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1. Introduction

The tungsten diselenide (WSe2) monolayer is a promising
candidate for future semiconductor applications[1–3] due to its
outstanding optoelectronic properties.[4,5] The optical properties
of WSe2 are dominated by comprehensive phonon–exciton inter-
actions, particularly the subsequent energy relaxation pathways,
which play an important role in charge-carrier transport.[5,6]

Phonon-induced relaxation processes in WSe2 monolayers have
been investigated using various spectroscopic methods,[7,8] and it

has been suggested that the LA(M) phonon
acts as a carrier relaxation assistant.
The zone-edge acoustic phonon facilitates
efficient energy relaxation (2p/2s! 1s) in
the WSe2 monolayer with minimal loss
of coherence,[9] and it appears in the form
of periodic Raman peaks that have energy
distances of 15meV.[10,11] In contrast, the
recent theoretical calculations indicate that
the out-of-plane A0

1 mode promotes charge-
carrier recombination in the pristine
WSe2 monolayer,[12] and pump-probe
experiments revealed that the phonon
mode of the periodic Raman peaks can
be generated for A0

1 (Γ) phonon mode
through an anharmonic process.[13–15] In
particular, because the early stage of charge
carrier relaxation has an ultrafast timescale
(100 fs),[16] it is difficult to directly observe
the optical signatures using a specific
analytical technique. Therefore, to reveal

which phonons dominantly contribute to carrier relaxation,
a comprehensive analysis of the hidden phonon–exciton
correlation while considering a large amount of correlative
spectroscopic data (e.g., one-to-one corresponding Raman and
photoluminescence images) is required.

The objective of deep learning (DL) is to extract knowledge
from data by training deep neural networks without explicit
human instruction.[17] DL enables high-throughput analysis in
materials science using large amounts of experimental data.[18,19]

In many cases, the output of the DL model provides scientifically
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The application of explainable artificial intelligence in nanomaterial research
has emerged in the past few years, which has facilitated the discovery of novel
physical findings. However, a fundamental question arises concerning the
physical insights presented by deep neural networks; the model interpretation
results have not been carefully evaluated. Herein, explainable artificial intelligence
and quantum mechanical calculations is bridged to investigate the correlation
between light scattering and emission in a WSe2 monolayer. Convolutional neural
networks using light scattering and emission data are first trained, while expecting
the networks to determine the relationships between them. The trained models are
interpreted and the specific phonon contribution during the exciton relaxation
process is derived. Finally, the findings are independently evaluated through
quantum mechanical calculations, such as the Born–Oppenheimer molecular
dynamics simulation and density functional perturbation theory. The study provides
reliable fundamental physical insight by evaluating the results of neural networks
and suggests a novel methodology that can be applied in materials science.
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intuitive results that can be readily applied to practical tasks.
For example, DL models can quickly and accurately determine
the number of layers of 2D materials and efficiently detect
abnormal atomic configurations using transmission electron
microscopy images.[20,21] In this case, the expected output
of the model can be compared with the actual experimental
data obtained via analytical measurements, and researchers
are more interested in the practical aspects of DL models.
The advantage of this approach is that the application of DL
models can facilitate (or accelerate) the experiment-oriented
process, which can otherwise be laborious and time-consuming,
as it requires a routine laboratory workflow for the collection of
preliminary data.

In addition, DL can be used to obtain scientific insights from
experimental data. For example, Yang et al. reported that the con-
centration of valence electrons is the most important component
for improving the hardness of as-cast high-entropy alloys.[22]

Recently, Lu et al. reported that lattice deformation is a more
important factor than the doping effect in the emission process
by interpreting a machine learning model.[23] In these cases, the
models are trained to comprehensively consider the input and
output of the data and are expected to discover hidden correla-
tions inherent in the data. Also, the interpretation of the trained
model provides evidence of new physical findings in materials
science by evaluating the contribution of the input data during
model prediction or by observing the changes in the output data
while the input data varies. These methods are also called
explainable artificial intelligence (XAI), and they include a class
activation map, layer-wise relevance propagation, and Shapley
additive explanations.[24–26] However, a challenge has arisen in
the application of current XAI; for the reliable discovery of phys-
ical insights, a careful evaluation of the XAI results is required to
be followed.[27] In other words, it is crucial to evaluate the XAI
results using reliable external methods although its evaluation is
difficult.

Herein, we introduce a newmethodology by bridging XAI and
the first principles, that is, a combination of inductive and deduc-
tive analyses. To the best of our knowledge, our study is the first
to use quantummechanical calculations as an external evaluation
process in addition to XAI to discover novel physical insights in
the field of materials science. In this work, we utilize XAI and
density functional theory (DFT) to investigate the origin of the
phonon-assisted relaxation pathway of hot excitons. We first mea-
sured the Raman scattering (RS) and photoluminescence (PL)
spectra and then preprocessed the data using an in-house fitting
algorithm, which automates the labor-intensive fitting process.
Subsequently, convolutional neural networks (CNNs) that pre-
dict PL features from the corresponding RS spectrum were
trained to comprehensively consider the phonon and carrier
interaction. We then interpreted the trained DL models using
intuitive XAI methods, partial dependence plot (PDP),[28] and
individual conditional expectation (ICE),[29] which can directly
describe the correlation between the RS and PL data. By inter-
preting the DL model, we discovered that A0

1 phonon is strongly
related to the charge-carrier emission in the pristine region.
Finally, we confirmed the coherence of the correlation between
the pristine A0

1 phonon and carrier emission using DFT molec-
ular dynamics and linear response theory calculations.

2. Result and Discussion

2.1. Pipeline of XAI-Applied Correlative Spectroscopy

Figure 1 illustrates the overall process of our XAI-applied spec-
troscopic study. First, we obtained the RS and PL mapping data
from several monolayer WSe2 flakes. Each mapping data con-
tains thousands of spectra, and we treated each pair of RS
and PL spectra corresponding to the same location as a single-
data instance. Furthermore, each RS and PL spectrum is a
mixture of Lorentzian or Gaussian distributions, that is, a com-
bination of multiple peaks, which are known to be related to spe-
cific physical properties. To analyze the physical properties of
WSe2, it is necessary to separate the spectrum into multiple
peaks and examine the peak parameter values. The process of
separating the peaks from the original spectrum is known as fit-
ting or deconvolution. Because a Lorentzian or Gaussian distri-
bution can be represented by three parameters, that is, position
(photon energy) p ∈ ℝ, full width at half maximum (FWHM)
w ∈ ℝ, and height h ∈ ℝ, the result of the deconvolution is a
set of these three parameters fðpi,wi, hiÞgni¼1, which can fully rep-
resent the original spectrum using a Lorentzian or Gaussian mix-
ture with n components.

However, realizing the deconvolution of a large number of
spectra is challenging for human researchers because it is a labo-
rious task. To consider the RS and PL spectra comprehensively,
we developed an automated deconvolution algorithm based on
the gradient descent method.[30] Our algorithm accurately decon-
volutes thousands of RS and PL spectra in a fewminutes, thereby
enabling a high-throughput analysis of the WSe2 monolayer. In
this study, we considered eight Lorentzian and one Gaussian to
fit the RS and PL spectra, respectively, following previous
studies;[31,32] our algorithm outputs a vector of RS parameters
r ¼ ½pi;wi; hi� ∈ ℝ24 (three parameters per peak) and a vector
of PL parameters p ¼ ½p;w; h� ∈ ℝ3. Figure 1a presents an exam-
ple of the fitted RS and PL spectra.

In the next stage, the deconvoluted spectra were used to train
and evaluate the CNN models, as shown in Figure 1b. First, we
randomly split the data into a training and a validation set in the
ratio of 7:3. We then trained the CNN models using the training
set to predict the PL p when the corresponding RS r was pro-
vided. Here, r is converted into the length-l spectrum
R ∈ ℝ8�l, which independently describes eight Lorentzian and
is fed to the model. After the training process, we evaluated
the trained model using the validation set. If the prediction accu-
racy of the validation set is significantly lower than that of the
training set, we can conclude that the model memorizes the
training set instead of learning physical insights from it. We
repeated the training process by varying the model architectures
with different hyperparameters (e.g., the number of training
epochs) and observed the same tendencies in the training results.
Finally, we interpreted the trained model and reported the results
only if the model passed the evaluation.

Examples of the model interpretation using PDP and ICE are
presented in Figure 1c. The fundamental idea of both interpre-
tation methods is to observe the changes in the prediction while
perturbing the input data. The degree of change that occurs dur-
ing the perturbation indicates the relationship between the input
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variable (e.g., a specific RS peak parameter) and the output
variable (e.g., the PL peak parameter). Thus, the PDP and ICE
evaluate the contribution of each RS peak when the model pre-
dicts the PL. For example, if an output variable (e.g., a PL feature)
increases, while an input variable (e.g., A0

1 phonon mode)
increases on average during the perturbation, we can interpret
that there exists a proportional relationship between these two
variables. The PDP shows the average contribution of the input
variable to the output variable for the entire dataset (i.e., the
entire measurement of the WSe2 flake). In contrast, ICE exhibits
a local (i.e., per-spectrum) correlation between the input and out-
put variables.

We repeated the above procedure for several WSe2 flakes and
conditions and derived the results described in the following sec-
tions. Furthermore, we evaluated our XAI findings through a
DFT-based external analysis, which is independent of the XAI.
Detailed explanations of our fitting algorithm, CNN model archi-
tecture and training procedure, and interpretation methods (PDP
and ICE) are available in Section 4.

2.2. Result of XAI-Applied Correlative Spectroscopy

In this study, we trained CNN models using the experimental
results obtained from resonance (2.33 eV) and nonresonance
(1.96 eV) conditions to consider the exciton–phonon coupling
differences, which vary depending on the excitation energy.
In the case of the resonance condition, two different chemically

grown WSe2 monolayers (star- and triangle-shaped, as shown in
Figure 2a,d, respectively) were used to train the models. For each
experimental data, we split the data into two subsets: training and
validation sets. We trained the models using the training set and
tested them with both the training and validation sets to deter-
mine whether the models were overfitted. On comparing the
mean average percentage error (MAPE) and R2 of the two sub-
sets, we assumed that the models trained on the resonant WSe2
monolayer found the physical relationship between RS and PL
(Figure S2a,c, Supporting Information). In addition, the images
of the PL prediction (Figure 2b,e) accurately describe the nonuni-
form PL properties derived from various defects on the surface of
the chemically grown WSe2 monolayer. In contrast, the nonres-
onant WSe2 monolayer tends to be overfitted (Figure S2b,d,
Supporting Information). We assume that the models simply
memorized the training sets because the exciton relaxation path-
way is mediated by many long-wavelength phonons instead of
specific optical phonons in the nonresonance condition.
Therefore, we assumed that the models trained on resonant
WSe2 monolayer data learnt physical insights about the RS
and PL and selected this configuration for further analysis.

Subsequently, we applied the XAI to the selected DL models
(resonance condition) to determine the hidden correlations
between the RS and PL. To examine the contribution of each pho-
non mode, we drew the PDP using the DL model on all phonon
modes of the WSe2 monolayer as parameters (shown in
Figure 3a,b). As briefly introduced in the previous section, the
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Figure 1. Overview of XAI-applied correlative spectroscopy. a) Experimental results of the RS and PL of the WSe2 monolayer are presented in contour
images, and both spectra were calibrated and deconvoluted using an in-house automatic fitting algorithm. b) Resulting fitted RS and PL spectra were used
to train the CNNmodels. The various phononmodes in the WSe2 monolayer were considered to analyze their independent effects. c) Trained CNNmodel
was interpreted by using XAI methods, PDP, and ICE.
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PDP shows changes in the PL prediction when the specific pho-
non mode varies. The gray region of each spectrum represents
the range of 95% of the ground truth PL distribution (y-axis), and
the A0

1 phonon mode describes the widest region of the PL inten-
sity data. This indicates that the A0

1 phonon mode is the domi-
nant factor for the phonon-assisted carrier relaxation pathway
among the various phonon modes in the WSe2 monolayer.
The slightly increasing PDP curve of the A0

1 phonon mode indi-
cates a positive relationship between the RS and PL intensities.
Because the RS and PL intensities imply the frequency of
exciton–phonon interaction and the number of emitted photons,
the aforementioned proportional relationship is strong evidence
that A0

1 phonon dominantly contributes to the relaxation process
of the hot exciton.

The vacancy of the chalcogenide atom (Vse) and its oxygen sub-
stitution (SO) are the most frequently observed in chemically
grown WSe2, and they suppress or increase the RS and PL pro-
cesses due to lattice distortion and doping effects. These defect-
induced physical properties appeared in the inhomogeneous RS
and PL images of the star- and triangle-shaped WSe2 monolayer
flakes (Figure 3c,f,g,j). In general, the presence of Vse suppresses
the first-order optical phonon modes, and PL quenching effects
occur due to nonradiative recombination from localized energy
states in the vicinity of the conduction band edge. In the case of
SO, the intensity of the RS also decreases due to structural defor-
mation, as in the case of Vse, but the exciton peak increases
because the intrinsic n-type charge is compensated. We plotted
the spatially resolved PL ICE slope (Figure 3e,i) to evaluate the
degree of proportionality of the A0

1 phonon according to the type
of defects. The inhomogeneous ICE slope of the A0

1 phonon
mode image means that the DL model strongly considers the

specific regions of the WSe2 monolayer because the value of
the PL ICE slope indicates the average change in the PL predic-
tion. Thus, the correlation between the PL intensity and A0

1 pho-
non is stronger in the bright region of the ICE image (i.e., large
ICE slope). To examine the reason for the inhomogeneous slope
of the ICE, we performed a comprehensive comparison using
not only the A0

1 phonon (Figure 3d,h) but also the PL
(Figure 3f,j) images with the slope of the ICE. The A0

1 phonon
mode exhibits a high ICE slope in the region with strong inten-
sity (pristine dominant), whereas the ICE slope is relatively low in
areas with strong PL (SO rich) due to the charge compensation
effect. Consequently, we confirmed that the DL model strongly
considers the pristine A0

1 phonon mode due to the higher ICE
slope value than the defective regions such as Vse and SO.
These pristine-dependent properties provide additional insights
that the A0

1 phononmainly contributes to the charge-carrier relax-
ation process instead of the LA(M) phonon because the in-plane
acoustic phonon is a representative defect-related indicator with a
long recombination rate caused by the defect-induced zone-edge
renormalization effect.[33,34] Thus, the pristine A0

1 phonon domi-
nantly contributes to the efficient charge-carrier relaxation pro-
cess under resonance conditions as compared to longitudinal
acoustic phonons.

2.3. Evaluation of XAI-Applied Correlative Spectroscopy via
Quantum Mechanical Calculations

Quantum mechanical calculations provide a theoretical basis
without empirical elements and are used to explain physical
properties by modeling actual circumstances.[35,36] Several recent
studies have reported that DFT-based molecular dynamics and

(a)

(d)

(b)

(e)

(c)

(f)

Figure 2. Visualization of the PL prediction in the resonance condition. The experimental results (ground truth) are shown in a) and d), and the results of
model prediction are shown in b) and e), and the model prediction errors are shown in c) and f ) along with the MAPE.
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linear response theory facilitate the comprehensive study of
charge-carrier dynamics and phonon fluctuations for various
defective structures.[37,38] In this work, to efficiently evaluate
the contribution of the previous pristine A0

1 phonon, we per-
formed Born–Oppenheimer molecular dynamics (BOMD) and
density functional perturbation theory (DFPT) calculations on
three different structures (Pristine, Se vacancies, and oxygen sub-
stitution structures, which are shown in Figure 4b; detailed cal-
culation information is described in Section 4.6). The normalized
velocity autocorrelation functions are obtained using the BOMD
calculation as its Fourier-transformed functions (also known as
spectral intensity) enable the identification of the phonons that
promote the nonradiative relaxation process of excited carriers,
resulting in the energy loss as heat. Figure 4a illustrates the spec-
tral intensity of pristine (shaded gray) and defective WSe2 with a
Vse (green) and SO (red). Two strong phonon modes (220
and 270 cm�1) exist in the spectral intensity of the pristine
structure, and the frequency of 270 cm�1 corresponds to the

A0
1 phonon mode with Raman shift of 250 cm�1.[39] From the

spectral intensity of the Vse and SO-containing structure,
the A0

1� related peak located at the 270 cm�1 peak is reduced,
which indicates that the A0

1 phonon mode induces a excited car-
rier relaxation in the pristine WSe2. Subsequently, we performed
the DFPT on pristine and defective structures to confirm the
defect-dependent variation of the RS intensity. The presence
of the defect induces a structural deformation, which reduces
the intensity of the pristine Raman modes (e.g., E

0
, A0

1) and pro-
duces abnormal phononmodes (shown in Figure 4c). The notice-
able decrease in RS intensities within the defective structures
(Vse, SO) corresponds to the correlation described earlier, which
is associated with the interpreted DL model and A0

1 phonon
mode. This not only proves that the previous PL ICE is
related to the strong A0

1 phonon mode but also that the pristine
A0
1 phonon contributes to efficient carrier relaxation processes

because the defect interferes with the electron–phonon
interaction. Throughout the theoretical calculations, we

A’1 mode A’1 mode

(a)

(c) (d) (e) (f)

(g) (h) (i) (j)

(b)

Figure 3. Interpretation of the trained models using XAI methods. The PDPs are shown in a,b). The grey regions in the PDPs represent 95% of the real
data (PL intensity). Among all the phononmodes, the A0

1 phononmode best describes the PL feature. c,d,f,g,h,j) RS and PL mapping images of chemically
grown WSe2 monolayer are shown, and all colour bar units are divided by 103 values. e,i) To confirm the spatially resolved gradients, the ICE curves are
visualized in an image form. On comparing the RS and PL images with the ICE, we can observe a positive /inverse correlation between them.
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evaluated evidence of pristine A0
1 phonon contributions for the

hot exciton relaxation process, which is consistent with the
results of the XAI method.

3. Conclusion

In this study, we investigated the correlation between light scat-
tering and emission by a WSe2 monolayer using XAI and quan-
tum mechanical calculations. The measured spectroscopic data
obtained from the monolayer WSe2 were used to train the DL
models. To obtain comprehensive insights into the physical
mechanisms of the phonon-assisted charge-carrier relaxation
pathway, we interpreted the DL model using PDP and ICE.
As a result, we revealed that the pristine A0

1 phonon mode is
strongly related to the PL features, which indicates that the A0

1
phonon mainly governs the hot exciton relaxation as compared
to other phonons. We further evaluated the defect dependence of
the optical phonon mode using quantum mechanical calcula-
tions, such as DFT-based molecular dynamics and linear
response perturbation theory. Through the application of
BOMD calculation, we were able to establish the role of the
A0
1 phonon in facilitating charge-carrier relaxation, while the uti-

lization of DFPT calculation confirmed the notable reduction in
the A0

1 phonon mode within defective structures. Our work not
only provides a fundamental understanding of the early stages of
carrier relaxation in WSe2 monolayers but also demonstrates an
advanced methodology for nanomaterial research.

4. Experimental Section

Preparation of Tungsten Precursor: An aqueous tungsten (W) solution
was used as the tungsten precursor. The solution was prepared by dissolv-
ing ammonium metatungstate hydrate ((NH4)6H2W12O40·xH2O, 1.2 g
Sigma-Aldrich), sodium hydroxide (NaOH, 0.5 g, Sigma-Aldrich), and
OptiPrep density gradient medium (iodixanol solution, 50mL Sigma-
Aldrich) in deionized water (400mL).

Substrate Preparation: A 300 nm-thick oxide layer deposited on a Si
substrate was treated with a 0.5 M NaOH aqueous solution for 30 min,
followed by rinsing with deionized water. The treated SiO2/Si substrate
was coated with the W-precursor solution at 3000 rpm for 1 min.

Growth of Monolayer WSe2 Flakes: A two-inch quartz-tube-equipped two-
zone furnace system was used to grow monolayer WSe2 flakes. A quartz
boat containing Se pellets and a W-precursor-coated SiO2/Si substrate
were loaded into the center of the upstream zone (zone 1) and down-
stream zone (zone 2), respectively. The temperature of each zone was
increased to 385 and 765 °C for 7 min and maintained for 10 min.
Subsequently, the quartz tube was cooled naturally to room temperature.
The entire growth process was conducted under Ar and H2 atmospheres
with flow rates of 550 and 5 sccm, respectively, at atmospheric pressure.

Measurement: The synthesized monolayer WSe2 was transferred to a
SiO2/Si (300 nm) substrate using the wet transfer method before perform-
ing the RS and PL measurements. Both the RS and confocal PL mapping
data were measured using a multifunctional microscope system
(NTEGRA, NT-MDT, Zelenograd Co., Russia & WITec Alpha 300,
Oxford Instruments, Germany). The excitation sources were 532 and
633 nm, and high-magnification objective lenses (100x, NA= 0.9) were
used. Throughout the experiments, gratings with 150 and 1800 grooves
per mm were used for the PL and RS, respectively.

Fitting Algorithm: The fitting process was started by classifying the back-
ground noise and signal of the actual WSe2 flake. We assumed that the flake
was not placed at the corner of themapping image and computed themean
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μ and variance σ of the spectrameasured from the corner. Subsequently, we
removed the signal if the mean of the signal was less than μþ k� σ.
Thus, if the average of an arbitrary signal was equal to or greater than
μþ k� σ, it was considered to originate from the actual WSe2 flake.

Next, we eliminated the noise and conducted baseline corrections for
each spectrum. To detect noise, we computed the first-order difference in
the spectrum. If the difference was larger than the threshold, the corre-
sponding signal was removed and the removed values were linearly inter-
polated. We divided the spectrum into several areas by a specific
wavelength and Raman shift and applied different thresholds to each area.
Finally, we performed baseline correction by subtracting a piecewise linear
function from the original spectrum. Similar to noise removal, we set sev-
eral areas along the spectrum and defined the piecewise linear function by
connecting the average signal values near the boundary of each area. It
should be noted that k and the boundaries of the areas were empirically
selected and were different for each type of spectroscopy and WSe2 flake.

After the preprocessing, deconvolution was conducted based on the
RAdam optimizer.[30] Starting from the initial peak parameters, the
RAdam optimizer searches for the optimal parameters by minimizing
an objective function. The objective function was the mean-squared error
between the original and fitted spectra. We also introduced two regulari-
zation techniques to increase the accuracy of the deconvolution. We
enforced that the height values should be positive numbers and regular-
ized the position of each peak such that it did not shift beyond the initial
value. The initial peak parameters were selected based on previous stud-
ies.[31,32] In the case of RS, fitting was done separately for the first-order
and second-order Raman regions (183–300 and 314–410 cm�1, respec-
tively) because the intensity of the former region was much higher than
that of the latter region. Hyperparameters, such as the number of
iterations and the learning rate, were also empirically selected and were
different for each flake and area. Finally, we skimmed the fitted results
and removed the abnormal results or refitted them with other
hyperparameters.

Training the Convolutional Neural Network Model: Both the deconvolu-
tion algorithm and training code were written in Python and PyTorch.[40]

Figure S1, Supporting Information, shows the model architectures used in
this study. Basically, the models consisted of ten 1D convolutional layer
blocks and three linear (i.e., fully-connected) layers. Each convolutional
layer block (‘conv block’ shown in Figure S1a, Supporting Information)
is a stack of a convolutional layer, leaky rectified linear unit
(LeakyReLU; α= 0.01), and instance-batch normalization.[41] We also
tested a residual block (Figure S1b, Supporting Information),[42] which
consisted of three convolutional layer blocks and one LeakyReLU
(α= 0.01) for evaluating the effect of model architectures. After two or
three blocks, we used average pooling with kernel size and stride of
two to reduce the size of intermediate features. The average pooling layer
after the last convolutional block output a feature whose shape was (b, c, l),
where b is the batch size, c is the channel size of the last convolutional
layer, and l is the feature length. To guarantee a fixed-size feature vector for
the linear layers, we used an additional average pooling layer that makes l
equal 4; therefore, the shape of the resulting feature was (b, c, 4). The
feature was flattened before the first linear layer. The linear layers, except
for the latest one, used ReLU activation and dropout[43] with a probability
of 0.5.

We used the Adam optimizer[44] with a learning rate of 0.001. Each
training and interpretation were conducted on a single NVIDIA
GeForce RTX 3090 GPU with a batch size of 128. We set the number
of training epochs to range from 1000 to 10 000, and the training results
showed the same tendency (see Figure S2, Supporting Information). We
split the entire dataset into training and validation sets, and the ratio of the
training to the validation set was 7:3. Subsequently, we trained the models
using the training set and tested the model on both the training and vali-
dation sets. By comprehensively considering the qualitative (scatterplot)
and quantitative (mean absolute error and R2) results obtained from
the trained models, we determined whether the model was overfitted
and selected configurations (e.g., resonance condition) to be interpreted.
For the selected configurations, we trained each model again with the
entire dataset (both the training and validation sets) and interpreted

the resulting model. We used the model using the convolutional layer
blocks (not residual blocks) with training epochs of 10 000 for drawing
the figures in the manuscript except for Figure S2c,d, Supporting
Information.

Model Interpretation: One of the mandatory criteria for interpreting the
DL model is high prediction accuracy. When we trained DL models that
predicted PL features with RS features for several WSe2 flakes, the accuracy
of PL intensity prediction was satisfied with the criterion, while that of PL
position and FWHM did not. Thus, we focused on explaining the correla-
tion between RS features and PL intensity, where the DL model showed
superior accuracy in this work. However, it would be too naive to conclude
that there was no correlation between RS features and PL position or
FWHM. Nonetheless, our observation was that the correlation between
RS features and PL intensity was significant.

In order to analyze the correlation between RS features and PL inten-
sity, we used PDP and ICE. The basic idea of PDP[28] and ICE[29] is to ana-
lyze how the model prediction changes when a portion of the input
changes in order to evaluate the contribution of each input variable to
the model prediction. The analysis of both methods began with the selec-
tion of the input and output features to be evaluated. We assumed that f θ
was the model parameterized by θ, X ¼ fxdgDd¼1 is the set of input features
where x ¼ ½x1, x2, : : : , xn� ∈ ℝn is n-dimensional input feature, and D is
the number of data. To observe the changes in the model prediction when

varying the i-th input variable of j-th data xðjÞi , we computed the PDP as
follows:

PDPðxðjÞi Þ ¼ 1
D

XD

d¼1

f θðxðjÞi , xðdÞfng\iÞ ¼
1
D

XD

d¼1

f θ xðdÞ1 , : : : , xðjÞi , : : : , xðdÞn

h i� �

(1)

In this work, the input X is the RS data obtained from the WSe2 flakes.
Under the same condition, the ICE is computed using

ICEðxðjÞi , εÞ ¼ f θðxðjÞi þ ε, xðjÞfng\iÞ ¼ f θ xðjÞ1 , : : : , xðjÞi þ ε, : : : , xðjÞn
h i� �

(2)

Here, ε is a small number for perturbation. Because the ICE is com-
puted for each spectrum, we obtained Figure 3e,i by assigning the average
slope of the ICE curve to each pixel value of the corresponding location. In
detail, we computed two ICE values by setting ε to �σi, the standard devi-
ation of xi in X and computed the pixel value as follows:

ICEpixelðxðjÞi Þ ¼
ICE xðjÞi , σi

� �
þ ICE xðjÞi , � σi

� �

2σi
(3)

Theoretical Calculation: Quantum mechanical simulations were per-
formed using the plane-wave method (CASTEP) as implemented in the
BIOVIA Materials Studio platform.[45] During the calculation, the WSe2
monolayer was modeled and geometry optimized with a local density
approximation (LDA) functional. To achieve sufficient computational pre-
cision, the self-consistent function, the convergence tolerance of the force
criteria, the sampling of k points, and the cut-off radius were implemented
as 1.0� 10�10 eV atom�1, 0.01 eV Å�1 an actual spacing of 0.02Å�1, and
500 eV, respectively. The norm-conserving pseudopotential and Koelling–
Harmon relativistic treatment were used for the entire calculation
process.[46,47] Subsequently, we added a 20 Å vacuum slab, representing
an isolated layered structure in a 3D periodic system. The proposed
optimized pristine WSe2 monolayer matched well with a previous
report (our result: a= 3.268 Å, dW�Se ¼ 2.518 Å; reference: a= 3.34 Å,
dW�Se ¼ 2.55 Å).[48] To identify the effects induced by the Se vacancy
(Vse) and oxygen substitution (SO), we used the size of the supercell struc-
ture (4� 4), and quantummechanical calculations were performed on the
Vse-, SO- implied WSe2 monolayer structure.

We performed Born–Oppenheimer molecular dynamics simulations[49]

using a microcanonical ensemble (constant number of atomsN, volume V
and energy E) at 273.0 K with a timestep of 10 fs. In these simulations, we
used the LDA functional for electron-exchange correlation, a plane-wave
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basis kinetic energy cut-off of 500 eV, and only the Γ-point in the Brillouin
zone to enhance the simulation speed.

Linear response theory was used to calculate the phonon and Raman
tensors of each structure.[50] The electric eigenvalue and phonon energy
tolerances were set as 1.0� 10�10 eV atom�1 and 1.0� 10�5 Å3, respec-
tively. After determining the Raman activity of all the normal modes,
the Raman intensities were obtained by calculating the tensors based
on the exposed light wavelength (2.33 eV) and temperature (300 K) with
a Lorentzian smearing of 5 cm�1.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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