ (X)j(.,',,_._,.,'u)
Sttt =] JULses j)=1
JoJ—h J=ji—ja——jv-1 , . . . . . . .
=y ¥ 3 (J)(J_J1>”.(J_J1—J2—"’—Jv1)
j1=0 =0 jo=0 NN Jo

X (1) gy (62) jy o V) j i jy o -

Remark 2 Substituting v = 2 into Theorem 11, we have

n J .
Dy +x2 k) =Y Y (’;) (jl)m,-,m, DM (1) (x2) j—

J=0j1=0
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Substituting v = 1 into Theorem 11, we have

n

Dy 1) =Y <’;)©n_j,x(x, DM (x1)

J=0

(cf. [73, 76]).

Remark3 If ¢ — land A — 1 and x = 1, then ®, ,(z; A, g) reduces to the
polynomials D, (z) (cf. [25, 26, 30, 68, 72]).

4 Generalized Apostol-Changhee Numbers Attached
to the Dirichlet Character with Odd Conductor

Substituting (3.1) into (2.4), we get

d—1

2] i j -
A1) x (D)dp—g (x) = > (=1 Aq)! (14a1)).
/(+t)x(x)uq(x) Gl (A 1and 11 (=17 x () (q)? (14+A1)

Z, j=0

4.1)

Therefore, the above equation gives us generating functions for the generalized

Apostol-Changhee numbers and polynomials by means of the following generating
functions, respectively:

oo

=Y e, 00,

n=0

S 21x(G) @)’ (1 +21)
) (1+ 1) +1

d—1
Fe(t; g, x) =Y (=1
j=0

4.2)
where d is an odd positive integer (cf. [73, 76]).
By using (4.2), the following functional equation is given by

d—1 .
1+ - -
Fe(t xi0.q.0 = =+ Y (= x(j) )’ Fpi (d log (1+51). 2 (Aq)")
j=0

(cf. [73, 76]).
Combining the above equation with (1.4) and (4.2), and using S;(m,n) = 0,
m < n, we have

d—1 m .
Chyy b q) = Y (—q) x () Y 1/ T"a"e, (Z? (Aq)d) Sim,n),  (43)
j=0 n=0
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and

€l y s @) = Eny (qM)S1(m, ) 4.4)
n=0

(cf. [73, 76]).
Substituting At = * — 1 into (4.2) yields

o0

1 €h, (A, q) (e — 1)"
W]Yi—:—d{’fﬂ Z( l)jX(J) ()LCI)I e/t = Z h ’))(Ln v n! ) ' (4-5)
n=0 ’

Thus, by (1.4), we get the following formulas:

d—1 . .
1ra ' ‘ ., (s @) S2(m,
—;q Z(_l)])((j) (Ag)! d"E, (é’ ()»q)d> _ Z B, (A, q)S2(m, n)

)\'n
j=0 n=0
and

m d—1m—n

HqZZZ( 1)!( )xo)(xq)fd" (Ga)?) S20m = .1 (i

n=0 j=0 [=0

= Ch, (A, q)S2(m, n)
Al ’

n=0

Combining (1.16) with (4.5), we have the following formula:

Theorem 12 Let m € Ny. Then we have

2 i €h, (A, q)S2(m, n)

gm,x ()‘) = 1+q A

n=0

(cf-[73,76]).
By using (4.5), we get

P N (e O
(M)dedMHD 1)fx(1)2(> Age' —1)" =3 — PO

n=0
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Combining the above equation with (1.21), we have

m

Z( 1)'x<1>2( )ZZ( )d’l < Ne) )v!Sz(m—n,v;Ml)%

m=0n=0

_ = ZZ &h, 5 (A, q)Sz(m n u™
m=0n=0 m'

Comparing the coefficients of *~ X" on both sides of the above equation, we get the
following theorem:

Theorem 13

Z( 1)/x<1>2( )Z( )d" (— (Aq) )vzszon—n,v; q)
“ Q:hn X()\’ 61)52("1 I’l)

[2] = AT

The polynomials €6, , (z; A, g) are defined by means of the following generating
function:

Fe(t,z3h,q, x) = Fe(t; 1, q, x)(1 4+ A1) (4.6)

o t”
= Z an,X(Z; )"7 C]);

n=0

(cf. [73, 76]).
v
Substituting z = ) x; (4.6), we have

j=1

Zx
me 4, x | = Fe (t:2,q, x) (14 re)=
j=1

Combining the above equation with (4.2), we have

v

0 v P Z x; M
o€, | D o xjirg — =+~ Ze:h,,,x()\,q)E
n=| j=1

n=0

We assume that [Af| < 1. Then we have
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n

00 v 0o n

t" n ; t
§ chn,x § xj;)‘sq ;: § E <]> an—j,x()‘” q)kj(x1+x2+"'+xv)j;-
n=0 j=1 : :

n=0 j=0

Comparing the coefficients of ;—n, on both sides of the above equation, we get

v n
n .
th,x ij;q’)‘ :Z<j)¢hn—j,x()‘sq»”] (xl+x2+"'+xv)j-
=0

j=1

Since

n

GEH=Y (;’) () V=i

j=0
we obtain the following theorem:

Theorem 14 Let n € Ny. Then we have

v n n )
€y | D xjiq.n :Z(j)chn_jgx(,\,q),\f
j=0

j=1
x> MGy [T @
it ju=v JU1een o) =1

where

v

Yo MG T @Gy

Jitetjy=v JU1seees Jv)=1
is given by Theorem 11.

Remark 4 Substituting v = 2 into Theorem 14, we have

n J .
k)= Y <3’) (;1)<x1>,~(xz),-_,-le'ethn,»,Xa, 9.

j=0 j1=0
Substituting v = 1 into Theorem 14, we have

n

Q:hn,x(xl; A, Q) = Z <’;>¢hn—j,x()‘v Q))‘j(xl)j

j=0

(cf. [73, 76]).
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Remark 5 If ¢ — 1l and A — 1 and x = 1, then Cb”’x(z; A, q) reduces to the
Changhee polynomials Ch, (z) (cf. [24, 35, 68]).

Combining (4.6) with (1.26), we have the following functional equation:

d—1

Fe(t,z:0,¢, %) = Y (=1 x()) hq)! Ka(t, 2+ j; 1, q).
j=0

By using the above functional equation, we obtain

n

e d-1 o )
2y G Q);% =2 DD G Y v+, d)i?;.

n=0 j=0 n=0

Comparing the coefficients of ;—n, on both sides of the above equation, we arrive at
the following theorem:

d—1

€hy @0 q) = Y (=D x () () y1.u(z + ji 2 q. ).
j=0

Here we note that some properties of the polynomials y7 ,(z + j; X, g, d) and the
numbers y7 , (X, ¢, d) and also computation formulas are given in detail by Simsek
and So [81, 82].

5 Generalized Apostol-Type Numbers Attached to the
Dirichlet Character with Even Conductor

Substituting (3.1) into (2.5), we also constructed the following generating function
for a new family of the generalized Apostol-type numbers attached to the Dirichlet
character with even conductor:

]

) (hg)! (1 + ar)d "
B D AN WILACA)
n=0 ’

)¢ 1+ a0 —1

d—1
H(;h,q) =121) (=D/F
j=0

where d is an even positive integer and A # 1 (cf. [73, 76]).
If g — 1in (5.1), then we have

d—1

2 , o - "
D EDFXDA A+ a0 =Y Y O D
j=0 n=0 n

A4+ and —1
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A new family of the generalized Apostol-type polynomials attached to the
Dirichlet character with even conductor, Y, , (z; A, g) are defined by means of the
following generating function:

oo
tn
H(t 20 q) = (L+ AT H @ A, q) = 3 Yoy (350, 4) . (5.2)
n=0 ’

Remark 6 When x = 1 and ¢ — 1, equations (5.2) and (5.1) reduce to (1.22)
and (1.23), respectively. Therefore, the polynomials Y, , (z; A, g) and the numbers
Yu,x (A, q) are generalized of the Boole type polynomials and numbers.

By using equation (5.2), we get
0 "
Y, Aq)— Yoy, q)—
’;) nx(Z Q) Z(Z)n o r;) n,x( Q)n

By using the Cauchy rule of product series in the above equation, we obtain

00 n n

00
" n\ ., t
ZYn,X(z;)"a Q); ZZ Z(j))\'n j(Z)n—ij,)(()ta q) ;

n=0 ’ n=0 \j=0

Comparing the coefficients of % on both sides of the above equation, we arrive at
the following theorem:

Theorem 15 Let n € Ny. Then we have
"\ (n
Yay @) =) ( .)x”f @n—i¥jx s q).
j=0
By using (5.2), we get
H{t,x+y;0,q) = A +A) H(t, y; 1, q).
By using the above equation, we derive
o t" o0 t" o t"
D Yty @)=Y (0N D Yy (5 @)
n=0 n=0 n=0
Therefore,
n

ZYn x(x‘}'ys)\ Q)_ ZZ( )(-x)j)\' Y._ jx(ys)” CI)_

n=0 n=0 j=0
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Comparing the coefficients of ;—n' on both sides of the above equation, we arrive at
the following theorem:

Theorem 16 Let n € Ny. Then we have

n

n .
Yn,)((x +yiAq) = Z (J.)(x)j)‘jyn—j,x(y; A, q).

j=0
Combining (5.1) with (1.1), we obtain the following functional equation:

d—1 ' .
(aInGrg +2%0) H(3 2,) = 213 (=D7F X G) Fa (d InGg +221). %: 1) .

j=0

By using the above equation, we get

o0
(d In(Ag + )»2qt)) Z Yo (A, 61)%
n=0 ’

d—1 00 . n 2 \n
- RN J\ d"In(hg +27°g1)
=1[2] 'E_O( 1) X(J)nE:0 By, <d> n! .

Thus, we have
0 e S M
dIn(rq) > ¥y, (A, 9)— + (@dIn(l +30) > Yy O 90—
n=0 n=0

d—1 e’} . n
j . J d" n n—v
= 2] ;)(—1)”‘ x(j) X:(:) By (5) — 2:;) ”’(v> (In(rg))" ™" Fs1(At, v).

Combining the above functional equation with (1.17), we obtain

(o) (0,¢] m
mHl A Yoty (A,
AInGig) 3 mYs G ) d Y0 Yyt e ea e D)

—c)!
m=0 m m=1 c=1 C(m C)'

d—1 00 . n
. dn
=121 D) Y B, (fl) =D :v!@ (In(xq))" ™"
j=0 n=0 " v=0

o tm+1
x Z AS1(m, v)

m=0

m!



471

Analysis of Apostol-Type Numbers and Polynomials with Their. . .

Since S1(m, v) = 0if m < v, the above equation reduces to the following relation:

)"Cmelfc,X()h q)) ﬁ

0 m! m
: _1\¢
2 mYm,],X(A,q)+—ln(/\q) E (=1 cm —o)! .
m=0 c=1
n—1 . m m
[2] md’ X (J)v'A (ln()"q))n—v—l S1(m—1, U)t -
m!

oo d—1m—1 n n j

=YX e ()m(3)
m=0 j=0 n=0 v=0 v d n

Comparing the coefficients of ;Tm, on both sides of the above equation, we arrive at

the following theorem:
Theorem 17 Let m € N. Then we have
= —l)c_l )LCYm—l—c,X (A, q)

m — 1!
Ym—l,x()»aCI)'i‘W;( G — o)l

(In(rxg)" "1 S1(m — 1, v) B, <§> )

(e
Jj=0 n=0 v=0 v n!

Integrals of the Polynomials Y, ,(z; X, q)

Riemann integral of the polynomials Y, , (z; A, g):

n

1
/ Yoy @hogdz=Y (’]’) WYy O )b 0),
j=0

0

(cf-[76D).
The p-adic integrals of the polynomials Y, , (z; A, q):
(n— jyn=J
Yj,x *,q)

. = y —1)nJ "
/Yn,X(Z,K,Q)dﬂl(Z)—;( D (]) I’l+1—j

Zl’
(n— A
Y (e )

=Y (=i ”) ‘
]2:(:)( ) (J. =

and

/ Yoy (23 0o @) dpor (2)

Zp

(cf- [76]).
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6 Partial Derivatives of the Functions F (¢, x, 1)

Differentiating both side of (1.22) with respect to ¢, we have the following PDE
(cf- [89D):

oF (t,x,))

AX A2
Py =F(t, x,1) (— — —F(t, A)) (6.1)

I+A 2

Combining (1.22) and (1.23) with (6.1), we have

ZYnH(x;A)t —)\xZ( Ar)" ZY (x; x)
n=0

n=0
——ZY ) .ZY,z(x A)

Comparing the coefficients of ;—n, on both sides of the above equation, we obtain the
following theorem:

Theorem 18 ([89]) Letn € Ng. Then we have

1
Yyp1 (x5 0) = 5 Z <Z) Yi (x5 1) (2 (,1)11—1( an—k+1, -k — szn,k (A))
k=0

n 22 nok
= (Z) Y (x5 2) ((—1)” e I (M) Ch”"‘) '
k=0

Differentiating both side of (1.22) v times with respect to 7, we have

AVF (t, x, M _

ar? Z( 1)] (U)j (x)y— jkv+/ ¢! _’_)\’t)j v

j=0

x(kzt—i—k—l) NFeen. 62

By using (1.22) and (6.2) and the following well-known binomial series

0 . 1
T =) OGP K ¢

2k
(rarm1) ' = s Z v (T ) et e

=0
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and
1 1 1 > ik
- - = ; Ck (.]9 va)")_a (65)
L+ (W2t 42— 1) (A—l)f,;0 k!
where
k [k A 2k—m
Ci (v, A) = —1 —j4+k=0, (G+k—1_, ————,
k(. v, A) n§< )(m)(v j I (j Ve Gy
we have
AVF (1, x,1) "
T=20Yn+v (3 2) —. (6.6)
n=

Setting (6.6), (6.3), (6.4), and (6.5) in (6.2), we have

9] n o0 v ) )\’ /
D Yaru (1) f; =2 2D @@, (ﬁ)
n=0 " n=0| j=0

n

n
) t
X;(Z)Ck (v, M) Yy (x; 1) PR

Comparing the coefficients of ;—", on both sides of the above equation, we obtain the
following theorem:

Theorem 19 ([89]) Letn,v € Ny. Then

v )\’ ] n
Yppo (x5 4) = Z (V) (X)y—j A" (—m) (Z) Ce (v, A) Yy (x5 4)
j=0 k=0

(6.7)
where
A2k—m

k
k
; - —1k —j4+k=1, (j+k—1 EE—
Ck (j, v, A) mEZO( )(m)(v j+ Im (J + )k—m()\_l)kfm

Differentiating both side of (1.22) with respect to x, we have the following PDE
(cf- [89]):

AF (t,x,))

=F (@, x,AM)]log(ht+1). (6.8)
ox

By using the above equation, we have the following theorem:
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Theorem 20 ([89]) Let n € N. Then we have

n

. _ i n i . n—k
Yoot (i) = — ,; (k) Y (5 1A b (0).

7 Identities for the Polynomials Y, (x; 1)

By using (1.22), we derive

0 M 2 ex log(1+A1)
ZO Yawi 1) — = s
n=|

Combining the above equation with (1.1) and (1.19), we obtain

o o

t" 2 (log (1 + )"
DV = T N By )
= n!  log (1l + At) = n!

Therefore,

k

00 tk ) ook k o Jj ot
. _ - . —J . ; J__
E kYk—l(x,)»)k! =7 kE:O Eo ( .)bk—j 0) A § By (x; 1)S1(j, n)A o

k=0 j= J n=0

. . k . . .
Comparing the coefficients of ;{—, on both sides of the above equation, we obtain the
following theorem:

Theorem 21 Let k € Ny. Then we have

2 KMy
Yk(x;x)zm;§< ; )A"bk+1_,~ (0) By (x; 1) S1(j, ). (7.1)
Lemma 1 ([89])
Yo (x; —1) = (=)™ Chy, (x). (7.2)

Proof Substituting 1. = —1 into (1.22), we have

> ) M2 ="
E (=D" Yy (x; =) = = ———
= n! t—2

o [n
==Y Chy(x)—.
n!
n=0
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Comparing the coefficients of ;—n, on both sides of the above equation, we arrive at
the desired result. O

Lemma 2 ([89]) Letn € Ny. Then we have
Y, (=) = (=)™ Chy,,. (7.3)
Corollary 5 ([89]) Letn € Ny. Then we have

_{Chn+1 ()} = xnzii:( Pt (Z) nDChi—i (x)

!
[=0 k=0 k I

n—1

—1 1
1 _
_QZZ(n 1)( >nDn—1—zChkChz—k(x)
1=0 k=

n

(=¥ n!Chy_y (x)

+ (n—k)!

k=0

Theorem 22 ([89]) Let n € N. Then we have

1
{Yn+1 (x; )V)}'i‘_ {Yni2 (x; M)}

n+10dx
_ (=R 2F 21y, (x; 1)
= kD0 -k)
14 i (=D)L a3l N\ Y () Yiek (6 )
2 i n—1 k I
1 (=l 3= li( )n!Yk(MYZk(x;A)
2 P n—I>1+1 Pt Al

A
+mYn+1 (x; ).
Theorem 23 ([89]) Let m € Ny. Then we have

Yo (—3) = (=" 2" 3" 6, (1) 81 (m ) (7.4)
n=0

and

S (m, n) Bpy1 (M)

Y(x)—z)a"z P

n=0
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Remark 7 ([89]) Let A = 1. Equation (7.4) reduces to the following relation:
m
Yu(=1) = (=1)"*' 3", (1) S1 (m, n).
n=0

Combining (7.3) and (1.8) with the above equation, we have the following well-
known identity:

m
Chw =Y _ EnSi (m,n),
n=0

which was proven by Kim et al. [24, Theorem 2.7].
Theorem 24 ([89]) Let m € Ny. Then we have

m
Yo (xi =2) = (=17 Y 7€ (i 2) St (m.n). (7.5)
n=0
Remark 8 ([89]) When A = 1. Equation (7.5) reduces to the following identity:
m
Yi(xi =1) = (D" Y & i 1) St (m.n).
n=0

Combining (7.2) and (1.7) with the above equation, we have the following well-
known identity:

Chu(x) =Y Ey (x) S1 (m.n),
n=0

which was proven by Kim et al. [24, Theorem 2.5].

Relations Between the Numbers Y, (1), the Polynomials
Y, (x; L), and Hypergeometric Function

Generalized hypergeometric function , F), is defined by

':l"G
—_
3
~
SN—"

qu[al,... 06

B, ...

s

QT
3

| I
[l
WK
~
il
|
I\l

3
Il
(=)
—e
—
=
~.
~
3
3

~.
Il

(cf. [40, 83, 84]).
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We give some comments for series converges in (7.6):

forall zif p < g + 1, and also for |z| < 1 if p = q + 1 (cf. [40, 83, 84]).

For the series in (7.6), we assume that all parameters have general values, real or
complex, except for the 8;, j = 1,2, ..., g none of which is equal to zero or to a
negative integer.

Substituting p = g = 0 into (7.6), we have

0Fo (z) = e°.

Substituting p = 2 and g = 1 into (7.6), we have

oo

() (@)F 2
2F1 (a1 025 P13 2) = —_
k2=:0 Bk K

Substituting p = 1 and ¢ = 0 into (7.6), we have

b 1
Fol| ix|=——
! O[—’x} (I —x)
(cf. [40, 83, 84]).

Relations between hypergeometric function and integral of the numbers Y, (1)
and the polynomials Y, (x; 1) are given as follows:

Theorem 25 ([89])

2n+1

fu Y, Od = —2m F ( 1, —2n —1: —2n — 2; —u)
=— —n—1,-2n—1;-2n—2; —u),
b n m+ 1 21 u

where 7 F| denotes the Gauss hypergeometric functions.

Theorem 26 ([89])
u n (x)ufk
/ Y, (x; ADdx = —2nlu? T Z LY —
0 = 2n—k+1)

XoFi(k—n—1,k—=2n—1;k—2n—2; —u).

Relations Between Infinite Series and the Numbers Y, (1), the
Humbert Polynomial, the Changhee Numbers, the Daehee
Numbers, and the Lucas Numbers

Relations between infinite series and the numbers Y, (1), the Humbert polynomial,
the Changhee numbers, the Daehee numbers, and the Lucas numbers are given as
follows.
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The numbers Y, (1) have the following infinite series:

N I N O O A
;Yn(k)_ 2 ’12:(:) n! (ﬂ)'

By using the above equation, we have the following interesting series:

Theorem 27 ([89])

Sl | A—1 1=
S e
Y, (V) 2

n=0

Theorem 28 ([89]) Let |25 | < 1. Then

i Y, () 212 2
=

— . 7.7
o (1=a422)7 1=+ 7

n=0

Theorem 29 ([89])

i Do M1+ 122

Y, 00 2 % 2 )
n=0

By using the following series

i D,  log(3)
ZYa (=) 2

(cf. [89]) and

L

00
>

n2"
n=1

where L, denotes the Lucas numbers (cf. [54, p. 7]), we have

—( Dy L,\ de
2 <Yn —n " n7> - log(%)’

n=l1

=2log(2),

where loge = 1.
Combining the above series with the following series
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(cf. [89]), we have the following interesting series:

o0

D, | Ch, L, ) <4e )
=t ) =4t log (=
nz;: (Yn - D, a2 W

(log2 —log3)/2 + 1

Theorem 30 ([89]) Let || < §. Then
Y, () 2 -
Chy, A—1—2)2 ’
n=0
Theorem 31 ([89]) Let‘% < 1. Then
00 2
Ch A20— 1
$H Ch _ 20— 79

Yo(A) 222141

o

n=

Remark 9 ([89])

>R ey (5) -2 (5)

n=0 n n=0

By using (7.8) and (7.9), we have
Remark 10 ([89])

o0 o0
Yy (M) 1
=-2Y P,(2,=,2,—1, DHA".
Z Ch,, Z n( 2 )
n=0 n=0

Remark 11 ([89])

o o
Ch 1
§ " =,\2(A—1)§ Pn(2,§,2,—1,1)A".

n=0
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8 The Lerch Transcendent Function and Apostol Type
Numbers and Polynomials: Approximation to the
Polynomials Y, (x; 1)

In this section, we give not only Fourier series, but also asymptotic estimates for
Boole type combinatorial numbers and polynomials with the help of equation (1.2),
Theorem 1, and (1.5).

The Lerch transcendent function is defined by

P(h.sa)=) ———.
P (k+a)

where a ¢ Z~ U {0}, and either [A\| < 1,5 € Cor A = 1, Re s > 1 guarantees
convergence (we use A as a variable in order to maintain a unified notation) (cf.
[2,9, 63, 83, 86, 87]). By using analytic continuation, we have

By,(a;)) =—nd® (A, 1 —n,a) 8.1)
(cf- 12, 9, 56, 63, 83, 86, 87]).
By combining (8.1) with (7.1), we arrive at the following theorem:

Theorem 32 Let n € Ny. Then we have

k+1
2+J

k
Yie(x; ) = kHZZ( j )A bis1-j (0) S1(j.mn® (A, 1= n, x).
=0n=0
"~ (8.2)

By combining (1.2) with (7.1), we arrive at the following theorem:

Theorem 33 Let A € C, (A £ 0). Then we have

k+1 j
2 k+1
Yi(x; 2) = “rrl E E < i )A bit1-j (0) S1(j, )8y (x5 A)
j=0n=0

k+1 j
2 k+1\
k+1ZZ< )A “biy1-j (0) S1(j, n)n!

=0n=0 J

o0 .
2
y Z exp 2rivx)

Oxiv — log )"’
veZn (0} 2miv —log )

where
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5, (x: 1) 0, A=1
n (X3 = (=D)"n!
Ax(logf)" s A 7é 1.

Since

1

. n!
/AxBn(x; )\) exp (—27Tlmx) dx = —m, (83)
0
where A € C,(A #0,1), m € Z, and n € N (cf. [56]), we deduce that
1 k+1Jj k
k+1 n!2"biq1-; (0) S1(j, n)
2Y 2 2mlxd - _ —J
/ k(s Me T dx = k+1ZZ Qril — log )"

0

is a Fourier coefficient (or Laplace transform) of the following function:
A Y (x; D).

Combining (7.1) with the well-known identity given by (1.12), we arrive at the
following theorem:

Theorem 34
1
Yi(x; A) = TZZ( ; )nx biy1—j (0) S1Gym)En1(x; —1).  (84)
j=0n=0

In [76], we gave the following novel identity:

m—1
B, () = % 3 AT Y00 S20m — 1, ). (8.5)
n=0

Combining (8.5) with (1.12), we arrive at the following theorem:

Theorem 35

Em(—X) = Z(—l)”)ﬁ”Yn(—)\)Sz(m, n). (8.6)

n=0

Combining the above well-known formula

Ealri—2) =Y (Z)em(—m""”
m=0
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(cf. [86]), with (8.6), we get the following corollary:
Corollary 6

Eaxi =)= Z(—l)k<r’;>k_kYk(—A)S2(m, k)x"".

m=0 k=0
By combining (1.5) with (8.4), we get the following theorem:

Theorem 36 Let . € C(A # 0). Then we have

k+1

Yi(x; —M—mZZ( 1)"“( . )nnm’”bkﬂ_j ©0) $1(j, n)
j=0n=0

2, exp((2v — Dmix)
x % (2v — i —log )"

By using (8.2), and under the conditions of Theorem 1, we arrive at the following
theorem, which gives us an asymptotic expansion for the numbers Yy (1):

Theorem 37

k+1 j
2 . k+1
Ye(M) = —— E E ) A br1—j (0) S1(j,n)
k+1] =0n=0 J

> exp (2v — D mwix)
x % (Qv—Dri —logn)"
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