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Table 1

Instances of branch-width and branch-depth. Branch-width of graphs and matroids and rank-
width of graphs are defined as branch-depth of corresponding connectivity functions. Similarly
branch-depth of graphs and matroids and rank-depth of graphs are defined as branch-depth of
corresponding connectivity functions.

Object Connectivity function f Branch-width of f Branch-depth of f
Graph G A Branch-width of G Branch-depth of G
Matroid M Am Branch-width of M Branch-depth of M
Graph G 06 Rank-width of G Rank-depth of G

close a graph is to being a star. We remark that graphs in this paper are allowed to have parallel
edges and loops. A simplification of a graph G is a simple graph obtained from G by deleting parallel
edges and loops.

Definitions of both tree-width and tree-depth of graphs involve vertices and edges and so it
is non-trivial to extend them to other discrete structures, such as matroids. Actually Hlinény and
Whittle [20] were able to generalize the tree-width of graphs to matroids but it is not so obvious
why it is related to the tree-width of graphs.

One may ask whether we can define an alternative depth parameter of graphs that only uses
some connectivity function. If so, then it can be easily extended to matroids.

For tree-width, this was done by Robertson and Seymour [33]. They defined the branch-width of
graphs and showed that a class of graphs has bounded branch-width if and only if it has bounded
tree-width. Following Ding and Oporowski [8], we will say that two parameters «, § of some objects
are tied if there exists a function f such that for every object G, «(G) < f(B(G)) and B(G) < f(a(G)).
So branch-width and tree-width are tied for graphs.

The decomposition tree for branch-width of graphs, called the branch-decomposition, is defined
in terms of edges only. When measuring the width of a branch-decomposition, it uses a function
¢ of a graph G defined as follows: for a set X of edges, A¢(X) is the number of vertices incident
with both an edge in X and an edge not in X. It turns out that A¢ has all the nice properties such as
symmetricity and submodularity and so such a function will be called a connectivity function. The
detailed definition will be reviewed in Section 2. Robertson and Seymour [33] defined branch-width
not only for graphs but also for any discrete structures admitting a connectivity function.

We will define the branch-depth of a connectivity function in Section 2. This single definition will
produce various depth parameters for graphs and matroids, by plugging in different connectivity
functions. We summarize them in Table 1.

Our first goal is to make sure that these new depth parameters are tied to existing ones. First
we show that for graphs, branch-depth and tree-depth are tied in Section 3.

Theorem 3.4. Let G be a graph, k be its branch-depth, and t be its tree-depth. Then
k—1<t<max(2k® —k+1,2).

For a simple graph G, there is another interesting connectivity function called the cut-rank
function, denoted by pg. It is defined in terms of the rank function of a submatrix of the adjacency
matrix, which we will describe in detail in Section 4. Oum and Seymour [30] used the cut-rank
function to define the rank-width of a simple graph. Analogously we use the cut-rank function to
define the rank-depth of a simple graph G as the branch-depth of its cut-rank function pg. As a
similar attempt to define a depth parameter comparable to rank-width, Ganian, Hlinény, Ne3etfil,
Obdrzalek, and Ossona de Mendez [12] defined the shrub-depth of a class of simple graphs. In
Section 4 we prove that having bounded rank-depth is equivalent to having bounded shrub-depth.

Theorem 4.11. A class of simple graphs has bounded rank-depth if and only if it has bounded
shrub-depth.

For matroids, we define the branch-depth of a matroid M as the branch-depth of its connectivity
function Ap. We will investigate three additional depth parameters, called the contraction depth,
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Fig. 1. A Venn diagram of classes of matroids.

the deletion depth, and the contraction-deletion depth for matroids. Ding, Oporowski, and Oxley [9]
investigated the contraction-deletion depth under the name type. A Venn diagram in Fig. 1 shows
containment relation and properties on classes of matroids with respect to the boundedness of
various parameters of matroids, which will be proved in Theorems 5.2 and 5.7, and Corollaries 5.8
and 5.11. We will also show that no two of these depth parameters are tied.

It is well known that a class of graphs has bounded tree-depth if and only if it has no long
path, see [32, 4.4] or [27, Proposition 6.1]. It is straightforward to prove the following analogue for
matroids as follows.

Theorem 5.9.

(i) A class of matroids has bounded contraction depth if and only if all circuits have bounded size.
(ii) A class of matroids has bounded deletion depth if and only if all cocircuits have bounded size.

The contraction depth is also tied to the “branch-depth” introduced by Kardo$, Kral’, Liebenau,
and Mach [23]. The authors would like to apologize for this unfortunate conflict of terms. To
distinguish with our branch-depth, let us call theirs the KKLM-depth of a matroid. They prove that
if ¢ is the size of a largest circuit of a matroid M, then the KKLM-depth is at most c? and at least
log, c. By Theorem 5.9, KKLM-depth and contraction depth are tied. Interestingly, they showed that
unlike the contraction depth, KKLM-depth does not increase when we take a minor. Moreover there
is an interesting algorithmic result on integer programming parameterized by their branch-depth
due to Chan, Cooper, Koutecky, Kral’, and Pekarkova [3].

Robertson and Seymour [32] stated that graphs of bounded tree-depth are well-quasi-ordered by
the subgraph relation and Ding [6] proved that they are well-quasi-ordered by the induced subgraph
relation. As a generalization, Ganian, Hlinény, NeSetfil, Obdrzalek, and Ossona de Mendez [12]
proved that a class of graphs of bounded shrub-depth is well-quasi-ordered by the induced subgraph
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relation. We prove an analogous theorem for matroids as follows. A matroid N is a restriction of a
matroid M if N = M \ X for some X. A class M of matroids is well-quasi-ordered by restriction if
every infinite sequence My, My, ... of matroids in M has a pair i < j such that M; is isomorphic to
a restriction of M;.

Theorem 6.1. Let F be a finite field. Every class of F-representable matroids of bounded contraction
depth is well-quasi-ordered by restriction.

The paper is organized as follows. Section 2 introduces the branch-depth of a connectivity
function. Then we discuss various connectivity functions arising from graphs and matroids. Sec-
tions 3 and 4 are for graphs; Section 3 introduces the branch-depth of a graph by using the usual
connectivity function of graphs defining branch-width. Section 4 introduces the rank-depth of a
simple graph by using the cut-rank function. In Section 5 we introduce the branch-depth of a
matroid as the branch-depth of the matroid connectivity function. We also investigate properties
of the branch-depth, the contraction depth, the deletion depth, and the contraction-deletion depth
and obtain an inequality between the rank-depth and the tree-depth of simple graphs. Section 6
proves that matroids representable over a fixed finite field having bounded contraction depth are
well-quasi-ordered by restriction.

2. Branch-depth of a connectivity function
2.1. Connectivity functions

For a finite set E, we let 2F denote the set of all subsets of E. A connectivity function A on E is a
function A : 2f — Z satisfying the following three conditions.

(i) M@)=0
(ii) (symmetric) A(X) = A(E \ X) for all X C E.
(iii) (submodular) A(X) + AMY) > AXUY)+AXNY)forall X,Y CE.

Lemma 2.1. Let A be a connectivity function on E and let K be a subset of E such that A(K) = 0. Then
the function A|x on 2K defined by A|x(X) = A(X) is a connectivity function on K and

MX) = Me(X NK) + Alpx(X \ K)
forall X CE.

Proof. Clearly A is submodular and A|¢(?) = 0. By symmetry and submodularity, for all X C K,
AX) = AMK)+ AE\X) > MK\ X)+ A(E) = AK \ X)

and therefore A(X) > A(K \ X). By replacing X with K \ X, we deduce that A(X) = A(K \ X). Thus
Al is a connectivity function on E.
Let Y be a subset of E. Then by submodularity,

MY NK) + A(Y \K) > A(Y) + A(0) = A(Y).

Again by submodularity, A(Y) = A(Y)+A(K) > M(YNK)+A(YUK) = A(Y NK)+A(E\ (Y UK)). Since
AME\ K) =0, Alp\¢ is a connectivity function and therefore A(E \ (Y UK)) = A(Y \ K). Thus A(Y) >
MY NK)+A(Y\K) and so we deduce that A(Y) = A(Y NK)+A(Y\K) = Ag(YNK)+A[px(Y\K). O

We say that a connectivity function A on E is the disjoint union of two connectivity functions X,
Ay on Eq, E; respectively, if E = E;y UE;, Ey NE; = @, and A(X) = A{(X NE7) 4+ A(X N Ey).
For a partition P of E into subsets, we define

AMP) = max X].
(P) PSP Leg, )

This function was introduced by Geelen, Gerards, and Whittle [14]. We will use it to measure the
‘connectivity’ of a partition.
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2.2. Branch-depth

A radius of a tree is the minimum r such that there is a node having distance at most r from
every node.

A decomposition of a connectivity function A on E is a pair (T, o) of a tree T with at least one
internal node and a bijection o from E to the set of leaves of T. The radius of a decomposition
(T, o) is defined to be the radius of the tree T. For an internal node v € V(T), the components of
the graph T — v give rise to a partition P, of E by o. The width of v is defined to be A(P,). The
width of the decomposition (T, o) is the maximum width of an internal node of T. We say that a
decomposition (T, o) is a (k, r)-decomposition of A if the width is at most k and the radius is at
most r. The branch-depth of A is the minimum k such that there exists a (k, k)-decomposition of A.

If |[E| < 2, then there exists no decomposition and we define A to have branch-depth 0. Note
that every tree in a decomposition has radius at least 1 and therefore the branch-depth of X is at
least 1if |E| > 1.

Lemma 2.2. Let A be a connectivity function on E and let K be a subset of E such that A(K) = 0. Let
k, 1, r be integers such that Al has a (k, r1)-decomposition and A|g\x has a (k, r)-decomposition.

(i) If r1 # 1o, then A has a (k, max(rq, rp))-decomposition.
(ii) If r1 = o, then X has a (k, r1 + 1)-decomposition.

Proof. We may assume that r; > r,. Let (Tq, 0q) be a (k, r;)-decomposition of A|x and let v; be
an internal node of T; such that each node of T; is within distance r; from v;. Let (T, 03) be a
(k, rp)-decomposition of Ag\x and let v, be an internal node of T, such that each node of T, is within
distance r, from v;.

Let T be the tree obtained from the disjoint union of T; and T, by adding an edge between v,
and v,. Then T with o7 and o, forms a decomposition (T, o) of A.

Then A is the disjoint union of A; and A, and by Lemma 2.1, (T, o) has width at most k. There
are two cases for the radius of T. If r, < rq, then the radius of T is at most r; and therefore (T, o)
is a (k, r1)-decomposition. If r, = ry, then the radius of T is at most r; + 1 and so (T, o) is a
(k, r1 + 1)-decomposition. O

Lemma 2.3. Let A be a connectivity function on E. Let Eq, E,, ..., Ey, be a partition of E into non-
empty sets such that AM(E;) = 0 for all 1 <i < m. Let A; := A, and k; be the branch-depth of A;. Let
k = max(ky, ky, . ..., kn). ‘

Then the branch-depth of A is k or k + 1. In particular, if the branch-depth of X\ is k + 1, then there
exist i < j such that k; = k; = k and A has a (k, k + 1)-decomposition.

Proof. We proceed by induction on m. We may assume that m > 2. Clearly the branch-depth of A
is at least the branch-depth of A;, simply by taking a subtree and therefore the branch-depth of A
is at least k.

If k; = O for all i, then |E;| = 1 for all i. Then the branch-depth of A is 1 because there is a
(0, 1)-decomposition (T, o) where T is Kj p.

Thus we may assume that k = k; > 0. Let (Tq, 01) be a (k, k)-decomposition of A|g,. Let r; be an
internal node of T; such that each node of T; is within distance k from ry.

If |[E;| = 1, then we attach to r; a leaf node corresponding to the element of E;, producing a (k, k)-
decomposition of MElUEZ. By applying the induction hypothesis to E; UE;, Es, ..., E;, we deduce the
conclusion. Thus we may assume that |E,|, |Es|, ..., |En| > 2 and therefore k5, k3, ..., k;, > 1. Now
it is trivial to deduce the conclusion by using Lemma 2.2 repeatedly. O

3. Branch-depth and tree-depth of graphs

Recall that for a graph G = (V,E) and a set X C E, Ag(X) is the number of vertices incident
with both an edge in X and an edge in E \ X. Let us define the branch-depth of a graph G to be the
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branch-depth of A¢. Let us write bd(G) to denote the branch-depth of G. In this section we aim to
prove that tree-depth and branch-depth are tied for graphs.

First let us review the definition of tree-depth [27, Chapter 6]. A rooted forest is a forest in which
every component has a specified node called a root and each edge is oriented away from a root. The
closure of a rooted forest T is the undirected simple graph on V(T) in which two vertices are adjacent
if and only if there is a directed path from one to the other in T. The height of a rooted forest is the
number of vertices in a longest directed path. The tree-depth of a simple graph G, denoted by td(G),
is the minimum height of a rooted forest whose closure contains G as a subgraph. The tree-depth of
a graph is defined as the tree-depth of its simplification.

Unlike tree-depth, the branch-depth of a graph may be different from the branch-depth of its
simplification. For instance, a one-vertex graph has branch-depth 1 if it has at least two loops, and
branch-depth 0 otherwise.

Now let us see why a class of graphs of bounded tree-depth has bounded branch-depth. The
following lemma proves one direction.

Lemma 3.1. The branch-depth of a connected graph is less than or equal to its tree-depth.

Proof. Let G be a graph. If G has at most one edge, then G has branch-depth 0 and therefore we
may assume that G has at least two edges.

Let k be the tree-depth of G. Let F be a rooted forest of height k whose closure contains the
simplification of G as a subgraph. We may assume that V(F) = V(G). Thus F is connected.

Let T be the tree obtained from F by attaching one leaf to a node v for every edge e = uv of
G when v is under u in F. (If e is a loop incident with v, then we attach a leaf to v.) Let o be the
bijection from E(G) to the leaves of T given by the construction of T.

We claim that (T, o) is a (k, k)-decomposition. Let v be an internal node of T, located at the
distance i from the root. Then i < k — 1 because the height of F is k. Let P be the partition of E(G)
given by the node v. Then if a vertex of G meets more than one part of P, then it is in the path
from the root of T to v and therefore the width of v is at most i + 1 < k. Observe that the radius
of T is at most k. This proves our claim. O

Now let us prove the backward direction. We will need the following lemma.

Lemma 3.2. Let k be an integer. Let G = (V, E) be a graph and let P be a partition of E. If Ag(P) < k,
then G has at most max(2k — 1, 0) vertices incident with edges from at least two parts of P.

Proof. Choose a subset P’ of P by selecting each part of P independently at random with probability
1/2. Let A = (g F and let Y denote the set of vertices incident with both an edge in A and an
edge in E \ A.

Let X be the set of vertices meeting edges in at least two parts of 7. We may assume that [X| > 0.
Every vertex in X will appear in Y with probability at least 1/2 since this vertex is incident with
edges from at least two parts of P. It then follows from linearity of expectation that E[|Y|] > %|X|.
In particular, because P(|Y| < %|X|) > P(P' = @) > 0, there exists a subset P’ of P for which
Y| > %|X|. By our assumption, we must have |Y| < k and this gives the desired bound. O

Lemma 3.3. Let r, w be positive integers. If a graph has a (w, r)-decomposition, then it has tree-depth
at most 2w — 1)r + 1.

Proof. We proceed by the induction on r. Let G be a graph having a (w, r)-decomposition (T, o).
Let v be an internal node of T such that each node of T is within distance r from v.

If r = 1, then by Lemma 3.2, the number of vertices of degree at least two in G is at most 2w — 1
and thus the tree-depth is at most 2w. Now we assume that r > 1.

Let P be a partition of E(G) induced by T — v. Let X be the set of vertices of G meeting at least
two parts of P. By Lemma 3.2, |X| < 2w — 1.

It is enough to prove that G \ X has tree-depth at most (2w — 1)(r — 1) 4+ 1. Let C be a
component of G\ X. If C has at most two edges, then the tree-depth of C is at most 2. As r > 1,



M. DeVos, O. Kwon and S. Oum / European Journal of Combinatorics 90 (2020) 103186 7

(2w — 1)(r — 1) +1 > 2. If C has at least three edges, then let T’ be the minimal subtree of T
containing the leaves of T associated with edges in C. Since T’ does not contain v, the radius of
T’ is at most r — 1. Furthermore, as C has at least three edges, T’ has at least one internal node.
Thus, T" induces a (w, r — 1)-decomposition of C. By induction hypothesis, C has tree-depth at most
RQw-1)r-1n+1 0O

Now we are ready to prove Theorem 3.4.

Theorem 3.4. Let G be a graph, k be its branch-depth, and t be its tree-depth. Then
k—1<t<max(2k* —k+1,2).

Proof of Theorem 3.4. By Lemma 2.3, there is a component C of G whose branch-depth is k or
k — 1. By Lemma 3.1, that component has tree-depth at least k — 1 and so td(G) > k — 1.

If k = 0, then it has at most 1 edge and so its tree-depth is at most 2. If k > 0, then by Lemma 3.3,
we have td(G) < 2k— 1)k+1=2k*—k+1. O

We say that a graph H is a minor of a graph G if H can be obtained from G by contracting edges
and deleting edges and vertices. As many graph parameters do not increase under taking minors,
we may wonder whether the branch-depth behaves similarly. It is easy to prove the following
proposition.

Proposition 3.5. If H is a minor of a graph G, then bd(H) < bd(G).

Ding [6] proved that graphs of bounded tree-depth are well-quasi-ordered under the induced
subgraph relation. This implies that for each k, there is a finite list of graphs such that a graph G
has branch-depth at most k if and only if no graph in the list is isomorphic to an induced subgraph
of G. Since no graph of large tree-width has small branch-depth, one can decide in linear time
whether the input graph has an induced subgraph isomorphic to a fixed graph, for instance by using
Courcelle’s theorem [4] with the algorithm to find a tree-decomposition by Bodlaender [2]. The
authors are not aware of such an algorithm that in addition finds a decomposition for branch-depth
of graphs.

4. Rank-depth and shrub-depth of simple graphs

The cut-rank function of a simple graph G = (V, E) is defined as a function p; on the subsets of
V such that pg(X) is the rank of an X x (V \ X) 0-1 matrix

Ax = (aj)iex jev\x
over the binary field where a; = 1 if and only if i and j are adjacent and 0 otherwise. The cut-rank
function is an instance of a connectivity function on the vertex set of a simple graph, see a paper
of Oum and Seymour [30]. We define the rank-depth of a simple graph G, denoted by rd(G), to be

the branch-depth of pg.
As an example, we will prove that

rd(P,) = ®(logn/loglogn),

where P, is the path graph on n vertices. Together with Theorem 4.11 to be proved later, this will
give an alternative proof of the fact that a class of graphs containing arbitrary long induced paths has
unbounded shrub-depth shown by Ganian, Hlinény, NeSetfil, ObdrZalek, and Ossona de Mendez [ 12].
We write log to denote the natural logarithm log, if the base is omitted.

Proposition 4.1. Forn > 2,
logn

rd(Pp) > ———.
log(1 4 4logn)
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Proof. Let vy, v,, ..., v, be the vertices of P, in the order. Let A, be the cut-rank function of the
path P,.
We claim that for a positive integer k, if A, has a (k, r)-decomposition (T, o), then

r > [loggq 1.

We proceed by induction on n. If 2 < n < 4k + 1, then trivially the radius of T is at least 1. So we
may assume that n > 4k + 1.

We may assume that the radius of T is r. Let v be an internal node of T such that every node of
T is within distance r from v. Let eq, €3, .. ., e, be the edges incident with v in T. We color a vertex
w of Py byie{1,2,...,¢}if the unique path from v to o(w) on T contains e;.

We say an edge of P, is colorful if its ends have distinct colors. Let m be the number of colorful
edges of P,. Then there exists a subset X of {1, 2, ..., £} such that at least m/2 colorful edges have
exactly one end whose color is in X. We may assume that there are at least m/4 edges v;v;; such
that the color of v; is in X and the color of v;¢ is not in X, because otherwise we may relabel
vertices in the reverse order.

Let 1 < iy < iy < --+ < ipma < n be a sequence of integers such that for each j e
{1,2, ..., [m/4]}, the color of v; is in X and the color of Vij+1 is not in X. Then the submatrix of the
adjacency matrix of G consisting of rows from v;;, v, ..., Vi and columns from vj, 41, Viy4+1, - - -
Ui/ +1 has rank exactly [m/4] because it is a triangular matrix with non-zero diagonal entries.
This implies that the width of (T, o) is at least [m/4]. So, k > m/4 and therefore the number of
colorful edges of P, is at most 4k.

So there is a subpath P,y of P, having no colorful edges where n’ > [#1 > 1. Then Py has a
(k, r — 1)-decomposition induced from (T, o). By the induction hypothesis, r — 1 > [logy.,,;n'] >
logq n — 1. Thus r > logy,,.; n. This proves the claim.

From this claim we deduce that for a positive integer k, if

klog(4k + 1) < logn,

then the rank-depth of P, is larger than k.

Now suppose that k = le;(ﬁ%l' As n > 2, we have 2logn > 1 and therefore log(1 +

4logn) > 1. Thus k < logn. So we deduce that
logn

log(1+ 4logn)

Thus the rank-depth of P, is larger than logn/log(1+ 4logn). O

klog(dk + 1) < log(4logn + 1) = logn.

Proposition 4.2. For n > 2,

I
rd(P,) < {(1 +°“”10g01gom .

Proof. For an integer w, consider any partition 7 of V(P,) into at most w + 1 subpaths. We claim
that for all »’ C P, pg (wa' X) < w. Let U be the set of vertices v having a neighbor not in X for
X € P with v € X. Notice that each subpath Q has at most two vertices having neighbors outside
Q. In particular, if Q contains the first or the last vertex of P,, then it has at most one vertex having
neighbors outside Q. This means that |U| < 2(w — 1) + 2 = 2w. Then

re | U X> = pau) Uomw) <|Ul/2 < w.

ep’ eP’

We aim to construct a decomposition (T, o) of P, such that each node has degree at most w + 1
and the radius is as small as possible so that at each internal node, the path is partitioned into at
most w + 1 subpaths. This can be done as follows: For the root node, we split the path into w + 1
subpaths. For the non-root internal node, we split the path into at most w — 1 subpaths. Outside is
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split into at most two subpaths, one left and one right and therefore the path is partitioned into at
most w + 1 subpaths at this internal node, as desired. It is clear that if

(w+ Dw—1)"">n, (1)

then the rank-depth of P, is at most w.
Let £ = (14 s)log’lgo';n for ¢ > 0. We claim that if w = [¢] and n is sufficiently large, then (1)
holds. Then,

1
(14 2t
We may assume that n is sufficiently large so that (1 + Z%l)‘” < €% Then it is enough to show
that £¢ > e?n or equivalently £ log £ > logn + 2 for sufficiently large n. Note that

logloglogn — log(1 + ¢)
loglogn ’

(w+Dw—=1)"">¢e—-1"1T=¢

Llogl =(1+¢)logn <1

log log log n—log(1+-¢)

For sufficiently large n, Toglogn

< ‘jﬁg) and therefore

2(1

Zlog£>(1+s)(1 logn:(l—}—%)logn.

&
2(1+¢)
Thus, if n is large enough, then £logn > 2 and therefore £log¢ > logn + 2. This completes the

proof of the claim, thus showing that rd(P,) < [¢] for sufficiently large n. O

There is an operation called the local complementation, that preserves the cut-rank function of a
simple graph. For a simple graph G and a vertex v, the local complementation at v is an operation to
obtain a simple graph denoted by Gxv on the vertex set V(G) from G by removing edges between all
adjacent pairs of neighbors of v and adding edges between all non-adjacent pairs of neighbors of v.
We say that two simple graphs are locally equivalent if one is obtained from the other by a sequence
of local complementations. It turns out that G and G * v share the identical cut-rank function, see
Oum [28]. Thus if two simple graphs are locally equivalent, then they have the same rank-depth.

In addition, it is easy to see that deleting vertices would never increase the rank-depth. We say
that H is a vertex-minor of G if H is an induced subgraph of a simple graph locally equivalent to G.
Thus we deduce the following lemma.

Lemma 4.3. If H is a vertex-minor of G, then rd(H) < rd(G).

We aim to prove that a class of simple graphs has bounded rank-depth if and only if it has
bounded shrub-depth, a concept introduced by Ganian, Hlinény, NeSetfil, ObdrZalek, and Ossona de
Mendez [12]. We will review necessary definitions.

A (k, d)-shrubbery for a graph G = (V, E) consists of a rooted tree T for which V is the set of all
leaves, together with a function f : V — {1, ..., k}, with the property that

e all leaves of T are distance exactly d from the root, and
e adjacency in G is completely determined by f and the distance function in T. (In other words,
whenever two pairs of vertices (x1, y1), (X2, y2) € V? satisfy

distr(x1, y1) = distr(x2, y2), f(x1) = f(x2), and f(y1) = f(y2).
we have x,y; € E if and only if x,y, € E.)

We say that a class G of graphs has shrub-depth d if d is the minimum integer such that there
exists an integer k for which all graphs in G admit a (k, d)-shrubbery. Note that unlike many other
parameters, shrub-depth is not defined for a single graph but for a class of graphs.

From now on, we present several lemmas to prove Theorem 4.11. Let us start with an easier
direction, that is to show that a class of simple graphs of bounded shrub-depth has bounded rank-
depth. We say that for a set A of vertices of a simple graph G, a set X € V(G) \ A of vertices is a set
of clones relative to A if no vertex of A has both a neighbor and a non-neighbor in X.
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Lemma 4.4. Let G be a simple graph with at least two vertices. If G has a (k, d)-shrubbery, then its
cut-rank function has a (k, d)-decomposition.

Proof. Let G = (V, E) and let T together with the function f : V — {1, ..., k} be a (k, d)-shrubbery
for G. We claim that T is a (k, d)-decomposition of A. By definition, the tree T has height d + 1. Now
consider an internal node v € V(T) and let P be the partition of V which is given by the components
of T — v.

Let 7’ € P and define A = | Jy. X and B = V\A. We aim to show that p¢(A) < k. By symmetry,
we may assume that the components of T — v having 7’ do not contain the root of T by swapping
P’ with P \ P’ if necessary. Then every vertex in A has the same distance from v in T.

For 1 <i < k, we define

Ai={xeA:fx)=]j}

Then every member of A is in exactly one set of the form A;. It follows from the definition of
shrubbery that A; is a set of clones relative to B. Therefore, the cut-rank of A is at most k. We
conclude that T has width at most k as a decomposition and its radius is at most d. O

Now it remains to show the converse that a class of simple graphs of bounded rank-depth has
bounded shrub-depth. Roughly speaking, we will first describe edges joining parts of some partition
P when pg(P) is small. Then we will use some universal graph of bounded size to encode edges
between distinct parts. That will allow us to assign colors to each vertex of a graph when building
a shrubbery. First we start with a lemma, whose proof uses the linearity of expectation.

Lemma 4.5. Let G = (V, E) be a complete graph withV = {1, ..., n}and letf : E — {1, ..., n} have
the property that f(e) # i whenever e € E and i € V are incident. Then there exists a subset S C V of
size more than %ﬁ with the property that every edge e with both ends in S satisfies f(e) & S.

Proof. Choose a random subset R C V by selecting each vertex independently with probability

1/4/n. Consider the following subset of edges
B={ijeE:ij f(ij) € R}

The probability that a given edge is in B is precisely n=>/

selected in R. Now linearity of expectation gives us

1
E[IR| — B[] = E[IRI] — E[|B]] = n/~/n — (Z)n*/z > V.

2 since it requires three vertices to be

So there exists a particular set R for which |R| — |B| > %ﬁ Now define the set

S =R\ f(B).

It follows immediately from this construction that every edge e with both ends in S satisfies f(e) & S.
Furthermore, by construction |S| > |R| — |B| > %ﬁ as desired. O

Let G = (V, E) be a simple graph with cut-rank function p¢ : 2¥ — Z. Let P be a partition of V,
and define the cut-rank of P to be pg(P), that is the maximum over all P’ € P of pa(| Uy X). Let
A € {0, 1}V*" be the standard adjacency matrix for G over the binary field and modify A to form a
new matrix A" as follows. For every u, v € V if u, v are in the same part of P then replace the u, v
entry of A by x. We call the resulting matrix A’ the adjacency matrix for G relative to P. A realization
of a vector consisting of 0, 1, and x is a vector obtained by replacing * with 0 or 1 arbitrary.

Our next lemma shows that this matrix has a simple structure when P has small cut-rank. For
an X x Y matrix Aand X’ C X, Y’ C Y, we write A[X’, Y'] to denote the X’ x Y’ submatrix of A.

Lemma 4.6. Let G = (V,E) be a simple graph, let P be a partition of V with cut-rank at most k, and
let A be the adjacency matrix of G relative to P. Then there exists a set U C {0, 1}V of vectors with
|U| < 2%%(22k+2 — 1) which contains a realization of every column of A.
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Proof. Define two vertices u, v to be similar if the associated column vectors of A can be modified
to the same {0, 1} vector by replacing each * entry by either 0 or 1. We say that u, v are dissimilar
if they are not similar, and we now choose a maximal set Z of pairwise dissimilar vertices with the
property that no two vertices in Z are in the same part of P. For a set X C V(G), we write X to
denote V(G) \ X.

Suppose (for a contradiction) that |Z| > 2%+2 and let Z = {z;, ...,zy}. Forevery 1 <i < mlet Z
be the part of P which contains z;. Let K;;, be a complete graph with vertex set {1, ..., m} and define
a function f : E(K,) — {1, ..., m} by the following rule. If 1 <1i,j < m and i # j then the vertices
z; and z; are dissimilar so there exists a vertex x ¢ Z; UZ; so that the column vectors of A associated
with z; and z; differ in coordinate x. If we can choose x € Z; for some 1 < t < m, then we define
f(ij) = t. Otherwise we assign f(ij) to an arbitrary element of {1, ..., m}\ {i,j}. By Lemma 4.5, we
may choose a subset S C {1, ..., m} so that |S| > %VZZ"“ = 2% and f(ij) ¢ S for every i,j € S.
Now define Y = Uies Z; and consider the matrix A[Y, Y]. It follows from our construction that for
every distinct i, j € S, the columns of this matrix associated with z; and z; are distinct; that is, there
are 2 + 1 pairwise distinct columns. Then this matrix has rank at least k 4+ 1. But this contradicts
our assumption on cut-rank.

Therefore we must have |Z| < 222 — 1. Let X € P and note that by our cut-rank assumption,
the matrix A[X, X] has rank at most k. It follows that A[X, X] has at most 2¥ distinct column vectors,
and thus there are at most 2 pairwise dissimilar vertices in X. Therefore, if we choose a maximal
set Z' of pairwise dissimilar vertices with Z C Z’, then we will have |Z'| < 2¥(2%+2 — 1).

Now we form aset U C {0, 1}V of vectors starting from the empty set by the following procedure.
For every z € Z' let X be the part of P containing z and note that the matrix A[X, X] has at most 2¥
distinct columns. Add to the set U all vectors which may be obtained from the column vector of A
associated with z by replacing the x entries with one of the columns from A[X, X]. It follows from
this construction that |U| < 22%(22**2 — 1) and every vector in A may be turned into a vector in U
by replacing each * entries by either O or 1. O

Lemma 4.7. If G = (V,E) is a simple graph and P is a partition of V with cut-rank at most k, then
there exist a simple graph H with

|V(H)| < 22l<+1(221(+2 _ 1)

and a function h : V — V(H) with the property that whenever x,y € V are in distinct parts of P, we
have xy € E if and only if h(x)h(y) € E(H).

Proof. Let A denote the adjacency matrix of G relative to the partition 7 and apply Lemma 4.6 to
choose aset U = {uy, ..., uy} € {0, 1}V of vectors with m < 22¥(22**2 — 1). Now choose a function
fo:V — {1,..., m} with the property that fo(v) = i implies that the column of A associated with
v can be turned into the vector u; by replacing each = by either 0 or 1. Next we modify f, to a new
function f : V — {1,...,2m} by the following procedure. If for 1 < i < m the set fo_l({i}) has
nonempty intersection with exactly two parts of P, then we choose one such part, say X, and we
define f(x) = m + i for every x € X N fo’l({i}). This newly constructed function f still retains the
property that f(v) = f(v’) only when the columns of A associated with v and v’ can be turned into
the same {0, 1} vector by replacing the » entries. However, it also has the property that f~!({i})
either intersects just one part of P or at least three parts of P.

We claim that whenever X1, X, y1, Y2 € V satisfy f(x1) = f(x2) and f(y1) = f(¥2), and in addition
X, y; are in distinct parts of P for i = 1, 2, then x1y; € E if and only if x,y, € E. Let X1, X3, Y1, Y
be the parts of P containing x4, X5, y1, Yy respectively. Note that since f(x;) = f(x,) we have that
X1, Xy are clones relative to V \ (X; U X3), and similarly yq, y, are clones relative to V \ (Y; U Y3).
First suppose that X; # Y,. In this case we have x,y, € E if and only if X1y, € E (since xq, x, are
clones relative to V \ (X; U X)) if and only if x1y; € E. So we may assume X; = Y, and by similar
reasoning X, = Y;. Now by our assumption on f we may choose a vertex x3 € V \ (X; UX3) so that
f(x3) = f(x1) = f(x2). Now we have x1y, € E if and only if x3y; € E if and only if x5y, € E if and
only if x,y, € E, and this completes the proof of our claim.
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Now we may define the graph H with vertex set {1,...,2m} by the rule the ij € E(H) if and
only if there exist vertices x, y in distinct parts of P for which f(x) =i and f(y) =jand xy € E. It
follows from the above that this graph H has the desired property. O

Our next lemma requires another concept which we introduce now. A k-universal graph is a
simple graph which contains every simple graph on k vertices (up to isomorphism) as an induced
subgraph. Alon [1] showed that there exists a small k-universal graph.

Theorem 4.8 (Alon [1]). For every positive integer k, there exists a k-universal graph on (1+0(1))2-1/2
vertices.

A k-loopy-universal graph is a graph with loops but no parallel edges. Such a graph contains every
k-vertex graph without parallel edges as an induced subgraph up to isomorphism. If G = (V,E) is
a k-universal graph, then we may obtain a k-loopy-universal graph G™ with vertex set V x {0, 1}
by defining (u, i) to be adjacent to (v, j) for u # v whenever uv € E(G) and adding a loop at each
vertex of the form (v, 1). For loopy-universal graphs this yields the following useful corollary.

Corollary 4.9. For every positive integer k, there exists a k-loopy-universal graph with at most
(14 0(1))2k+1/2 yertices.

We are now ready to prove that bounded rank-depth implies bounded shrub-depth.

Lemma 4.10. For each k and r, there exists a = (14 0(1))2@** @**2=1+0r/2 sych that if the cut-rank
function of a simple graph G has a (k, r)-decomposition, then G has an (a, r)-shrubbery.

Proof. Let G = (V,E). Let (T, o) be a (k, r)-decomposition of the cut-rank function pc of G. We
choose an internal node u € V(T) which has distance at most r to every node in T. Now modify the
tree T by subdividing every leaf edge so that every leaf node has distance exactly r to the node u.
Note that the resulting tree T is still a (k, r)-decomposition of p¢.

Let ¢ = 22k+1(22+2 _ 1), We apply the previous corollary to choose an ¢-loopy-universal graph
H with vertex set C with |C| < (1+0(1))2¢*1/2, We will use this graph H to define for each internal
vertex v of the tree T a function f, : V — C. First, let P, be the partition of V associated with the
vertex v and apply Lemma 4.7 to choose a graph H,. Since the graph H is ¢-loopy-universal, the
graph H, appears as an induced subgraph of H. Therefore, we may choose a function f, : V — V(H)
with the property that whenever x, y are in distinct parts of P, we have xy € E if and only if
fox)fu(y) € E(H).

Now we are ready to define our function f : V — C’. For every vertex x € V let ugp, uq, ..., Ur
be the vertex sequence of the unique path in T from u to x (so uy = u and u, = x). We define

f(X) = (fur71(x)7fu,-,2(x)! e 7fU1 (X)vfll[)(x))'

Let x,y € V and assume that they have distance 2j > 0 in T (note that any two leaf vertices are at
even distance apart). Let v € V(T) be the unique vertex of T which is distance j from both x and y.
Note that x, y are in distinct parts of P, and furthermore, the function f, was used to give the jth
coordinate of both f(x) and f(y). It follows from this that x and y are adjacent vertices of G if and
only if the jth coordinate of the vectors f(x) and f(y) are adjacent vertices of H. So, adjacency in the
graph G is entirely determined by the distance function in T and the function f : V — C" and this
yields a ((1 4 0(1))2¢+1r/2 r)-shrubbery for G, as desired. O

Now we are ready to prove Theorem 4.11.

Theorem 4.11. A class of simple graphs has bounded rank-depth if and only if it has bounded
shrub-depth.

Proof. This is an immediate consequence of Lemmas 4.4 and 4.10. O
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Ganian, Hlinény, NeSetfil, Obdrzalek, and Ossona de Mendez [12] proved that a class of graphs
of bounded shrub-depth is well-quasi-ordered by the induced subgraph relation. This implies that
for every k, there is a finite list of graphs such that a graph G has rank-depth at most k if and
only if no graph in the list is isomorphic to an induced subgraph of G, because each minimal graph
having rank-depth more than k has rank-depth at most k + 1. For each fixed k, since graphs of
rank-depth at most k have rank-width at most k, one can decide in cubic time whether an input
graph has rank-depth at most k. For instance, it can be done by first finding a rank-decomposition
of width at most k by using an algorithm of Hlinény and Oum [19] or Jeong, Kim, and Oum [21,22]
and then using the theorem of Courcelle, Makowsky, and Rotics [5] to find such forbidden induced
subgraphs, encoded in a monadic second-order formula. However, this approach does not provide
a decomposition of width at most k and we do not know such an algorithm.

Hlinény, Kwon, ObdrZalek, and Ordyniak [18] proposed a conjecture that every simple graph of
sufficiently large rank-depth contains the path graph on t vertices as a vertex-minor. Very recently,
Kwon, McCarty, Oum, and Wollan [24] proved this conjecture after this paper was submitted.

5. Depth parameters for matroids
5.1. A quick introduction to matroids

A matroid M = (E, Z) is a pair of a finite set E and a set Z of subsets of E satisfying the following
axioms:

(1) ¥ ez,
(I2)IfXeZandY C X, thenY € 7.
(I3) If X, Y € 7 and |X]| < |Y]|, then there exists e € Y \ X such that X U {e} € 7.

Members of 7 are called independent. A subset X of E is dependent if it is not independent. A base is
a maximal independent set. A circuit is a minimal dependent set. Because of (I3), for every subset
X of E, all maximal independent subsets of X have the same size, which is defined to be the rank of
the set X, denoted by ry(X). We will omit the subscript if it is clear from the context. For a matroid
M = (E, ), we write E(M) to denote its ground set E.

The rank function satisfies the submodular inequality, namely

rX)+r(Y)>r(XNY)+r(XUY)forallX,Y CE.

In fact, if a function r : 2f — Z satisfies r(¢J) = 0, r(X) < r(Y) for all X € Y and the submodular
inequality, then it defines a matroid M = (E, {X C E : r(X) = |X|}).

The dual matroid M* of M is defined as a matroid on E whose set of bases is {E \ B
B is a base of M}. A cocircuit of M is a circuit of M*. For a subset T of E, we define M \ T be a
matroid (E \ T, Z') where 7/ = {X C E\ T : X € Z}. This operation is called the deletion of T in M.
The contraction of T in M is an operation to generate a matroid M/T = (M* \ T)*. If T = {e}, we
write M \ e for M \ {e} and M/e for M/{e} for simplicity. The restriction of M over T, denoted by
MI|T is defined as M|T = M \ (E \ T). For more information on matroids, we refer readers to the
book of Oxley [31].

The connectivity function ,y(X) is defined as

An(X) = rn(X) + ru(E\ X) — ru(E).

Then the connectivity function of a matroid is symmetric (Ay(X) = Ay (E \ X)) and submodular. A
matroid M = (E, Z) is connected if Ay(X) > 0 for all non-empty proper subsets X of E. It is well
known that M and M* have the identical connectivity function.

The cycle matroid M(G) of a graph G is the matroid on E(G) such that a set of edges is independent
if it contains no cycles of G. The bond matroid M*(G) of a graph G is the dual matroid of M(G).
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5.2. Branch-depth, contraction depth, deletion depth, and contraction-deletion depth

We define the branch-depth of a matroid M as the branch-depth of Aj;. There are other ways
to define depth parameters of matroids. In this section we will describe them and discuss their
relations.

We define the contraction depth cd(M), deletion depth dd(M), and contraction-deletion depth
cdd(M) of a matroid M as follows.

e If E(M) = @, then its contraction depth, deletion depth, and contraction-deletion depth are all
defined to be 0.

e If M is disconnected, then its contraction depth, deletion depth, and contraction-deletion
depth are the maximum respective depth of its components.

e If M is connected and E(M) # J, then

- the contraction depth of M is the minimum k such that M/e has contraction depth at
most k — 1 for some e € E(M),

- the deletion depth of M is the minimum k such that M \ e has deletion depth at most
k — 1 for some e € E(M), and

- the contraction-deletion depth of M is the minimum k such that M \ e or M/e has
contraction-deletion depth at most k — 1 for some e € E(M).

Ding, Oporowski, and Oxley [9] investigated the contraction-deletion depth under the name type.
Robertson and Seymour [32] discussed similar concepts for graphs under the names C-type and
D-type for contraction depth and deletion depth respectively.

As an easy corollary of Lemma 2.3, we deduce the following lemma.

Lemma 5.1. Let M be a matroid. Let k be the maximum branch-depth of the components of M. Then
the branch-depth of M is k or k+ 1. In particular, if M has at most one component having branch-depth
exactly k, then the branch-depth of M is equal to k.

From the definition, the following inequalities can be obtained.

Theorem 5.2. For all matroids M, the following hold.

(1) The branch-depth of M is less than or equal to cdd(M).
(2) cdd(M) < min(cd(M), dd(M)).

Proof. Trivially cdd(M) < cd(M) and cdd(M) < dd(M). For (1), we may assume that |[E(M)| > 2.

We claim that if M is connected, [E(M)| > 2, and M has contraction-deletion depth at most k,
then the branch-depth of M is at most k — 1. This claim, if true, implies (1) by Lemma 2.3.

To prove the claim, we proceed by induction on |E(M)|. Note that since M is connected and has
at least two elements, k > cdd(M) > 2. The statement holds trivially if [E(M)| = 2. So we may
assume that |[E(M)| > 3. There exists e € E(M) such that cdd(M \ e) <k — 1 or cdd(M/e) < k — 1.
By duality, we may assume that cdd(M \ e) < k — 1.

We now want to show that M \ e has a (k — 2, k — 1)-decomposition. Each component of M \ e
has contraction-deletion depth at most k — 1 and therefore if a component C of M \ e has at least
two elements, then by the induction hypothesis, C has branch-depth at most k — 2. If a component
C of M \ e has only 1 element, that is a loop or a coloop, then C has branch-depth 0 by definition.
Thus all components of M \ e have branch-depth at most k — 2 and by Lemma 2.3, M \ e has a
(k — 2, k — 1)-decomposition.

Let (T, o) be a (k — 2, k — 1)-decomposition (T, o) of M \ e. Let v be an internal node of T such
that each node of T is within distance k — 1 from wv.

Let T’ be a tree obtained from T by attaching a leaf w to v and let o’ be a bijection from
E = E(M) to the set of leaves of T, that extends o so that o'(w) = e. Then (T’,0’) is a
(k — 1, k — 1)-decomposition of M. This completes the proof of the claim. O
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Theorem 5.2 implies the following hierarchy for a class M of matroids, depicted in Fig. 1.

e If M has bounded contraction-deletion depth, then it has bounded branch-depth.
e If M has bounded contraction depth, then it has bounded contraction-deletion depth.
e If M has bounded deletion depth, then it has bounded contraction-deletion depth.

Here are examples disproving the converse of each of these. We omit the proof.

e An (m, n)-multicycle Gy, is the graph obtained from the cycle graph C, by replacing each
edge with n parallel edges. Then M(C, ) has branch-depth 2 and yet its contraction-deletion
depth is n, shown by Dittmann and Oporowski [11, Lemma 2.4]. By duality, M*(C, ) has
deletion-depth n and branch-depth 2.

e The matroid U1, = M(G,) has deletion depth 2, contraction-deletion depth 2 and contrac-
tion depth n + 1. Its dual U; , = M*(C,) has contraction depth 2, contraction-deletion depth
2 and deletion depth n + 1.

5.3. Relation to matroid minors

The branch-depth of matroids cannot increase by taking a minor. A matroid N is a minor of a
matroid M if N = M \ X/Y for some disjoint subsets X, Y of E(M).

Proposition 5.3. If N is a minor of a matroid M, then the branch-depth of N is less than or equal to
the branch-depth of M.

Proof. We may assume that N has at least two elements and |E(M)| > |E(N)|. Let k be the branch-
depth of M. Let (T, o) be a (k, k)-decomposition of M. Let T’ be a minimal subtree of T containing
all leaves corresponding to E(N) by o. Let ¢’ be the restriction of o on the set of leaves of T'. As
|[E(M)| > |E(N)| > 2, T" must have at least one internal node. Clearly the radius of T is at most k.

It is well known that for all X € E(M), An(X NE(N)) < Au(X) (see Oxley [31, Corollary 8.2.5]).
This implies that the width of (T, ¢’) is at most k. Thus, (T’, ¢”’) is a (k, k)-decomposition of N. O

Proposition 5.3 allows us to deduce the following algorithm.

Corollary 5.4. For each fixed finite field F and an integer k, we can decide in time O(n®) whether the
input n-element rank-r matroid represented by an r x n matrix over F has branch-depth at most k.

Proof. Trivially if the branch-depth of a matroid is at most k, then the branch-width of a matroid is
at most k. Also, Geelen, Gerards, and Whittle [13] proved that matroids over F of bounded branch-
width are well-quasi-ordered under the minor relation and therefore there is a finite list of matroids
such that a matroid M representable over F has branch-depth at most k if and only if no matroid
in the list is isomorphic to a minor of M. So we can use the algorithm of Hlinény and Oum [19]
or Jeong, Kim, and Oum [21,22] to find a branch-decomposition of width at most k if it exists in
time O(n?). If there is no such branch-decomposition, then the branch-depth is larger than k. If
we have a branch-decomposition of width at most k, then we use the algorithm of Hlinény [17] to
decide whether the input matroid represented by a matrix over F has a minor isomorphic to a fixed
matroid. O

However, we will show that deletion depth, contraction depth, and contraction-deletion depth
may increase by taking a minor. First we will present an example showing that the deletion depth of
a minor of M is not necessarily less than or equal to the deletion depth of M. By duality, this implies
that the contraction depth of a minor of M is not necessarily less than or equal to the contraction
depth of M.

Let K5~ be the graph in Fig. 2 and let e be the edge of K5~ shown in Fig. 2. Then M(K;" \ e)
has two components, each having two elements. Thus, dd(M(KéL )) < 3. It is easy to check that
dd(M(K;)) > 3 and therefore dd(M(K;)) = 3. However, dd(M(K;")/e) = 4 because there is no way
to break it into more than one component by deleting at most three edges.
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++
K

e f

Fig. 2. Graphs K" and K.

Now let us present an example for the contraction-deletion depth. Let K;"" be the graph
in Fig. 2 and let f be the edge of K;"". Then M(K;* \ f) has two components, each having
the contraction-deletion depth 2 and therefore the contraction-deletion depth of M(K;r ) is 3.
However, in M(K;r */f), no matter how we delete or contract any two elements, there will be a
circuit of size 6 and therefore the contraction-deletion depth of M(I<3+ */f) is at least 4. Indeed, it
is easy to check that the contraction-deletion depth of M (K;r */f) is exactly 4.

5.4. Large circuits and contraction depth

Let us first discuss obstructions for small contraction depth. Here is a theorem due to Seymour,
see [9].

Theorem 5.5 (Seymour (See [9])). If C is a longest circuit in a connected matroid M, then M /C has no
circuits of size at least |C|.

Lemma 5.6. Let M be a matroid and e € E(M). If C is a circuit of a matroid M with |C| > 2, then
M /e has a circuit of size at least |C|/2.

Proof. We may assume that E(M) = CU {e}. If e € C, then C \ {e} is a circuit of M /e. Thus we may
assume e ¢ C. If Dy, D, are circuits of M /e and Dy, D, # C, then D, U {e}, D, U {e} are circuits of M.
By the circuit elimination axiom, M should have a circuit F € D; U D, and therefore D; U D, = C.
Thus if M /e has at least two distinct circuits, then one of them has size at least |C|/2. Thus we may
assume that M/e has a unique circuit D. If D # C, then D U {e} and C are circuits of M. Let f € D.
Then M has a circuit D' C (DU C U {e}) \ {f}. This means that e € D’ and D’ \ {e} is a circuit of M/e.
This contradicts our assumption that M /e has a unique circuit. O

Now we show that having small contraction depth is equivalent to having no large circuit. In
the following theorem, the upper bound is based on Ding, Oporowski, and Oxley [9], though they
state it in terms of the contraction-deletion depth. We include its proof for the completeness.

Theorem 5.7. Let c be the length of a largest circuit in M. (If M has no circuits, then let c = 1.) Then

log, ¢ < cd(M) < c(c+ 1)/2.

Proof. For the upper bound, we proceed by induction on c. Observe that if ¢ < 1, then its
contraction depth is at most 1, as each component has at most 1 element. We may assume that M is
connected and ¢ > 1. Let C be a longest circuit of M. Then cd(M) < |C| 4+ cd(M/C). By Theorem 5.5
and the induction hypothesis, cd(M/C) < ¢(c — 1)/2 and therefore cd(M) < c(c + 1)/2.

Now let us prove the lower bound. We apply the induction on |E(M)|. We may assume that M is
connected and ¢ > 1. So we may assume that |[E(M)| > 1. By Lemma 5.6, for all e € E(M), M /e has a
circuit of size at least c/2 and therefore cd(M/e) > log, c — 1. We conclude that cd(M) > log, c. O

By duality, we easily obtain the following.
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Corollary 5.8. Let c* be the length of a largest cocircuit in M. (If M has no cocircuits, then let ¢* = 1.)
Then

log, ¢* < dd(M) < ¢*(c* + 1)/2.

Theorem 5.7 and Corollary 5.8 prove the following theorem.

Theorem 5.9.

(i) A class of matroids has bounded contraction depth if and only if all circuits have bounded size.
(ii) A class of matroids has bounded deletion depth if and only if all cocircuits have bounded size.

By Theorem 5.2, we deduce the following.

Corollary 5.10. Let k > 1. If a matroid M has no circuits of size more than k or no cocircuits of size
more than k, then the branch-depth of M is at most %k(k + 1).

This also allows us to characterize classes of matroids having bounded contraction depth and
bounded deletion depth at the same time.

Corollary 5.11. A class M of matroids has bounded deletion depth and bounded contraction depth
if and only if there exists m such that every connected component of a matroid in M has at most m
elements.

Proof. The converse is trivial. Let us prove the forward direction. Theorem 5.7 and Corollary 5.8
imply that there exist ¢ and c* such that in every connected component of a matroid in M, all
circuits have size at most ¢ and all cocircuits have size at most c*. Lemos and Oxley [25] showed
that if a connected matroid has no circuits of more than ¢ elements and no cocircuits of more than
c* elements, then it has at most cc*/2 elements. Thus, each component of a matroid in M has at
most cc*/2 elements. O

It is natural to ask an obstruction for having large branch-depth in a matroid. The n-fan F, is the
graph on n + 1 vertices having a vertex v adjacent to all other vertices such that F, \ v is a path on
n vertices. We conjecture that matroids of sufficiently large branch-depth has M(F,) or the uniform
matroid Uy 3, of rank n on 2n elements as a minor. We also conjecture that matroids of sufficiently
large contraction-deletion depth has M(F,), the uniform matroid Uy 2, M(Cp ), or its dual M*(Cp )
as a minor.

For a graphic matroid, Dittmann and Oporowski [11] identified obstructions for large
contraction-deletion depth. Here is their theorem in terms of our terminologies.

Theorem 5.12 (Dittmann and Oporowski [11]). For every integer n > 3, there exists N such that every
graph whose cycle matroid has contraction-deletion depth at least N has a minor isomorphic to F,, Gy n,
orCy,.

5.5. Connections to the tree-depth of a graph

Hicks and McMurray Jr. [ 15] and independently, Mazoit and Thomassé [26] proved that if a graph
G has at least one non-loop cycle, then the branch-width of its cycle matroid M(G) is equal to the
branch-width of G. How about branch-depth? Theorem 3.4 shows that the branch-depth and the
tree-depth are tied for graphs. Can we say that the tree-depth of graphs is tied to the branch-depth
of their cycle matroids?

It turns out that the tree-depth of graphs is not tied to the branch-depth of their cycle matroids
in general. This is because connectedness in graphs is different from connectedness in their cycle
matroids. For example, the path P, on n > 2 vertices has tree-depth [log,(n + 1)], see [27, (6.2)].
However its cycle matroid M(P,) has contraction depth 1, deletion depth 1, and branch-depth 1.

Only one direction holds in general; if the tree-depth of a graph is small, then the contraction
depth, the contraction-deletion depth, and the branch-depth of its cycle matroid are small, by the
following proposition.
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Proposition 5.13. Let t be the tree-depth of a graph G. Then,
bd(M(G)) < cdd(M(G)) < cd(M(G)) < 2%~V

and
bd(M(G)) < bd(G) — 1 <.

In addition, if G is connected, then bd(M(G)) < bd(G) — 1<t — 1.

Proof. For the first inequality, it is enough to show that cd(M(G)) < t by Theorem 5.2. Let L be
the length of a longest cycle of G. Since t > td(C;) = 1+ td(P,—1) = 1+ [log, L], we deduce that
L < 2t=1, By Theorem 5.7, we deduce that cd(M(G)) < 2t=1(211 4 1)/2 < 22D,

For the second inequality, we use the following inequality in [31, Lemma 8.1.7]:

For a connected graph G, if § # X # E(G), then
Ame)X) < Ag(X) — 1.

This inequality implies that if G is connected, then bd(M(G)) < bd(G) — 1 <t — 1 by Lemma 3.1. If
G is disconnected, then we identify one vertex from each component into one vertex. That cannot
increase the branch-depth of the graph but the cycle matroid does not change and therefore we
deduce our conclusion with Theorem 3.4. O

Now we will show that under some mild connectivity assumptions, the tree-depth of graphs
and the contraction depth of their cycle matroids are tied. For the tree-depth, it is well known that
every graph of tree-depth larger than n contains a path of length n, see [27, Proposition 6.1]. An old
theorem of Dirac [10] states that a 2-connected graph with a sufficiently long path contains a long
cycle. (In fact the paper contains a proof for 4/L/2 and remarks that it can be improved to 24/L)

Theorem 5.14 (Dirac [10]). If a 2-connected graph has a path of length L, then it has a cycle of length
at least 2+/L.

By combining with Proposition 5.13, we can deduce that the tree-depth of 2-connected graphs
is tied to the contraction depth of their cycle matroids.

Proposition 5.15. Let G be a 2-connected graph of tree-depth t. Then

1
14 2 logy(t — 1) < cd(M(G)) = 221,

Proof. By [27, Proposition 6.1], G has a path of length t — 1 and by Theorem 5.14, G contains a cycle
of length at least 24/t — 1. This means that the contraction depth of M(G) is at least log,(2+/t — 1)
by Theorem 5.7. The upper bound is given by Proposition 5.13. O

Still, 2-connectedness does not imply that the tree-depth of graphs and the branch-depth of their
cycle matroids are tied; for instance C,. However, for 3-connected graphs, tree-depth of graphs and
contraction depth, contraction-deletion depth, branch-depth of their cycle matroids are all tied each
other. To prove that, we use the following theorem.

Theorem 5.16 (Ding, Dziobiak, and Wu [7, Proposition 3.8]). Let G be a 3-connected graph with a path
of length L. Then G has a minor isomorphic to the wheel graph W), with k = Lﬁ«/log(ZL/S)J.

We will see that indeed, if a matroid contains the cycle matroid of a large fan as a minor, then it
has large branch-depth, thus implying that it has large contraction-deletion depth. To see this, we
will first show a connection between branch-depth of a binary matroid and rank-depth of a simple
bipartite graph. The fundamental graph of a binary matroid M with respect to a base B is a simple
bipartite graph on E(M) such that e € B is adjacent to f € E(M) \ B if and only if (B \ {e}) U {f}
is independent. It is well known that if G is a fundamental graph of a binary matroid M, then the
cut-rank function of G is identical to the connectivity function of M, see Oum [28]. Thus we deduce
the following lemma.
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Lemma 5.17. If G is a fundamental graph of a binary matroid M, then the branch-depth of M is equal
to the rank-depth of G.

Note that P,,_1 is a fundamental graph of the cycle matroid of F,,. By Proposition 4.1, bd(M(F;)) >
log(2n — 1)/log(1+ 4log(2n — 1)) for n > 2. This implies a weaker variant of the following theorem
due to Dittmann and Oporowski [11], showing that if a graph has a large fan as a minor, then the
contraction-deletion depth of its cycle matroid is large as follows.

Theorem 5.18 (Dittmann and Oporowski [11, Theorem 1.4]). If a graph G contains F, as a minor, then
the contraction-deletion depth of M(G) is at least [log, n] + 1.

Now we are ready to show that for cycle matroids of 3-connected graphs, the tree-depth of
graphs and the contraction depth, the contraction-deletion depth, and the branch-depth of their
cycle matroids are all tied each other.

Proposition 5.19. Let G be a 3-connected graph of tree-depth t and let k = Lﬁ log(2(t — 1)/5)].
Then
log(2k — 1)

2(t—1)
log(1 + 4log(2k — 1)) < bd(M(G)) < cdd(M(G)) < cd(M(G)) < 2

and
bd(M(G)) <t —1.

Proof. This is trivial from Theorems 5.16 and Propositions 5.13 and because Wj contains F as a
minor. O

5.6. Rank-depth is less than or equal to tree-depth

Oum [29] showed that the rank-width of a simple graph is less than or equal to the branch-
width, by a reduction using matroids. By the same method, we are going to show the following.
The incidence graph of a graph G, denoted by I(G), is the subdivision of G obtained by subdividing
every edge of G exactly once.

Theorem 5.20. Let G be a simple graph of tree-depth t. Then
rd(G) < rd(I(G)) < t.

Proof. Let G be a simple graph of tree-depth t. Let G’ be a simple graph obtained from G by
adding a new vertex v adjacent to all vertices of G. Then td(G') < t + 1. Let T be a spanning
tree of G’ consisting of all edges incident with v. Then I(G) is the fundamental graph of M(G')
with respect to E(T). It is easy to see that G is a vertex-minor of I(G). By Proposition 5.13 and
Lemma 5.17, rd(I(G)) = bd(M(G')) < td(G') — 1 < t because G is connected. By Lemma 4.3,
rd(G) < rd(I(G)) < t. O

6. Well-quasi-ordering of matroids of bounded contraction depth

In this section, we aim to prove that matroids representable over a fixed finite field having no
large circuits are well-quasi-ordered by the matroid restriction.

Theorem 6.1. Let F be a finite field. Every class of F-representable matroids of bounded contraction
depth is well-quasi-ordered by restriction.

The assumption on contraction depth is clearly necessary, because M(C3), M(Cs), ... form an
anti-chain. We also need the condition on the representability over a fixed finite field; there is an
infinite anti-chain of matroids having bounded contraction depth in Ding, Oporowski, and Oxley [9].
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To prove Theorem 6.1, we prove a stronger statement in terms of matrices. For an X x Y matrix N
over a field IF, we write E(N) = Y to denote the set of indexes for columns. For a subset Y’ of Y, we
write N[Y'] to denote the submatrix of N induced by taking columns indexed by Y’. Two matrices
N; and N, are isomorphic if there exists a bijection ¢ : E(N1) — E(N,), called an isomorphism, such
that the column vector of e in N; for e € E(Ny) is equal to the column vector of ¢(e) in N,. For a
matrix N, we write M(N) to denote the matroid represented by N, meaning that the columns of
N are indexed by the elements of E(M) and a set is independent in M(N) if its corresponding set
of column vectors is linearly independent. The contraction depth of a matrix N is defined to be the
contraction depth of M(N).

We say that a matrix Nj is a restriction of a matrix N, if we can apply elementary row operations
to N>[Y] for some Y C E(N,) and delete some zero rows to obtain a matrix isomorphic to N;. Clearly
if a matrix Ny is a restriction of N;, then M(Ny) is a restriction of M(N). (A matroid N is a restriction
of a matroid M if N is obtained from M by deleting some elements.) A matrix is said to have full
rank if its row vectors are linearly independent.

Let (Q, <) be a quasi-order. A Q-labeling of a matrix N is a function f from E(N) to Q. The
pair (N, f) is called a Q-labeled matrix. For two Q-labeled matrices (N, f1) and (N-, f,), we write
(N1, f1) X (N, f5) if N7 is a restriction of N, with an injective function ¢ : E(N1) — E(N,) such that
fi(e) = fo(¢(e)) for all e € E(Nq).

Let A} be the set of all matrices over F having full rank and contraction depth at most k and let
NE (Q) be the set of all Q-labeled matrices over F having full rank and having contraction depth at
most k.

Now we are ready to state a proposition on well-quasi-ordering of Q -labeled matrices.

Proposition 6.2. Let F be a finite field. Then, (N,QF(Q), <) is a well-quasi-order if (Q, <) is a
well-quasi-order.

Before presenting the proof of Proposition 6.2, we will discuss issues related to connectedness
in matroids. We say that two matrices are row equivalent if one is obtained from the other by
a sequence of elementary row operations. If two matrices N; and N, are row equivalent, then
M(N1) = M(N;) and therefore M; € J\/’k]F if and only if M, € A;. Furthermore by the definition
of the restriction, a matrix N’ is a restriction of Ny if and only if N’ is a restriction of N;.

We say that a matrix N is the disjoint union of two matrices N; and N, if

E(N1) E(N3)

(N0
v= (%0 )

We say that a matrix is connected if it is not row equivalent to the disjoint union of two matrices.
(Permuting columns do not change matrices for us because columns are indexed by their indices.)
It is easy to see the following.

Lemma 6.3. Let N be a full-rank matrix over F. Then the matroid M(N) is disconnected if and only if
there exist two full-rank matrices N1 and N, such that N is row equivalent to the disjoint union of Nq
and Ns.

Like matroids, if a full-rank matrix N is the disjoint union of Ny, N, ..., Ny, then we may call
each N; a component of N. The following trivial lemma together with Higman’s lemma [16] will
allow us to reduce the proof of Proposition 6.2 to connected matrices.

Lemma 6.4. Let Ny, N, Nj, Nj be full-rank matrices over F. Let N be a matrix row equivalent to the
disjoint union of Ny and N, and N" be a matrix row equivalent to the disjoint union of Nj and Nj. If N
is a restriction of Ny and NJ is a restriction of N,, then N’ is a restriction of N.

Proof. We may assume that N is the disjoint union of Ny and N,. We deduce the conclusion because
the disjoint union of Nj and NJ is clearly a restriction of N. O
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Proof of Proposition 6.2. We proceed by induction on k. If k = 0, then the only matrix of
contraction depth at most k is a zero matrix. But there is only one zero matrix of full rank. And
S0 N(],F is trivially well-quasi-ordered by <. So we may assume k > 0.

By Higman’s lemma [16] and Lemma 6.4, it is enough to prove that connected matrices in N,EF(Q)
are well-quasi-ordered by <. Let (N, f1), (N2, f2), . . . be an infinite sequence of Q-labeled connected
matrices in /\/,QF(Q). We claim that there exist i < j such that (N;, f;i) < (N;, f;). By the induction
hypothesis, we may assume that all N; have contraction depth exactly k.

Let e; be an element of E(N;) such that each component of M(N;)/e; has contraction depth at
most k — 1. By taking an infinite subsequence, we may assume that fi(e;) < fa(e;) < fz(es) < ---.

Now let us construct a matrix representing M(N;)/e;. Because M(N;) is connected, {e;} is indepen-
dent in M(N;). By applying elementary row operations, we may assume that the column vector for
e; is represented by a vector with one 1 on the top row and 0’s on all other rows. We may further
assume by applying elementary row operations to non-top rows such that N; is of the following
form

1 7
=0 ).
1

As N; has full rank, N/ has full rank. By the choice of e;, each N/ has contraction depth at most k — 1
and therefore N/ € N} ;.

Let Q' = Q x FF and let us define an order < on Q' such that (x{,x;) < (y1,y) if and only if
x1 <y and x, = y,. Then (Q’, <) is a quasi-order if (Q, <) is a quasi-order.

For e € E(N;) \ {e}, let us define f/(e) = (fie), (Ni)1.) € Q" = Q x F where (N;); . means the
entry of N; in the top row and the column of e. Then (N/, f/) € Nj_,(Q").

By the induction hypothesis, the set {(N;,f/) : i€ {1,2,...}} € ./\/’,L(Q’) is well-quasi-ordered
by <. Thus, there exist i < j such that (N, f/) < (N, /). It follows easily that (N, f;) < (N, f;). O

Now we will see why Proposition 6.2 implies Theorem 6.1 in a stronger form. A Q-labeled
matroid is a pair (M, f) of a matroid M and f : E(M) — Q. A Q-labeled matroid (My, f1) is
a restriction of a Q-labeled matroid (M, f,) if M; is isomorphic to M;|X for some X with an
isomorphism ¢ such that fi(e) < fo(¢(e)) for all e € M.

Now we are ready to prove Theorem 6.1.

Proof. We prove a stronger statement. Let (Q, <) be a well-quasi-order. We claim that Q-labeled
F-representable matroids of contraction depth at most k are well-quasi-ordered by restriction.

Suppose that (My, f1), (Ma, f>), ... are Q-labeled F-representable matroids of contraction depth
at most k. For each i, we can choose a matrix N; over I having full rank such that M(N;) = M;. By
Proposition 6.2, there exist i < j such that (Nj, f;) < (N;, f;). It follows that (M;, f;) is isomorphic to a
restriction of (M;, f;). O

Theorem 6.1 allows us to characterize well-quasi-ordered classes of F-representable matroids
over any fixed finite field F, because {Uy,—1n, : n = 2,3,...} = {M(G;) : n = 2,3,...}is an
anti-chain with respect to the restriction.

Corollary 6.5. Let F be a finite field. Let T be a class of F-representable matroids closed under taking
the restriction. Then the following are equivalent.

(i) T is well-quasi-ordered by restriction.
(ii)) {Up—1p:n=2,3,...} £ T.
(iii) The contraction depth of T is bounded.
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