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ABSTRACT A robust and high-performance lateral control system is necessary for autonomous bus driving
in complex downtown roads. In this paper, a Sliding Mode (SM) controller with an uncertainty observer
is proposed to reduce the chattering phenomenon while ensuring robustness and maintaining the control
performance. A stiffness gain is introduced in the cornering stiffness of rear wheels to compensate for the
model uncertainty and external disturbance. For lane keeping and changing maneuvers, an optimal path
planning algorithm is designed by considering dynamic constraints of the bus. The lane departure of bus
is prevented with minimizing the lateral jerk through the sampling-based path regeneration process. The
proposed lateral control system is compared to other conventional SM based controllers in the TRUCKSIM
simulator. In an experiment with a real bus, lane keeping maneuver is conducted and compared with
experienced human driver in the same driving course. Lane change maneuver is also tested with real bus
to perform smooth lane transition while satisfying the lateral acceleration and yaw rate limitations.

INDEX TERMS Autonomous bus, lateral control system, sliding mode control, path planning, model
uncertainty, stiffness gain.

I. INTRODUCTION
The Advanced Driving Assistant System (ADAS) technology
has grown dramatically over the last decade, reducing driving
fatigue and preventing traffic accidents. ADAS has evolved
from partially assisting drivers to self-driving system that
recognizes the surrounding environment, predicts future
trajectories of nearby vehicles or pedestrians, and judges
ongoing situation to create a safe driving path [1]. Recently,
safety issues have been raised for the autonomous driving
system [2], and the lateral motion control is particularly
important in terms of safety of self-driving system [3]. It is
necessary to minimize lateral position error from the lane
centerline and discomfort of passengers while following the
ever-changing driving path. In particular, autonomous bus
driving in complex downtownmust safely take an unspecified
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number of passengers to the designated stations, which
require more sophisticated lateral control and path planning
algorithms [4].

There are two models describing vehicle’s lateral motion:
kinematics-based and dynamics-based model, each with its
own pros and cons [5]. The kinematic model assumes that
the side slip of the vehicle is negligible. Early researchers
developed a novel kinematics-based pure pursuit controller
which is still widely used in lane keeping assistance system
(LKAS) and self-driving system [6]. The pure pursuit uses
simple geometric models and utilizes feedback of heading
and lateral position errors from the sensors. Another research
group developed a kinematics-based Stanley controller with
calculating heading and lateral position errors from vehicle’s
front wheel axle [7]. Kinematics-based controllers enable
simple but effective lateral control based on error feedback
and do not need to know many vehicle parameters. However,
the control performance deteriorates when the vehicle speed
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increases in curvy road [8]. In addition, commercial vehicles
like bus and truck have different number of wheels between
front and rear axles, so the lateral movement caused by the
difference in lateral forces between the front and rear axles
should be considered [9].

The Dynamics-based lateral controller uses a dynamic
model based on the Newton’s second law. The side slip is
considered and the control input can be designed according
to the change of the vehicle parameters. In addition, the
convergence of lateral position error and heading error can
be proved mathematically so that stability of the controller is
guaranteed [10]. But, the main weakness of dynamics-based
controller is model uncertainty caused by unknown param-
eters such as cornering stiffness, mass, moment of inertia
and center of gravity [11]. Especially, the cornering stiffness
significantly varies depending on speed and vertical load.
Each tire’s vertical load is constantly changing as passengers
get on and off, as bus accelerates or decelerates [12]. For
these reasons, obtaining the precise value of the cornering
stiffness is still an unsolved research topics [13]. Research
has been conducted to overcome challenges in lateral control
for buses. Shi et al. presents a robust path planning and
tracking framework for autonomous buses, ensuring precise
and resilient control in complex driving scenarios [14].
Han et al. proposed a CI-PI controller and collision avoidance
trajectory planner for buses, considering vehicle stability and
dynamic limitations [15].

Many controllers based on lateral dynamics have been
developed to improve control performance while com-
pensating model uncertainty. Marino et al. [16] developed
dynamics-based two independent PID loops to minimize
the lateral position and heading errors based on yaw rate
from gyro sensor and vision sensor. Piao et al. proposes
an LQR optimal controller for autonomous vehicle lateral
control, improving trajectory tracking performance and sys-
tem robustness [17]. Mohammadzadeh and Taghavifar [18]
developed an adaptive estimator that estimates the cornering
stiffness to minimize the model uncertainty. In [19], model
uncertainty were estimated through extended state observer
and the robustness against the change in the vehicle parame-
ters was enhanced. Zhu et al. [20] designed a gain-scheduling
technique that adjusts feedback gain and look-ahead distance
according to the speed and weight. Jin et al. [21] introduced
a nonlinear robust H∞ state-feedback controller to consider
model uncertainties in trajectory following performance.

Several studies using Model Predictive Control (MPC)
have been conducted [22], [23], [24]. Lateral control using
the MPC shows good control performance and can deal
with model uncertainty. However, optimization-based control
typically involves higher computation cost in comparison to
other control techniques because the quadratic problem must
be solved at every sampling time.

Sliding Mode Control (SMC) is an effective method for
providing control robustness against model uncertainties.
SMC has been used in scenarios where model parameters are
constantly varying or nonlinearity exists in the model [25].

The SMC offers faster response time and lower computation
cost than optimal control methods such as MPC or H∞.
Besides, the simplicity of the SMC allows it to be flexibly
combined with a variety of control techniques to improve
the system’ robustness and performance, enabling specific
requirements to be met [26]. Because real-time computation
and performance robustness are crucial for path following
control, the SMC is chosen as the most suitable for lateral
control of autonomous buses.

Du et al. [27] mathematically proved stability of the
SMC with the Lyapunov stability criteria and determined
a steering angle which offset unknown disturbance and
model uncertainty with high gain. In [28], the robustness
of the controller was ensured using the super-twisting
algorithm, and stability was proved through the backstepping
technique. Norouzi et al. [29] reduced chattering by adjusting
the boundary layer of the saturation function based on fuzzy
logic such that the control input is changed smoothly to
the size of the sliding surface. Since a SM-based lateral
controller for bus [30] was introduced in 1996, few studies
have been conducted to apply SMC to bus and demonstrate
robustness and performance of controller on real-world
roads.

In this study, SM-based lateral controller and an optimal
path planning algorithm for bus are proposed. Using distur-
bance observer, model uncertainty in the dynamic model is
estimated, which, in turn, updates the front and rear cornering
stiffness. For lane keeping and lane change maneuvers, the
optimization-based path planner creates an optimal trajectory
first, and then the trajectory is re-planned by the search-based
planner. The proposed path planning algorithm and controller
are verified through commercial software. Experiments with
real bus are conducted to verify the robustness of the proposed
controller and the optimality of the path planner. The main
contributions of this study are as follows:

1) Model uncertainties due to weight change and speed in
bus are formulated as disturbance variables and they are
estimated by using the disturbance observer.

2) Variations of the cornering stiffness at front and rear
wheels are described as the stiffness gain with bias and
they are updated in real time based on the estimated
disturbance.

3) The sliding mode-based controller is formulated based
on the estimated uncertainties and the updated model
parameters to achieve the robust control performance
in lateral motion of autonomous bus.

4) In order to improve driving safety and comfort
of autonomous bus, the optimization-based and the
search-based planners are combined to generate a
trajectory that limits a lateral jerk and prevents lane
departure.

5) The control performance for lane keeping and change
maneuvers are verified not only in simulations, but also
with real bus tests on the roads.

The contents of this paper is composed follows. Section II
explains optimal path planning process and sampling-based
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path regeneration algorithm. Section III describes lateral
dynamics model and sliding mode controller design. The
control performance and robustness to the model uncertainty
are simulated in Section IV. Lane keeping and lane change
tests in real roads are shown in Section V.

II. PATH PLANNER
Lateral control system for autonomous bus requires an
optimal path that considers the dynamic constraints of bus.
The lateral acceleration and jerk are the main causes of the
passenger’s ride discomfort and should be limited in the
path planning process [31]. Excessive yaw rate should be
also limited because it deteriorates the roll stability of the
vehicle [32]. In addition, it is necessary to create a shortest
path while satisfying dynamic constraints. Another important
factor is to ensure that overhang does not deviate from the
lane.

A. OPTIMIZATION-BASED PLANNER
The camera sensor or map server provides information on
left-side and right-side lanes as 3rd order polynomials in the
vehicle coordinate.{

fL(x) = aLx3 + bLx2 + cLx + dL
fR(x) = aRx3 + bRx2 + cRx + dR

(1)

where

fL(x) : fitted function for the left-side lane

fR(x) : fitted function for the right-side lane

By combining two functions, it is possible to obtain the
lateral position and heading errors of the bus with respect to
the lane centerline. In order to generate a path by considering
displacement, speed, and acceleration, the path is expressed
in a quintic function over time.{

x(t) = a5t5 + a4t4 + a3t3 + a2t2 + a1t + a0
y(t) = b5t5 + b4t4 + b3t3 + b2t2 + b1t + b0

(2)

To achieve autonomous driving for a specified distance
within a given time limit, the longitudinal travel length (Xt )
and travel time (T ) from the initial time (t0) to the final
time (t1) are chosen as design variables in optimization
process [33]. It is assumed that the bus travels at constant
velocity during the time span and the position of the bus
at the target point is on the lane centerline. The lateral
velocity and acceleration of the bus are expressed using
the equations of the left lane and right lane. The overall
boundary conditions for optimizing the quintic function are
expressed in (3).

x(t0) = 0, ẋ(t0) = Vx , ẍ(t0) = 0

x(t1) = XT , ẋ(t1) = Vx , ẍ(t1) = 0

y(t0) = yt0 , ẏ(t0) = 0, ÿ(t0) = 0

y(t1) = yt1 , ẏ(t1) = Vy, ÿ(t1) = ay
T = t1 − t0 (3)

and

Vy =
f ′
L(XT ) + f ′

R(XT )
2

·
∂x
∂t

|t=t1

ay =
f ′′

L(XT ) + f ′′
R(XT )

2
·

(
∂x
∂t

|t=t1

)2

where

Vx : longitudinal velocity of the bus

Vy : lateral velocity at the target point

ay : lateral acceleration at the target point

yt0 : lateral position at the initial point

yt1 : lateral position at the target point

Then x(t) and y(t) are expressed as function of T and XT
as follows. {

x(t) → x(t,T ,XT ,Vx)
y(t) → y(t,T ,XT ,Vy, ay)

(4)

For a bus to follow the path with an acceptable lateral
speed, the curvature of generated path must not be too large.
The curvature for a specific time and the mean curvature for
the entire travel time can be expressed as follows:

κ(t) =

∣∣∣∣∣ ẋ(t) · ÿ(t) − ẍ(t) · ẏ(t)

(ẋ(t)2 + ẏ(t)2)
3/2

∣∣∣∣∣
κ̄ =

t1∑
t0
κ(t)

n
(5)

where

κ(t) : curvature for a specific time

κ̄ : mean curvature for the entire travel time

n : length of the time steps

The travel length from the current location to the target
point can be expressed as in (6) over the entire travel time.

s =

tf∑
t0

√
ẋ(t)2 + ẏ(t)2 (6)

Then, the cost function is selected to balance the mean of
curvature and travel length as shown in (7). The travel length
and travel time with the lowest cost maintain the driving
efficiency while limiting excessive lateral movement.

J [XT ,T ] = ω1κ̄ + ω2s (7)

whereω1 andω2 represent weights of the mean curvature and
the travel length, respectively.

The constraints for lateral velocity and acceleration are
experimentally set in the cost function.{

−2.5m/s < ẏ(t) < 2.5m/s
−0.5m/s2 < ÿ(t) < 0.5m/s2

(8)
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FIGURE 1. Sampling based path planning (a) Candidate goal points (b)
Feasible paths and discarded paths.

In order to satisfy the yaw stability for bus, the yaw rate
must be limited. Equation (9) describes the expression of yaw
rate and its constraint of a given path.

ψ̇(t) =
ẋ(t) · ÿ(t) − ẍ(t) · ẏ(t)

ẋ2(t) + ẏ2(t)
(9)

and
−0.1 rad

/
s < ψ̇(t) < 0. 1 rad

/
s

where ψ̇(t) is yaw rate of the bus.
The cost function under constraints (8) and (9) is solved

by the quadratic problem solver [34]. The inputs to the
optimization algorithm are the current speed, lateral offset
at the initial time, and lateral offset, lateral speed and
acceleration at the time of arrival. The optimized outputs are
longitudinal travel length and travel time.

B. SEARCH-BASED PLANNER
Because the bus has larger width and front-overhang than
passenger car, its lane keeping should be carefully consid-
ered. The path obtained from the optimization-based planner
is rerouted in order to operate at minimum lateral jerk and
not to depart from the lane [35]. First, several goal points
are additionally generated as shown in Fig.1 by applying
offset at regular intervals from the original goal point which
was obtained from the optimization-based planner. For each
goal point, the 5th polynomial path is generated by the
optimization-based planner. Secondly, paths that may deviate
from the lane are removed. The goal point of the final
path should maintain a minimum lateral offset with the
minimized lateral jerk. The second cost function is designed
to balance between the requirements at the same time. Lastly,
the cost values of the remaining feasible paths are obtained
and the final path with the lowest cost value is selected
as shown in Fig.2.

Jtraj,i = ωjerk

T∑
t=0

∣∣...yi(t)∣∣ + ωcenter ∥Pi − Pcenter∥ (10)

FIGURE 2. Original path and rerouted path.

where

Pcenter : the original goal point (x, y)

Pi : candidate goal points

ωjerk , ωcenter : the constant weight factors

III. LATERAL CONTROLLER DESIGN
A. LATERAL VEHICLE DYNAMICS MODEL
The lateral motion of the bus is represented by a bicycle
model where two wheels at the front and rear axles are
summed to one wheel, respectively, as illustrated in Fig. 4.
Because the moderate maneuvering is expected based on the
generated path in Section II, the lateral tire force at each tire
is assumed proportional to the corresponding slip angle as
shown in equation (11) [10].

Fyf = 2Cαf

(
δ −

ẏ+ lf ψ̇
Vx

)
Fyr = −2Cαr

(
ẏ− lr ψ̇
Vx

) (11)

where Cαf : cornering stiffness of front tire

Cαr : cornering stiffness of rear tire

lf : distance between front axle and center of gravity

lr : distance between rear axle and center of gravity

δ : front steering angle

Fyf : lateral force of front axle

Fyr : lateral force of rear axle

The cornering stiffness in (11) varies significantly depend-
ing on vehicle speed, vertical load of tires, etc., which is
considered in this study. In particular, the cornering stiffness
at front and rear tires are assumed to have bias and time
varying gain as expressed in equation (16). By doing so,
the nonlinear tire characteristics are approximated by the
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estimated uncertainties in bias and gain. The uncertainties
arising from such nonlinearity are estimated by the uncer-
tainty observer later in the next section. Fig.3 describes the
error variables of the bus with respect to the desired path.
e1 represents the lateral distance from the centerline to the
vehicle’s center of gravity. e2 represents the heading error
between the tangent line of the desired path and the vehicle’s
heading vector. The state-space model for the error variables
is derived from the bicycle model [10].

d
dt


e1
ė1
e2
ė2

 =


0 1 0 0
0 a22 a23 a24
0 0 0 1
0 a42 a43 a44



e1
ė1
e2
ė2



+


0
b2
0
b4

 δ +


0
c2
0
c4

 ψ̇d (12)

where

a22 = −
2Caf + 2Car

mVx
, a23 =

2Caf + 2Car
m

,

a24 =
2Caf lf + 2Car lr

mVx
, a42 = −

2Caf lf − 2Car lr
IzVx

,

a43 =
2Caf lf − 2Car lr

Iz
, a44 = −

2Caf l2f + 2Car l2r
IzVx

,

b2 =
2Caf
m

, b4 =
2Caf lf
Iz

,

c2 = −
2Caf lf + 2Car lr

mVx
− Vx , c4 = −

2Caf l2f + 2Car l2r
IzVx

B. UNCERTAINTY ANALYSIS AND DISTURBANCE
OBSERVER DESIGN
For a bus, several parameters in (12) can change depending
on the driving conditions. For example, mass of the bus
can change significantly with a large number of passengers,
which, in turn, changes the moment of inertia and the
cornering stiffness of tires. Besides, the initial value of
the cornering stiffness may not be accurate. The initial
uncertainties of the cornering stiffness and the changes of the
vehicle parameters are expressed as follows:

ë1 =

−
2kCαf (C̄αf +1Cαf ) + 2kCαr (C̄αr +1Cαr )

kmm̄Vx
· ė1

+
2kCαf (C̄αf +1Cαf ) + 2kCαr (C̄αr +1Cαr )

kmm̄
· e2

−
2kCαf (C̄αf +1Cαf )lf + 2kCαr (C̄αr +1Cαr )lr

kmm̄Vx
· ė2

−
2kCαf (C̄αf +1Cαf )lf + 2kCαr (C̄αr +1Cαr )lr

kmm̄Vx
· ψ̇d

+
2kCαf (C̄αf +1Cαf )

kmm̄Vx
· δ (13)

FIGURE 3. Error variables based on road centerline.

ë2 =

+
−2kCαf (C̄αf +1Cαf )lf + 2kCαr (C̄αr +1Cαr )lr

kI Ī zVx
· ė1

+
2kCαf (C̄αf +1Cαf )lf − 2kCαr (C̄αr +1Cαr )lr

kI Ī z
· e2

−
2kCαf (C̄αf +1Cαf )lf 2 + 2kCαr (C̄αr +1Cαr )lr 2

kI Ī zVx
· ė2

−
2kCαf (C̄αf +1Cαf )lf 2 + 2kCαr (C̄αr+1Cαr )lr 2

kI Ī zVx
· ψ̇d

+
2kCαf (C̄αf +1Cαf )lf

kI Ī z
· δ (14)

In (13), parameters with bar represent the initial values
known from the vehicle specifications. Parameters with
delta(1) mean bias in the initial values. The coefficient,
k , at each parameter indicate changes in parameter values
over time. During the moderate cornering(e.g. slip angle
is less than 4 ◦), three parameters of mass, moment of
inertia and the cornering stiffness change approximately in
proportion [36], [37]. Thus, the coefficients for the three
parameters are assumed to have the similar size.

km ≃ kIz ≃ kCαf ≃ kCαr (15)

Unlike mass and moment of inertia, the initial value of the
cornering stiffness may not be accurate in real situations. The
rear wheels of bus should carry a larger load than the front
wheels and the capacity of the lateral force at rear wheels
should be enhanced for stability. The rear cornering stiffness
is always greater than the front cornering stiffness and the
stiffness gain is introduced in this study. Then, variations
of the front and rear cornering stiffness are expressed as
follows: {

Caf = C̄af +1Caf
Car = Caf · kc

(16)

where

kc : stiffness gain

1Caf : bias of the front cornering stiffness
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FIGURE 4. Bicycle model for lateral motion of bus.

Then, the state space model can be rewritten by utilizing
(15) and (16).

d
dt


e1
ė1
e2
ė2

 =


0 1 0 0
0 ā22 +1a22 ā23 +1a23 ā24 +1a24
0 0 0 1
0 ā42 +1a42 ā43 +1a43 ā44 +1a44



e1
ė1
e2
ė2



+


0

b̄2 +1b2
0

b̄4 +1b4

 δ +


0

c̄2 +1c2
0

c̄4 +1c4

 ψ̇d (17)

The parameters in (17) are described in detail in the
appendix A. The second derivatives of e1 and e2 are rewritten
by grouping the 1 parameters as a total disturbance term.{

ë1 = ā22ė1 + ā23e2 + ā24ė2 + b̄2δ + c̄2ψ̇d + f1
ë2 = ā42ė1 + ā43e2 + ā44ė2 + b̄4δ + c̄4ψ̇d + f2

(18)

where

f1 = 1a22ė1 +1a23e2 +1a24ė2 +1b2δ +1c2ψ̇d

f2 = 1a42ė1 +1a43e2 +1a44ė2 +1b4δ +1c4ψ̇d

By substituting the detailed expression for 1 parameters,
the disturbance terms, f1 and f2, can be expressed by 1Cαf
and kc as follows:

f1=21Cαf (−
1

mVx
ė1 +

1
m
e2 −

lf
mVx

ė2 +
1
m
δ

−
lf
mVx

ψ̇d + kc(−
1

mVx
ė1 +

1
m
e2 +

lr
mVx

ė2 +
lr
mVx

ψ̇d ))

f2 = 21Cαf (−
lf
IzVx

ė1 +
lf
Iz
e2 −

lf 2

IzVx
ė2 +

lf
Iz
δ

−
lf 2

IzVx
ψ̇d + kc(

lr
IzVx

ė1 −
lr
Iz
e2 −

lr 2

IzVx
ė2 −

lr 2

IzVx
ψ̇d ))

(19)

Then, the two equations in (20) can be solved for 1Cαf
and kc.

kc =
2f2 −5f1
8f1 −4f2

1Cαf =
f1

2+4kc
(20)

where

2 = −
2

mVx
ė1 +

2
m
e2 −

2lf
mVx

ė2 +
2
m
δ −

2lf
mVx

ψ̇d

5 = −
2lf
IzVx

ė1 +
2lf
Iz
e2 −

2lf 2

IzVx
ė2 +

2lf
Iz
δ −

2lf 2

IzVx
ψ̇d

8 =
2lr
IzVx

ė1 −
2lr
Iz
e2 −

2lr 2

IzVx
ė2 −

2lr 2

IzVx
ψ̇d

4 = −
2

mVx
ė1 +

2
m
e2 +

2lr
mVx

ė2 +
2lr
mVx

ψ̇d

If f1 and f2 can be estimated, kc and 1Cαf are calculated
using (20) and their values are used to update the cornering
stiffness based on (16).

A disturbance observer is designed for estimating f1 and f2
by assuming that the disturbance is observable with slowly
time-varying condition [38].

ḟ 1 ≃ δ1

ḟ 2 ≃ δ2 (21)

where δ1 and δ2 are constant values.
Equation (18) can be used to calculate f1 and f2 as the initial

measurement based on the nominal parameter values and the
sensor values.{

f1 = ë1 − ā22ė1 − ā23e2 − ā24ė2 − c̄2ψ̇d − b̄2δ
f2 = ë2 − ā42ė1 − ā43e2 − ā44ė2 − c̄4ψ̇d − b̄4δ

(22)

A PI (Proportional/Integral) disturbance observer [38] is
utilized to estimate the disturbances.

˙̂f1 = l1(f1 − f̂ 1) + l2 ·

∫
(f1 − f̂ 1)dt

˙̂f2 = l3(f2 − f̂ 2) + l4 ·

∫
(f2 − f̂ 2)dt

(23)

where

f̂ 1 : estimate of f1
f̂ 2 : estimate of f2
l1, l2, l3, l4 : observer gains

Then, the estimation error for f1 can be expressed as
follows:

˙̃f 1 = −l1 f̃ 1 − l2

∫
f̃ 1 + ḟ 1 (24)

where

f̃1 = f1 − f̂1

By differentiating (24) and using the assumption of (21),
the estimation error dynamics are governed by the equation.

¨̃f1 + l1
˙̃f 1 + l2 f̃ 1 = 0

or (s2 + l1s+ l2)F̃1(s) = 0 (25)
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FIGURE 5. Overall architecture of the proposed control system.

With positive observer gains, Hurwitz stability is satisfied
because the poles of the error dynamics are placed on the
left side pole plane [38]. The convergence of f̃2 can be
also proved in the same way as f̃1. Thus, it can be proved
that the estimation errors for both disturbances converge
to zero.

C. CONTROLLER DESIGN
The SlidingMode Controller (SMC) is designed based on the
lateral dynamics model in (12) where the cornering stiffness
at front and rear wheels are updated as explained in the
previous section. Figure 5 shows the overall architecture of
the proposed lateral control system. The lane sensor transmits
lane information to the Embedded PC through the Ethernet
and the Path Planner calculates the vehicle’s future trajectory.
The Controller determines the required steering angle based
on the error states and the estimated cornering stiffness. The
calculated steering angle is then sent to the Motor Driven
Power Steering (MDPS) module via the CAN network. The
real-time speed of the vehicle is obtained through a built-in
velocity sensor and transmitted to the Embedded PC via the
CAN network

For the SMC design, the sliding surface is set as shown
in (26) for the bus to stay centered in the occupied
lane while aligning the heading angle with the centerline
direction.

e = e1 + ds · e2
s = ė+ λe (26)

where λ is sliding slope.
The Lyapunov function is selected as (27) and its derivative

can be expressed as follows:

V =
1
2
s2

V̇ = s · ṡ

= s(ë+ λė)

= s(ė1(a22 + ds · a42 + λ) + e2(a23 + ds · a43)

+ė2(a24 + ds · a44 + λ · ds) + δ(b2 + ds · b4)

+ψ̇d (c2 + ds · c4)) (27)

If the control input is set as follows:

δ = (b2 + ds · b4)−1(−ė1(a22 + ds · a42 + λ)

−ė2(a24 + ds · a44 + λ · ds) − e2(a23 + ds · a43)

−ψ̇d (c2 + ds · c4) − η · sign(s)) (28)

where η is SMC gain, the Lyapunov stability condi-
tion is satisfied and the convergence of the error is
guaranteed [26].

V̇ = −η |s| ≤ 0 (29)

In this study, the uncertain parameters such as cornering
stiffness in (12) are updated in advance using the disturbance
observer, a small SMC gain can be used to compensate the
uncertainties. Nonetheless, a little chattering can still exisit
and signum function is replaced with saturation function
to minimize chattering and to resolve the discontinuity in
signum function. In addition, in order to improve the control
performance, Fuzzy logic [39] is applied to make boundary
layer change to the sliding surface and velocity. As shown in
Fig.6, five membership functions are set for s and Vx . The
centroid technique is used as the defuzzification method and
the output membership function is described in Fig.7. Table 1
shows the rule by which the output membership function is
determined based on sliding surface and velocity.

Besides, SMC gain is selected to change according to the
sliding surface [40] to improve the control performance. The
SMC gain is increased in the reaching phase and reduced in
the sliding phase.

η(s) = ρ · |s|1/2 (30)

where ρ is gain constant.
Then, the steering angle from the SMC controller is in

the following form considering the fuzzy boundary layer and
adaptive sliding mode gain.

δ = (b2 + ds · b4)−1(−ė1(a22 + ds · a42 + λ)

−ė2(a24 + ds · a44 + λ · ds) − e2(a23 + ds · c4)

−ψ̇des(c2 + ds · c4) − (ρ · |s|1/2) · sat(
s

φ(s,Vx)
))

(31)

where φ(s,Vx) is adaptive boundary layer.
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FIGURE 6. Fuzzified input variables (a) Membership functions of sliding
surface. (b) Membership functions of longitudinal velocity.

FIGURE 7. Output membership functions of boundary layer.

From the perspective of lane keeping or path following
control, an additional constraint conditions can be obtained
for the stiffness gain in (16). The controlled steering angle
in (31) is expressed in the negative feedback form from ė1,
e2, and ė2. Thus, the coefficient of each term should have a
positive value to move to the opposite direction of the errors
in lateral offset error and heading error.

a22 + ds · a42 + λ > 0
a24 + ds · a44 + λ · ds > 0
a23 + ds · c4 > 0

(32)

The above inequality equations in (32) can be solved for
the stiffness gain and the constraint conditions are obtained
in (33). The stiffness gain calculated by (20) must be between
the upper and lower bounds in (33).

kc > (
1

mVx
+ ds ·

lf
IzVx

−
λ

2Caf
)/(−

1
mVx

+ ds ·
lr
IzVx

)

kc < (
lf
mVx

+ ds ·
lf 2

IzVx
−
λ · ds
2Caf

)/(
lr
mVx

−ds ·
lr 2

IzVx
)

kc < (
1
m

+ ds ·
lf
Iz
)/(−

1
m

+ ds ·
lr
Iz
) (33)

IV. SIMULATION
The TRUCKSIM software [41] is used to compare the
performance of three SM-based lateral controllers. Fig.8
shows the driving track and road scene of the simulation
environment.

The longitudinal speed is set to 50 km/h and the driving
track is composed of two curves with radius of 150 m and

TABLE 1. Basic rules of the fuzzy boundary layer.

FIGURE 8. TRUCKSIM simulation environment (a) Driving track (b)
Graphical scene.

TABLE 2. Bus parameters in simulation.

TABLE 3. Main differences of SM-based controllers.

120 m. The nominal parameter values of the bus are listed in
Table 2.

Table 3 summarizes the characteristics of the conventional
SM controllers and the proposed SM controller. The constant
SMC [27] utilizes the continuous approximation of signum
function to converge the sliding surface to zero and requires a
high SMC gain to overcome model uncertainty and external
disturbance. The adaptive SMC [29] reduces chattering by
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TABLE 4. Gain parameters of the proposed SMC.

FIGURE 9. Steering angle and steering rate.

FIGURE 10. Lateral offset error and heading error.

using fuzzy logic and by making SMC gain proportional
to the sliding surface, but does not use the disturbance
estimation suggested in this study. The gain parameters of the
proposed SMC are shown in Table 4.

A. LANE KEEPING TEST
The lane keeping performance are compared in terms of
chattering and lateral offset error. As illustrated in Fig.9,
there is some chattering in the steering angle with the
constant SMC, a little chattering with the adaptive SMC,
and almost no chattering with the proposed SMC. The
chattering phenomena are seen more clearly in the steering
rate when driving on the curved section. The proposed
controller provides stable steering input with no chattering
mainly because the modeling errors are compensated and the
controller gain is relatively small.

RMSE =

√√√√ n∑
i=1

(ŷi − yi)
2

n
(34)

The lateral offset error in lane keeping is very important
for autonomous bus because of larger width and overhang

FIGURE 11. Comparison of cornering trajectories.

FIGURE 12. Calculated stiffness gain and cornering stiffness bias.

TABLE 5. Root mean square error of control.

of the bus. Figure 10 shows that the proposed controller
significantly outperforms the other controllers. In the curved
section, lateral offset errors of the constant SMC and the
adaptive SMC exceed 0.5 m, but the lateral error of the
proposed SMC is less than 0.3 m. In addition, the proposed
SMC shows the smallest heading error than the other SMCs,
suggesting that the controlled bus is most likely to stay in the
lane. Figure 11 illustrates lateral offset error of each controller
with respect to the centerline. The root mean square values of
lateral offset error and heading error are listed Table 5 for each
controller.

During the simulation, the stiffness gain and the cornering
stiffness bias are calculated using (20) and their values
are shown in Fig.12. These results demonstrate how the
estimated disturbance is used to update the modeling errors in
real-time.

B. MODEL UNCERTAINTY TEST
The control performnance against model uncertainty is
verified when the bus weight changes by 20%, 50%, and
100%, respectively. The maximum values of the lateral
offset error are compared for the three SMC controllers in
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FIGURE 13. Lateral offset error with weight change.

Fig.13. Their RMSE values are also listed in parentheses.
While the proposed SMC controller produced a small
increase to 0.33 m when mass is doubled, the adaptive SMC
showed a large increase to 0.75 m and the constant SMC
showed even larger increase to 1.02 m. Therefore, it can be
confirmed that the proposed controller not only improves
lane keeping performance compared to the conventional SMC
controllers, but also improves robustness against the model
uncertainty.

V. EXPERIMENTAL TEST
Experimental tests were conducted to verify the lateral
control performance of autonomous bus. The test site is
shown in Fig.14 where GPS trajectories of the bus are
compared with the digital map to evaluate the lane keeping
performance. During the experiment, five people, including
the driver, boarded the autonomous bus. Figure 15.(a) shows
the picture of the test bus whichwasmodified for autonomous
driving and Figure 15.(b) depicts the overall sensor and
hardware configuration. Lidar and Radar sensors are installed
at front and rear for obstacle detection and a vision sensor is
utilized for lane detection. In addition, a DGPS (Differential
Global Positioning System) sensor is mounted on the top
of the bus to track its location in real time. The algorithm
of the proposed SMC controller is embedded into the RCP
(Rapid Control Prototyping) device for real-time testing and
all the sensor data is stored in the embedded PC through CAN
network.

The vehicle parameters in Table 2 are used again for the
proposed controller in experiments. The look-ahead distance
is set by considering the speed and time delay in control. The
look-ahead distance should increase with speed because the
side slip angle increases with speed and the increase in side
slip results in bigger heading error. The time delay in control
includes the latency of the embedded PC, CAN network delay
and the actuator delay of the steering wheel. Based on the
repeated experiments, the look-ahead distance is set to change
from 10 m to 30 m.

FIGURE 14. The test site for bus driving test.

FIGURE 15. Modified bus for self-driving tests (a) Front view of the
modified bus (b) Overall sensor and hardware configuration.

TABLE 6. Lateral offset and Heading errors in experiments.

A. LANE KEEPING TEST
The lane keeping experiment is conducted using the proposed
control system. The track is composed of straight and
curved sections similarly to the simulation environment.
Total driving time is 5 minutes, and the average velocity
is kept constant at 50 km/h through the in-built cruise
controller of the bus. A skilled human driver runs on the
same track at 50 km/h as illustrated in Fig.16. The lateral
offset error and heading error are compared in Fig.17 and
Fig.18, respectively. The proposed control system performs
better lane keeping maneuver than the human driver in terms
of centering performance.
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FIGURE 16. Recorded data of the proposed control system and human
driver (a) Lane curvature. (b) Longitudinal velocity.

FIGURE 17. Lateral offset errors in experiments.

FIGURE 18. Heading errors in experiments.

The maximum lateral offset and heading errors are com-
pared in Table 6 for the human driver and the proposed control
system. The RMSE values are also listed in parentheses.
The maximum error of the lateral offset from the proposed
controller are about 63% smaller than the human driver. The
human driver, unlike the control system, does not maintain
a consistent look-ahead distance. Instead, the driver seeks to
maintain centering by prioritizing road curvature on a curved
track, which can result in bias in lateral position and heading.

B. LANE CHANGE TEST
The lane change experiment is conducted on a straight
road with the longitudinal velocity at 40 km/h. The lane
change path is generated by the optimization process and
the sampling-based re-routing. After the bus moved into
the next lane, the lane change maneuver is terminated and
switched back to the lane keeping maneuver. During the

FIGURE 19. Actual and planned lane change trajectories in experiments.

FIGURE 20. Lateral displacement data in lane change test.

FIGURE 21. Lateral acceleration and yaw rate during lane change
experiments.

mode-transition process, interpolation between lane change
and lane keeping is utilized to prevent rapid changes in the
path.

Figure 19 depicts the real-time generation of a lane change
path by the Path Plannermodule during the Lane Change field
test. In order to express the planned path in GPS coordinates,
it is transformed from the vehicle coordinate system using
the autonomous bus’ current position as the reference. The
path is mapped onto Google Earth, showing the lane change
performance of the autonomous bus as recorded by the
DGPS module. The lane change maneuver is designed to
laterally move the vehicle by 3.5m, equivalent to the lane
width, from the centerline of the current lane. This figure
provides visual evidence of the successful tracking of the
lane change maneuvering by the controller, as intended by
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the Path Planner. Additionally, Figure 20 illustrates the lateral
displacement data to assess the control system’ performance
in achieving the desired lane change. Figure 20 also shows
the smoothness of the transition process between the lane
change and lane keeping maneuvers without lane departure.
The experimental results demonstrate that lateral acceleration
and yaw rate constraints are satisfied within the bounds as
illustrated in Fig.21.

VI. CONCLUSION
In this paper, a lateral control system for autonomous
bus is developed such that robust control performance
is enhanced with respect to model uncertainties and that
the dynamic constraints of the bus is considered. Model
uncertainties due to weight change and speed in bus are
estimated based on the disturbance observer and used to
update the cornering stiffness at front and rear wheels in real
time. The optimal path planning and search-based planning
methods are combined to generate a trajectory to prevent
lane departure and to minimize lateral jerk. The Sliding
Mode Controller (SMC) is designed based on the updated
model to ensure the control performance in lateral motion
of autonomous bus. Simulation results demonstrate that the
proposed lateral control system provides reduced chattering,
improved lane keeping and robust performance than the
conventional SMC controllers. Furthermore, experimental
results with the proposed lateral control system showed
better lane keeping performance than an expert human
driver and achieves smooth lane change maneuvering while
satisfying the dynamic constraints set by the path planner.
In future research, the model uncertainties will be further
investigated in experiments with varying speed and weight
to validate the proposed control system in path following
performance. In addition, other control approaches according
to the curvature of the lane will be further studied for the
stability and ride comfort of autonomous buses.

APPENDIX A VEHICLE PARAMETERS
The vehicle parameters used in (17) are given as follows:

ā22 = −
2C̄af (1 + kc)

mVx
, ā23 =

2C̄af (1 + kc)
m

ā24 =
2C̄af (−lf + kc · lr )

mVx
, ā42 =

2C̄af (−lf + kc · lr )
IzVx

ā43 =
2C̄af (lf − kc · lr )

Iz
, ā44 =

−2C̄af (lf 2 + kc · lr 2)
IzVx

b̄2=
2C̄af

m
, b̄4 =

2C̄af · lf
Iz

c̄2=
2C̄af (−lf + kc · lr )

mVx
− Vx , c̄4 =

−2C̄af (lf 2+ kc · lr 2)
IzVx

1a22=−
21Caf (1+ kc)

mVx
,1a23 =

21Caf (1+ kc)
m

1a24=
21Caf (−lf+ kc · lr )

mVx
,1a42 =

21Caf (−lf + kc · lr )
IzVx

1a43 =
21Caf (lf−kc · lr )

Iz
,1a44= −

21Caf (lf 2+kc · lr 2)
IzVx

1b2 =
21Caf
m

,1b4=
21Caf · lf

Iz

1c2 =
21Caf (−lf + kc · lr )

mVx
,1c4=−

21Caf (lf 2+ kc · lr 2)
IzVx
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