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Abstract: This study proposes an integrated framework to automatically detect anomalies and
faults in underground transmission-line connectors (UTLCs) with thermal images because anomaly
detection of underground transmission-line connectors (UTLCs) plays a critical role in power line
risk management. The proposed framework features three key characteristics. First, the measured
thermal images were preprocessed through z-score normalization and image strengthening. Z-score
normalization improves the robustness of feature extraction for UTLCs even though noise exists in a
thermal image, and image strengthening improves the accuracy of segmentation for UTLCs. Second,
a preprocessed thermal image is segmented to detect UTLCs by addressing a multiscale mask deep
convolutional neural network (MS mask DCNN). The MS mask DCNN effectively detects UTLCs,
enabling anomaly detection only for pixels of UTLCs. Specifically, the multiscale feature extraction
module enables the extraction of distinct features of UTLCs and environments, and the skip-layer
fusion module concatenates distinct features from the feature extraction module. Furthermore, a
half tensor is used to reduce computational resources but maintain the same segmentation accuracy,
enhancing the feasibility of the proposed framework in field applications. Third, anomaly detection
is performed by addressing the contour method and unsupervised clustering method of DBSCAN.
The contour method compensates for the limits of the MS mask DCNN for real-world applications
because the neural networks cannot secure perfect accuracy of 100% owing to a lack of sufficient
training images and low computational resources. DBSCAN improves the accuracy of diagnosis and
ensures robustness to eliminate noise from thermal reflection caused by low-emissivity objects. Field
experiments with high-voltage UTLCs demonstrated the effectiveness of the proposed framework.
Ablation studies also confirmed that the methods addressed in this study outperform other methods.
The proposed framework with a novel automatic non-destructive patrol inspection system would
decrease the risks of human casualties during the periodic operation and maintenance of UTLCs,
which are currently the most critical concerns.

Keywords: anomaly detection; underground transmission lines; infrared camera; z-score normalization;
statistical image strengthening; MS mask DCNN; segmentation; unsupervised clustering

MSC: 68T45

1. Introduction

Underground transmission lines (UTLs) have been introduced in urban areas because
they are safe and robust to degradation originating from external environments compared
with overhead transmission lines [1–3]. UTLs are also free from the limitations of instal-
lation spaces and concerns regarding the negative effects of magnetic fields on citizens
in concentrated urban areas [4]. These advantages offered by UTLs have made them an
indispensable option, actively replacing overhead transmission lines worldwide in urban
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areas despite the higher installation cost [5]. UTLs are installed with connectors that include
insulators and various auxiliary components because the manufacturing process might
have a limitation on the maximum length of the UTLs. Incorrect installation or poor jointing
during repeated electrical loading can accelerate the degradation of connectors, and the
faults of UTLs could affect the entire UTLs system, resulting in significant economic losses
and human casualties [6]. In addition, UTLs are designed to have an expected lifetime of
over 30 years with appropriate operation and maintenance [7]. Therefore, inspection of
UTLs should be real-time, reliable, and automatic because it plays a critical role in ensuring
the reliable operation and safety of UTLs.

Various studies have been conducted to ensure the reliability and safety of UTLs, fo-
cusing on UTLCs in which most faults and accidents have occurred in connectors [8]. Faults
in UTLCs can be detected using non-destructive sensors, including magnetic sensors [9],
current-voltage sensors [10,11] and electro-magnetic sensors [12–14]. Specifically, a set of
measurements from a magnetic field sensor was used to reconstruct the current source
of underground power cables for inspection by addressing the stochastic optimization
technique and an artificial immune algorithm [9]. Fault detection of UTLs was also pro-
posed by addressing an algorithm that considers the fault arc voltage with power quality
monitoring data in the time domain [10] and by combining two methods of wavelet and
time-domain analyses [11]. PD measurements have been proposed for anomaly detection
of UTLs [12] because these measurements have several advantages, including accurate
detection of anomalies and localization [13] and immunity to noise [14]. However, these
methods involve installing contact-type sensors in the entire region of UTLs for accurate
condition monitoring, suggesting that these methods are inefficient from an economic
perspective because this approach requires a significant installation cost.

Fault detection with a non-contact type of sensor is promising because many sensors
do not need to be installed for UTLs. In particular, infrared (IR) cameras have received con-
siderable attention for health monitoring in the application field of electric and mechanical
facilities because they provide meaningful information on the thermal energy emitted from
an object of interest when a fault occurs. Intensive studies have been conducted to detect
anomalies using IR cameras [15–19]. Fault detection using an aerial system deploying an
IR camera was proposed for anomaly detection in photovoltaic farms [15,16] and overhead
transmission lines [17]. A patrol inspection robot was proposed by deploying an IR camera
to monitor the temperature of underground power facilities (UPF) with 2-D simultaneous
localization and mapping [18]. Object detection through a customized neural network
has also been proposed to identify defects in a thermal image [19]. These studies have
improved the accuracy and efficiency of infrastructure health monitoring by deploying IR
cameras. However, these methods are addressed by thresholding the intensity of pixels in
the measured thermal images to detect anomalies in an autonomous manner, suggesting
that these methods are difficult to apply in field applications because defining an appro-
priate threshold of intensity in thermal images is difficult and depends on the operational
conditions of inspection.

The automatic separation of UTLs from environments could be achieved through deep
learning because deep learning has witnessed significant advancements in recent years,
revolutionizing various domains with its remarkable capabilities with complex data and
extracting high-level representations. In particular, image segmentation has been improved
by addressing mask-based deep convolutional networks (CNNs). CNNs are specialized in
extracting hierarchical features from images, allowing them to recognize complex patterns
and structures in images. Moreover, the spatial invariance of CNNs enables them to
recognize patterns regardless of their location in an image. Parameter sharing and local
connectivity enable reducing the computational cost, overcoming the limitations related
to memory constraints. Specifically, image segmentation can be categorized into semantic
segmentation and instance segmentation. Semantic segmentation assigns a label to each
pixel in an image, providing a pixel-wise classification map, where each pixel is assigned a
specific class. It offers a more comprehensive understanding of the entire image, enabling
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efficient image classification, object detection, and contextual comprehension. Moreover,
semantic segmentation requires fewer computational resources compared with instance
segmentation, whereas this method could not differentiate between instances of the same
class; all pixels belonging to the same class are labeled identically. Instance segmentation
provides an accurate description of object boundaries and enables object-level analysis,
but this method is a more complex task that requires higher computational resources and
slower inference times. Hence, the choice between the two methods depends on the specific
application and the desired level of detail.

Various studies have been conducted on image segmentation through mask-based
DCNNs to improve accuracy and robustness using models such as Fully Convolutional Net-
work (FCN) [20], Residual U-Net (ResUNet) [21], and Mask-Region-based Convolutional
Neural Network (Mask R-CNN) [22]. Specifically, FCN was proposed for the semantic
segmentation of arbitrary-sized images through fully convolutional and deconvolutional
layers, without relying on predefined fully connected layers, and employed end-to-end
learning to optimize the network’s performance across the entire architecture [20]. Re-
sUNet employed the U-Net autoencoder architecture with residual and skip connections
to enhance information flow, the ability to capture fine details and the spatial context of
the image, and address the problem of gradient vanishing, even in deeper networks [21].
Mask-RCNN was proposed for the instance segmentation, combining object detection and
semantic segmentation through the integration of a region proposal network and RoIAlign
for accurate feature extraction of the images. Furthermore, a mask branch is employed to
predict pixel-level object masks for image segmentation [22]. Note that it is challenging
to detect anomalies in UPF using semantic segmentation with IR measurements, even
though several architectures have been proposed to effectively extract features of objects of
interest. This limitation would originate from the inherent characteristics of UTLCs, which
are the major location of failures in UPF because UTLCs are covered by several auxiliary
components, which significantly disturb the extraction of features of UTLCs for separating
UTLCs from environments.

To overcome these limitations, this study proposes an integrated framework for the
automatic anomaly detection of UTLCs using IR measurements. The proposed framework
is simple yet accurate for fault detection in field applications; it includes a preprocessing
phase with statistical image strengthening, separation of UTLC from environments based
on the features extracted through the MS mask DCNN, and anomaly detection with unsu-
pervised clustering. Note that this complete framework compensates for the limitations
of deep learning approaches, thereby securing high accuracy and robustness for field
applications. The contributions of this study are summarized as follows:

• The preprocessing phase improves the performance of the segmentation of UTLCs
in a thermal image statistical image strengthening by employing two key features.
Specifically, z-score normalization improves the robustness of feature extraction for
UTLCs and reduces the noise in a thermal image. BHEPL improves the accuracy of
segmentation for UTLCs.

• Automatic separation was achieved through the MS mask DCNN, which incorporates
two key characteristics: a multiscale feature extraction module and a skip-layer fusion
module. The multiscale feature extraction module enables the extraction of distinctive
features from UTLCs and their environments, whereas the skip-layer fusion module
combines these features extracted from the multiscale feature extraction module.

• The anomaly detection phase addressed the problem of false segmentation of UTLCs
when detecting anomalies with fast yet accurate post-processing methods. Specifically,
the contour method can eliminate false segmentation of UTLCs with low computa-
tional cost, whereas the unsupervised clustering method of DBSCAN eliminates noise
from thermal reflection, securing high accuracy and robustness in field applications.

• Intensive field tests demonstrate the effectiveness of the proposed framework in
real-world applications. Moreover, implementation of the half tensor during testing
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noticeably improved the framework’s inference time, demonstrating its suitability for
practical field applications.

The remainder of this paper is organized as follows. Section 2 proposes an integrated
framework for anomaly detection in the UTLCs. This section includes a detailed statistical
image-strengthening method and the architecture of the MS-mask DCNN. Section 3 de-
scribes experiments for the calibration of the IR camera, dataset measurements from field
experiments, and the construction of the MS mask DCNN. Section 4 presents the results, an
ablation study of the proposed framework, and an in-depth discussion. Section 5 concludes
the paper with both quantitative and qualitative highlights.

2. An Integrated Framework of Anomaly Detection

This section presents an integrated framework for the anomaly detection of UTLCs
with thermal images measured using an IR camera. The proposed method comprises three
phases (Figure 1). First, the visualized thermal energy of the UTLCs overlaid on a visible
spectrum image was normalized and statistically strengthened in phase A. This phase
aims to help the proposed neural network extract features of UTLCs by distinguishing
their features from those of the environment. Second, semantic segmentation is executed
through the MS mask DCNN in Phase B to separate the UTLC from the environments in
the thermal image. Hence, the MS mask DCNN plays a filtering role in detecting a UTLC
in the proposed method. Third, anomalies in UTLCs are detected in phase C based on the
KEPCO inspection regulation [23] using a contour method and an unsupervised clustering
method. The contour method aims to eliminate false-segmented inference from MS mask
DCNN because artificial intelligence cannot secure complete accuracy of 100% owing to
a lack of sufficient training images. An unsupervised clustering method of DBSCAN is
also employed to improve the robustness of the proposed method by decreasing the false
alarms caused by noise from thermal reflection. The proposed method can detect anomalies
for single and multiple phases of UTLCs in the sense that UTLCs are composed of multiple
phases. Details of each phase are described in the following subsections.
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2.1. Phase A Image Preprocessing and Statistical Image Strengthening

This subsection presents detailed methods of image preprocessing and statistical
strengthening (Phase A in Figure 1), which aim to improve the performance of semantic
segmentation and thereby help effectively train a neural network in the next phase. The
proposed method comprises three procedures: conversion of thermal energy into a tem-
perature image (Figure 1a), z-score normalization (Figure 1b), and image strengthening
through bi-histogram equalization with a plateau limit (BHEPL, Figure 1c) [24].

First, thermal energy measured from an IR camera is converted to a representative
temperature because inspection regulation defines anomaly detection based on the tem-
perature variation of UTLCs [23]. Hence, the accurate conversion of thermal energy into a
representative temperature plays an important role in ensuring the accuracy and reliability
of inspection. The IR camera is a non-contact sensor for measuring thermal energy through
the infrared wavelength band radiated from objects with an absolute temperature above
0 K. An IR camera of the TE-EV1 (I3systems, Daejeon, Republic of Korea) was used for
anomaly detection of UTLCs because this camera features a low noise-equivalent tempera-
ture difference of 30 mK (@ 300 K), a wide-range field of view (FOV) of 76◦ and 59.5◦ and a
high resolution of 640 × 480 pixels. The calibration sheet was provided with specifications
from the manufacturer, i.e., I3 systems. This sheet provides a conversion formula from the
thermal energy of the thermal data measured from the IR camera to temperature as follows:

Tij =

(
Wij − 5000

)
100

, (1)

where Wij and Tij denote the measured thermal energy and converted temperature at the
ith row and jth column of the image. However, preliminary experiments revealed that this
calibration formula has a large uncertainty, suggesting that independent calibration should
be executed to ensure the accuracy of conversion with a governing equation as follows:

T∗ij = a1Tij + b1, (2)

where T*
ij denotes the calibrated temperature at the ith row and jth column of a pixel

in the temperature image of interest, and a1 and b1 denote the coefficients in the first-
order polynomial regression. Note that the detailed process of the calibration is described
in Section 3.1.

Next, a calibrated temperature image was z-score-normalized. This method aims to
help the proposed framework detect UTLCs regardless of several existing heat sources,
such as ceiling lights and hot spots in the UTLCs. These heat sources are located in the
UPF and disturb the ability to distinguish UTLCs from the environment because these
objects also emit thermal energy. In other words, UTLCs and other environments are
difficult to distinguish without z-score normalization when these heat sources exist in a
measured thermal image because the heats emitted from these heat sources are higher than
those emitted from UTLCs, as exemplified in Figure 2a,b. The proposed method would be
effective in this situation because z-score normalization can statistically mitigate outliers
exceeding three-sigma, as follows:

Zij =


µT + 3σT
µT − 3σT

T∗ij

(
T∗ij ≥ µT + 3σT

)(
T∗ij ≤ µT − 3σT

)
else

, (3)

where Zij denotes the z-scored temperature in the ith row and jth column of a pixel in
an image, and µT and σT denote the mean temperature and standard deviation of the
converted temperature. Specifically, temperatures exceeding ±3σT are changed to values of
µT ± 3σT (blue and red line in Figure 2b), whereas temperatures within±3σT hold the same
values because excessive temperature is measured, that is, outliers exceeding 3σT , resulting



Mathematics 2023, 11, 3143 6 of 25

in a small variation in UTLCs compared with environments in a thermal image (Figure 2a).
In other words, this process helps to suppress excessive temperatures exceeding µT ± 3σT .
Furthermore, a thermal image, where outliers are calibrated to µT ± 3σT , is normalized as:

Xij =
Zij − (µT − 3σT)

((µT + 3σT)− (µT − 3σT))
=

Zij − (µT − 3σT)

6σT
, (4)

where Xij denotes the z-score normalized thermal energy in the ith row and jth column
of a pixel in an image. Note that z-scored temperatures corresponding to µT − 3σT and
µT + 3σT are changed to zero and unity, whereas z-score temperatures within µT + 3σT are
normalized in the range between zero and unity. Hence, these processes clearly distinguish
UTLCs and other auxiliary facilities in a calibrated thermal image, even though some heat
sources exist in the image, as shown in Figure 2c, suggesting that the MS mask DCNN
easily detects and separates a UTLC from the environment. Note that this procedure does
not eliminate statistical outliers during the final inspection. This preprocessing aims to
clearly distinguish UTLCs from environments in spite of existing unexpected anomalies,
including hot spots in UTLCs and ceiling lights, through MS mask DCNN in thermal
images in phase C.
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Finally, a z-score normalized image was statistically strengthened by addressing the
BHEPL (Figure 3) [24]. This process comprises seven steps. First, the average intensity Xm
is calculated for each z-score-normalized thermal image (Figure 3a). Second, a thermal
image is decomposed into two sub-images by Xm to maintain the mean brightness of the
thermal image (Figure 3b) as follows:

X = XL ∪ XU , (5)

where XL and XU denote two sub-images divided by Xm defined as

XL = {X(i, j)|X(i, j) ≤ Xm, ∀X(i, j) ∈ X}, (6)

XU = {X(i, j)|X(i, j) > Xm, ∀X(i, j) ∈ X}. (7)
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Note that the sub-image XL is composed of {X0, X1, . . . , Xm}, and the other sub-image
XU is composed of {Xm+1, Xm+2, . . . , XL−1} based on the calculated average intensity Xm
as shown in Figure 2d. Third, two plateau limits TL and TU are set calculated to clip each
sub-histogram (Figure 3c) as follows:

TL =
1

Xm + 1

Xm

∑
k=0

hL(k), (8)

TU =
1

(L− 1)− Xm

XL−1

∑
k=Xm+1

hU(k), (9)
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where hL and hU denote two sub-histograms of the divided sub-images, XL and XU .
Furthermore, TL and TU is calculated to the average of hL and hU as shown in Figure 2d.

Fourth, each sub-histogram is clipped by two plateau limits to prevent a level satu-
ration effect (Figure 3d), which pushes the intensities toward the right or left side of the
histogram. The clipped histograms through the two plateau limits TL and TU are denoted
as hCL and hCU , which are given as

hCL(x) =
{

hL(x)
TL

i f hL(x) ≤ TL
elsewhere

, (10)

hUL(x) =
{

hU(x)
TU

i f hU(x) ≤ TU
elsewhere

. (11)

Fifth, the probability density functions, and cumulative density functions of each
clipped histogram were calculated to obtain the robustness transformation functions
(Figure 3e) as

pL(x) =
hL(XK)

ML
, for k = 0, 1, . . . , m, (12)

pU(x) =
hU(Xk)

MU
, for k = m + 1, m + 2, . . . , L− 1, (13)

where pL and pU denote the probability density functions of hCL and hCU , respectively,
and ML and MU denote the total number of pixels in hCL and hCU , respectively. These
probability density functions are used to calculate the cumulative density functions cL and
cU of XL and XU , respectively, as follows:

cL(x) =
m

∑
k=0

pL(Xk), (14)

cU(x) =
L−1

∑
k=k+1

pU(Xk). (15)

Sixth, the robustness transformation functions fL(x) and fU(x) are addressed with
two sub-images for executing histogram equalization and inversion histogram equalization
processes (Figure 3f) as

fL(x) = X0 + (Xm − X0)[cL(x)− 0.5pL(x)], (16)

fU(x) = Xm+1 + (XL−1 − Xm+1)[cU(x)− 0.5pU(x)]. (17)

Note that the two decomposed sub-images are strengthened independently based on
their transformation functions. Finally, the output image is expressed (Figure 3g) as follows:

Y = {Y(i, j)} = fL(XL) ∪ fU(XU), (18)

where fL(XL) and fU(XU) denote the sub-set images defined, respectively, as

fL(XL) = { fL(X(i, j))|∀X(i, j) ∈ XL, (19)

fU(XU) = { fU(X(i, j))|∀X(i, j) ∈ XU . (20)

The strengthened image Y from BHEPL is shown in Figure 2e, and the intensity
histogram of image Y is shown in Figure 2f. A comparison between Figure 2c,e suggests
that enhanced thermal image through BHEPL (Figure 2e) would be more effective in
training the MS mask DCNN when other heat sources exist in a representative temperature
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image, implying that the proposed method helps distinguish features of UTLCs from those
of environments in a thermal image for training the mask-based neural network, even
though several heat sources exist in the thermal images.

2.2. Phase B Multi-Scale Mask Deep Convolution Neural Network

This subsection presents a method for detecting a UTLC through an MS mask DCNN
(phase B in Figure 1) from a thermal image preprocessed in phase A. The MS mask DCNN
is designed to separate a UTLC from the background of the thermal image because the MS
mask DCNN ensures high accuracy and robustness [25]. The architecture of the proposed
MS mask DCNN is designed for pixel-wise semantic segmentation, as shown in Figure 4,
featuring two characteristics: a multiscale feature extraction module ( 1© in Figure 4) and a
skip-layer fusion module ( 2© in Figure 4).
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mask DCNN).

The multiscale feature extraction module is constructed using a symmetric autoen-
coder architecture. Specifically, the encoder and decoder construct multiscale layers to
effectively extract both local and global semantic features from an input thermal image.
Each layer in the encoder comprises several ConvReLU layers (gray blocks at 1© in Figure 4)
that combine a convolution layer, activation function layer, batch normalization layer, and
max-pooling layer. First, different scales of convolution layers are used to extract low-
and high-scale features and construct multiscale feature maps. Low-scale layers extract
high-frequency details, including complex temperature gradients and the edges of facilities,
with high resolution. Hence, complex local features of UTLCs and the background are
extracted at low scales because they are similar in size to an input image. In contrast, the
high-scale layers extract low-frequency details, including the global temperature gradient
and overall shapes of the UTLCs and the background with low resolution. In other words,
the global features of the UTLCs and the background are extracted at the high-scale layers
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because they retain the implicated features at a small size. Hence, the proposed architec-
ture effectively extracts both local and global features from a thermal image. Second, the
activation function layer executes a nonlinear space transformation to easily identify and
extract features. This layer addresses the ReLU function as an activation function because
it helps train the feature maps effectively through nonlinear space transformation with effi-
cient gradient propagation [26]. Third, a batch normalization layer plays a regulatory role,
preventing the gradient vanishing problem. Finally, a max pooling layer (orange blocks at

1© in Figure 4) is added at the end of the encoder layers in each scale. This layer consists
of a stride larger than one and helps train the input thermal images effectively because
these networks reduce the size of the parameters and extract important features from an
input thermal image. Similarly, each layer in the decoder comprises several up-sampling
and ConvReLU layers symmetric to those in the encoder. The up-sampling layers (yellow
blocks at 1© in Figure 4) in front of each decoder layer match the extracted feature maps
corresponding to the size of the encoder layers. This layer uses a bilinear interpolation
method to improve the inference time [27]. However, this might result in a loss of spatial
resolution and boundary bias. Hence, max-pooling indices are recorded and used for
up-sampling to compensate for the absence of representative information. The ConvReLU
layers in the decoder play the same role as those in the encoder. However, several nonlinear
space transformations at the activation layers of each scale enable feature extraction at
different hyperplanes, strengthening the features for accurate separation of UTLCs.

The skip-layer fusion module is introduced at each scale to mitigate concerns regarding
spatial loss from the convolution layers of the encoder and decoder. This module comprises
a concatenate layer (red blocks at 2© in Figure 4), a convolution layer (purple blocks at 2© in
Figure 4), a deconvolution layer (green blocks at 2© in Figure 4), and a sigmoid activation
function layer (sky blue blocks at 2© in Figure 4). First, the same scales of the feature maps
in the encoder and decoder are concatenated to reduce the spatial loss in the concatenated
layer. Second, each concatenated feature map is fed into a 1× 1 convolution layer, changing
the size of the feature maps from multi-channel to one-channel. This layer helps train a
neural network effectively because it reduces the size of the parameters. Subsequently,
one-channel feature map passes through the deconvolution layers to resize the feature
maps the same as the input image. Finally, these feature maps are concatenated and then
passed through 1 × 1 convolution and sigmoid layers to separate the UTLCs from the
environment, as shown in Figure 5a. Therefore, the MS mask DCNN results in a binary
filter image to separate the UTLC from the environment.

2.3. Phase C Anomaly Detection of Transmission Line

This subsection presents a detailed method for anomaly detection in UTLCs (Figure 5)
The proposed method combines the contour method and the unsupervised clustering
method to improve the accuracy of semantic segmentation of UTLCs, thereby decreasing
the false-alarm rate. The contour method effectively eliminates the false-segmented pixels
of UTLCs with a low computational cost. The proposed method comprises three procedures:
elimination of false-segmented UTLCs, anomaly detection for single-phase UTLCs, and
anomaly detection for multiple phases of UTLC.

First, false-segmented pixels of the UTLCs are eliminated through a contour method
(Figure 1d) because a segmented UTLC through the MS-mask DCNN included false-
segmented pixels (red circles in Figure 5a). Note that neural networks cannot secure the
perfect accuracy of 100% because of insufficient training data and thermal reflection, which
are inherent characteristics of IR cameras [28]. Additionally, this study predefined a value
of 1 for the number of segmented UTLCs in an image. These concerns were mitigated by
employing a contour method [29] comprising four steps. First, contours were detected by
extracting pixels corresponding to the same value in a binary image. Second, the areas
of each contour were calculated, and the detected contours were sorted by area. Third,
all the pixels were eliminated, excluding the contour with the largest area. The contour
method eliminates all false-segmented regions predicted from the MS mask DCNN because
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prediction from the MS mask DCNN secures an accuracy of over 90%, and thus, the largest
region represents the connector region of interest. Finally, the retained contours are filled to
refine the segmented UTLC (Figure 5b), demonstrating that the contour method effectively
eliminates false-segmented regions. Note that this binary image is used as a filter to
extract only the temperature distribution of a UTLC, implying that this method does not
affect the detection accuracy of an anomalous UTLC. Subsequently, the UTLC regions are
extracted from a thermal image. Specifically, the binary filter (Figure 5b) refined from the
contour method is multiplied by the original thermal image, resulting in the temperature
distribution of the UTLC regions (Figure 5c).
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Figure 5. A binary image (a) through MS mask DCNN and (b) refined by the contour method from a
thermal image; temperature distribution of a connector passing through the refined filter (c) without
and (d) with thermal reflection; (e,f) an optical image of a connector, where the red box denotes bolts
and nuts resulting in thermal reflection.

Second, an anomaly was detected for the single- and multi-phase UTLCs. The criteria
for anomaly detection are defined by regulations from KEPCO [23]. Specifically, the
regulations given by KEPCO classify the conditions of UTLCs into three categories: normal,
caution, and warning. Caution and warning are defined as regions with temperatures
exceeding 2 ◦C and 4 ◦C from the mean temperature of the UTLCs, respectively; otherwise,
the UTLCs are normal. Interestingly, a filtered thermal image of a UTLC includes a
small region of high-temperature pixels (the black box in Figure 5d) in some cases, which
could be considered an anomaly. An expert system reveals that these regions clustered
below 10 pixels are not overheated regions but regions of thermal reflection because
overheating leads to large pixels clustered because of thermal conduction in UTLs. Thermal
reflection is an inherent characteristic of IR cameras, which occurs when recording a
highly reflective object [28]. Underground transmission facilities include highly reflective
metallic components such as supporting structures, bolts, and nuts. Bolts and nuts fixing
the supporting structures are orthogonal to the IR camera in some cases, resulting in
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thermal reflection (the red boxes in Figure 5e,f). Hence, the anomaly is determined by an
unsupervised clustering method of the DBSAN among several outlier pixels [30] because
this method is effective in eliminating small numbers of noisy pixels (Figure 1e). The
proposed anomaly-detection method comprises four steps. First, the mean temperature
is calculated for the pixels of a UTLC, which corresponds to a segmented UTLC in a
thermal image (Figure 5d). Second, overheated pixels exceeding 2 ◦C are identified because
these pixels are anomaly candidates in the KEPCO regulation [23]. Third, these pixels
are clustered through DBSCAN to separate anomalies from noise from thermal reflection
with two parameters, radius and number of minimum points, where radius and number
of minimum points denote the maximum distance between pixels and the minimum
number of pixels within the radius in a cluster, respectively. This study uses predefined
values of 100 and 10 for the radius and number of minimum points, respectively, based on
experiments. Hence, clustered pixels exceeding the predefined threshold are overheated
regions, whereas other clusters are noise from thermal reflection. Specifically, overheated
regions are classified as caution and warnings when they exceed 2 ◦C and 4 ◦C, respectively.
Anomalies were further analyzed (Figure 1e) for the three phases of UTLCs because UTLCs
comprise three phases of UTLCs. Specifically, the mean temperatures for the three phases
of the UTLCs were compared. A UTLC with a high mean temperature exceeding 2 ◦C
and 4 ◦C is classified as an anomaly UTLC with a class of caution and warning. Moreover,
the proposed method is capable of handling various types of UTLC anomalies because
anomalies in UTLCs are caused by mechanical and electrical defects, which result in
localized temperature increases at the faulty components, and temperature distributions
could exhibit similar patterns.

3. Experiments
3.1. Calibration of IR Camera

This subsection presents a detailed calibration process for an IR camera to accurately
convert thermal energy to the temperature of the UTLCs. Note that the inherent charac-
teristics of an IR camera make it difficult to obtain accurate measurements of the UTLCs.
Specifically, an IR camera is a non-contact sensor that measures thermal energy rather than
temperature from the radiant wavelength of objects. Hence, the conversion of thermal en-
ergy into temperature results in errors when the parameters correlated to the conversion are
affected by the environment, including thermal reflection. Hence, the conversion equation
from the thermal energy to the representative temperature (Equation (1)) of TE-EV1 should
be calibrated to accurately estimate the temperature of the UTLCs and their environments.

Calibration was performed by comparing the temperature estimated from the IR
camera with that from the T-type thermocouple (OMEGA, Norwalk, CT, USA) with a cup
covered with black insulating tape made of polylactic acid (PVC, orange box in Figure 6a). A
cup covered by PVC was used in this experiment to match the emissivity of the surface of the
UTLCs because the surface of the UTLCs is covered by an insulator made of PVC (Figure 5e).
Note that matching emissivity is important for the accurate calibration of measurements
from an IR camera [31]. Experiments were conducted with several working distances (WD)
from 1.0 to 2.5 m with 0.5 m intervals between UTLCs and an IR camera under heated
water inside a cup at a natural convection condition. Hence, the temperature of the cup
filled with water decreased over time because of the thermal convection between the cup
and the environment. Measurements with a period of 3000 s were used for calibration.
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Figure 6. Experimental (a) setup and (b–e) results for calibration of an IR camera.

The coefficients a and b in the first-order polynomial regression are identified as 1.29
and −15.53, respectively, using Equation (2) based on the least square method, minimizing
the root mean square errors (RMSEs) between the converted temperature from the IR
camera and the temperature measured by the thermocouple (Figure 6b–e). The RMSEs of
the calibrated temperature were 0.63, 0.35, 0.20, and 1.07 ◦C (the red lines in Figure 6) when
executing calibration at WDs of 1.0, 1.5, 2.0, and 2.5 m, respectively, whereas the RMSEs of
temperature were 4.96, 4.62, 4.17, and 3.55 ◦C without calibration for the corresponding
WDs (the blue lines in Figure 6). The mean RMSE for all cases was reduced from 4.325
to 0.56 ◦C after calibration, implying that errors in estimating temperature significantly
decreased over seven times through the proposed calibration process. These results confirm
that the calibrated temperature of an IR camera is accurate for measuring the surface
temperature of PVC UTLCs.
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3.2. Thermal Diagnosis System

A thermal diagnosis system (TDS) was designed and mounted on a mobile robot
(Rover Zero 2, Rover Robotics, Wayzata, MN, USA) for the patrol inspection of UTLCs
(Figure 7). This system can also be used to measure sufficient image sets of UTLCs because
deep learning approaches require significant images for model construction. The weight
reduction of the TDS was a major consideration when designing the TDS because the
weight of the payload equipped in the mobile robot significantly affects the operating time
(i.e., inspection time). The TDS comprises an IR camera of TE-EV1 (I3systems, Daejeon, Re-
public of Korea), a 3D Lidar (Velodyne VLP-16, USA), a Jetson Xavier AGX (NVIDIA, Santa
Clara, CA, USA), five gas sensors, and a customized gimbal. Specifically, the IR camera was
mounted on a customized gimbal printed with polylactic acid using a three-dimensional
printer from S5 (Ultimaker, Utrecht, The Netherlands). The FOV of TE-EV1 was 76◦ and
59.5◦ in the horizontal and vertical directions, respectively, and a vibration isolator with a
soft sponge was designed in the gimbal to isolate vibration from the motors and ground
during operation (red box in Figure 7). A 3D Lidar was used for the autonomous driving of
a mobile robot, and the five gas sensors monitored the air conditions of the UPF. However,
detailed descriptions of these sensors are omitted because their measurements were beyond
the scope of this study. A Jetson AGX featuring a 512-core Volta graphical processing unit
and an octa-core ARM 64-bit central processing unit was also mounted on a customized
gimbal printed of carbon fiber to secure high stiffness because the Jetson AGX is heavier
than the TE-EV1. The power was supplied by a series of six-cell 18650 Li-ion batteries with
3.7 a of normal voltage and 3500 mAh capacity. The total weight of the TDS was only 2.7 kg,
resulting in an operating time of 4 h, ensuring sufficient inspection time.
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Figure 7. Hardware configuration of the thermal diagnosis mobile robot.

3.3. Field Experiments

A mobile robot equipped with TDS was used to record thermal images of connectors in
UTLCs at 345 kV (Shingwangmyeong-Yeongdeungpo (SY) UPF, Seoul, Republic of Korea).
The robot was positioned at the center of the sidewalk in the UPF (Figure 8a), and the
thermal images were measured using an IR camera with a resolution of 640 × 480 pixels
that faced the UTLCs perpendicularly. The IR camera was panned from side to side to
measure the entire connector of the UTLCs because it could not record the thermal images
of the connectors of interest in one frame. Note that this limit occurred because of the short
distance between the IR camera located on the sidewalk and the connectors, even though
the IR camera with the widest FOV was selected and used. Thermal images were measured
from five junction boxes (JB) #1 to #5 of two 345 kV UTLCs, SY #1 and SY #2 (the red and
blue boxes in Figure 8a), under normal and replicated anomalous conditions (Table 1).
Repeated frames of the thermal images were removed from the recorded images because
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they were not useful for training the proposed neural network. A hot pack was randomly
located at one phase of each connector from JB #1 to #5 to replicate anomalous conditions
because it is difficult to measure thermal images of anomalous connectors in actual field
experiments. Hence, some thermal images measured under normal conditions were used
to construct the MS mask DCNN, and several thermal images measured under normal and
replicated anomalous conditions were used to test the effectiveness and robustness of the
entire framework of the proposed anomaly detection method.
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Table 1. Detailed information on the acquired thermal images.

Dataset # UTLC # JB #
Images-Sets

Normal Abnormal

DS #1 SY #1 1–2 515 -
DS #1 SY #2 1–2 97 32

DS #2 SY #1 3–5 2500 625
DS #2 SY #2 3–5 2500 625

Total thermal images of 6894 were measured from SY #1 to #2. These images were
divided into two datasets (DS), DS #1 and #2. DS #1 comprises 644 thermal images
recorded from JB #1 and #2 of SY #1 and #2 in two different frames. Images in the first
frame included thermal reflection from the supporting structures, whereas those in the
second frame minimized thermal reflection from the supporting structures. Note that
images from different views can improve the robustness of the trained MS mask DCNN.
In contrast, the images of DS #2 were only measured at the frame to minimally locate the
metal supporting structures in the recorded thermal images. This frame was selected from
the expert system of KEPCO to minimize errors from thermal reflection because the high
thermal reflectivity of metal frames distorts the measured thermal images, resulting in
inaccurate thermal images. Note that thermal images of metal frames with relatively low
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emissivity are predominantly influenced by the environment [32]. DS #2 comprises thermal
images of 6250 recorded from JB #3 to #5 of SY #1 and #2 to test the proposed anomaly
detection method for real-world applications. The total thermal images included 5000 and
1250 normal and replicated abnormal images, respectively (Figure 8b).

3.4. Construction of MS Mask DCNN

This subsection describes the construction of the MS-mask DCNN. Two Tesla V100
(32GB) processing units (GPU) with two Intel Xeon Gold 5220R central processing units
(CPUs) were used for training, validation, and testing of the proposed MS mask DCNN
with the image sets described in Section 3.3.

Original input images with a resolution of 640 × 480 pixels and downsized images
with a resolution of 320 × 240 pixels were prepared to quantitatively analyze the accuracy
and inference time of the proposed MS mask DCNN with different scales. All the thermal
images were used to construct the ground truth of binary images through the open-source
labeling tool, labelimg [33]. Thermal images of DS #1 were separated into thermal images
of 386 (60%), 129 (20%), and 129 (20%) for model construction. The proposed architecture
was trained with the 3-channel RGB thermal images and masked binary images denoting
ground truth through the format of an autoencoder combining four to six scales of encoders
and decoders (Figure 4). Notably, combining features extracted from deep and wide neural
networks enhances the accuracy and robustness of the model. The larger the scale of the
multiscale neural network, the more accurate the estimation, but the greater the inference
time, suggesting that trade-offs exist in the construction of neural networks. Therefore, the
optimal architecture of the MS mask DCNN was selected by comparing the performances
of the MS-mask DCNN with three different scales because both accuracy and inference
time are important for real-time applications. Specifically, the encoder comprised 10, 13,
and 16 convolutional layers when four, five, and six scaled layers were used, respectively,
and the decoder was a symmetrical network corresponding to the encoder. In the encoder,
the feature maps were extracted by a factor of 1/2 of the size of the input feature map
using the max-pooling layer after the convolutional layers until the number of scale feature
maps was generated. In the decoder, convolution layers were used to extract features, and
up-sampling layers were then used to increase the size of the feature maps by a factor of
two, resulting in prediction maps that were the same as the ground truth feature maps. The
convolutional kernel size is chosen to be 3 × 3 and the max-pooling kernel size is chosen to
be 2 × 2 to build a deeper network effectively.

A balanced binary cross-entropy loss function was used in the training because this
loss function ensures high accuracy of the segmented unbalanced UTLCs [34]. Thermal
images with statistical image strengthening were used to decrease the losses between the
ground truth of the UTLCs and the prediction of the MS mask DCNN using the Adam
optimizer. The hyperparameters of the Adam optimizer were optimized using Bayesian
optimization (BO) [35] because BO secures the global minimum with fast convergence
compared with other optimization methods, including grid search and genetic algorithms.
Note that the scales of the MS mask DCNN were manually changed during training to
quantitatively analyze the accuracy and inference time of the proposed neural network from
four to six scales, whereas the other hyperparameters were optimized from BO. In addition,
the hyperparameters of the Adam optimizer for other mask-based neural networks were
optimized using BO for a fair comparison of the performance of the neural networks
(Table 2). Hence, this optimization procedure can guarantee the best performance of each
neural network, demonstrating the superiority of the proposed method. The training and
validation image sets were used to optimize the hyperparameters, whereas the test image
sets were used to evaluate the final accuracy and robustness of the proposed method.
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Table 2. Initial ranges and optimal hyperparameters of the mask-based CNNs with Z-score normal-
ization and BHEPL image strengthening.

Initial Ranges of the Hyperparameters

Networks
Hyperparameters

Batch Size Learning Rate First
Momentum

Second
Momentum Weight Decay Epsilon

All 4–20
w/2 interval

1 × 10−6

−1 × 10−4 0.9–0.999 0.9–0.999 0.01
–0.3

1 × 10−8

−1 × 10−6

Optimized Hyperparameters

Networks
Hyperparameters

Batch Size Learning Rate First
Momentum

Second
Momentum Weight Decay Epsilon

Mask R-CNN 12 9.41× 10−5 0.929 0.958 0.129 2. 41×10−8

ResUNet 20 9.63× 10−5 0.955 0.985 0.143 5.80× 10−7

MS mask
DCNN (s4) 18 5.74× 10−5 0.923 0.951 0.113 9. 69×10−6

MS mask
DCNN (s5) 20 2.67× 10−5 0.944 0.983 0.017 2.42× 10−6

MS mask
DCNN (s6) 4 5.21× 10−5 0.959 0.961 0.269 5.27× 10−8

A half tensor was employed to test the proposed method to increase the FPS for
real-time applications because most deep neural networks do not require a large number of
bits during the testing phase in the absence of any vanishing or exploding concerns [36].
In other words, the proposed network employs a float tensor during the training and
validation phases, whereas the half-tensor is used to enhance the inference time during
the test, suggesting that the efficiency of our approach does not come at the expense of
accuracy. The mean intersection over union (MIoU) was used to evaluate the semantic
segmentation performance of mask-based neural networks as

MIoU =
TP

TP + FP + FN
, (21)

where TP, FP, and FN denote the intersection area between ground truth and prediction.

4. Results and Discussion
4.1. Results of Each Phase from the Proposed Integrated Framework

This subsection describes the results from each phase of the proposed method, in-
cluding statistical image strengthening, segmentation of the UTLC through the MS mask
DCNN, and the contour method. This demonstration executes all the procedures with
two samples from the test dataset of SY #2 under normal (Figure 9a–e) and abnormal
(Figure 9f–j) conditions. Note that training of the MS mask DCNN was executed with the
dataset of SY #1; thus, the demonstration of the proposed method should be conducted
with different images from the training images.

First, a measured thermal image (Figure 9a,f) was passed through statistical image
strengthening, including z-score normalization and BHEPL. This process results in a signif-
icant thermal gradient of pixels corresponding to a UTLC and environments in a thermal
image using clipped plateaus and statistical limits (Figure 9b,g), enabling the neural net-
work to easily extract features of the UTLC for separating connectors from environments.
Notably, this process also effectively eliminates environments when a strong heat source
or anomaly exists in the environment or a UTLC exists in a recorded thermal image. The
preprocessed thermal images are then passed through the MS mask DCNN, separating
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the UTLC of interest from the environment as a binary classification (Figure 9c,h) with
a predefined threshold of 0.5. However, false segmentations would be included in the
predicted result (Figure 9h) because the neural network cannot secure a perfect accuracy
of 100% owing to insufficient training datasets. This limitation can be compensated for
by employing a simple yet effective image-processing method. Specifically, the contour
method eliminates false segmentations of the UTLC (Figure 9d,i) because it effectively
detects the corners and edges of the UTLC from the predicted binary information. The
proposed framework then selects pixels corresponding to the largest region of the contour
representing the UTLC in a thermal image and eliminates other regions, thereby improv-
ing the accuracy of semantic segmentation of the UTLC with a low computational cost.
Finally, anomalies are detected by comparing the temperature of pixels in the UTLC region
with the mean temperature of the UTLC through DBSCAN, resulting in an orange box
within the thermal image (Figure 9j). Note that the anomaly is detected by analyzing the
temperature of the UTLC using only the corresponding pixels in the refined segmented
UTLC. Hence, a strong heat source in the environment was excluded from this process.
DBSCAN also effectively removes a small portion of the relatively high temperature due to
thermal reflection from metal structures in connectors, such as bolts and nuts (Figure 5e,f),
improving the accuracy of anomaly detection.
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4.2. Ablation Study for the Proposed Framework

This subsection demonstrates the effectiveness of z-score normalization, BHEPL meth-
ods, and MS mask DCNN compared with min-max normalization, other histogram-based
image strengthening (HBIS) [37–39], and other mask-based DCNNs to extract distinct
features of a UTLC from a thermal image (Figure 10). Table 3 lists the MIoUs obtained from
three different factors using the SY #2 dataset. The min-max normalization was executed
using the minimum and maximum temperatures from each thermal image. “None” in the
HBIS methods in Table 3 denotes that an original thermal image was used for separating a
UTLC from an environment through mask-based DCNNs.

First, MIoUs obtained with z-score normalization are generally higher than those
obtained with min-max normalization, regardless of HBIS and mask-based DCNNs. Specif-
ically, z-score normalization enhances MIoUs from 0.23 to 18.72% under normal conditions
and from 1.78 to 63.64% under abnormal conditions compared with those of min-max
normalization (bold values in Table 3). This quantitative analysis implies that z-score nor-
malization is more effective than min-max normalization for extracting features of thermal
images because a statistical threshold secures high accuracy compared with min-max nor-
malization in this situation. Statistical normalization also ensures high robustness because
field measurements include several unexpected anomalies, such as ceiling light and hot
spots in UTLCs, that distort the estimated results from the neural network. Similar results
have been reported in the literature when using field measurements [40,41], confirming
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that z-score normalization is effective for inferences from neural networks with field mea-
surements. Note that HBIS methods cannot secure the accuracy of MIoU under abnormal
conditions when min-max normalization is used because min-max normalization cannot
separate the environments and UTLs effectively in cases in which unexpected anomalies
exist, including ceiling lights and hot spots in UTLCs.
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Table 3. Comparative analysis of MIoU with the dataset of DS #1 @ SY #2.

MIoU (%) @ Normal Data

Mask-Based CNNs Normalization

Histogram-Based Image Strengthening

FPS
None HE BBHE RMSHE MMBEBHE BHEPL

(Proposed)

Mask R-CNN
Min-Max 68.45 74.80 77.66 76.70 78.04 81.92

16.4
Z-score 82.69 77.82 79.15 79.94 78.42 84.42

ResUNet
Min-Max 79.37 77.90 82.40 82.15 81.40 86.34

44.2
Z-score 82.18 82.89 84.14 85.86 86.81 87.43

MS mask DCNN (s4) Min-Max 70.86 85.53 85.63 78.46 76.50 70.85
63.1

Z-score 63.45 85.77 89.11 87.96 84.34 89.57

MS mask DCNN (s5) Min-Max 87.16 80.64 81.65 85.26 82.88 88.65
46.7

Z-score 90.48 86.02 84.67 88.00 83.19 90.59

MS mask DCNN (s6) Min-Max 88.18 87.08 87.59 83.08 83.02 90.78
30.0

Z-score 89.27 89.25 89.41 87.19 89.66 90.95

MIoU (%) @ Anomaly Data

Mask R-CNN
Min-Max 27.13 74.93 64.56 18.79 49.00 24.62

16.4
Z-score 73.46 77.22 77.19 79.43 78.74 80.38

ResUNet
Min-Max 25.98 77.90 40.04 17.22 48.72 45.93

44.2
Z-score 77.50 84.06 83.72 80.86 85.24 86.95
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Table 3. Cont.

MIoU (%) @ Normal Data

Mask-Based CNNs Normalization

Histogram-Based Image Strengthening

FPS
None HE BBHE RMSHE MMBEBHE BHEPL

(Proposed)

MS mask DCNN (s4) Min-Max 32.97 75.97 64.52 30.38 60.87 43.35
63.1

Z-score 62.14 87.52 82.00 83.81 86.43 91.57

MS mask DCNN (s5) Min-Max 68.93 80.12 79.02 71.62 70.16 60.62
46.7

Z-score 70.71 88.71 87.02 80.71 82.58 92.92

MS mask DCNN (s6) Min-Max 76.81 87.44 75.03 58.80 71.94 74.49
30.0

Z-score 82.68 91.40 85.03 71.78 90.33 91.86

Second, the BHEPL method enhances MIoUs when z-score normalization is employed,
regardless of the mask-based DCNNS. Specifically, BHEPL enhances the MIoUs from 0.11
to 26.12% under normal conditions and from 0.46 to 29.43% under abnormal conditions
compared with those from other HBIS methods. This quantitative analysis implies that the
BHEPL is appropriate when z-score normalization is used because the BHEPL emphasizes
numerous pixels, including environments and UTLC, with two sub-histograms using the
clipped plateau limit. Note that BHEPL effectively preserves the bias of the intensity
using two sub-histograms and the level saturation using the clipped plateau limit, thereby
strengthening the features of the UTLCs.

Third, the MS mask DCNNs show the highest MIoUs, regardless of the number of
latent layers, for both normal and abnormal conditions when the z-score normalization
method and BHEPL are addressed. Specifically, the MS mask DCNNs secure high MIoUs
of around 90% regardless of the number of latent layers. Quantitatively, the lowest accuracy
of the MS mask DCNN is 2% higher than the highest accuracy of other networks. This
observation suggests that a multiscale feature extraction module in the MS mask DCNN
secures high accuracy because it effectively extracts distinct and semantic features to
separate UTLC from the environments in the prediction layers. In contrast, Mask R-
CNN requires both segmented mask and bounding box information to calculate the loss,
including the classification and regression of masks and bounding boxes, for instance,
for segmentation of the images [22]. However, the training dataset of DS #1 may include
different environments adjacent to UTLCs, characterized by irregular and diverse shapes
and complex thermal gradients in the bounding boxes. These irregular and diverse shapes
in the surrounding environment pose challenges for extracting distinct features from
thermal images in the Mask R-CNN architecture, resulting in low accuracy. Furthermore,
Mask R-CNN shows lower FPS compared with both ResUNet and MS mask DCNN, two
semantic segmentation models. Specifically, FPS from Mask R-CNN is 2.8 times lower than
ResUNet and 1.8 to 3.8 times lower than MS mask DCNN. The architecture of ResUNet
is similar to that of the MS mask DCNN because ResUNet also employs the architecture
of the autoencoder. However, MIoUs from ResUNet are lower than those from the MS
mask DCNN because the architecture of ResUNet is less effective than that of the MS
mask DCNN. Specifically, ResUNet [21] concatenates feature maps from both the encoder
and decoder and then estimates the mask at the last layer after passing through several
convolution layers, whereas the MS mask DCNN generates multiscale feature maps from
the autoencoder and directly estimates the mask of the UTLC. In other words, feature
maps extracted from ResUNet faded out when passing through several convolution layers,
whereas the MS mask DCNN preserved the semantic information of UTLCs, which were
extracted from different scales, resulting in enhanced performances for separating UTLCs
from the background. Among the MS mask DCNNs with different numbers of latent
layers, the MS mask DCNN (S6) showed the highest accuracy for normal data, whereas
the MS mask DCNN (S5) showed the highest accuracy for abnormal data. These results
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can be explained by the fact that the neural network was trained using the SY #1 dataset,
which only included normal data. Therefore, the MS mask DCNN (S6) is overfitted to the
normal condition because of its deep architecture. In this study, the MS mask DCNN (S5)
is deployed on TDS because it aims to accurately detect anomalies in UTLCs. Note that
the FPS of the MS mask DCNN (S5) is also higher than that of the MS mask DCNN (S6),
suggesting that the MS mask DCNN (S5) is more effective for field applications.

In summary, a combination of the z-score normalization, BHEPL method, and MS
mask DCNN (S5) outperformed min-max normalization, other HBIS methods, and other
mask-based DCNNs in terms of both accuracy and robustness. Moreover, the MS mask
DCNN (S5) is accurate and fast for deploying this method in TDS.

4.3. Contribution of the Contour Method and Half Tensor

This subsection describes the contribution of the contour method and half tensor to
the improvements in MIoU and FPS (Table 4). The MS mask DCNN (S5) is used for this
analysis because this architecture shows the best performance, as described in Section 4.2.

Table 4. Contribution of the contour method and half tensor on the accuracy and inference time of
the proposed framework.

Dataset Data Type
w/o the Contour Method w/the Contour Method

MIoU (%) FPS MIoU (%) FPS

Normal Single tensor 90.59 42.0 92.49 41.6
Normal Half tensor 90.60 64.4 92.49 62.7

Abnormal Single tensor 92.92 34.6 92.92 34.0
Abnormal Half tensor 92.92 48.2 92.92 47.5

The contour method improves the MIoU by 1.9% under normal conditions and the
same under abnormal conditions, effectively eliminating false segmentation of UTLCs.
Note that the contour method improves the MIoU under normal conditions because it
eliminates the false segmentation of UTL, which has a similar temperature distribution
as UTLC under normal conditions. In contrast, there is no false segmentation of UTLC in
the abnormal condition because anomalies in the UTLC make the intensity of the pixels
higher than that in the normal condition (Figure 9b,g), resulting in no error in estimating
the segmentation of UTLC. Moreover, the FPS is approximately equivalent to that of
anomaly detection when addressing the contour method, leaving out consideration for the
contour method. Specifically, the contour method increases the framework slowly from
42.0 to 41.6 FPS, implying that the contour method effectively eliminates falsely segmented
UTLCs with low computational cost. Remarkably, the FPS of the proposed framework
was significantly enhanced by addressing the half-tensor with the same accuracy. The
half tensor reduces the inference time from 41.6 to 62.7 FPS when the contour method is
addressed, whereas the MIoUs are the same. This observation suggests that the half tensor
can allocate the weights of the trained neural networks with lower GPU resources than
the single tensor because the half tensor comprises 1, 5, and 10 bits for the sign, exponent,
and fraction, respectively, whereas the single tensor comprises 1, 8, and 23 bits for the sign,
exponent, and fraction, respectively. Moreover, inference in the final application does not
require large digits of 32 because it is performed by forward propagation, whereas training
is performed by back propagation, which might cause gradient vanishing or exploding
problems. Therefore, the segmented UTLCs from the proposed framework can be used for
anomaly detection by analyzing the corresponding temperature.

4.4. Anomaly Detection

This subsection describes the anomaly detection for single- and multi-phase connectors.
The detection performances of anomalies for single and three phases were analyzed with
the DS #2 dataset. An anomaly randomly located at the phase of UTLCs was inspected
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through the proposed framework (Figure 9i) based on the regulations of KEPCO [23].
Specifically, inspection of UTLCs was conducted by analyzing sequential thermal images
because detection of anomalies should be considered for both single and three phases.

First, DBSCAN eliminates noise exceeding 2 ◦C over the mean temperature in seg-
mented pixels of the UTLC because noise from highly reflective objects, including support-
ing structures, bolts, and nuts, should be eliminated. Note that the number of pixels for
noise was less than 10, within a radius of 100 pixels. Hence, noise elimination does not
affect the accuracy of anomaly detection in UTLCs. Furthermore, the temperature of each
pixel was compared with the mean temperature of the UTLC to detect pixels exceeding
2 ◦C and 4 ◦C, which are classified as a caution and an anomaly in the regulation of KEPCO,
respectively. Finally, the centers of caution and anomalies were calculated using a thermal
image. Hence, the detected anomaly for a single phase is noted with the temperature
difference from the mean temperature demonstrated as 9.8 ◦C in Figure 9j. Remarkably,
the proposed framework achieves a precision of 99.25% and a recall of 100% with a correct
direction of 6203 from a total of 6250 images, confirming that the proposed framework is
effective for real-world applications.

Second, an anomaly was detected for the three phases of the UTLC. Specifically, the
maximum temperature of the UTLCs (Tmax) was calculated from the measured sequential
thermal images for all three phases, excluding the pixels under abnormal conditions
because abnormal pixels are used to detect anomalies by comparison with the maximum
temperature of each phase of the UTLCs. Furthermore, the maximum temperature of each
phase T@phase

max was calculated, and the maximum temperature of each phase T@phase
max was

compared with Tmax to detect anomalies of the UTLCs. Finally, the maximum temperature
difference (∆T) exceeding 2 ◦C and 4 ◦C was classified as a caution and an anomaly,
respectively. Note that a hot pack was randomly installed in one of the three phases. Table 5
lists the detected anomalies for the three phases of the UTLCs. For example, the anomaly
is detected only in phase B with a ∆T of 9.2 ◦C at JB #5 because Tmax is 32.7 ◦C, whereas
TA

max, TB
max, and TC

max are 32.6, 41.9, and 32.7 ◦C, respectively. Similar results were observed
for the other JBs. Hence, randomly located abnormal phases of the UTLCs were detected.
Future work will include long-term monitoring of UTLCs with the proposed framework by
deploying TDS and quantifying the accuracy of the proposed framework for real anomalies
occurring at UTLCs.

Table 5. Detected anomalies from three-phases of UTLCs at the dataset of DS #2.

UTLC # JB # Tmax (◦C) * TA
max (◦C) ** TB

max (◦C) ** TC
max (◦C) ** ∆T (◦C) *** Anomaly Phase #

SY #1
# 3 32.6 32.6 41.3 32.7 8.7 B
# 4 32.7 43.3 32.9 32.6 10.6 A
# 5 31.7 31.9 31.9 43.1 11.5 C

SY #2
# 3 31.6 31.6 41.1 31.4 9.5 B
# 4 32.5 45.0 32.5 31.9 12.6 A
# 5 32.7 32.6 41.9 32.7 9.2 B

* Tmax : mean temperature of the maximum temperature in the UTLCs for three phases, excluding pixels under
abnormal conditions. ** T@

max : maximum temperature of each phase. *** ∆T: maximum temperature difference
between Tmax and T@

max .

5. Conclusions

This study proposes an integrated framework for anomaly detection of UTLCs in au-
tomatic manner based on three crucial characteristics. First, statistical image strengthening
is addressed to improve the performance of segmentation for UTLCs through mask-based
CNNs through z-score normalization and BHEPL. Specifically, z-score normalization im-
proves the robustness of feature extraction for UTLCs even if a hot spot exists in the thermal
image, and BHEPL improves the accuracy of segmentation to separate UTLCs from envi-
ronments. Second, semantic segmentation of the MS mask DCNN is employed to detect
the UTLC domain from a thermal image. The MS mask DCNN has two key characteris-



Mathematics 2023, 11, 3143 23 of 25

tics: a multiscale feature extraction module enables the extraction of distinct features of
UTLCs and environments, and the skip layer fusion module concatenates distinct features
from the multiscale feature extraction module, effectively separating the ULCs from the
environment. Third, anomaly detection based on temperature differences is addressed
to improve the accuracy of diagnosis for anomaly detection by the contour method and
unsupervised clustering of DBSCAN. Specifically, the contour method is addressed to
eliminate the false segmentation of UTLCs by considering the largest domain of UTLCs,
and DBSCAN improves the robustness and accuracy of diagnosis by eliminating noise from
thermal reflection, which is caused by low-emissivity objects within thermal images. In ad-
dition, intensive field tests and ablation studies confirmed the effectiveness of the proposed
framework in real-world applications. The simple yet accurate framework proposed would
open a new era of automatic inspection for tunnel facilities. The proposed method could
also be deployed on mobile robots that inspect for various field applications, including
power lines, facilities, military, medicine, and security. Note that it is important to carefully
evaluate the specific characteristics and requirements of the target domain when applying
the proposed framework. The future work includes validating the robustness and efficiency
of the proposed method in UPFs constructed in different environments. Furthermore,
efforts should be focused on gathering real anomalous thermal images through long-term
monitoring with a mobile robot equipped with an infrared camera to validate the proposed
method. Alternative clustering methods will also be explored with other applications.
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