
applied  
sciences

Article

Analysis on Tunnel Field-Effect Transistor with
Asymmetric Spacer

Hyun Woo Kim 1 and Daewoong Kwon 2,*
1 Inter-University Semiconductor Research Center, Department of Electrical and with the Department of

Computer Engineering, Seoul National University, Seoul 08826, Korea; rabongdam@gmail.com
2 Department of Electrical Engineering, Inha University, Incheon 22212, Korea
* Correspondence: dw79kwon@inha.ac.kr

Received: 26 March 2020; Accepted: 21 April 2020; Published: 27 April 2020
����������
�������

Abstract: Tunnel field-effect transistor (Tunnel FET) with asymmetric spacer is proposed to obtain
high on-current and reduced inverter delay simultaneously. In order to analyze the proposed Tunnel
FET, electrical characteristics are evaluated by technology computer-aided design (TCAD) simulations
with calibrated tunneling model parameters. The impact of the spacer κ values on tunneling rate is
investigated with the symmetric spacer. As the κ values of the spacer increase, the on-current becomes
enhanced since tunneling probabilities are increased by the fringing field through the spacer. However,
on the drain-side, that fringing field through the drain-side spacer increases ambipolar current and
gate-to-drain capacitance, which degrades leakage property and switching response. Therefore,
the drain-side low-κ spacer, which makes the low fringing field, is adapted asymmetrically with the
source-side high-κ spacer. This asymmetric spacer results in the reduction of gate-to-drain capacitance
and switching delay with the improved on-current induced by the source-side high-κ spacer.

Keywords: tunnel FET; high-κ spacer; subthreshold swing; miller capacitance; band-to-band tunneling

1. Introduction

Over the past several decades, transistor dimensions have been continuously scaled down to
make switching speed faster and to increase integration density, in accordance with Moore’s Law [1].
However, device scaling induces many critical issues, such as short-channel effects (SCEs) and high
leakage current. To overcome these challenges, conventional planar metal oxide semiconductor
field-effect-transistor (MOSFET) is changed to multi-gated (MG) FETs (e.g., FinFETs), which have better
gate controllability, resulting in high on/off current ratio with good SCEs [2]. Recently, various device
architectures have been studied as the next generation devices beyond FinFET [3–13]. One of the key
concerns is to have steep subthreshold swing (SS), which makes low supply voltage operations, because
most portable electronic devices demand low power consumption to keep them operating for a long
time. Tunnel field-effect transistor (Tunnel FET) is one of candidates for SS of sub-60 mV/dec. Tunnel
FETs use band-to-band tunneling (BTBT) as a carrier injection mechanism in contrast to MOSFETs,
which have SS limitation (>60 mV/dec) by thermionic emission at room temperature. An n-type tunnel
FET consists of a p-type source, intrinsic channel, and n-type drain and, thus, it is compatible with
a conventional MOSFET process, since only the source dopant type is changed. Although it has a
low leakage current and temperature sensitivity compared to MOSFETs, it has, in addition, smaller
on-current due to high tunneling resistance by a small tunneling region. Therefore, to boost tunneling
current, many researchers have proposed using low bandgap material, such as silicon-germanium and
III-IV compound materials, pocket doping techniques, and line-tunneling [14–21]. Another problem is
that ambipolar current flowing from channel to drain by tunneling at off-state causes an increase of
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power consumption [22]. Accordingly, many groups who are studying tunnel FETs have applied the
underlap junction between gate and drain and low drain doping to suppress ambipolar current.

Here, a silicon tunnel FET with high- and low-κ spacers on source- and drain-side, respectively,
is proposed with line-tunneling to improve the on/off current and switching speed. In general, using a
high-κ spacer in the conventional tunnel FET (i.e., there is no line-tunneling) is not an effective solution
to improve on-current, because the fringing field makes the source energy band depleted, leading
to high tunneling resistance [23,24]. That’s why additional source-to-channel junction optimization
or low-κ spacer are required to improve the tunneling current. On the contrary, in tunnel FET with
line-tunneling, fringing field effects improve the tunneling current without any junction optimization.
This is because the area underneath the spacer is not source, but an epitaxially grown silicon channel
region. Therefore, the higher fringing field is applied, the larger BTBT is generated between the
channel and source region. However, in spite of the line-tunneling scheme, the high-κ spacer approach,
unfortunately, degrades gate-to-drain capacitance by a higher fringing field, which affects poor
switching characteristics. That is why the low-κ spacer is intentionally formed on the drain-side
as asymmetric spacer. Consequently, the proposed architecture gives better alternating current
(AC) switching characteristics by increasing on-current and decreasing gate-to-drain capacitance,
simultaneously. In addition, the process integration for the asymmetric spacer is introduced in terms
of process feasibility.

2. Device Structure and Parameters

Figure 1 shows the silicon tunnel FET structure used in the simulations. Double gate and
tunnel region underneath the gates are adapted to enhance gate controllability and tunneling current
drivability. Tunnel region thickness (4 nm) and source overlap length (20 nm) are used, respectively.
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Figure 1. The schematic of the proposed tunnel field-effect transistor (FET), which have double gate,
asymmetric spacers, and a tunnel channel region to improve the tunneling current.

In addition, equivalent oxide thickness (EOT) of 1 nm and body thickness of 20 nm are applied
to assume high-κ dielectric and double gate structure. The drain is underlapped with the gates to
suppress ambipolar current at off-state and it can be easily formed with conventional self-align process.
Other detailed parameters used in the technology computer-aided design (TCAD) simulations are
described in Table 1. Among the parameters, only spacer thickness and dielectric constant are variable
to optimize the electrical performances of the tunnel FET. All device evaluations are performed by
commercial tools of SentaurusTM (Synopsys, Mountain View, CA, USA) [25]. For accurate analysis on
the tunneling current, the dynamic nonlocal BTBT model is activated in the whole regions, and used
with experimentally calibrated Kane’s parameters, which are F0 = 1 V/m and P = 2.5 for indirect BTBT,
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ASi = 4 × 1014 cm−3
·s−1 and BSi = 9.9 × 106 V·cm−1, respectively [26,27]. Furthermore, the Slotboom

model is applied to consider the impact of heavy doping on bandgap narrowing in the source region.

Table 1. Structure dimensions used in technology computer-aided design (TCAD) simulation.

Definition Parameter Value

Gate Length Lgate 100 nm
Equivalent Oxide Thickness Tox 1 nm

Spacer Thickness Lspc 0–10 nm
Spacer Dielectric Constant κspc 3.9–25

Body Thickness Tbody 20 nm
Tunnel Region Thickness Ttunnel 4 nm
Drain Underlap Length Lunder 10 nm
Tunnel Region Doping Ntunnel 1 × 1017 cm−3

Source Doping Nsource 2 × 1020 cm−3

Drain Doping Ndrain 1 × 1020 cm−3

Moreover, fermi statistics, drift-diffusion, and the Shockley–Read–Hall recombination model are
also used. However, trap-assisted tunneling and gate leakage current are ignored for this work because
it is focused on the effects of the asymmetric spacer technique.

3. Results and Discussions

Figure 2a shows the transfer characteristics with different κ values of spacers while keeping their
thickness of 10 nm. The κ values of spacers are 3.9, 7.0, 9.0, 15.0, and 25.0, which correspond to SiO2,
Si3N4, Al2O3, Y2O3, and HfO2, respectively [28]. In the subthreshold region (0.0 V < VGS < 0.35 V),
drain current is independent of κ values because tunneling mainly occurs between the source and
tunnel region under the gate, without the effects of the fringing field through spacers. From VGS = 0.35 V,
drain current starts to increase with increasing κ value. Improved current drivability can be also
observed in the output characteristics as shown in Figure 2b. At VDS = 1.0 V, drain current with the
spacer κ = 25.0 is enhanced more than two times compared to that with the spacer κ = 3.9. In order
to check the performance improvement by high-κ spacer, BTBT rates are analyzed in the channel
region underneath the spacer. Figure 3a describes the two-dimensional (2D) contour on the electron
tunneling rate with the spacer of κ = 3.9 and 25 at VDS/VGS = 1.0 V/1.0 V. In case of κ = 3.9, the tunneling
occurrence is negligible in the channel under the spacer region (dashed red square). That means silicon
oxide does not give strong fringing field enough to improve tunneling probabilities. On the other
hand, high tunneling rates can be seen by increasing the fringing field under the spacer region when
the spacer of κ = 25 is used. Figure 3b indicates the averaged electron tunneling rate in the specific
region under the spacer. In case of κ = 25, tunneling induced by the fringing field starts to occur from
VGS = 0.31 V and continues to increase.

However, when κ values become smaller, tunneling is generated by the fringing field at the larger
VGS. For κ = 3.9, it even starts from VGS = 0.9 V by the low fringing field. The difference of the tunneling
turn-on voltage between κ = 3.9 and κ = 25 is almost 0.6 V. Based on these results, it is obvious that
high-κ spacer is more suitable for low power and high performance devices. Averaged electric fields
under the spacer are also checked according to different κ values in Figure 3c, where the electric fields
linearly increase as a function of VGS, regardless of κ values. Compared to the electric field with κ = 3.9,
the absolute electric field is more than doubled for κ = 25, leading to higher current drivability.
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Figure 2. (a) Transfer characteristics at VDS = 1.0 V (b) output characteristics at VGS = 1.0 V with
different κ values of spacers.
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Figure 3. (a) Two-dimensional (2D) contour mapping of electron tunneling rate at VGS = 1.0 V for the
spacers with κ = 3.9 and κ = 25. (b) Averaged electron tunneling rate, and (c) averaged electric field at
VDS = 1.0 V in the channel region under the spacer.
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Although the impacts of the spacer κ values on the electrical characteristics of the proposed tunnel
FET is studied with the fixed spacer thickness of 10 nm, the effects of the spacer thickness variation
should be evaluated when considering the process feasibility. Typical high-κ materials are formed by
using atomic layer deposition (ALD), which is a thin-film deposition technique based on the sequential
use of a gas phase chemical process. Since the ALD is a very time-consuming process, it has been
generally considered for thin film less than 10 nm. If the thick spacer is required for high fringing field,
it would be one of the most serious obstacles against mass production. Therefore, the sensitivities on
the reduction of the spacer thickness are simulated for thickness optimization. Figure 4 shows the
transfer characteristics with various spacer thicknesses. As the thickness increases, the drain current is
improved from VGS = 0.35 V by the increased fringing field through the spacer and the improvement
is saturated from thicker than 3 nm. It means that a too thick spacer is not necessary to get the high
fringing field, and it is advantageous to use the ALD process.
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Figure 4. Transfer characteristics with various spacer thickness (1–5 nm) based on κ = 25.

However, there are disadvantages when the high-κ spacer is applied. First, ambipolar current
becomes increased due to the enhanced fringing field between gate and drain as well as between gate
and source. Thus, with the larger κ values of the spacer, both on-current and ambipolar current are
increased simultaneously (Figure 2a) although the drain-side underlap is used. Figure 5a shows the 2D
contour on electron tunneling rate (off-state) with the spacer of κ = 3.9 and 25 at VDS/VGS = 1.0 V/−0.3 V.
Compared to κ = 3.9, more electron tunneling is generated between the channel and the drain for κ = 25.
The amount of the increased tunneling is around ten times in the case of the high-κ spacer (Figure 5b).
Second, gate-to-drain Miller capacitance gets increasing due to the enhanced fringing field by using
high-κ spacer. In tunnel FETs, the AC performance is limited by Miller capacitance effects, which
induce voltage overshoot and undershoot in transient responses, unlike conventional MOSFETs [29].
It causes severe inverter delay. Therefore, the gate-to-drain capacitance is checked with respect to
VGS for the different κ values of the drain-side spacer in Figure 6. To evaluate the impacts on the
different κ values, the gate-to-drain capacitance is separated into each capacitance component. Except
for inversion capacitance, the gate-to-drain capacitance consists of inner-fringing, outer-fringing, and
direct overlap capacitance as parasitic capacitances. However, in this study, ideal junction is assumed
so that direct overlap capacitance can be ignored. Hence, only the outer-fringing capacitance related to
the κ values can be extracted when the channel is in accumulation (VGS = −1.0 V).
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Figure 5. (a) 2D contour mapping of electron tunneling rate at VGS = −0.3 V and VDS = 1.0 V for the
spacers with κ = 3.9 and κ = 25. (b) One-dimensional (1D) energy band diagram along the channel
direction and electron tunneling rate between the channel and drain.
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Figure 6. Gate-to-drain capacitance-voltage characteristics at VDS = 0.0 V with different κ values of
spacer. Outer fringing gate-to-drain capacitance (Cof) can be extracted at VGS = −1.0 V based on
ideal junction.

This is because the inner-fringing capacitance component can be removed by the accumulation
charge layer. In the case of the spacer with κ = 25, the outer-fringing capacitance goes up by
78% compared to κ = 3.9, and the increase of this parasitic capacitance makes the switching
characteristics worse.

To improve the inverter delay caused by the large gate-to-drain capacitance, the tunnel FET
with asymmetric spacers is proposed. The tunnel FET has the source-side high-κ spacer to boost the
on-current, whereas the low-κ spacer is formed on the drain-side to decrease the ambipolar current and
the outer-fringing capacitance. Figure 7a shows the gate-to-drain capacitance characteristics with the
symmetric high-κ spacer (κ = 25) and the asymmetric high/low-κ spacer (κ = 25/3.9). It is clearly shown
that the outer-fringing capacitance decreases due to the reduced dielectric constant with the negligible
effects on the source-side. In terms of the switching speed, inverter characteristics are analyzed with
the symmetric and the asymmetric spacers, as shown in Figure 7b. Through transient simulations,
the falling delay, which is defined by the time difference between input and output voltages at half
supply voltage, is extracted as the indicator of an inverter response. As a result, each falling delay
is 0.38 ns, 0.20 ns, and 0.18 ns for the symmetric low-κ spacer (κ = 3.9), the symmetric high-κ spacer
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(κ = 25), and the asymmetric high/low-κ spacer (κ = 25/3.9). By using the symmetric high-κ spacer,
switching characteristics get improved by 47% due to the on-current enhancement.
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Figure 7. (a) Gate-to-drain capacitance-voltage characteristics at VDS = 0.0 V with symmetric high-κ
spacer (κ = 25) and asymmetric high/low-κ spacer (κ = 25/3.9). (b) Inverter response characteristics
with symmetric low-κ spacer (blue), symmetric high-κ spacer (green), and asymmetric high/low-κ
spacer (red).

Furthermore, the additional 10% improvement is achieved by the reduced gate-to-drain capacitance
using the drain-side low-κ spacer.

The proposed tunnel FET structure can be integrated as shown in Figure 8. First, oxide/poly-Si
are sequentially deposited on silicon-on-insulator (SOI) wafer for the asymmetric spacer process
(Figure 8a). After the drain-side is opened by photolithography and etching, the low-κ spacer is
formed using deposition and etching. Then, self-aligned drain is defined using ion implantation
process (Figure 8b). To passivate the drain side during subsequent processes, oxide is deposited on
the whole region and the oxide planarization is performed by the chemical mechanical polishing
(CMP) process. For the line tunneling region under a part of gate region, nitride spacer is formed
on the oxide as a hard mask after the poly-Si is fully removed by using chemical etchant (Figure 8c).
The oxide and partial SOI etching are carried out in sequence, and ion is implanted for the source
region. On the partially etched SOI region, the selective epitaxy growth (SEG) layer, which can
enhance tunneling current, can be deposited without doping (Figure 8d). After that, dopant activation
is adapted and nitride spacer formation is applied again, which can determine the line tunneling
area with self-alignment. Then, source-side high-κ spacer is formed to boost the tunneling current
(Figure 8e), and oxide is deposited and planarized as interlayer dielectric (ILD). Finally, nitride and
oxide are selectively etched out and replaced with ALD interfacial oxide, high-κ insulator, and metal
gate (Figure 8f). Back-end-of-line (BEOL) flows are skipped because it is the same as the conventional
complementary MOS (CMOS) process.
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gate process.

4. Conclusions

In this study, the tunnel FET with asymmetric spacers is proposed and analyzed compared to
that with the symmetric spacer by using TCAD simulations. Although the high-κ spacer gives a large
fringing field and improves on-current, there are drawbacks, such as the increase of ambipolar current
and gate-to-drain capacitance. In order to solve these disadvantages, the asymmetric spacer is applied
and it can reduce ambipolar current and gate-to-drain capacitance by mitigating the fringing field
between the gate and drain. As a result, the tunnel FET with asymmetric spacers can improve the
switching characteristics by 52%. In addition, in terms of process feasibility, the fabrication flow of the
proposed tunnel FET is introduced, considering CMOS compatibility.
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