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a b s t r a c t

Although deep learning has achieved a milestone in forecasting the El Niño-Southern Oscillation (ENSO),
the current models are insufficient to simulate diverse characteristics of the ENSO, which depends on the
calendar season. Consequently, a model was generated for specific seasons which indicates these models
did not consider physical constraints between different target seasons and forecast lead times, thereby
leading to arbitrary fluctuations in the predicted time series. To overcome this problem and account
for ENSO seasonality, we developed an all-season convolutional neural network (A_CNN) model. The cor-
relation skill of the ENSO index was particularly improved for forecasts of the boreal spring, which is the
most challenging season to predict. Moreover, activation map values indicated a clear time evolution
with increasing forecast lead time. The study findings reveal the comprehensive role of various climate
precursors of ENSO events that act differently over time, thus indicating the potential of the A_CNN
model as a diagnostic tool.
� 2021 Science China Press. Published by Elsevier B.V. and Science China Press. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The behavior of El Niño-Southern Oscillation (ENSO) events can
be distinguished based on calendar months [1–3]; an ENSO event
typically begins to develop during boreal spring, rapidly grows
during summer and autumn, and exhibits maximum amplitude
in winter. This ‘‘seasonal phase-locking” of ENSO is caused by sea-
sonal variations in the atmospheric response to a certain sea sur-
face temperature (SST) [1,4–7] and oceans’ basic states [2,8,9].

Seasonal ENSO phase-locking is a primary cause of seasonality
in ENSO forecasting accuracy. The forecasting accuracy, a product
of various dynamical and statistical models, tends to remain high
during the boreal winter when ENSO events are in the mature
phase. Contrastingly, it decreases rapidly during the boreal spring
when the ENSO event starts to grow [10–12]. This unique feature
of ENSO forecasts is often referred to as the ‘‘spring predictability
barrier” [13,14].

In addition, ENSO forecasting accuracy involves seasonality
because the significance of the ENSO precursor varies strongly with
respect to the seasons. For example, the Indian Ocean Dipole (IOD),
a well-studied precursor of the ENSO [15], peaks during boreal fall
[16]; however, it is negligible in other seasons. Therefore, the IOD
can be an optimal predictor only for forecasts initialized in a boreal
fall [17]. Other well-known ENSO predictors (e.g., Atlantic Niño
[18,19], North Tropical Atlantic SST [20], and Western Hemispheric
Warm Pool [21]) additionally exhibit strong seasonality in their
amplitudes; therefore, they are effective predictors only for a par-
ticular season. In other words, an ENSO precursor for a specific sea-
son would not be optimal for the remaining seasons.

As a reflection of predictor-specific seasonality, the deep
learning-based ENSO forecast model proposed by Ham et al. [22]
(hereafter referred to as H19) was formulated independently for
each target season and forecast lead months. To produce 2-year
ENSO forecasts for all target seasons, the number of H19 models
required is 276 (that is, 23 (lead months) � 12 (target seasons)).
Even though the follow-up studies developed deep learning mod-
els using the Convolutional Long Short-Term Memory Network
(ConvLSTM) [23], LSTM [24], and the variant of the Convolutional
Neural Network (CNN) [25], these models were also formulated
separately according to the input season, which implies that the
current deep learning models were not successful in simulating
seasonally dependent diverse characteristics of the ENSO.

In addition, as the forecast results are independently generated
through separate H19 models for each lead month, the predicted
time series becomes less consistent over time. For instance, the
predicted ENSO index of the H19 model contains an arbitrary
month-to-month variation that is not perceived in the observation.
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The most intuitive solution to this problem is to formulate the sin-
gle H19 model for all target seasons and forecast lead months.
However, training all-month samples as a single set of data consid-
erably degrades forecast accuracy of the ENSO events (Fig. S1a
online).

The skill degradation in the H19 model trained by all–month
samples might be due to the lack of proper consideration of the
varying characteristics of different seasons in climate samples.
The seasonally varying climatological states significantly modulate
the strength of several air–sea coupled feedbacks (such as Wind-
Evaporation-SST feedback, Cloud-Radiation-SST feedback, and
Bjerknes feedback) [26,27]. Therefore, the time-evolution of the
oceanic/atmospheric variables greatly differs from season to sea-
son even if the state vectors at the initial stage are almost similar.
Hence, without accurate recognition of seasonality, the character-
istics of the ENSO events in all-month climate samples are exces-
sively diverse and cannot be expressed in a single set of model
parameters. Thus, it is necessary to modify the H19 models to
accurately recognize the differences in the ENSO characteristics
for different seasons.
2. Methods

2.1. Convolutional neural network (CNN) model for all seasons

As shown in Fig. 1, the CNN for all seasons (denoted as All-
Season CNN (A_CNN) hereafter) for ENSO forecasts is composed
of an input layer, three convolutional layers, two pooling layers,
two fully connected layers, and an output layer. The A_CNN takes
gridded data of the SST, and the oceanic heat content (HC, defined
as the vertically averaged oceanic temperature from the surface to
300 m) anomalies for three consecutive months with a dimension
of 72 � 24 � 6 (5� � 5� degree over 0�–360�E, 55�S–60�N) as input,
and produces a total of 35 nodes, of which 23 nodes are Niño3.4
index (i.e., area-averaged SST anomaly over 170�–120�W, 5�S–
5�N) from 1 to 23-lead months and 12 nodes are probability vec-
tors that denote the observed calendar month of the input variable.

To obtain the probability, a softmax classifier is utilized to nor-
malize the sum of the output values to one. Therefore, the output
of the softmax classifier can be thought of as the likelihood for each
class. The softmax function r is defined as follows:

r xið Þ ¼ exp xið ÞP12
j¼1exp xj

� � ; ð1Þ

where xi represents the input of the softmax classifier for output
node i (of which there are 12 in this study). During labeling, each
calendar month of the input variable is represented using a 12-
dimensional one-hot vector [28], and a one-hot vector denotes a
specific calendar month of the input variable. For example, the cli-
×
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Fig. 1. Architecture of the All-season CNN (A_CNN) model for ENSO forecasts. The A_CNN
max-pooling layers, and two fully connected layers. There are two types of output variab
average Niño3.4 index from s + 0 to s + 22 and one 12-dimension probability vector tha
input layer correspond to the SST and the oceanic heat content anomaly maps from
convolutional kernels (which is 35 in this study), while N denotes the number of nodes
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mate sample during the March-April-May (MAM) season is denoted
as [0,0,1,0,0,0,0,0,0,0,0,0].

The softmax classifier with a dimension of 12 to denote the
observed calendar months in the output layer is a significant mod-
ification to A_CNN when compared to H19. With this modification,
the weighting coefficient in the model is expected to become a
function of the calendar month, enabling the model to predict
ENSO events while considering seasonality. While the H19 models
are formulated separately for each target season and forecast lead
month, the A_CNNmodel can be used universally for all target sea-
sons and all lead months. Note that the overall performance of the
A_CNN is quite similar to that of the CNN which adds the calendar
month information to the neuron in the 2nd FC layer (not shown
here). However, by adding the calendar month information in the
output layer, it is advantageous to analyze the degree of recogni-
tion of the calendar months in the samples can be quantified by
comparing the predicted calendar month to the true observed
month.

The kernel size of the convolutional layers is 8� 4, 4� 2, 4� 2,
respectively. Spatial pooling is carried out between each convolu-
tion layer by a 2� 2 max-pooling layer with a stride of 2. The total
number of convolutional kernels and nodes in the fully connected
layers is determined using hyperparameter tuning [29], which is
set to 35 and 50, respectively. We generated 40 ensemble members
with different random initial weights, and the predicted Niño3.4
indices and the one-hot vector value were averaged to obtain the
final forecast results.

We applied transfer learning [22]. During the initial training,
the size of the batch for each epoch was set to 400, and we applied
early stopping by using an independent validation dataset. For
fine-tuning, the number of epochs is set to 40. The hyperbolic tan-
gent function (tanh) is chosen as an activation function to consider
the symmetric feature between El Niño and La Niña. The Xavier ini-
tialization is applied to define the initial weights [30]. A_CNN uti-
lizes an Adam optimizer [31]. The learning rate was fixed at 0.005
for the 1st training and 0.0005 for the 2nd training. Regularization
and dropout were not used. Our source code is available at https://
github.com/jeonghwan723/A_CNN.

2.2. The loss function

The loss function (L) of A_CNN is defined as the sum of the mean
square error for the Niño3.4 index and the cross-entropy for calen-
dar months:

L ¼ a
1
23

X23
i¼1

bNi � Ni

� �2 !
� 1� að Þ

X12
j¼1

Mj log bMj

 !
: ð2Þ

Here, N(bN) and M( bM) denote the observed (predicted) Niño3.4
index, and the class denoting the calendar months of the input vari-
ables, respectively. i and j denote the forecast lead and calendar
Niño3.4
(23-value)

Initial season
(12-way softmax)

×6×M) (N) (N)

JFM FMA DJF

model comprises one input layer (a.k.a., predictor), three convolutional layers, two
les (a.k.a., predictands): one with 23 scalar values that denote the 3-month moving
t denotes the observed calendar months of the input variable. The variables of the
time s–3 to s–1, between 0�–360�E and 55�S–60�N. M denotes the number of
in the FC layer (which is 50 in this study).
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months, respectively. a is a parameter that determines the weight-
ing between the categorical forecast (for predicting calendar
month) and the Niño3.4 forecast, which is determined as 0.8
through hyperparameter tuning [29].
2.3. Reanalysis data

A 103 years of the monthly mean SST and heat content data
from the reanalysis data (between years 1871 and 1973) from
the Simple Ocean Data Assimilation version 2.2.416 [32] were used
for fine-tuning of the CNN model. The reanalysis product after
1974 was not used in any training process to ensure that the train-
ing and validation periods are independent of each other. To test
the performance of the model by comparison with the observed
values, the Global Ocean Data Assimilation System reanalysis dur-
ing 1984–2017 was used [33]. For training the CNNmodel, the hor-
izontal resolution is coarsened to 5� � 5� to reduce the number of
weights [22], and for the analysis, the original horizontal resolution
(i.e., 1� � 1�) is kept. For the CNN model training, the domain over
0�–360�E, 55�S–60�N is utilized. All the observed data are used as a
form of the anomaly, which is defined as a deviation from the long-
term time-mean values at the corresponding calendar month.
2.4. Model simulations

The historical simulations produced by the 21 Coupled Model
Intercomparison Project phase 5 (CMIP5) [34] models were used
to train the CNN model. It is used for 1st training and validation,
and detailed information on the dataset is listed in Table S1 (on-
line). The data are prescribed as a form of the anomaly for training
the CNN models. The domain over 0�–360�E, 55�S–60�N is utilized,
and the horizontal resolution of the CMIP5 samples is coarsened to
5� � 5� degree for the CNN model training. The forecast output
from the SINTEX-F [12] during 1984–2017 was used to compare
the prediction performance of the A_CNN model.
2.5. Activation map analysis

To quantify the contribution of each grid point to the output
variable, the activation map is calculated by the following equation
[22]: note that the activation map in this study is basically same as
the Regression Activation Maps [35] to localize the discriminative
region towards the regression output, even though the CNN system
in this previous literature is different from ours in terms of usage of
a fully connected layer and the type of pooling.

hx;y ¼
XN

n¼1
tanh

XML

m¼1
Wx;y

F;m;nv
x;y
L;m

� �
þ bF;n

XLYL

� �
WO;n

� 	
þ bO

XLYL
;

ð3Þ

where hx;y denotes the activation at grid points x; yð Þ, and XL and YL

denote the dimensions of the feature map in the last (i.e., 3rd) con-
volutional layer (i.e., XL=18; YL=6). N denotes the number of neu-
rons in the fully connected layer, Wx;y

F;m;n denotes the weight at
grid point x; yð Þ (used to link the mth feature map in the last convo-
lutional layer L to the nth neuron in the fully connected layer F), vx;y

L;m

denotes the value of the mth feature map of the last convolutional
layer L at grid point x; yð Þ, bF;n denotes the bias of the nth neuron in
the fully connected layer F; WO;n denotes the weight (used to link
the nth neuron in the fully connected layer to the output layer O),
and bO denotes the bias of the output layer O.
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3. Results

3.1. Minimizing the ‘‘spring predictability barrier” problem by
incorporating seasonality in climate data

The all-season correlation skill of the Niño3.4 index in A_CNN
exhibited a similar degree to that of H19, even though the for-
mer’s correlation skill was slightly higher than those of the H19
models for the forecasts earlier than a 7-month lead (Fig. S2a
online). This demonstrates that the recognition of the seasonality
in the climate data in A_CNN allows the successful prediction of
the Niño3.4 index for all target seasons and forecast lead months
with a significantly lower computational cost. The computational
cost for formulating the A_CNN is reduced to 1/30 of that for the
H19 models.

While the superiority of the A_CNN is only shown for early
forecast lead months for all-season correlation, the increase in
the forecast skill in A_CNN is particularly robust for most of the
lead months for the forecasts initiated in the boreal spring, which
is a season that is especially difficult to predict. For example,
accuracy improvements were prominent for the forecasts initi-
ated using anomalies during the MAM season (or forecasts initi-
ated on 1st June) (Fig. 2a). The correlation skill of the Niño3.4
index in the H19 models is only 0.65 between the 4- and 10-
lead month period (i.e., between the August-September-October
(ASO)(0) and MAM(1) seasons), whereas it remained above 0.75
in the A_CNN model. The higher forecast skill in A_CNN is con-
firmed by the predicted time-series of the Niño3.4 time-series
for individual El Niño events (Fig. S3 online) and La Niña events
(Fig. S4 online). The predicted Niño3.4 index in A_CNN is system-
atically closer to the observed, than that in H19 in a larger num-
ber of forecast cases.

To confirm the skill improvement of A_CNN, we performed sta-
tistical significance testing by leveraging the bootstrap method.
First, we randomly selected the same number of ensemble mem-
bers among all ensemble members (i.e., 40) by allowing the over-
lapping. Then, we calculated the forecast skill of the ensemble
mean of the randomly selected members. This procedure is
repeated 1000 times; then, the upper and lower 2.5% values are
denoted. Therefore, the error bar denotes the 95% confidence
range. The bootstrapping test confirms that the forecast skill in
A_CNN is outside of the correlation skill range of H19, confirming
that the forecast skill in A_CNN is significantly higher than that
in H19.

This result was mainly achieved because the decrease in corre-
lation skill for the 1- to 3-month lead in A_CNN was not as severe
as that in H19, which indicated that A_CNNwas less affected by the
spring predictability barrier problem, which is a common problem
in most ENSO prediction models. For example, the correlation skill
drops to 0.7 within 4-lead months in H19, contrastingly, while it
maintains around 0.8 in the A_CNN. This fast drop in the forecast
skill is evident for most of the state-of-the-art prediction systems
[11], where the forecasts initiated on June 1st exhibit correlation
skill around 0.6 at 6-months lead; contrastingly, it reaches up to
0.75 in the A_CNN.

The successful forecasts of Niño3.4 for the forecasts initiated in
the boreal spring season are likely due to A_CNN being trained
simultaneously for all forecast lead months. As the dynamic rela-
tionship for the time evolution of the Niño3.4 for 2-year forecast
periods was implicit in the training samples for A_CNN, the pre-
dicted Niño3.4 values at the later forecast stages constrained those
at the early forecast stages. As Niño3.4 during boreal winter was
relatively easy to predict, these predictions could potentially help
determine whether an ENSO event was initiated during the preced-
ing boreal spring.



Fig. 2. Forecast accuracy of the output variables in A_CNN. (a) Correlation skill, and (b) root-mean-square-error (RMSE) of the 3-month moving average Niño3.4 index
obtained using the H19 (red) and A_CNN (blue) models for forecasts employing input data from the MAM season. Red, and blue areas denote 95% confidence range of the H19,
and A_CNN using the bootstrapping method, respectively. (c) Hit rate (ratio of the number of correctly predicted cases to the total cases, unit: %) of observed calendar months
in the input data. The black bar denotes the observed calendar months that are accurately recognized by A_CNN, whereas the gray bar denotes the observed calendar months
that are predicted with a 1-month error.
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In addition, the improvement of the ENSO forecast skill was
achieved because the A_CNN model was optimally trained with
an increased number of climate samples from all months. Com-
pared to the H19 model initialized during the MAM season, the
number of climate samples used to train the A_CNN model was
12 times larger, and it was advantageous to train the model opti-
mally. This implies that the recognition of seasonality in ENSO
events contributes to improving the ENSO forecast skill by training
with samples for all target seasons and forecast lead months
simultaneously.

To examine how thoroughly the seasonality in climate data is
recognized by the A_CNN model, Fig. 2c shows the hit rate of the
initial season in the model. The hit rate was calculated as the per-
centage of cases that correctly predicted the observed calendar
months of the input data divided by the total forecast cases. It
should be noted that we considered the probability vector output
with a 1-month error as the correct forecast because the primary
goal was the accurate recognition of the seasonality. For example,
for the case of MAM (i.e., the arguments of the maxima (arg-
max) = 3), the probability vector output denoting February-
March-April (i.e., argmax = 2) or AMJ (i.e., argmax = 4) was also
treated as the correct forecast. The hit rate was higher than 95%
for all calendar months. This demonstrated that A_CNN thoroughly
recognized the observed calendar season of input variables.
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To examine the source of seasonality in the input data, Fig. 3a
presents an activation map for the output of the softmax classifier
denoting the MAM season with given SST and HC anomalies for
MAM 1996 (see Section 2.5 for the activation map calculation).
The activation is positive for most of the globe, and the amplitude
of positive values is stronger than that of the activations for other
seasons (Fig. S5 online). This indicates that A_CNN accurately pre-
dicted the observed calendar months of the input variables for this
case.

Specifically, the positive activation is robust over the northeast-
ern Pacific, where the dipole SST anomalies are located (i.e., posi-
tive SST anomalies over the far northeastern Pacific and negative
SST anomalies over the northern Central Pacific; contours in
Fig. 3a). This dipole SST pattern over the North Pacific is similar
to the typical pattern of the Pacific Meridional Mode (PMM), which
exhibits the strongest variability during boreal spring [36,37]. To
demonstrate this point, we defined the index as the SST difference
between the northeastern Pacific box (red box in Fig. 3a) and the
northern Central Pacific box (blue box in Fig. 3a), where the SST
anomalies during MAM 1996 were the strongest. The regressed
SST fields exhibited a dipole pattern over the North Pacific (shad-
ings in Fig. 3b), which was similar to the typical spatial distribution
of the positive phase of the PMM event (contours in Fig. 3b). The
pattern correlation between them over 120�E–120�W, 5�–60�N is



Fig. 3. The imprinted seasonality in the climate data recognized by A_CNN. (a) Heat map values for the class denoting the MAM season (i.e., argmax = 3) with input variables
from MAM 1996. The contour denotes the heat content (inside the black box in the panel) or SST (outside the black box in the panel) anomalies from MAM 1996. (b)
Regression coefficients of SST anomalies during the MAM season with respect to the SST dipole index over the north Pacific (i.e., [SST averaged over 150�–120�W, 20�–45�N] -
[SST averaged over 150�E–150�W, 20�–40�N], shading) and the spatial distribution of the Pacific Meridional Mode (PMM, contour). (c) Standard deviation of the SST dipole
index over the north Pacific with respect to the calendar months.

Y.-G. Ham et al. Science Bulletin 66 (2021) 1358–1366
0.96. This SST dipole index exhibited the strongest variability dur-
ing the MAM season (Fig. 3c), thus allowing A_CNN to accurately
recognize seasonality in climate samples. The overall positive acti-
vations near the Southern Ocean might be attributed to the delay
in the remote SST response to the ENSO by a few months to exhibit
peak phase during boreal spring [38].

3.2. Physical interpretation using activation map

To compare the performance of the ENSO forecasts obtained
using the A_CNN and H19 models in greater detail, Fig. 4a shows
the predicted Niño3.4 time-series initialized during MAM 1996.
When using the H19 model, as Niño3.4 was predicted indepen-
dently using multiple models for each forecast lead month, artifi-
cial noise was observed in the predicted Niño3.4 indices between
adjacent seasons. In other words, the Niño3.4 time-series predicted
using the H19 model was not as smooth as that in the observation.
However, the predicted Niño3.4 index of A_CNN exhibited a
smooth time evolution with a similar degree to the observed index.
In addition, the Niño3.4 predicted using A_CNN was positive from
the boreal summer 1997 to boreal spring 1998, and exhibited a
peak phase during DJF 1997; by comparison, this index could not
be predicted successfully using the H19 model. We note that
although A_CNN better predicts the time evolution of the
1362
1997/98 El Niño event, there is still significant underprediction of
the total magnitude.

In addition, A_CNN exhibited clear advantages with regard to
the physical interpretations of the forecasts. The activation map
extracted from A_CNN was more spatially organized than that
from the H19 model (Fig. 4b–g). For the latter, the activation
map for 6-month lead forecasts with initial conditions during
MAM 1996 exhibits scattered positive and negative values; there-
fore, the large-scale signal is not elucidated (Fig. 4b). This prevents
a clear physical interpretation of the H19 model results. Con-
versely, the activation map from A_CNN shows large-scale signals
over the equatorial Pacific (Fig. 4e). In other words, the large-scale
negative activations, which denote the contribution to La Niña, are
prominent over the eastern Pacific, and weak positive values,
which denote the contribution to El Niño, are shown across the
western and off-equatorial central Pacific.

These activations can be explained physically. Specifically, the
negative HC anomaly over the eastern Pacific (contours in
Fig. 4e) is associated with the upwelling of the colder subsurface
temperature leading to La Niña events [39]. In contrast, the posi-
tive HC anomaly over the equatorial western Pacific and the nega-
tive HC anomaly over the off-equatorial Pacific denote the clear
recharged HC over the equatorial Pacific, which facilitates El Niño
events [40,41]. However, as the time lag of 6 months is, to a certain



Fig. 4. Comparison of heat map values for the 1997/1998 El Niño event. (a) Predicted 3-month moving average Niño3.4 time-series with input variables at MAM 1996
obtained using the H19 model (red) and A_CNN (blue). The reference time-series from 1996 to MAM 1998, determined via the reanalysis, is also shown (black). Red, and blue
areas denote 95% confidence range of the H19, and A_CNN using the bootstrapping method, respectively. Heat map values (shading) for 6- (b), 12- (c), and 18-month (d) lead
forecasts initialized with anomalies at MAM 1996 for the H19 model. Heat maps for the 6- (e), 12- (f), and 18-month (g) lead forecasts for A_CNN. The contours in panels (b)–
(g) denote the heat content (inside the black box in the panel) or SST (outside the black box in the panel) anomalies at MAM 1996.
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extent, shorter than that of the recharged equatorial HC anomalies
over the western Pacific that catalyze the El Niño signal [42], the
positive activations over the equatorial western Pacific are weaker
than the negative activations over the equatorial eastern Pacific. As
the large-scale negative activations are overwhelmed by the posi-
tive values, the final Niño3.4 prediction is weakly negative for the
6-month lead forecast (denoted by a blue circle in ASO 1996).

For the 12- and 18-month lead forecasts, the activations from
the H19 models still do not exhibit a large-scale feature. Moreover,
the spatial distribution of the activation map is significantly differ-
ent among different forecast lead months. This supports the notion
that the H19model lacks consistency in the time evolution of ENSO
events. However, in A_CNN, a large-scale cancelation between the
negative values over the eastern Pacific and positive values over
the western Pacific is evident for the 12-month lead forecasts
(Fig. 4c, f respectively). Compared to the activation map for the
6-month lead forecast, the 12-month lead forecast map shows that
the area with negative activations is diminished and that the area
1363
with positive activations is expanding. This indicates that the
recharged equatorial HC anomalies during the boreal spring over
the western Pacific can significantly intensify an El Niño event after
12 months [42]. This is also consistent with the gradual increase of
the predicted Niño3.4 index with increasing lead time, as indicated
by A_CNN.

In addition, for the 18-month lead forecast, the positive activa-
tions are overwhelmed over the entire equatorial and northeastern
Pacific. This means that the negative HC anomalies over the equa-
torial eastern Pacific can contribute to an El Niño event after
18 months. This is associated with an oscillatory feature of the
ENSO, whereby a developing La Niña signal from the boreal spring
season exhibits a peak phase in boreal winter in the same year,
then turns into an El Niño in boreal fall after 1 year (i.e., biennial
tendency of the ENSO) [43].

Another interesting feature is the positive activations over the
northeast Pacific for the 12- and 18-month lead forecasts. This
indicated that A_CNN captured the contribution of the positive



Fig. 5. Comparison of heat map values for the 2009/2010 El Niño. (a) Predicted 3-month moving average Niño3.4 time-series with input variables at MAM 2008 obtained
using the H19 model (red) and A_CNN (blue). The reference time-series from 2008 to MAM 2010, determined via the reanalysis, is also shown (black). Red, and blue areas
denote 95% confidence range of the H19, and A_CNN using the bootstrapping method, respectively. Heat map values (shading) for 6- (b), 12- (c), and 18-month (d) lead
forecasts initialized with anomalies at MAM 2008 for the H19 model. Heat maps for the 6- (e), 12- (f), and 18-month (g) lead forecasts for A_CNN. The contours in panels (b)–
(g) denote the heat content (inside the black box in the panel) or SST (outside the black box in the panel) anomalies at MAM 2008.
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phase of the PMM that sustained up to the next boreal spring (i.e.,
MAM 1997) (Fig. S6 online) [44], leading to the El Niño event dur-
ing the subsequent winter (i.e., DJF 1997/98) [45]. It should be
noted that the positive activation over the northeastern Pacific
was not observed for the 6-month lead forecast activation map,
as the time lags from PMM that affect the ENSO events are longer
than 6 months [21,38].

It is worth emphasizing that the activations under the same ini-
tial conditions exhibited changes in the forecast lead time for the
A_CNN model. For instance, the negative SST anomalies over the
equatorial eastern Pacific contributed to the La Niña signal in the
6-month lead forecast, whereas they contributed to the El Niño sig-
nal in the 18-month lead forecast. This indicates that A_CNN suc-
cessfully simulated different effects of the prescribed initial
climate signals on ENSO events for different lead times. This also
implied that A_CNN allowed a diagnosis of how the given climate
signals in the input layer influenced the time evolution of ENSO
events.
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The activation map analysis for the forecasts initialized at MAM
2008 yielded similar features (Fig. 5). In A_CNN, (1) the predicted
Niño3.4 showed a smoothed time evolution, as in the observation,
with a higher accuracy (Fig. 5a), and (2) the activations exhibited a
large-scale spatial distribution with time evolution. This confirms
the notion that (1) A_CNN performs better in predicting the initia-
tion of El Niño events, which are the most difficult to predict, and
(2) physical interpretations of the forecasts are easier when using
A_CNN. This implies that the role of a deep learning model as a
diagnostic tool can be further enhanced by implementing physical
constraints for the time evolution of ENSO events.

For the 6-month lead forecast, the negative activations in
A_CNN were prominent throughout the equatorial Pacific, with
the peak amplitude over the equatorial central-eastern Pacific.
The negative HC anomalies over the central-eastern Pacific were
responsible for the negative activation through the vertical advec-
tion of cold subsurface temperature anomalies to the surface layer.
In addition, positive activations over the Indian Ocean were also
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weakly indicated for the 6- and 12-month lead forecasts. This was,
to a certain extent, consistent with previous literature, which indi-
cates that the negative Indian Ocean SST during a previous boreal
winter can increase the Niño3.4 index after 1 year [46,47]. The acti-
vation map for the 18-month lead forecast using A_CNN exhibited
strong positive values over the equatorial western Pacific, which
indicated that the recharged HC anomalies over the western Pacific
contributed to El Niño events after 18 months (Fig. 5g). Conversely,
the positive activations were less evident in the H19 models
(Fig. 5d), which was consistent with the weaker amplitude of the
predicted Niño3.4 index in these models.
4. Discussion and conclusion

Although H19 first demonstrated that deep learning is a
promising algorithm to increase forecasting accuracy for the most
dominant climate variability, that is, ENSO, the deep learning
model in H19 was premature in terms of considering the seasonal-
ity of ENSO events. Specifically, the characteristics in the climate
data are excessively diverse between seasons; therefore, the per-
formance of the H19 model is significantly degraded once it is
trained by simultaneously using climate samples from all months.
A model should be able to recognize the seasonality in climate data
to achieve accurate forecasts of the complete time evolution of an
ENSO event.

To achieve this goal, a deep learning model for the ENSO was
developed to recognize the seasonality in the climate data. We
added the softmax classifier as an output variable that denoted
the observed calendar months of the input climate data. With this
modification, the weighting coefficients that constituted the deep
learning model became a function of the calendar months, and
the different time evolution features of the ENSO (i.e., seasonal
ENSO phase-locking) were successfully considered.

For this proposed A_CNN model, the all-season correlation skill
was slightly higher than that in H19, which demonstrated that the
unique characteristics between climate samples in different sea-
sons were accurately simulated. Specifically, the A_CNN model
performed better for forecasts starting during the boreal spring
season, as it minimized the spring predictability barrier problem.

The computational costs to formulate the deep learning model
were also significantly reduced when using A_CNN. In H19, the
total number of deep learning models for all target seasons and
all forecast periods numbered in the hundreds (i.e., 23 (lead
months) � 12 (target seasons) = 276). By comparison, a single
A_CNN model could produce ENSO forecast results for all target
seasons and all lead months. More importantly, as the physical
constraints to predict 2-year Niño3.4 time-series were imple-
mented in A_CNN, the activations exhibited a clear time evolution
with increasing lead times. This allowed for an understanding of
the comprehensive role of various climate precursors of ENSO
events that act differently over time.

This study shows that the incorporation of seasonality
imprinted in climate data benefited the deep learning model for
ENSO forecasts by appropriately considering the season-
dependent characteristics of these events (e.g., amplitude growth
rate, phase transition speed, duration, interaction with other vari-
abilities, and predictability). This modification is directly applica-
ble to other climate phenomena (such as the Madden–Julian
Oscillation and Atlantic Niño), whose characteristics are related
to their phase [48,49].
Conflict of interest

The authors declare that they have no conflict of interest.
1365
Acknowledgments

This work was supported by the National Research Foundation
of Korea (NRF)(NRF-2020R1A2C2101025).
Author contributions

Yoo-Geun Ham and Jeong-Hwan Kim designed the study. Yoo-
Geun Ham wrote the majority of the manuscript. Jeong-Hwan
Kim formulated a statistical model and conducted a hindcast
experiments. All authors contributed to the interpretation of the
results and the fine tuning of the model.
Appendix A. Supplementary materials

Supplementary materials to this article can be found online at
https://doi.org/10.1016/j.scib.2021.03.009.

References

[1] Tziperman E, Cane MA, Zebiak SE, et al. Locking of El Niño’s peak time to the
end of the calendar year in the delayed oscillator picture of ENSO. J Clim
1998;11:2191–9.

[2] An SI, Wang B. Mechanisms of locking of the El Niño and La Niña mature
phases to boreal winter. J Clim 2001;14:2164–76.

[3] Timmermann A, An SI, Jin FF, et al. El Niño-Southern Oscillation complexity.
Nature 2018;559:535–45.

[4] Tziperman E, Cane MA, Zebiak SE. Irregularity and locking to the seasonal cycle
in an ENSO prediction model as explained by the quasi-periodicity route to
chaos. J Atmos Sci 1995;52:293–306.

[5] Tziperman E, Zebiak SE, Cane MA. Mechanisms of seasonal–ENSO interaction. J
Atmos Sci 1997;54:61–71.

[6] Harrison DE, Vecchi GA. On the termination of El Niño. Geophys Res Lett
1999;26:1593–6.

[7] Vecchi GA, Harrison DE. On the termination of the 2002–03 El Niño event.
Geophys Res Lett 2003;30.

[8] Xiao H, Mechoso CR. Seasonal cycle–El Niño relationship: validation of
hypotheses. J Atmos Sci 2009;66:1633–53.

[9] Ham YG, Kug JS, Kim D, et al. What controls phase-locking of ENSO to boreal
winter in coupled GCMs? Clim Dyn 2013;40:1551–68.

[10] Webster PJ, Yang S. Monsoon and ENSO: selectively interactive systems. Q J
Roy Meteorol Soc 1992;118:877–926.

[11] Barnston AG, Tippett MK, Ranganathan M, et al. Deterministic skill of ENSO
predictions from the North American Multimodel Ensemble. Clim Dyn
2019;53:7215–34.

[12] Luo JJ, Masson S, Behera SK, et al. Extended ENSO predictions using a fully
coupled ocean–atmosphere model. J Clim 2008;21:84–93.

[13] Balmaseda MA, Davey MK, Anderson DL. Decadal and seasonal dependence of
ENSO prediction skill. J Clim 1995;8:2705–15.

[14] Levine AF, McPhaden MJ. The annual cycle in ENSO growth rate as a cause of
the spring predictability barrier. Geophys Res Lett 2015;42:5034–41.

[15] Izumo T, Vialard J, Lengaigne M, et al. Influence of the state of the Indian Ocean
Dipole on the following year’s El Niño. Nat Geosci 2010;3:168–72.

[16] Saji NH, Goswami BN, Vinayachandran PN, et al. A dipole mode in the tropical
Indian Ocean. Nature 1999;401:360–3.

[17] Dayan H, Vialard J, Izumo T, et al. Does sea surface temperature outside the
tropical Pacific contribute to enhanced ENSO predictability? Clim Dyn
2014;43:1311–25.

[18] Keenlyside NS, Latif M. Understanding equatorial Atlantic interannual
variability. J Clim 2007;20:131–42.

[19] Ding H, Keenlyside NS, Latif M. Impact of the equatorial Atlantic on the El Niño
Southern Oscillation. Clim Dyn 2012;38:1965–72.

[20] Ham YG, Kug JS, Park JY. Two distinct roles of Atlantic SSTs in ENSO variability:
north tropical Atlantic SST and Atlantic Niño. Geophys Res Lett
2013;40:4012–7.

[21] Park JH, Kug JS, Li T, et al. Predicting El Niño beyond 1-year lead: effect of the
Western Hemisphere warm pool. Sci Rep 2018;8:1–8.

[22] Ham YG, Kim JH, Luo JJ. Deep learning for multi-year ENSO forecasts. Nature
2019;573:568–72.

[23] Mahesh A, Evans M, Jain G, et al. Forecasting El Niño with convolutional and
recurrent neural networks. Abstract in 33rd conference on neural information
processing systems, 2019.

[24] Broni-Bedaiko C, Katsriku FA, Unemi T, et al. El Niño-Southern Oscillation
forecasting using complex networks analysis of lstm neural networks. Artif
Life Rob 2019;24:445–51.

[25] Yan J, Mu L, Wang L, et al. temporal convolutional networks for the advance
prediction of ENSO. Sci Rep 2020;10:1–15.

[26] Li T, Wang B, Chang CP, et al. A theory for the Indian Ocean dipole–zonal mode.
J Atmos Sci 2003;60:2119–35.

https://doi.org/10.1016/j.scib.2021.03.009
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0005
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0005
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0005
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0010
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0010
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0015
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0015
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0020
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0020
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0020
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0025
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0025
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0030
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0030
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0035
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0035
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0040
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0040
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0045
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0045
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0050
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0050
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0055
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0055
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0055
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0060
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0060
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0065
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0065
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0070
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0070
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0075
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0075
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0080
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0080
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0085
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0085
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0085
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0090
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0090
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0095
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0095
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0100
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0100
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0100
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0105
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0105
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0110
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0110
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0115
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0115
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0115
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0120
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0120
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0120
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0125
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0125
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0130
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0130


Y.-G. Ham et al. Science Bulletin 66 (2021) 1358–1366
[27] Bjerknes J. Atmospheric teleconnections from the equatorial Pacific. Mon
Weather Rev 1969;97:163–72.

[28] Harris D, Harris S. Digital design and computer architecture. 2nd ed. San
Francisco: Morgan Kaufmann; 2012. p. 129.

[29] Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine
learning algorithms. Adv Neural Inf Process Syst 2020;25:2951–9.

[30] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the thirteenth international conference on
artificial intelligence and statistics. p. 249–56.

[31] Kingma P, Diederik B, Adam LJ. A method for stochastic optimization.
arXiv:1412.6980, 2014.

[32] Giese BS, Ray S. El Niño variability in simple ocean data assimilation (SODA),
1871–2008. J Geophys Res Oceans 2011;116:C02024.

[33] Behringer DW, Xue Y. Evaluation of the global ocean data assimilation system
at NCEP: the Pacific Ocean. Proceedings of eighth symposium on integrated
observing and assimilation systems for atmosphere, oceans, and land surface
(AMS 84th Annual Meeting), 2004. and Land Surface (AMS 84th Annual
Meeting).

[34] Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment
design. Bull Am Meteorol Soc 2012;93:485–98.

[35] Wang Z, Yang J. Diabetic retinopathy detection via deep convolutional
networks for discriminative localization and visual explanation.
arXiv:1703.10757, 2017.

[36] Vimont DJ, Wallace JM, Battisti DS. The seasonal footprinting mechanism in
the Pacific: implications for ENSO. J Clim 2003;16:2668–75.

[37] Chang P, Zhang L, Saravanan R, et al. Pacific meridional mode and El Niño—
Southern oscillation. Geophys Res Lett 2007;34:L16608.

[38] Wilson AB, Bromwich DH, Hines KM, et al. El Niño flavors and their simulated
impacts on atmospheric circulation in the high southern latitudes. J Clim
2014;27:8934–55.

[39] An SI, Kang IS. A further investigation of the recharge oscillator paradigm for
ENSO using a simple coupled model with the zonal mean and eddy separated. J
Clim 2000;13:1987–93.

[40] Jin FF. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual
model. J Atmos Sci 1997;54:811–29.

[41] Ren HL, Jin FF. Recharge oscillator mechanisms in two types of ENSO. J Clim
2013;26:6506–23.

[42] Anderson BT. On the joint role of subtropical atmospheric variability and
equatorial subsurface heat content anomalies in initiating the onset of ENSO
events. J Clim 2007;20:1593–9.
1366
[43] Rasmusson EM, Wang X, Ropelewski CF. The biennial component of ENSO
variability. J Mar Syst 1990;1:71–96.

[44] Joh Y, Di Lorenzo E. Interactions between Kuroshio Extension and Central
Tropical Pacific lead to preferred decadal-timescale oscillations in Pacific
climate. Sci Rep 2019;9:1–12.

[45] Larson SM, Kirtman BP. The Pacific meridional mode as an ENSO precursor and
predictor in the North American multimodel ensemble. J Clim
2014;27:7018–32.

[46] Kug JS, Kang IS. Interactive feedback between ENSO and the Indian Ocean. J
Clim 2006;19:1784–801.

[47] Zhang F, Zhang G, Liu L, et al. The negative feedback effects of sea surface
temperatures on El Niño Events in the West Indian Ocean. Atmos Sci Lett
2019;20:e924.

[48] Kim H, Vitart F, Waliser DE. Prediction of the Madden–Julian oscillation: a
review. J Clim 2018;31:9425–43.

[49] Xie SP, Carton JA. Tropical Atlantic variability: patterns, mechanisms, and
impacts. Earth’s climate: the ocean-atmosphere interaction. Geophys Monogr
2004;147:121–42.

Yoo-Geun Ham got his Ph.D. degree from Seoul National
University in 2009. He then joined NASA Goddard Space
Flight Center in USA as a research scientist. In 2013, he
joined Department of Oceanography in Chonnam
National University as a professor. His research interest
includes subseasonal-seasonal-decadal climate fore-
casts using deep learning and dynamical global climate
models.

http://refhub.elsevier.com/S2095-9273(21)00224-3/h0135
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0135
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0140
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0140
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0145
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0145
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0150
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0150
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0150
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0160
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0160
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0165
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0165
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0165
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0165
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0165
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0170
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0170
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0180
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0180
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0185
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0185
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0190
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0190
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0190
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0195
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0195
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0195
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0200
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0200
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0205
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0205
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0210
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0210
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0210
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0215
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0215
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0220
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0220
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0220
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0225
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0225
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0225
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0230
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0230
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0235
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0235
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0235
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0240
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0240
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0245
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0245
http://refhub.elsevier.com/S2095-9273(21)00224-3/h0245

	Unified deep learning model for El Niño/Southern Oscillation forecasts by incorporating seasonality in climate data
	1 Introduction
	2 Methods
	2.1 Convolutional neural network (CNN) model for all seasons
	2.2 The loss function
	2.3 Reanalysis data
	2.4 Model simulations
	2.5 Activation map analysis

	3 Results
	3.1 Minimizing the “spring predictability barrier” problem by incorporating seasonality in climate data
	3.2 Physical interpretation using activation map

	4 Discussion and conclusion
	Conflict of interest
	ack14
	Acknowledgments
	Author contributions
	Appendix A Supplementary materials
	References


